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Abstract: We discuss how seesaw neutrino models can be graphically represented in lep-

ton flavour space. We examine various popular models and show how this representation

helps understanding their properties and connection with experimental data showing in

particular how certain texture zero models are ruled out. We also introduce a new ma-

trix, the bridging matrix, that brings from the light to the heavy neutrino mass flavour

basis, showing how this is related to the orthogonal matrix and how different quantities

are easily expressed through it. We then show how one can randomly generate orthogo-

nal and leptonic mixing matrices uniformly covering all flavour space in an unbiased way

(Haar-distributed matrices). Using the isomorphism between the group of complex rota-

tions and the Lorentz group, we also introduce the concept of Lorentz boost in flavour

space for a seesaw model and how this has an insightful physical interpretation. Finally, as

a significant application, we consider N2-leptogenesis. Using current experimental values

of low energy neutrino parameters, we show that the probability that at least one flavoured

decay parameter of the lightest right-handed neutrino is smaller than unity is about 49%

(to be compared with the tiny probability that the total decay parameter is smaller than

unity, P (KI < 1) ∼ 0.1%, confirming the crucial role played by flavour effects). On the

other hand when m1 & 0.1 eV this probability reduces to less than 5%, showing how also

N2-leptogenesis disfavours degenerate light neutrinos.
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1 Introduction

The possibility to identify the origin of neutrino masses and mixing clashes with the lim-

ited number of low energy neutrino parameters that we can access experimentally, those

encoded in the light neutrino mass matrix (three mixing angles, three neutrino masses,

one Dirac phase, two Majorana phases1), in comparison with the large number of theo-

retical parameters typically introduced by models of new physics. Even within a minimal

extension of the Standard Model explaining neutrino masses and mixing, the type I seesaw

mechanism [1–6], there are far too many parameters to obtain definite predictions. This is

true unless:

(i) either this is embedded within a theoretical framework able to reduce the number of

parameters (top-down approach);

(ii) or an explanation of neutrino masses and mixing is linked to other observables

(bottom-up approach) such as the matter-antimatter asymmetry of the universe with

leptogenesis, parameters in the quark sector (as in grand-unified theories), lepton

flavour violating processes (within different models), dark matter of the universe

(from heavy-heavy neutrino mixing or from light-heavy neutrino mixing);

(iii) or some combination of (i) and (ii) is realised; in this case the top-down and bottom-

up approaches are complemented and both help to increase the predictive power.

1The two Majorana phases are not fully measurable. However, a positive signal in neutrinoless double

beta decay experiments would provide an experimental relation between them, placing constraints.
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In the case of a pure bottom-up approach one would like to draw model independent

conclusions based just on the experimental information. From this point of view a use-

ful and widely used tool is the orthogonal parameterisation of the neutrino Dirac mass

matrix within type-I seesaw mechanism since it allows to separate in a unambiguous

way the light neutrino parameters, three light neutrino masses and six mixing param-

eters, from the heavy neutrino parameters (in the most attractive case of three heavy

neutrinos one has three heavy neutrino masses and six parameters in the orthogonal ma-

trix). Scans within this parameterisation within a particular model or imposing certain

constraints such as successful leptogenesis can lead to interesting bounds on low energy

neutrino parameters or even to specific predictions. They can also be used to study the

impact of including specific effects in the calculation of the asymmetry or the validity of

certain approximations.

In this paper we are interested in introducing new general tools for the study and un-

derstanding of seesaw models, in particular how these can be represented in lepton flavour

space and randomly generated in an unbiased way. In section 2 we show how different mod-

els can be graphically represented in flavour space and how this helps understanding quite

easily different properties or aspects of the model, for example whether it can reproduce

successfully or not the experimental constraints. In particular we show how certain models

with textures zeroes are now excluded by the experimental data. We also review how the

parameters in the orthogonal matrix relate the light neutrino masses to the heavy neutrino

masses and contain direct information on how fine tuned are the light neutrino masses

from the seesaw formula. We introduce a new matrix, the bridging matrix, that relates in a

simple way the light neutrino mass eigenstates to the lepton states produced by the decays

of the heavy neutrino mass eigenstates. In section 3 we discuss a new parameterisation

of the orthogonal matrix and of the leptonic mixing matrix such that if no experimental

information is imposed, a random uniform generation of the parameters produces light and

heavy neutrino flavours that cover uniformly all lepton flavour space without favouring any

particular flavour direction or region. This new parameterisation is based on the isomor-

phism of the group of complex rotations with the restricted Lorentz group. In this way

we introduce the concept of Lorentz boost in flavour space and, therefore, of motion of

a model in flavour space with a specified velocity and along a certain direction in flavour

space. This should be meant not as a continuous evolution in flavour space but rather as

a property characterising each flavour model itself. In particular we show that models at

rest in flavour space correspond to models with minimal fine-tuning.

We also apply this new parameterisation to leptogenesis, showing how in this way the

distributions of all flavour decay parameters are identical if no experimental information

on the low energy neutrino parameters is imposed and how these change when current

experimental information is imposed. In particular, we consider the lightest right-handed

(RH) neutrino flavoured decay parameters that play a special role in N2-leptogenesis. We

are able to show, using latest measurements of neutrino mixing angles, how the probability

that at least one of the lightest RH neutrino flavoured decay parameters is less than unity is

∼ 49%. Since this condition determines approximately whether the asymmetry produced

by the next-to-lightest RH neutrino decays in that flavour can survive the lightest RH

– 2 –



J
H
E
P
0
5
(
2
0
1
9
)
0
1
1

neutrino wash-out, this result shows how successful N2-leptogenesis does not require special

conditions at all. Finally, in section 4, we draw the conclusions.

2 Representing seesaw models in lepton flavour space

We consider a traditional extension of the standard model introducing N right-handed neu-

trinos NRJ (J = I, II, . . . , N) with Yukawa couplings hν and, allowing for lepton number

violation, with Majorana mass matrix M . In the flavour basis where the Majorana mass

term and the charged lepton Yukawa matrices are both diagonal, the Yukawa interactions

terms for neutrinos and charged leptons plus the Majorana mass term can be written as

− Lν+`
Y+M = Lα h

`
αα `Rα Φ + Lα h

ν
αJ NRJ Φ̃ +

1

2
N c
RJMJ NRJ + h.c. , (2.1)

where LT ≡ (νL, αL) are the leptonic doublets, MI ≤ · · · ≤ MN are the heavy neutrino

masses and we indicated with Greek indexes the charged lepton flavours, α = e, µ, τ , and

with Roman indexes the heavy neutrino flavours, J = I, II . . . , N . After spontaneous

symmetry breaking the Higgs vev generates Dirac masses mD = v hν and mα = v h`αα
respectively for neutrinos and charged leptons so that the total mass term of the Lagrangian

for neutrinos and charged leptons can be written as

− L`+νm = αLmα αR + νLαmDαJ NRJ +
1

2
N c
RJMJ NRJ + h.c. . (2.2)

In the limit M � mD, the light neutrino mass matrix is given by the seesaw formula [1–6]

mναβ = −mDαJM
−1
J mDβJ . (2.3)

This is diagonalised by the (unitary) leptonic mixing matrix U in a way that mναβ =

−UαiDmij Uβj , where Dm ≡ diag(m1,m2,m3). The light neutrino masses m1 ≤ m2 ≤ m3

can then be expressed as

mi = U?iαmDαJM
−1
J (mT

D)Jβ U
?
βi . (2.4)

This expression is equivalent to the orthogonality of the matrix [7]

ΩiJ =
(U †mD)iJ√
miMJ

, (2.5)

that provides a useful (orthogonal) parameterisation of the neutrino Dirac mass matrix

mDαJ = Uαi
√
mi ΩiJ

√
MJ . (2.6)

The orthogonal matrix elements ΩiJ = |ΩiJ | ei
ϕiJ
2 have an important physical meaning [8].

They provide the fractional contribution to the light neutrino mass mi from the term

proportional to the inverse heavy neutrino mass M−1
J and also, very importantly, they tell

– 3 –
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how fine-tuned are phase cancellations in the seesaw formula to get each mi as a sum of

terms ∝M−1
J . Indeed, it is simple to express each light neutrino mass mi as2

mi = mi

∑
J

riJ e
i ϕiJ , (2.7)

where each riJ ≡ |Ω2
iJ |/

∑
J |Ω2

iJ | ∝ 1/MJ is the fractional contribution to the neutrino

mass mi from the heavy neutrino inverse mass M−1
J , and mi ≡ mi

∑
J |Ω2

iJ |. In this way

the quantities γi ≡
∑

J |Ω2
iJ | ≥ 1 can be regarded as a measure of the fine-tuning, from

phase cancellations, that is required to reproduce the light neutrino masses mi.

If we indicate with |LJ〉 the lepton quantum state produced (at tree level) in the decay

of a RH neutrino NJ , its charged lepton flavour composition is determined by the neutrino

Dirac mass matrix [9]

|LJ〉 =
mDαJ√

(m†DmD)JJ

|Lα〉 . (2.8)

If we use the leptonic mixing matrix U to express the charged lepton flavour eigenstates in

terms of the neutrino mass eigenstates, |Lα〉 = U?αi |Li〉, we obtain

|LJ〉 =
mDαJ U

?
αi√

(m†DmD)JJ

|Li〉 =
(U †mD)iJ√
(m†DmD)JJ

|Li〉 , (2.9)

showing that the matrix

BiJ ≡
(U †mD)iJ√
(m†DmD)JJ

(2.10)

operates the transformation between the lepton flavour basis determined by the neutrino

mass eigenstates to that one determined by heavy neutrino lepton flavour states.3 In terms

of the orthogonal matrix one finds easily

BiJ =

√
mi

m̃J
ΩiJ =

√
mi ΩiJ√∑
k mk |ΩkJ |2

, (2.11)

where we introduced the effective neutrino masses [10–12]

m̃J ≡
(m†DmD)JJ

MJ
=
∑
k

mk |ΩkJ |2 . (2.12)

This shows that for N = 3 the matrix B contains nine parameters: the three light neutrino

masses and the six parameters in the orthogonal matrix. These are indeed the 3 × 3

2Notice that using the orthogonality of Ω one can write mi = mi

∑
J Ω2

iJ and from this and the definition

of ϕiJ one obtains (2.7). From eq. (2.5) one can see that riJ ∝ 1/MJ .
3If one considers the lepton doublet fields, rather than the states, one has LJ = B?Ji Li. Notice also that

the matrix U†mD is the Dirac neutrino mass matrix in a flavour basis where both light neutrino and heavy

neutrino mass matrices are diagonal [12]. The B matrix is obtained properly normalising U†mD and it

basically bridges the energy gap between low and high energy states, more precisely bringing from low to

high energy states. For this reason it could be also referred to as the beanstalk matrix, from the beanstalk

narrated in the Story of Jack and the Beanstalk.

– 4 –
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parameters necessary to determine the flavour compositions of the heavy neutrino flavour

states |LJ〉.
The probability that a lepton LJ is measured as a lepton LI 6=J or, equivalently, the

interference probability between a heavy neutrino NJ and a heavy neutrino NI 6=J , can be

simply expressed (at tree level) in terms of B as

p0
IJ ≡ |〈LJ |LI〉|2 =

∣∣∣∣∣∑
k

B?
kJ BkI

∣∣∣∣∣
2

, (2.13)

and one can immediately verify from eq. (2.10) that p0
JJ = 1. The nought in the upper

script indicates that they are calculated at tree level. On the other hand the probability

that a lepton LI is measured in a charged lepton flavour α = e, µ, τ is given by

p0
Jα ≡ |〈Lα|LJ〉|2 =

|mDαJ |2
(m†DmD)JJ

=

∣∣∣∣∣∑
k

Uαk BkJ

∣∣∣∣∣
2

=
|∑k

√
mk Uαk ΩkJ |2∑

k mk |ΩkJ |2
. (2.14)

These expressions for the probabilities clearly show the physical meaning of the B matrix

as a transformation matrix between the light and the heavy neutrino flavour basis.

The seesaw formula is invariant under a generic unitary flavour transformation of the

LH fields νLα′ = VLα′α νLα, so that one can write in the new flavour basis

m′ν = −m′D
1

DM
m

′T
D , (2.15)

where DM ≡ diag(MI ,MII , . . . ,MN ) and m′Dα′J = VLα′αmDαJ , while the transformed

light neutrino mass matrix is given by m′ν α′β′ = VLα′αmν αβ (V T
L )ββ′ . In this new basis the

charged lepton mass matrix is in general non-diagonal. The orthogonal matrix Ω and the

bridging matrix B are of course invariant under this change of lepton flavour basis, since

they are by definition transformations between the light and the heavy neutrino flavour

bases and, therefore, are independent of which lepton flavour basis is chosen to represent

the lepton fields and neutrino Dirac mass matrix. Therefore, in terms of the transformed

Dirac mass matrix, they can be simply written as

ΩiJ =
(W †m′D)iJ√

miMJ
, BiJ =

(W †m′D)iJ√
(m

′†
Dm

′
D)JJ

, (2.16)

where we introduced the unitary matrix Wα′i ≡ Vα′α Uαi that brings from the light neutrino

mass basis to the new generic primed flavour basis.

Neutrino Yukawa basis. A particularly important example of lepton flavour basis,

useful especially to describe a model, is represented by the neutrino Yukawa basis. This

is the basis where the neutrino Dirac mass matrix is diagonal. In general the change

to this basis has to be done transforming simultaneously both the LH neutrino fields

and the RH neutrino fields by means of a bi-unitary transformation, νL` = V Y
L`α νLα and

NY
R` = UYR`I NRI respectively (` = a, b, c), in a way that

mD = V Y †
L DmD U

Y
R , (2.17)

– 5 –
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where DmD ≡ diag(mDa,mDb,mDc) and mDa ≤ mDb ≤ mDc are the Dirac masses. The

Yukawa basis has important physical properties. First of all whether the leptonic mixing

matrix is generated either in the LH sector or in the RH sector is clearly something encoded

by V Y
L and UYR respectively. If there is no right-right Majorana mass term (the Dirac

neutrino case) then the light neutrino masses would be simply given by the Dirac masses

(i.e., m1 = ma, m2 = mb, m3 = mc) and the leptonic mixing matrix would be simply

given by U = V Y †
L : the Yukawa basis would simply coincide with the light neutrino mass

basis. This would be still true when the Majorana mass term is turned on, the case of

our interest, and UYR = I, corresponding to say that the Majorana and the Dirac mass

matrices are diagonalised in the same basis. The only difference would be that in this case

one has seesawed neutrino masses mi = m2
D`/MI with ` = a, b, c. Vice-versa, if V Y

L = I,

then leptonic mixing can only stem by a UYR 6= I, as it can be immediately understood from

the see-saw formula. Another important physical property of the Yukawa basis is that it

sets the right basis where to describe medium effects in the description of RH-RH neutrino

mixing in the early universe, proposed for example to be either the source of baryogenesis in

the ARS mechanism [13] or of dark matter-genesis in [14], since the effective potential due

to medium effects are diagonal in the Yukawa basis. Therefore, the RH neutrino mixing

matrix should be identified with UYR , at least in the absence of other (non-standard) RH

neutrino interactions. Finally, notice that the neutrino Yukawa basis provides clearly the

reference basis to compare the neutrino Yukawa interactions with those of other massive

fermions and in case impose certain relations as in SO(10)-inspired models [11, 15–18]

where the neutrino Dirac mass matrix is ‘not too different’ from the up quark Dirac mass

matrix. Also, as we will see, often this is the right basis where to impose certain conditions

rising from symmetries of the model, such as textures zeros or other relations on the mass

matrices of other fermions.

Let us now consider a few interesting examples of lepton flavour bases associated to

specific classes of models. These are graphically shown in the panels of figure 1 where we

used the light neutrino flavour basis as a reference frame.

Charged lepton flavour basis. In panel (a) we show the usual charged lepton flavour

basis and how this can be obtained, modulo the three phases, from the light neutrino

flavour basis by means of three Euler rotations defining the three mixing angles in the

leptonic mixing matrix [19].

Generic heavy neutrino flavour basis. In panel (b) we show a generic heavy lepton

flavour basis that, in general, is not orthonormal. We have defined the angles θIJ simply

in such a way that p0
IJ = cos θIJ . If the heavy neutrino flavour basis is orthonormal, then

p0
IJ = δIJ and the equation (2.13) correctly shows that in this case B is unitary (however,

we show in the following that in this case it has necessarily to coincide with the identity

or any permutation matrix).

Coincident light and heavy neutrino flavour bases. A special case, shown graphi-

cally in panel (c), corresponds to have B = P (where P here and elsewhere is the permu-

tation matrix), so that the heavy neutrino flavour basis basically coincides with the light

– 6 –
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1 2

3

e

µ

τ

θ12

θ12

θ23

θ23

θ13

θ13

(a) Charged lepton flavour basis and

mixing angles.

1 2

3

II

I

III

θI,III

θI,II

θII,III

(b) Generic lepton heavy neutrino

flavour basis.

= 1I
II= 2

III= 3

(c) Orthonormal heavy neutrino

flavour basis (necessarily) coinciding

with the light neutrino flavour basis.

1 2

3

I = II = III= e′

(d) Example of three coinciding lepton

heavy neutrino flavours.

1 2

3

I = II
III

= e′

(e) Example of two coinciding lepton

heavy neutrino flavours.

1 2

3

IIII = e′

II

(f) Lepton flavour basis where one

flavour e′ is made coinciding with one

of the heavy neutrino flavours.

Figure 1. Examples of lepton flavour bases with the light neutrino flavour basis as reference basis.
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neutrino flavour basis. In this case one can easily see that necessarily also both Ω = P

and UYR = P . This corresponds to the situation described before when the neutrino masses

are given simply by mi = m2
D`/MJ and U = V Y †

L . Therefore, in this case necessarily the

Yukawa basis also coincides (modulo axes permutations) with the light and heavy neutrino

flavour bases. Indeed, it is correct to say that, since the heavy neutrino flavour basis is

aligned with the Yukawa basis, then the resulting light neutrino basis, from the seesaw for-

mula, is also coinciding. This situation corresponds to what has been called limit of exact

dominance in [20] or form dominance in [21]. In this case heavy neutrinos do not mix and

do not interfere in decays and indeed all CP asymmetries, both total [20] and flavoured [21],

vanish. For this reason some departure from form dominance is necessary if one wants to

realise leptogenesis. This class of models typically emerges when a non-Abelian flavour

symmetry is imposed [23] in a way that DN (g)m†DmDDN (g) = m†DmD, where DN (g) is

3-dim irreducible representation of the non-Abelian flavour symmetry group G acting on

the RH neutrinos and g is a generic group element. In this case the first Shur’s lemma

implies m†DmD = λ2
D P , where P is the permutation matrix and λD is the value of the

degenerate Dirac neutrino masses, in a way that mi = λ2
D/MJ realising form dominance

corresponding indeed to Ω = P . From eq. (2.5) one can see that the fact that V Y
L = U † is

consistent with having Ω = P (and from eq. (2.10) that B = P ). In order to have successful

leptogenesis the flavour symmetry has to be broken and the CP asymmetries are related

to the symmetry breaking parameter [22, 23].

One can wonder whether there can be models, generalising Ω = B = P , characterised

by a generic orthonormal heavy neutrino flavour basis that does not coincide with the light

neutrino flavour basis. However, it is easy to show that this is impossible. The reason is

that if the heavy neutrino flavour basis is orthonormal, then this has necessarily to coincide

with the Yukawa basis since one can always find a matrix VL that brings to a basis where

m′D is diagonal and, therefore, this necessarily implies UR = P . However, in this case

from the seesaw formula one immediately finds VL = U †L and, therefore, the heavy neutrino

flavour basis has necessarily to coincide with the light neutrino flavour basis, as confirmed

also by the fact that one has Ω = B = P .

Three coinciding heavy neutrino flavours. An opposite limit case, shown in panel

(d), is realised when all three lepton heavy neutrino flavours coincide, i.e. I = II = III =

e′, meaning that all three heavy neutrinos decay into leptons with the same flavour e′. It

is easy to prove that this case is excluded by the experimental data since one can always

perform a transformation, operated by a unitary matrix V ′L acting on the lepton doublets,

from the (charged lepton) flavour basis (e, µ, τ) to a new orthonormal flavour basis (e′, µ′, τ ′)

where e′ coincides then with the common heavy neutrino flavour. In this new flavour basis

the neutrino Dirac mass matrix takes the very simple form

m′D = V ′LmD =

mDe′I mDe′II mDe′III

0 0 0

0 0 0

 , (2.18)

– 8 –
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where V ′L is a unitary matrix that transforms the lepton doublets from the charged lepton

flavour basis to the new flavour basis. From the seesaw formula one can see immediately

that this form implies m1 = m2 = 0,4 and therefore this case is excluded since it cannot

reproduce both solar and atmospheric neutrino mass scales.

Two coinciding heavy neutrino flavours. We can now consider a less special case

where only two lepton heavy neutrino flavours coincide, while the third does not and

is generic. For example, we can consider I = II. In this case we can always find a

transformation, still operated by a unitary matrix V ′L, from (e, µ, τ ) to a new orthonormal

flavour basis (e′, µ′, τ ′) where e′ = I = II. This case is shown graphically in panel (e) of

figure 1. In this new flavour basis the Dirac mass matrix takes the form

m′D = V ′LmD =

mDe′I mDe′II mDe′III

0 0 mDµ′III

0 0 mDτ ′III

 . (2.19)

This form for m′D can successfully reproduce all low energy neutrino data for a generic e′.

However, if the flavour e′ coincides with one of the charged lepton flavours (in this case

V ′L = P ), then the number of parameters gets considerably reduced and one has to verify for

each case, whether it is possible to reproduce the low energy neutrino data. For example,

if e′ = e, then one obtains a seesaw model that implies a light neutrino mass matrix of

the form respecting the so-called strong scaling ansatz [27, 28], leading necessarily to a

vanishing θ13 now excluded by the data. This is only one out of nine cases corresponding

to have |LI〉 = |LJ〉 = |Lα〉 with I 6= J and α = e, µ, τ . By inspection we have checked

that also all the other eight cases, listed explicitly in appendix A, are excluded, since they

give rise to a light neutrino mass matrix that is either again respecting the scaling ansatz

made in [27] or has some similar scaling property also leading to unacceptable low energy

neutrino data (see appendix A for more details).

A popular class of seesaw models where the number of parameters is considerably

reduced is the two right-handed neutrino limit [29–32]. This can be obtained from the

three RH neutrino case either in the limit of very large heaviest RH neutrino mass M3 �
1015 GeV or if one of the three RH neutrinos has negligible Yukawa couplings. In both cases

one hasm1 → 0 and effectively the heaviest RH neutrino decouples from the seesaw formula.

In this case one effectively obtains a two RH neutrino formula with a 3× 2 Dirac neutrino

mass matrix. In this case the number of seesaw parameters reduces from eighteen to eleven.

These are still too many to lead to predictions on the mixing parameters and usually one

has to add some additional condition to this extent. For example, one could again consider

a situation when both the two heavy neutrino flavours are aligned. However, analogously to

the three RH neutrino case where all three heavy neutrino flavours are aligned, one would

get a second vanishing light neutrino, so that one cannot reproduce both the solar and the

atmospheric neutrino mass scales. Within these two RH neutrino models one can further

reduce the number of parameters again imposing texture zeros in the neutrino Dirac mass

matrix mD, i.e., in the charged lepton flavour basis. In this case it has been shown that

4This is something expected since the matrix (2.18) has rank 1.

– 9 –
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models with more than two textures zeros are all ruled out by the data and even among all

possible models with two texture zeroes only one is still marginally allowed since it requires

inverted hierarchy, now disfavoured at approximately 3σ [33], while all possibilities leading

to normal hierarchical neutrino masses do not reproduce the measured values of the mixing

angles [34, 35].

Lepton flavour basis leading to two texture zeros in the Dirac mass matrix.

Finally, let us conclude saying that of course one can always find a flavour basis (e′, µ′, τ ′)

where m′D has two textures zero, since one can always align one flavour along one of the

heavy neutrino flavours, for example in a way that e′ = I as represented in panel (f)

of figure 1.

3 Motion in lepton flavour space

The orthogonal parameterisation (see eq. (2.5)) is a useful tool that allows to scan over

the (unknown) parameters in the orthogonal matrix and the RH neutrino masses tak-

ing into account the experimental information from low energy neutrino experiments also

in combination with other phenomenological conditions (e.g., successful leptogenesis, re-

producing the observed dark matter abundance, respecting constraints on rates of lepton

flavour violating processes).

The scans are traditionally done using a parameterisation of the leptonic mixing matrix

in terms of three Euler rotations (two real ones and one complex), defining the three mixing

angles θij , the CP violating Dirac phase δ and two CP violating Majorana phases ρ and σ,

explicitly [19]

U =

 1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13 e

−i δ

0 1 0

−s13 e
i δ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1


 eiρ 0 0

0 1 0

0 0 eiσ

 (3.1)

where sij ≡ sin θij and cij ≡ cos θij . The orthogonal matrix is usually analogously param-

eterised as the product of three complex rotations,

Ω = ζ

 1 0 0

0 cos z23 sin z23

0 − sin z23 cos z23


 cos z13 0 sin z13

0 1 0

− sin z13 0 cos z13


 cos z12 sin z12 0

− sin z12 cos z12 0

0 0 1

 , (3.2)

where the zij ’s are three complex mixing angles and the overall sign, ζ = ±1, takes into

account two possible different options (branches), one with positive determinant and one

with negative determinant. The three complex mixing angles can in turn be parameterised

in terms of their real and imaginary parts writing zij = xij + i yij .

Points in flavour space, for a fixed set of light and heavy neutrino masses, can then

be obtained generating random uniformly the values of the three mixing angles, the three

phases, the three real and imaginary parts of the complex angles. The result of this

random generation of points in flavour space is shown in the top-left panel of figure 2 for

arbitrary values of the mixing angles and of the low energy phases, i.e., without imposing

– 10 –
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Figure 2. Density distributions of flavour probabilities p0Iα obtained by a random generation of

U and Ω: in the top-left panel mixing angles have been generated randomly uniformly while in

the top-right panel U and Ω have been generated according to the Haar measure as explained in

the body text. In the bottom panels the mixing angles have been generated Gaussianly using the

experimental results still for a uniform generation of Ω complex angles in the left panel or according

to the Haar measure in the right panel.

any experimental constraint. More precisely we show, with triangular plots, the probability

density distribution in the space of the charged lepton flavour probabilities p0
Iα (α = e, µ, τ )

for the lightest RH neutrino. As one can see, though we randomly uniformly generated

the values of the parameters, the distribution exhibits a strong inhomogeneity toward large

values of p0
Ie. This is of course an unpleasant feature if one wants to get unbiased flavour

distributions where the flavour dependence originates only from the experimental data

and/or from the properties of a model and is not an artefact of how the random generation

of points is performed. Some basic results of group theory help explaining why this happens

with the usual parameterisation and how the problem can be fixed but at the same time

they will provide an insightful way to look at seesaw models in lepton flavour space. If one

looks at the expression (2.14) in terms of U and Ω, then it is clear that the problem is that

the usual parameterisations does not give a uniform distribution of the elements of U and

Ω. In order to do that one has to generate random matrices in a way to cover uniformly

the flavour space. Let us discuss separately how this can be done for U and Ω.

3.1 Random generation of Haar-distributed U

We want to generate U matrices in a way not to privilege any particular lepton flavour basis.

Let us look again at the panel (a) in figure 1. Here the U matrix is regarded as a (proper)

Euler rotation, an approximate picture that is valid only when phases are neglected. A

– 11 –
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Figure 3. Distributions of real and imaginary parts of the entries of Haar-distributed U .

flavour unbiased random generation of weak lepton flavour bases, has to be such that given

a certain flavour axis, for example the tauon axis, this points to any infinitesimal surface

element on the unit sphere in lepton flavour space with equal probability. In this way,

generating a large number of lepton flavour basis, each lepton axis will uniformly cover the

unit sphere in lepton flavour space. This can be done using well known results of group

theory that we briefly discuss [36].

Each (real) U matrix is an element of the group of real rotations SO(3,R). When

phases are taken into account each randomly generated U is an element of the group of

unitary transformations U(3). Therefore, in group theory language, a flavour unbiased

random generation of U corresponds to generate randomly unitary matrices according to

the Haar measure over the group U(3) (Haar-distributed random matrices) that is given by

dV ≡ d(sin2 θ12) d(sin2 θ23) d(cos4 θ13) dδ dρ dσ . (3.3)

In this way generating uniformly sin2 θ12, sin2 θ23 and cos4 θ13 in the interval [0, 1], one

obtains equal distributions for all Uαi elements, both for their real parts and for their

imaginary parts, as shown in figure 3. Notice that the use of Haar-distributed U , and more

generally light neutrino mass matrices, is the basis of anarchical prediction of low energy

neutrino parameters [37, 38]. However, for us, more pragmatically, this is a way to generate

flavoured unbiased scans over seesaw models.

3.2 Random generation of Haar-distributed Ω

If one uses the experimental information on U and, therefore, the experimental distribution

for the mixing angles, the random generation of U is not actually necessary, except for the

phases that however can be simply generated uniformly between 0 and 2π considering that

the Haar measure is flat in the phases.

It is then actually more important to generate randomly Ω’s in a way not to introduce

any bias in flavour space. Complex orthogonal matrices, as in eq. (3.2), provide a matrix

representation of the Lie group O(3,C) of complex rotations, the complex orthogonal group.

It is well known that the special group of complex rotations SO(3,C), i.e. those with
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determinant +1, is isomorphic to the restricted (proper + orthochronous) Lorentz group

SO+(3, 1). This can be seen showing that they have the same Lie algebra (see appendix B).5

For this reason a generic complex rotation matrix Ω with det(Ω) = +1 can be decom-

posed as

Ω(z12, z13, z23) = R(α12, α13, α23) · Ωboost(~β) , (3.4)

where R is a real orthogonal matrix with det(R) = +1 parameterised in terms of three Euler

angles αij and Ωboost is a pure Lorentz boost (in flavour space) parameterised in terms of

a boost velocity vector ~β = β n̂ with an associated Lorentz factor γ ≡ (1 − β2)−1/2. For

example, if one chooses a unit vector n̂ = (0, 0, 1), then one simply has6

Ωboost(0, 0, β) =

 coshψ −i sinhψ 0

i sinhψ coshψ 0

0 0 1

 , (3.5)

with β = tanhψ and γ = coshψ. This special case can be of course generalised for an

arbitrary choice of n̂ (see appendix B). It is interesting to notice that for transformations

with β 6= 0 there is a privileged direction in flavour space while transformations with β = 0

corresponds basically to a flavour invariant situation where Ω = B = P and the fine-

tuning in the seesaw is minimum.7 Indeed, notice that the see-saw fine-tuning parameters

associated to the light neutrino masses introduced in section 2 are in this case simply given

by γ1 = γ2 = γ2 (1+β2), showing that the Lorenz factor of the transformation is related to

the fine-tuning parameters. This is somehow another way to understand why imposing a

flavour symmetry leads to Ω = B = P : this is the case corresponding to vanishing velocity

in flavour space, meaning that the model does not have any privileged flavour direction.

In the case of the special boost in eq. (3.5), the bridging matrix is given by

Bboost =


√
m1 coshψ√

m1 cosh2 ψ+m2 sinh2 ψ

i
√
m1 sinhψ√

m1 sinh2 ψ+m2 cosh2 ψ
0

i
√
m2 sinhψ√

m1 sinh2 ψ+m2 cosh2 ψ

√
m2 coshψ√

m1 sinh2 ψ+m2 cosh2 ψ
0

0 0 1

 , (3.6)

an example confirming that the heavy lepton flavour basis is in general non-orthonormal.

If in the orthogonal matrix we turn on, in addition to a boost, a real rotation, then in

the limit β = 0 one obtains Ω = R(α12, α13, α23), i.e., in general one does not recover form

dominance corresponding to Ω = P . For example, let us consider a simple rotation around

the third axis (α13 = α23 = 0), so that simply

Ω =

 cosα12 sinα12 0

− sinα12 cosα12 0

0 0 1

 . (3.7)

5Notice that while the group U(3) of unitary matrices is compact, the group O(3,C) is not, that is why

they have an intrinsically different parameterisation: in the case of a compact group parameters always

vary within a finite interval, while in the case of a non compact group parameters can be arbitrarily

large. This also leads to an intrinsic different Haar measure for complex orthogonal matrices compared to

unitary matrices.
6See appendix B for details.
7We are barring the real rotation component R(α12, α13, α23).
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This case still corresponds to a case of minimal fine tuning, since one clearly has γ1 = γ2 =

γ3 = 1. However, in this case one finds for the bridging matrix

B =


√
m1 cosα12√

m1 cos2 α12+m2 sin2 α12

√
m1 sinα12√

m1 sin2 α12+m2 cos2 α12

0

−
√
m2 sinα12√

m1 cos2 α12+m2 sin2 α12

√
m2 cosα12√

m1 sin2 α12+m2 cos2 α12

0

0 0 1

 , (3.8)

showing that this, in general, does not coincide with the orthogonal matrix (it is not a real

rotation matrix) and also that it brings to an heavy lepton flavour basis that is not or-

thonormal. These kind of models, with a real orthogonal matrix coinciding with a rotation

matrix, are interesting since they still correspond to minimal fine-tuning but, for the basis

is not orthonormal, there can be in general interference among heavy neutrino flavours

so that the flavoured CP asymmetries do not vanish in general. In this way in principle

one could have leptogenesis stemming entirely from low energy neutrino phases [39–43].

However, unless one has a strong resonance enhancement, the observed asymmetry is usu-

ally not reproduced, implying that one needs to turn a boost on as well. Therefore, it

seems that the explanation of the matter-antimatter asymmetry of the universe necessarily

requires the existence of some privileged direction in lepton flavour space, corresponding

to some mismatch between the bases where the Majorana and the Yukawa mass matrices

are diagonal.

If we want again to generate flavour unbiased Ω matrices, it is then clear what we

have to do now. First of all one has to generate Haar-distributed rotation matrices

R(α12, α13, α23) as we did for U . For SO(3,R), the Haar measure is quite simple

dV ≡ d(sinα13) dα23 dα12. (3.9)

In the case of Ωboost(~β), it is clear that, for a fixed value of β, we need to generate isotrop-

ically unit vectors n̂. For example, one can use polar coordinates and write

n̂ = (cosφ sin θ, sinφ sin θ, cos θ), (3.10)

with θ ∈ [0, π] and φ ∈ [0, 2π]. If one generates random uniformly θ and φ, one would

obtain a clustered density of points near the poles. To generate isotropic orientation of n̂,

we use the standard technique of generating uniform points on a surface of a sphere by

generating values of θ given by

θ = cos−1(1− 2 a) , (3.11)

with the parameter a uniformly generated within the interval [0, 1]. Using this random

generation procedure we have obtained distributions for the real and imaginary parts of

the orthogonal matrix plotted in figure 4 Notice that this procedure can be easily extended

to include also matrices Ω with negative determinant.

Finally, we have combined together the flavour unbiased procedure to random generate

both U and Ω and again plotted the distribution of probabilities p0
Iα shown in the top right

panel of figure 2 and, as one can see, this time, barring small statistical fluctuations,
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Figure 4. Distribution of the real and imaginary parts of the entries ΩiJ .

we have obtained a perfectly flavour homogeneous distribution of points shown in the

top-right panel.

In the bottom panels of figure, 2 we plotted the p0
Iα using the experimental informa-

tion, generating the mixing angles in U random Gaussianly and using the following latest

experimental results for the values of the mixing angles in the case of normal ordering [33]

θ12 = 33.82◦ ± 0.77◦ , (3.12)

θ13 = 8.61◦ ± 0.12◦ ,

θ23 = 49.7◦ ± 1.0◦ .

The inverted ordering case is now disfavoured at more than 3 σ and we will not consider it

in our following discussion. We have also compared again the case when mixing angles are

random uniformly generated (left panel) with the case of Haar-distributed U (right panel).

This time one can see that there is not a great difference since in any case the region that

is biased is disfavoured by current data.

3.3 An application: N2-leptogenesis

The reason why we focused in figure 2 on p0
Iα, is that the lightest RH neutrino plays

a particular role in N2-leptogenesis [20, 44]. In this scenario of leptogenesis the current

baryon asymmetry, expressed in terms of the baryon-to-photon number ratio at present

ηB0, can be calculated as [45, 46]

ηB0 ' 0.96× 10−2
(
εIIe κ(KIIe +KIIµ) e−

3π
8
KIe

+εIIµ κ(KIIe +KIIµ) e−
3π
8
KIµ + εIIτ κ(KIIτ ) e−

3π
8
KIτ
)
. (3.13)

The lightest RH neutrino flavoured decay parameters KIα play clearly a special role since

they describe the exponential wash-out from lightest RH neutrino inverse decays and one

needs that at least one of them is less than unity for the asymmetry produced by the N2-

decays at a temperature T ∼ M2 to survive at present. The flavoured decay parameters

are simply given by KIα = p0
IαKI , where KI = m̃I/m? are the total decay parameters and
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Figure 5. Distributions of the decay parameters for m1 = 0 and generic values of the mixing from

a random flavour blind generation of U and Ω.

m? is the equilibrium neutrino mass. Therefore, one can see the special role played by the

p0
Iα’s in N2-leptogenesis.

It is then particularly interesting to understand how special is the condition for the

asymmetry produced by N2 decays to survive at present. This is basically equivalent

to understand how special is to have at least one KIα, for some lepton flavour α, less

than unity.

The flavoured decay parameters are related to the orthogonal matrix through the

eq. (2.12) for m̃I and, therefore, for each choice of Ω and for a given value of m1, one

has a corresponding set of values of KIα. We have therefore produced the distributions

for the values of the KIα for α = e, µ, τ adopting the flavoured unbiased procedure, based

on the Haar measure, that we discussed. In figure 5 the distributions are shown without

imposing any experimental information on the values of the mixing angles that, therefore,

vary arbitrarily within [0, 90◦] and in the hierarchical limit m1 = 0. It can be seen how

the distributions are identical independently of α as a result of the flavour blindness of the

procedure we followed to generate randomly U and Ω.8 It is important to notice that the

probability for each KIα to be less than unity is about 12%, meaning that the probability

that at least one KIα is less than unity is approximately 36%.

How do these results change when the experimental information on the mixing angles

is used? In figure 6 the distributions for the KIα are now obtained using the experimental

information on the mixing angles eq. (3.12). One can see how the fact that the experimental

values favour small values of p0
Iα, translates into a much higher probability, approximately

36%, for KIe to be less than unity compared to KIµ and KIτ whose probability to be

less than unity drops to ∼ 6–7%. The probability that at least one KIα is less than

unity is therefore now about 49%. This result shows how the possibility to have a small

lightest RH neutrino wash-out in one of the three flavours, a crucial condition to realise

N2-leptogenesis, is not special at all (contrarily to some statements made in the literature).

It should be also said that on the other hand the probability to have KI =
∑

α KIα < 1

is only 0.1% confirming and quantifying how accounting for flavour effects is crucial for

N2-leptogenesis [44].

8We do not show the distributions for the KIIα and for the KIIIα but they would also be identical since

the procedure is flavour blind both to charged lepton flavour and to heavy neutrino flavour.
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Figure 6. Same as in figure 5 but using the experimental values of the mixing angles in eq. (3.12).
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Figure 7. Same as in figure 5 but for m1 = 0.01 eV.
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Figure 8. Same as in figure 6 but for m1 = 0.01 eV.

In figure 7 and figure 8, again for arbitrary and experimental values of the mixing

angles respectively, we also show how the distributions change departing from the hier-

archical limit, for m1 = 0.01 eV. It can be noticed how all probabilities drop and this is

easily explained since KI = m̃I/m? and m̃I ≥ m1 so that all decay parameters tend to

increase. However, the probability that at least one of the three KIα < 1 is still quite

large, approximately 23%. Notice also how for arbitrary mixing angles the distributions

are still identical in the three flavours. For values m1 & 0.1 eV, the probability that at

least one KIα < 1 drops below 5%. This can somehow be regarded as a kind of extension

of the upper bound on neutrino masses holding in N1 leptogenesis, also to the case of

N2-leptogenesis, though it should be clear that in this case the upper bound should be

interpreted more in a statistical way rather than as an absolute one.
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4 Conclusion

We have seen how representing seesaw models in lepton flavour space allows a deeper un-

derstanding of different features of seesaw models. In particular different results have an

easy graphical interpretation. The new bridging matrix, switching from the light to heavy

neutrino lepton basis, is very useful for writing flavour probabilities and characterising see-

saw models in an easy way. We have also seen how fine-tuning in seesaw models can be

expressed in terms of a Lorentz boost in flavour space and sequential dominated models,

characterised by minimal fine-tuning, are those for which the boost velocity is vanishing

and therefore are flavour invariant, in agreement with previous results. A deviation from

sequential dominated models, turning on some motion in flavour space, produces a devia-

tion from orthonormality that is necessary to have non-vanishing CP decaying asymmetries

and successful leptogenesis. We have seen also that one can deviate from sequential domi-

nated models with a pure real rotation orthogonal matrix. This still corresponds to models

at rest in flavour space, but again with some deviation from orthonormality producing

non-vanishing CP violation and in principle allowing for successful leptogenesis. We have

also seen how to generate randomly, in a flavour unbiased way, seesaw models. We have

then applied these new tools to N2-leptogenesis and showed how it is actually very easy

to realise the condition of no wash-out from the lightest RH neutrino, for ∼ 49% of the

points once the current values of the mixing angles are used for hierarchical light neutrinos.

On the other hand, if m1 & 0.1 eV, this probability drops to less than 5%, a result that

confirms that the exclusion of quasi-degenerate neutrino from current cosmological obser-

vations, supports scenarios of minimal leptogenesis based on type-I seesaw and thermal

production of RH neutrinos. The new tools and ideas introduced in this work will be very

useful in different respects, both in the quest of models of new physics able to explain

neutrino masses and mixing and, more pragmatically, in scanning seesaw models within

different contexts such as leptogenesis.
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A Excluding models with two heavy neutrino flavours coinciding with

one charged lepton flavour

In this appendix we list explicitly the forms of mD corresponding to the nine cases discussed

in section 2 with two heavy neutrino flavours coinciding with a charged lepton flavour, so
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that |LI〉 = |LJ〉 = |Lα〉 with I 6= J and α = e, µ, τ . These are given by

mD =

mDeI mDeII mDeIII

0 0 mDµIII

0 0 mDτIII

 ,
mDeI mDeII mDeIII

0 mDµII 0

0 mDτII 0

 ,
mDeI mDeII mDeIII

mDµI 0 0

mDτI 0 0

 ,
 0 0 mDτI

mDµI mDµII mDµIII

0 0 mDτIII

 ,
 0 mDµII 0

mDµI mDµII mDµIII

0 mDτII 0

 ,
mDeI 0 0

mDµI mDµII mDµIII

mDτI 0 0

 ,
 0 0 mDeIII

0 0 mDµIII

mDτI mDτII mDµIII

 ,
 0 mDeII 0

0 mDµII 0

mDτI mDτII mDτIII

 ,
mDeI 0 0

mDµI 0 0

mDτI mDτII mDτIII

 .
(A.1)

All these cases are excluded, since they give rise to a light neutrino mass matrix that is

either again respecting the scaling ansatz made in [27] or has some similar scaling property

also leading to unacceptable low energy neutrino data. Let us give here a few more details.

If, for example, α = e, then the resulting light neutrino Majorana mass matrix (mν) is of a

special form obeying strong scaling ansatz that is ruled out [27]. Basically this corresponds

to a situation when in the light neutrino Majorana matrix one of the rows is c times of

an other row, where, ‘c’ is a common scale factor which can be expressed as a function of

the elements of mD. For example, if I = I and J = II, then the second row is c times

the third row. This leads to a vanishing eigenvalue and the corresponding eigenvector

has one vanishing entry. This results in vanishing Ue3 or Ue1, depending whether one has

inverted or the normal mass ordering. It can be checked that the other two cases, i.e.,

(I, J) = (I, III) and (I, J) = (II, III), also lead to a form obeying the strong scaling

ansatz (though with different scale factors) and, as in the previous case, this results into

vanishing Ue3 or Ue1. In the remaining six cases, for α = µ, τ , we found analogously that

either Uα3 or Uα1 vanishes, again for inverted and normal mass ordering respectively. Since

a zero entry in U is excluded by the experimental data, we conclude that all nine cases

corresponding to have two coinciding heavy neutrino flavours are ruled out.

B Orthogonal matrix for a generic boost in flavour space

In this appendix we generalise the parameterisation of the orthogonal matrix in terms of

three real angles and the three components of the boost velocity. As well known, a generic

proper orthochronous Lorentz transformation can be written as Λ = e−i (~α·
~J+~ξ· ~K) where

~J and ~K are respectively the rotation and boost generators of SO+(3, 1) and obey the

Lie algebra9

[Ji, Jj ] = i εijk Jk , (B.1)

[Ki,Kj ] = −i εijkKk , (B.2)

[Ji,Kj ] = i εijkKk , (B.3)

9Both ~J and ~K are represented by 4× 4 matrices.

– 19 –



J
H
E
P
0
5
(
2
0
1
9
)
0
1
1

where εijk is the totally antisymmetric tensor. If we now consider a generic complex

rotation Ω belonging to SO(3,C), this can be written as Ω = e−i (~α·
~L+~ξ·~Σ), where ~L are the

generators of the real rotations and ~Σ = i ~L are the generators of the imaginary rotations

(hyperbolic rotations), both represented by 3 × 3 matrices. The generators of SO(3,C)

satisfy the Lie algebra

[Li, Lj ] = i εijk Lk , (B.4)

[Σi,Σj ] = −iεijk Σk , (B.5)

[Li,Σj ] = i εijkΣk , (B.6)

clearly coinciding with that one of SO(3, 1)+, with the identification ~J ↔ ~L and ~K ↔ ~Σ.

Therefore, ~Σ correspond to the boost generators in SO(3,C). This shows that the two

groups are indeed isomorphic and one can find a map between each other. We can then

decompose the 3× 3 complex orthogonal matrix Ω ∈ SO(3,C) as

Ω = R(~α) · Ωboost(~β), (B.7)

where the 3 × 3 matrices R(~α) = e−i ~α·
~L ∈ SO(3,R) and Ωboost = e−i

~ξ · ~Σ are generated

by ~L and ~Σ respectively and we defined ~α ≡ (α12, α13, α23). Since ~Σ = i ~L, then one has

simply Ωboost(~β) = e−i (i
~ξ)·~L, showing that boosts are rotations with complex angles i ~ξ. In

the special case ~β = (0, 0, β), considered in the body text, one obtains easily eq. (3.5). In

general, for ~β = β n̂ and n̂ = (n1, n2, n3), one obtains

Ωboost(~β) =

 coshξ+n2
1(1−coshξ) n1n2 (1−coshξ)−in3 sinhξ n1n3(1−coshξ)+in2 sinhξ

n1n2 (1−coshξ)+in3 sinhξ coshξ+n2
2(1−coshξ) n2n3 (1−coshξ)−in1 sinhξ

n1n3 (1−coshξ)−in2 sinhξ n2n3 (1−coshξ)+in1 sinhξ coshξ+n2
3(1−coshξ) ,

,
(B.8)

with β = tanh ξ.
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