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Abstract—Huge quantities of low-cost analogue or digital 

MEMS sensors, in the order of millions per week, are produced 

by manufacturers. Their use is broad, from consumer electronic 

devices to Industry 4.0, Internet of Things and Smart Cities. In 

many cases, such sensors have to be calibrated by accredited 

laboratories to provide traceable measurements. However, at 

present, such a massive number of sensors cannot be calibrated 

and large-scale calibration systems and procedures are still 

missing. A first step to implementing these methods can be based 

on the distribution of the sensitivities of the large batches 

produced. Such distribution is also useful for sensor network 

end-users who need a single sensitivity, with the associated 

uncertainty, to be attributed to the whole network. Recently, a 

large batch of 100 digital 3-axis MEMS accelerometers was 

calibrated with a primary calibration system developed at 

INRiM and suitable for 3-axis accelerometers. Distributions of 

their sensitivities as a function of axis and frequency were 

analyzed and their non-normal behaviour was shown. However, 

in the preliminary phase of the study, the calibration 

uncertainties were not considered in these distributions. 

Therefore, in this paper, a mixture distribution modelling, based 

on Monte Carlo simulations and aimed at including the 

calibration uncertainties in the sensitivity distributions, is 

implemented and the resulting distributions are compared to 

the previous ones in histogram form. These distributions are 

also fitted with Johnson's unbounded and bimodal functions to 

get continuous distributions. This paper represents a further 

step towards the development of large-scale statistical 

calibration methods. 

Keywords— Digital MEMS accelerometers, large-scale, 

sensitivity, mixture distribution 

I. INTRODUCTION  

In recent years, the production of sensors, in particular 
MEMS ones, exponentially increased, reaching a massive 
quantity, in the order of millions per week. At present, these 
sensors are mainly used in electronic consumer device 
applications, such as accelerometers, pressure, gyroscopes, 
microphones, humidity and temperature sensors. However, as 
underlying technical performance improves, the reliability 

and accuracy of these sensors are becoming comparable to 
those of traditional measuring instruments, at least within 
specific boundary conditions or for certain measuring ranges,  

while maintaining significantly reduced costs. This feature 
makes such sensors attractive for measurement applications, 
such as those rapidly developing in the field of Industry 4.0, 
Internet of Things (IoT) and Smart Cities, where a large 
number of traceable sensors is required [1-3]. However, due 
to the huge amount of produced MEMS, it is not possible to 
calibrate every single sensor, as currently done in “traditional” 
metrology. It is necessary to define large-scale calibration 
methods, schemes or procedures. These can be based on 
suitable statistical sampling approaches [4] or through in-line 
calibration systems [5,6], as also emphasized in the BIPM 
CCAUV strategy document 2019-2029 [7]. In both cases, it is 
fundamental to characterize the distribution of the sensitivities 
of these sensors, produced in large batches, to address a 
traceability strategy. Such distributions are also useful for 
sensor network end-users. In fact, sensor networks consist of 
tens, hundreds, or thousands of transducers, thus attributing a 
sensitivity to each transducer and for each parameter of 
influence (e.g. frequency and axis, for 3-axis accelerometers) 
might be difficult to be managed in numerical, computational 
and consumption terms by end-users [8] and a single 
sensitivity value to be attributed to the whole sensor network, 
together with an associated expended uncertainty based on the 
distribution of the sensitivities, is more preferable.  

Recently, a large batch of 100 digital 3-axis MEMS 
accelerometers was calibrated at INRiM with a recently-
developed traceable system and the individual main and 
transverse sensitivities were provided for each sensitive axis 
at frequencies between 5 Hz and 1000 Hz [4,9]. It was found 
that the distribution of the sensitivities for each frequency and 
each vibrating axis is significantly non-normal in the 
considered frequency range. However, such empirical 
distributions cannot take into account the calibration 
uncertainties, thus they are not accurate enough for 
representing the actual variability of the sensitivities, essential 



to implement large-scale methods or to attribute an 
uncertainty (or at least a variability measure) to a sensor 
network composed of these sensors.  For this reason, in this 
paper, a method to include the calibration uncertainties in the 
sensitivity distributions is implemented as a further step 
towards the development of a statistical approach for large 
batches calibration.  

Such method is based on the modelling of a mixture 
distribution resulting from the normal distributions of the 
sensitivities of the individual sensors, having a standard 
deviation equal to their calibration uncertainty. The resulting 
mixture distributions are compared to the previous empirical 
ones (raw data without calibration uncertainty). They are also 
fitted with two different families of probability distributions 
(Johnson's [10] and bimodal distributions [11]). Results are 
shown and compared.  

II. THE DIGITAL 3-AXIS MEMS ACCELEROMETERS BATCH 

The batch under study is composed of 100 digital 3-axis 
MEMS accelerometers (Fig. 1). These sensors were calibrated 
with a specific system suitable for the simultaneous amplitude 
calibration of digital 3-axis MEMS accelerometers in the 
frequency domain by comparison to a reference transducer (in 
analogy to ISO Standard 16063-21 [12]), traceable to the SI 
and developed and validated at INRIM [13-18]. Main and 
transverse sensitivities were provided for each sensitive axis 
at frequencies of 5 Hz, 10 Hz, 20 Hz, 40 Hz, 80 Hz, 160 Hz, 
315 Hz, 630 Hz and 1000 Hz, at nearly-constant peak 
amplitude of 10 m/s2. The outputs of the MEMS are given in 
Decimal16-bit-signed (hereinafter abbreviated as D16-bit-signed) 
where the digit unit is a signed 16-bit sequence converted into 
a decimal number. Sensitivities along x- and y-axis range 
between 615 D16-bit-signed/(m/s2) and 1025 D16-bit-signed/(m/s2), 
with relative expanded uncertainties around 1.2 % at 5 Hz, and 
around 0.4 % from 10 Hz to 1 kHz, whereas z-axis sensitivities 
decrease at increasing frequencies and range between 251 D16-

bit-signed/(m/s2) and 896 D16-bit-signed/(m/s2), with relative 
expanded uncertainties around 0.9 % at 5 Hz and 0.3 % from 
10 Hz to 1 kHz. It was found that the simple distribution of 
the sensitivities for each frequency and vibrating axis is 
significantly non-normal in the considered frequency range. 
An example is shown for z-axis at 5 Hz in Fig. 2. 

 

Fig. 1. The 100 digital 3-axis MEMS accelerometers (left) and the external 
microcontroller (right) [4]. 

 

Fig. 2. Simple distribution of the 100 MEMS z-axis sensitivities at 5 Hz. 

III. MIXTURE DISTRIBUTION MODELLING 

The preliminary investigated histograms refer to the 
sample distribution of the sensitivity values, Si, each 
pertaining to the ith MEMS, without the inclusion of the 
associated expanded uncertainty U(Si). As a matter of fact, 
MEMS sensitivities are more accurately represented by a set 
of normal distributions, whose dispersions depend on the 
associated calibration uncertainties u(Si), as schematically 
shown in Fig. 3, rather than by a set of single values. 

 

Fig. 3. Schematic representation of the sensitivity of each MEMS, in terms 
of normal distribution, whose dispersion depends on the associated 
calibration uncertainty. 

To include the calibration uncertainties in the distribution 
of the sensitivities of the experimental batch, a mixture 
distribution [19] modelling is implemented. The mixture 
distribution is obtained from the collection of 100 normally-
distributed variables (assigned to the sensitivities of each 
MEMS in the batch), all having the same weight within the 
mixture. An important feature of the proposed model is that it 
can take into account possible covariances between the 
sensitivity values of different MEMS. 

The modelling of the mixture distribution is performed 
through R software by implementing the “rmvnorm” function 
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[20] that generates data from a multivariate normal 
distribution, given a vector of mean values, i.e. the 100 
sensitivities of the MEMS, and a covariance matrix, i.e. a 
100×100 matrix where the diagonal terms are the calibration 
squared uncertainties of each MEMS and the out-of-diagonal 
terms are the covariance terms of each couple of the MEMS 
sensitivities. Since all MEMS are calibrated with the same 
system, whose associated variance weights about 50 % of the 
overall combined squared uncertainty as shown in [13,21], 
out-of-diagonal covariance terms are calculated assuming a 
constant correlation coefficient of 0.5 for all couples of 
MEMS. This process is numerically performed through a 
Monte Carlo simulation: for each of the 100 normal 
distributions, 105 values are extracted and combined into a 
105×100 matrix of randomly generated numbers. The columns 
of this matrix represent the (marginal) probability density 
functions of the individual MEMS, which are correlated with 
each other. Putting all these data together, i.e. mixing the 
simulated 107 sensitivity values, the final mixture distribution 
of the possible sensitivity values of the whole MEMS batch is 
obtained. Such operation can be performed for the sensitivities 
related to a specific axis and a specific frequency, or for larger 
groupings, e.g. without any distinction between axis or 
frequency. As an example, the mixture distributions (with 
calibration uncertainties) of the main sensitivities along x-, y- 
and z-axis at 5 Hz are shown and compared to the simple 
distribution (without calibration uncertainties) in Figs. 4-6. It 
is worth noting that the dispersion of the mixture distributions 
is generally higher than that of the simple distributions, due to 
the inclusion of the individual calibration uncertainties. At 
higher frequencies, calibration uncertainties along the three 
sensitive axes are lower, thus the impact on the mixture 
distribution is less noticeable, as shown in Figs. 7-9 along x-, 
y- and z- axis at 1000 Hz. 

 

Fig. 4. Mixture and simple distribution of the 100 MEMS x-axis main 
sensitivities at 5 Hz. 

 

 

Fig. 5. Mixture and simple distribution of the 100 MEMS y-axis main 
sensitivities at 5 Hz. 

 

Fig. 6. Mixture and simple distribution of the 100 MEMS z-axis main 
sensitivities at 5 Hz. 

 

 

Fig. 7. Mixture and simple distribution of the 100 MEMS x-axis main 
sensitivities at 1000 Hz. 
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Fig. 8. Mixture and simple distribution of the 100 MEMS y-axis main 
sensitivities at 1000 Hz. 

 

Fig. 9. Mixture and simple distribution of the 100 MEMS z-axis main 
sensitivities at 1000 Hz. 

IV. INFLUENCE OF THE COVARIANCE TERMS ON MIXTURE 

DISTRIBUTIONS 

As previously described, to rigorously get the mixture 
distributions, covariance terms should not be neglected since 
the same calibration system is used for all MEMS. The 
uncertainty contribution due to the calibration system, in terms 
of variance, weights around 50 % of the overall combined 
squared uncertainty. A comparison of the mixture distribution 
obtained by considering correlated or uncorrelated calibration 
results is performed. In the second case, covariance terms are 
set to 0 and the effects on the resulting distributions are shown. 
By way of example, the mixture distributions of correlated and 
uncorrelated Szz sensitivities at 5 Hz are shown in Fig. 10. It is 
found that, in this case, the impact of the correlation is 
minimal compared with the mixture distribution of 
uncorrelated values.  

 
Fig. 10. Mixture distributions of the 100 MEMS z-axis main sensitivities at 
5 Hz for uncorrelated or correlated values. 

V. FITTING OF THE MIXTURE DISTRIBUTIONS 

The above-reported distributions in histogram form, given 
their highly non-normal behaviour, are then fitted with 
Johnson’s unbounded SU and bimodal distributions (the latter 
obtained as a mixture of two normal distributions) in order to 
get continuous distributions. As an example, Johnson’s and 
bimodal functions fitting is applied to the mixture 
distributions of x-, y- and z-axis sensitivities at 5 Hz and 
1000 Hz, which represent two different cases. Results are 
shown in Figs. 11-16. In general, it is found that a mixture of 
two normal distributions fits the histogram more accurately. 
This is a typical characteristic of a production process affected 
by a binary factor impacting the process which should be 
investigated by the manufacturer. 

 

Fig. 11. Mixture distribution of the 100 MEMS x-axis main sensitivities at 
5 Hz with Johnson’s and bimodal distribution fittings 
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Fig. 12. Mixture distribution of the 100 MEMS y-axis main sensitivities at 
5 Hz with Johnson’s and bimodal distribution fittings 

 

Fig. 13. Mixture distribution of the 100 MEMS z-axis main sensitivities at 
5 Hz with Johnson’s and bimodal distribution fittings 

 

 

Fig. 14. Mixture distributions of the 100 MEMS x-axis main sensitivities at 
1000 Hz with Johnson’s and bimodal distribution fittings. 

 

Fig. 15. Mixture distributions of the 100 MEMS y-axis main sensitivities at 
1000 Hz with Johnson’s and bimodal distribution fittings. 

 

Fig. 16. Mixture distributions of the 100 MEMS z-axis main sensitivities at 
1000 Hz with Johnson’s and bimodal distribution fittings. 

VI. CONCLUSIONS 

Accurate batch sensitivities distributions are the basis for 
developing large-scale statistical calibration methods required 
for low-cost sensors to guarantee traceable measurements. In 
this work, a mixture distribution modelling of the sensitivities 
related to a batch of 100 digital 3-axis MEMS accelerometers 
is implemented. The batch is calibrated along the three axes in 
a frequency range from 5 Hz to 1000 Hz, hence sensitivities 
can be expressed as function of axis and frequency. The 
mixture distribution allows taking into account the calibration 
uncertainties, associated with each MEMS, as well as the 
correlations between MEMS sensitivity values. It is found that 
differences between the mixture and the simple sensitivities 
distributions (the latter without the inclusion of uncertainties 
or correlations) are higher at increasing relative uncertainties, 
as expected. This confirms the necessity to include the 
uncertainties in the evaluation of the batch sensitivities 
distribution, although methods to reduce them are under 
development [22]. Correlation does not seem to play a crucial 
role, in the present example, but it is important to consider it 
in the mixture model for the sake of general applicability of 
the proposed procedure. Mixture distributions are then fitted 
with Johnson’s and bimodal probability density functions. It 
is found that the bimodal one is more accurate to represent the 
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batch sensitivity distributions. Such behaviour provides also 
important information to the manufacturer about the MEMS 
production process which seems to be affected by a binary 
factor that worth to be investigated in the future. 
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