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5DiSIT, Università del Piemonte Orientale, viale T. Michel, 11, 15121 Alessandria, Italy

(Received 22 June 2022; accepted 29 June 2022; published 25 July 2022)

Motivated by Sen’s spacetime prescription for the construction of theories with self-dual field strengths,
we present a rigid superspace Lagrangian describing noninteracting tensor multiplets living on a stack of
M5-branes and containing all the physical constraints on the fields, yielding the on-shell matching of the
degrees of freedom. The geometric superspace approach adopted here offers a natural realization of
superdiffeomorphisms and is particularly well suited for the coupling to supergravity. However, within this
formulation the (anti-)self-duality property of the 3-form field strengths is lost when the superspace
Lagrangian is trivially restricted to spacetime. We propose two main paths to address this issue: a first-order
superspace extension of Sen’s spacetime results, which, once trivially restricted to spacetime, yields all the
dynamical equations including the (anti-)self-duality constraint on the 3-form field strengths, and a possible
way to obtain a full superspace description of the theory, based on integral forms.

DOI: 10.1103/PhysRevD.106.026010

I. INTRODUCTION

A long-standing problem in QFT and supergravity is the
construction of theories with self-dual field strengths.
Those theories are ubiquitous and, although several studies
have been carried out, a completely satisfactory formu-
lation is still missing.
The main problem can be summarized by the following

question: How does one define a consistent variational
principle such that the corresponding equations reproduce
the Euler-Lagrange equations of motion comprehensive of
the self-duality constraints?
This problem already appears in theories involving only

bosonic degrees of freedom (d.o.f.): in any (4nþ 2)-

dimensional model, one can consider ð2nÞ-form potentials
Að2nÞ whose associated field strengths Fð2nþ1Þ are self-dual
or anti-self-dual (2nþ 1)-forms Fð2nþ1Þ ¼ �⋆Fð2nþ1Þ with
respect to a given Hodge dual operator ⋆ defined on the
(4nþ 2)-dimensional (pseudo-)Riemannian manifold. This
issue becomes particularly relevant for chiral supersym-
metric theories in (4nþ 2) spacetime dimensions, where
the (anti-)self-dual field strengths are real, and the self-
duality constraint is required for the matching of the on-
shell degrees of freedom implied by supersymmetry (susy).
In all of these theories, however, a Lagrangian formu-

lation is problematic, since the kinetic term of self-dual
field strengths in D ¼ ð4nþ 2Þ dimensions vanishes. An
example of such an issue is given by the tensor multiplet in
the chiral N ¼ ð4; 0Þ (16 supercharges) theory in six
dimensions, which describes the world volume theory of
a single M5-brane. The multiplet contains a spinor λA
which—on-shell—propagates only 8 real degrees of free-
dom (the Dirac equation halving the spinorial degrees of
freedom). The odd degrees of freedom are paired with a
bosonic field content given by five real scalars ϕ½AB�0 and a
2-form Bð2Þ, whose field strength Hð3Þ is (anti-)self-dual,
thus carrying 3 real d.o.f. and allowing the matching of the
fermionic ones [1–5].
A Lagrangian description of these theories using uncon-

strained off-shell fields and implementing the self-duality
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constraint on-shell among the Euler-Lagrange constraints
would be desired.
However, the off-shell matching of degrees of freedom

in supersymmetric theories is in general problematic
for theories with eight supercharges or more, that is
for extended supergravities in four dimensions and for
higher-dimensional models (as in the case M5-brane in
D ¼ 6 and higher).1 This makes the construction of an
action principle for path integral computations (for example
in localization methods) a very difficult task.
In the past, there have been several attempts to circum-

vent these problems (see for example the pioneering works
[6–8]), using different techniques such as non-Lorentz-
covariant formulation, infinite number of auxiliary fields,
and nonpolynomial actions (see for example [9–22]), each
of which has its own advantages and drawbacks. Among
them, it is worth mentioning the geometric superspace
approach developed in [23], where the self-duality con-
straint can be obtained on-shell from a superspace
Lagrangian. This was applied in particular in [24,25].
However, in this approach the self-duality constraint
emerges when analyzing the Euler-Lagrange equations in
the whole superspace, while the restriction to spacetime of
the superspace Lagrangian fails to be invariant and to yield,
among the field equations on spacetime, the self-duality
constraint. Nonetheless, a completely satisfactory formu-
lation was not available, until the recent works by Sen
[26,27], based on string field theory, rejuvenating the field
and prompting new developments [28–40]. A preliminary
remark is in order: although Sen’s formulation avoids all
problematic features of previous approaches, it has to deal
with a nonconventional realization of superdiffeomor-
phisms. This is justified by the string field theory approach,
but the analysis has been pursued only in the component
formalism. In addition, we have to recall that the derivation
discussed in [26,27] has only been carried out in weak
gravity approximation on a flat background and that a
complete supergravity analysis is still missing.
In the present work, we provide a superspace Lagrangian

whose Euler-Lagrange equations in superspace include the
self-duality constraint on the 3-form field strength and
whose restriction to spacetime, setting θ ¼ 0 ¼ dθ, is
globally invariant under supersymmetry, describing at
lowest order the world-volume theory of the M5-brane.
On the other hand, the obtained theory can be considered
as a testing ground, where to advance proposals for
superspace prescriptions, implementing the self-duality

constraint directly on spacetime, which will then be tested
in future works in cases of local supersymmetry.
Historically, there have been two ways to describe super-

symmetric theories or supergravities using a superspace
approach: a first Lagrangian method based on superfields
and superderivatives (see [41]) and a second method based
on the geometry of supermanifolds (see [23]). The latter is a
powerful framework for the formulation of supergravity and
rigid supersymmetric theories, often referred to as the
geometric, or rheonomic, approach. It has proven to be a
valuable asset in the construction of supersymmetric theo-
ries in various dimensions and degrees of supersymmetry,
providing a consistent formulation also in certain cases
where a spacetime action description was not available. In
this formalism, the full local symmetry structure of the
theory, including its supersymmetric properties, is encoded
in the formal definition of the superfield strengths and
their constrained parametrizations, which consist in
their expansion on a basis of the cotangent bundle of
superspace, generated by the vielbein Va and the gravitino
ψA 1-superforms. The consistency between these paramet-
rizations and the Bianchi identities satisfied by the set of
field strengths, yields a number of constraints on the
superfields of the theory. These data encode, in an intrinsi-
cally geometric fashion, the supersymmetry transformation
rules and their closure on the fields of the model, modulo
local symmetry transformations. They also yield dynamical
equations and all other constraints, including the (anti-)self-
duality property of the chiral forms, allowing for the on-shell
matching of degrees of freedom.
The geometric approach has a further outcome, which is

the construction of a D-superform Lagrangian,2 on the
MðDjNÞ superspace, whose Euler-Lagrange equations repro-
duce the aforementioned constraints on the fields, independ-
ently derived from the closure of the Bianchi identities. More
precisely, the same equations, restricted to spacetime, yield
the dynamical field equations, while their components along
the other directions of superspace encode further information
on the theory, related to the closure of supersymmetry
transformations on the local symmetries of the model.
Aswe shall see in the in the present work, and as shown in

earlier analyses, in the chiral models under consideration in
D ¼ 4nþ 2, the (anti-)self-duality condition on the field
strengths of the 2n-forms potentials, is enforced by compo-
nents of the Euler-Lagrange superspace constraints along
odd directions. As a consequence of this, the same con-
ditions, which represent the field equations for the 2n-forms,
do not follow from a spacetime action principle, provided
the spacetime Lagrangian is defined through the trivial
restriction of the superspace to spacetime, effected by setting
θ ¼ 0 and dθ ¼ 0. One of the aims of the present analysis is

1Notice that sometimes the two problems, absence of auxiliary
fields and self-duality constraints, are the two faces of the same
medal. For example in the case of D ¼ 4 N ¼ 4 super-Yang-
Mills theory, the equations of motion are implemented by
requiring a self-dual condition in the R-symmetry indices of
the scalar superfields. The difficulties to implement this con-
straint as a variational principle are equivalent to the self-dual
field strengths.

2This Lagrangian is a bosonic D-superform, which can be
integrated over a bosonic D-dimensional hypersurface in super-
space, defining spacetime.
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to discuss this seeming drawback of the geometric formu-
lation, in the specific rigid toy model under consideration,
and to suggest possible equivalent definitions of the super-
Lagrangian, which yield, once restricted to spacetime, Sen’s
construction. This would provide a simple superspace
extension of the latter, paving the way for the interacting
and supergravity cases.
The two superspace approaches can be successfully

reformulated into a single framework of the integral forms
approach [42–47]. Given the rheonomicD-formLagrangian
LðDÞðΦ; dΦ; V;ψÞ written in terms of the fields Φ, of their
differentials dΦ and of the supervielbein (Va, ψA), one can
build an action by integrating it on the entire supermanifold
MðDjNÞ, to be indentified in this case with the world volume
of the M5-brane. This requires the integrand to be an
integrable form [42,48,49], which can be achieved by
representing the embedding of a bosonic D-dimensional
submanifold into the supermanifold MðDjNÞ using the
Poincaré dual form Y ð0jNÞ (where the second superscript
denotes the picture number [43,48], which must match
the fermionic dimension of the supermanifold). The inte-
grable form to be integrated is now LðDÞðΦ; dΦ; V;ψÞ ∧
Y ð0jNÞ and gives rise to a proper action, suitable for the
variational derivation of the equations of motion. By
changing the embedding, Y ð0jNÞ changes by exact terms
Y ð0jNÞ þ dΣ which are harmless if the Lagrangian is closed
dLðDÞðΦ; dΦ; V;ψÞ ¼ 0. In that case, the Euler-Lagrange
equations derived without considering Y ð0jNÞ coincide with
the equations arising from the variation of the action for any
choice of the embedding described. This means that any
choice of Y ð0jNÞ gives rise to the same equations of motion,
but with different manifest symmetries.
This is, however, not possible in the presently considered

case of six-dimensional tensor multiplets, and in theories
without auxiliary fields for off-shell supersymmetry, where
the rheonomic Lagrangian LðDÞðΦ; dΦ; V;ψÞ fails to be
closed. This means that the Poincaré dual form cannot be
ignored and will project out some of the equations, as it
happens in the θ ¼ 0 ¼ dθ case. More general embeddings
have been considered in [50], where two of the authors of
the present work proposed a method for writing an action,
starting from the geometric Lagrangian for the supersym-
metric chiral boson. We will discuss, inspired from that
result, the possible generalization of such procedure to the
case considered here, which will possibly make use of the
superspace Hodge dual operator defined in [46,50,51]. This
will be the object of a forthcoming publication.
As a concluding remark, let us add that the extension

of Sen’s approach in the presence of gravity, though
valuable, requires a rather involved derivation that appears
somewhat more contrived than in the rigid case. One of the
motivations of the present analysis is a superspace gener-
alization of Sen’s mechanism in presence of gravity, which
will be left to future endeavors.

The paper is organized as follows: In Sec. II we review
the fundamental concepts of the geometric approach, which
will be used in Sec. III, where we will introduce the
dynamical fields and perform the preliminary analysis of
the Bianchi identities, identifying the constraints that the
chosen fields have to satisfy on-shell and their supersym-
metry transformations. In the same section, we will also
present the Lð6j0Þ Lagrangian and discuss its features and its
trivial projection on spacetime. In Sec. IV we will introduce
a first prescription for modifying the geometric Lagrangian,
which yields Sen’s prescription, when trivially restricted to
spacetime. In Sec. V we will instead focus on alternative
ways of dealing with this problem, by considering non-
factorized integral form Lagrangians and nontrivial pro-
jections on spacetime.

II. LAGRANGIAN, ACTION,
AND SUPERSYMMETRY

In this short section, we review relevant aspects of the
geometric approach to supegravity.

A. Rheonomy in a nutshell

Usually there is a twofold way to obtain a geometric
formulation of the theory without using coordinates in
superspace but using only p-forms:

(i) an action principle formulated in a nonstandard way,
since the Lagrangian is not integrated on the full
supermanifoldMðDjNÞ, but only on aD-dimensional
hypersurface embedded in superspace;

(ii) a purely algebraic method based on the Bianchi
identities of the super-field strength 2-forms (to be
referred also to as supercurvature 2-forms) as de-
rived from the Maurer-Cartan equations of a Lie
superalgebra (or p-forms supercurvatures derived
from a free differential algebra).

In the latter case, one writes down expressions of the
curvature p-forms expanded along the p-dimensional basis
of supercotangent bundle (given by exterior products of the
bosonic and fermionic vielbein), which have to be compat-
iblewith all the symmetries of the theory (Lorentz invariance,
scaling behavior, etc.). One then assumes the following
requirement: all the components of the curvatures along a
basis featuring at least one fermionic vielbein ψα should be
expressed in terms of the supercurvature components along
the bosonic vielbein Va1 ∧ Va2 ∧ … ∧ Vap . These latter
components only have antisymmetric rigid bosonic indices
and, once expressed in terms of the spacetime differentials
(holonomic dual basis) are actually the so-called super-
covariant field strengths in the Noether approach.
Such a requirement is called rhenomy principle and

allows one to not introduce extra degrees of freedom in the
theory besides the physical ones. By requiring the closure
of the Bianchi identities of the parametrized curvatures, one
fixes the constant coefficients left undetermined. However,
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in all the theories where the number of bosonic and
fermionic degrees of freedom only matches on-shell, the
closure of the Bianchi identities also requires differential
constraints on the supercovariant field strengths, which are
nothing else than the equations of motion. Besides, one
often finds further constraints which cannot be seen in a
purely spacetime approach. Moreover, since the susy
transformations are Lie derivatives in superspace, which,
using the anholonomic parameter ϵα, can be written in
terms of the gauge transformations plus contraction of the
curvature terms, it is clear that the knowledge of the given
parametrization of the curvatures also determines the susy
transformations of the fields.
In the former case, the Lagrangian depends generically on

the superfields with the obvious constraint of respecting all
the symmetries of the theories and, most importantly, it is a
D-form,D being the dimension of the bosonic hypersurface
MðDÞ of integration (representing spacetime), immersed in
superspace. This implies that the Euler-Lagrange equations
obtained by the variation of the D-form Lagrangian, which
generically are k-form equations, with k ≤ D, can be
extended to the full superspace and can be analyzed along
all the basis elements of theD-dimensional cotangent space
spanned by different combinations of bosonic and fermionic
vielbein Vk; Vk−1ψ ;…;ψk. In order for the Lagrangian
D-form to be independent of the embedding of MðDÞ in
superspace, it must be constructed only in terms of differ-
ential forms, exterior derivatives, and wedge products,
without using the spacetime Hodge operator. As a conse-
quence, the bosonic kinetic terms should bewritten in a first-
order formalism, by introducing suitable 0-form auxiliary
fields.
It turns out that the analysis of the equations of motion

along Vk gives dynamical equations for the supercovariant
field strengths, which must and do coincide with those
obtained from the Bianchi identities. By projecting these
equations along the dxμ1 ∧ dxμ2 ∧ … ∧ dxμk k-forms, one
recovers the spacetime equations.
The analysis of the equations of motion obtained along

any basis featuring at least one ψα gives instead linear
relations expressing the supercurvatures with one or more
“legs” along ψ in terms of the supercovariant field strengths
along Vk. These are precisely the rheonomic conditions
required in the Bianchi identities approach. Therefore they
are not to be imposed, but come out as a consequence of the
Euler-Lagrange equations. Moreover one can also often
obtain further algebraic constraints on the supercovariant
curvatures that are not visible in a purely spacetime
approach. Actually, the best way to construct this geomet-
rical approach is to make use of the parametrization of the
curvatures in order to simplify the analysis of the equations
of motion of the Lagrangian.
Finally we observe that the invariance of the Lagrangian

under supersymmetry is already built in using the geomet-
rical approach: indeed if one performs the Lie derivative

ιϵdþ dιϵ along a supersymmetry tangent vector ∇⃗ ¼ ϵα∇α,
discarding the total derivative dιϵL, one obtains that the
contraction on the ψ fields gives ϵ, while the contraction of
the curvatures gives constraints on them which coincide
exactly with the rheonomic constraints as obtained from the
Lagrangian. This makes ιϵdL ¼ 0 identically, so that the
Lagrangian is invariant in all superspace (that is even if
evaluated on other hypersurface) and in particular on
spacetime.

B. Extension to the full superspace

To formulate a well-defined action principle in super-
space, it is desirable to extend the bosonic D-form
Lagrangian discussed above to a ðDjNÞ-form to be inte-
grated over the full supermanifold MðDjNÞ, where N is the
fermionic dimension. This requires using the integral-form
formalism introduced by some of the authors in [43,44] and
whose main ingredients are summarized in Appendix B. To
this end, we rename by LðDj0ÞðΦ; dΦ; V;ψÞ the D-form
Lagrangian in superspace constructed along the lines
discussed above, and previously referred to as LðDÞ. It is
a ðDj0Þ-form depending on the dynamical fields of the
theory Φ, their differentials dΦ, and on the supervielbein
ðVa;ψAÞ, whose dynamics will not be addressed in this
paper. To perform the embedding of the bosonic submani-
fold MðDÞ into MðDjNÞ, we first introduce the super-
Poincaré dual Y ð0jNÞ: it is a nontrivial cocycle in
MðDjNÞ, and any variation of the embedding corresponds
to a trivial deformation, belonging to the same cohomology
class:

dY ð0jNÞ ¼0; Y ð0jNÞ≠dΣð−1jNÞ; δY ð0jNÞ ¼dΓð−1jNÞ: ð2:1Þ

Notice that sometimes one can choose Y ð0jNÞ to respect
some symmetries manifestly: δY ð0jNÞ ¼ 0. The details of
the structure of Y ð0jNÞ are discussed in Sec. V and in
Appendix B. Further details can be found in the litera-
ture [52].
The forms Σð−1jNÞ and Γð−1jNÞ are ð−1jNÞ forms which

can be written in terms of derivatives of Dirac deltas δðdθÞ.
Requiring the vanishing of a generic variation of the
Lagrangian, δLðDj0ÞðΦ; dΦ; V;ψÞ ¼ 0, implies the Euler-
Lagrange equations of motion. In addition, we note that,
since LðDj0ÞðΦ; dΦ; V;ψÞ is not a top form in superspace,
its differential is in general not zero. On the contrary, the
requirement that dLðDj0ÞðΦ; dΦ; V;ψÞ ¼ 0 is a strong
condition, which is known to be achieved in the presence
of auxiliary fields.
To build an action, we have to integrate LðDj0ÞðΦ;

dΦ; V;ψÞ on the supermanifold and therefore we need
to convert it into an integral form LðDjNÞ (for more details
see Sec. V) as follows:
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LðDj0ÞðΦ; dΦ; V;ψÞ → LðDjNÞ

¼ LðDj0ÞðΦ; dΦ; V;ψÞ ∧ Y ð0jNÞ; ð2:2Þ

which is finally integrated on MðDjNÞ

S½Φ;dΦ;V;ψ �¼
Z
MðDjNÞ

LðDj0ÞðΦ;dΦ;V;ψÞ∧Y ð0jNÞ: ð2:3Þ

The variational equations obtained from S½Φ; dΦ; V;ψ �
have the generic form

δS ¼
Z
MðDjNÞ

δΦ
δLðDj0Þ

δΦ
∧ Y ð0jNÞ: ð2:4Þ

Note that, in deriving (2.4), partial integration is allowed
since dY ð0jNÞ ¼ 0 and we get the equations

δLðDj0Þ

δΦ
∧ Y ð0jNÞ ¼ 0 ð2:5Þ

on the supermanifold. If Y ð0jNÞ has no kernel, we can remove
it and obtain the equations of motion on the full super-
manifold. In general, Y ð0jNÞ has a kernel and this implies that
there are further solutions to (2.5) besides the expected ones.
The most relevant aspect of the integral (2.3) is the

reparametrization invariance under all superdiffeomor-
phisms since it is a top integral form. This translates the
powerful technique used in general relativity: using differ-
ential forms and integration on top form, one has diffeo-
morphism invariant quantities. In particular, if we consider
those superdiffeomorphisms generated by an odd vector Q
we can represent the variation as a Lie derivative LQ and
we get

0 ¼ δQS ¼
Z
MðDjNÞ

LQLðDj0Þ ∧ Y ð0jNÞ þ LðDj0Þ ∧ LQY ð0jNÞ

¼
Z
MðDjNÞ

ιQdLðDj0Þ ∧ Y ð0jNÞ þ LðDj0ÞdιQY ð0jNÞ: ð2:6Þ

Now, three things can happen:
(1) dLðDj0Þ ¼ 0. In this case the first term vanishes

ιQdLðDj0Þ ¼ 0, but also the second term is zero,
by integration by parts. It is a common lore, that this
can only happen if there are auxiliary fields and
using the rheonomic parametrizations satisfying the
Bianchi indentities. The latter, however, should not
impose the equations of motion, otherwise the action
is trivially invariant.

(2) LQY ð0jNÞ ¼ 0. It means that the Poincaré dual Y ð0jNÞ
is manifestly invariant under supersymmetry and
this also implies

ιQdLðDj0Þ ∧ Y ð0jNÞ ¼ dRðD−1jNÞ
Q ; ð2:7Þ

which means that the action is manifestly invariant
under supersymmetry, up to a total derivative, in any
submanifold described by the Poincaré dual Y ð0jNÞ.
This is the powerful construction of superspace
actions as in [41]. Since Y ð0jNÞ is manifestly invari-
ant, the action is manifestly invariant.

(3) ιQdLðDj0Þ ∧ Y ð0jNÞ ¼ dRðD−1jNÞ
Q even in the case that

LQY ð0jNÞ ≠ 0. This means that, even though Y ð0jNÞ is
not invariant under the supersymmetry, the Lagran-
gians can be invariant under supersymmetry on the
bosonic submanifold described by Y ð0jNÞ. By
Eq. (2.6) also the last term

R
LðDj0ÞdιQY ð0jNÞ should

vanish.
(4) If Y ð0jNÞ projects onto the spacetime (see Sec. V),

then Eq. (2.7) implies the supersymmetry on the
spacetime.

Note that Eqs. (2.7) do not imply the equations of
motion, but only that the components of the curvatures
along the fermionic directions are expressed in terms of the
ones along the bosonic directions, following the principle
of rheonomy. This is the way in which the invariance of the
superspace Lagrangian is realized off-shell. On the other
hand, in general (and in the absence of auxiliary fields), the
closure of the Bianchi identities, that is the closure of
supersymmetry on the fields, also implies the equations of
motion, meaning that supersymmetry closes only on-shell.
Notice that the same happens on spacetime: the Lagrangian
is invariant off-shell, while the supersymmetry algebra
closes only on-shell on the fields.

III. THE GEOMETRIC SUPERSPACE
FORMULATION OF THE TENSOR

MULTIPLET IN RIGID (4,0) THEORY

The aim of this section is to analyze the main features of
a six-dimensional rigid tensor multiplet model on a flat
superspace background, in the chiral theory with USp(4)
R-symmetry. As stated in the Introduction, our construction
will be based on the geometric superspace approach [23],
where all the fields are promoted to form superfields in
superspace.
Before introducing the dynamical field content of our

theory, let us start by describing the flat six-dimensional
chiral superspace background, which can be found in the low
energy limit from a consistent truncation of 11-dimensional
supergravity. It is expressed in terms of the following fields:

ðVa;ψA; B½AB�0 ;ωabÞ; ð3:1Þ

where Va (a ¼ 0; 1;…; 5) is the vielbein 1-form, whose
bosonic component describes the flat coordinate frame of the
M5-brane, ψA ¼ −Γ7ψ

A is an antichiral gravitino 1-form
satisfying the pseudo-Majorana condition ψA ¼ CABCψ̄ t

B,
with A ¼ 1;…; 4 ∈ USpð4Þ, B½AB�0 are five 2-form connec-
tions [we denote by ½AB�0 the irreducible traceless
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antisymmetric representation of USp(4)] and ωab is the
SOð1; 5ÞLorentz spin connection. They satisfy the following
equations defining the background:

Rab ≡ dωab þ ωa
cω

cb ¼ 0;

Ta ≡DVa −
i
2
ψ̄AΓaψA ¼ 0;

ρA ≡DψA ≡ dψA þ 1

4
ωabγabψ

A ¼ 0;

H½AB�0 ≡ dB½AB�0 − ia1CC½Aψ̄CΓaψ
B�0Va ¼ 0; ð3:2Þ

withD denoting theLorentz-covariant derivative.An explicit
expression of the supervielbein 1-forms in terms of the
coordinates ðx; θÞ parametrizing rigid superspace, as is well
known, is given by

Va ¼ dxa þ i
2
θ̄AΓadθA;

ψA ¼ dθA: ð3:3Þ
Notice that the fermionic part of the gravitino supervielbein
can be chosen so that it only has components along the
fermionic directions, i.e., ψA

μ ¼ 0, implying that when
spacetime is trivially embedded in superspace, θA ¼ 0 and
dθA ¼ 0, the pullback of the gravitino vanishes. However,
theremay bemoregeneral embeddings inwhich this does not
happen.
The spacetime field content of the six-dimensional tensor

supermultiplet is given by

ðBμν; λA;ϕ½AB�0ÞI; ð3:4Þ
where BI ¼ 1

2
BI
μνdxμ ∧ dxν (I ¼ 1;…; n) are n 2-form

connections whose field strengths must satisfy an on-shell
anti-self-duality condition on spacetime, ϕI

½AB�0 ≡ ϕI
AB

(with I ¼ 1;…; n) are 5n scalars, and λIA ¼ þΓ7λ
I
A are n

chiral spin-1=2 fields, satisfying the pseudo-Majorana
condition λIA¼−CABCðλ̄IBÞt. Furthermore, μ; ν ¼ 0;…; 5
denote curved spacetime indices. For the complete set of
our definitions and conventions see Appendix A.

A. Bianchi identities in superspace and
supersymmetry variations of the fields

The theory under consideration is based on a free
differential algebra [23], where the supercurvatures of
the dynamical fields are defined in superspace as follows:

HI ≡ dBI þ ia1ϕI
BCC

ACψ̄AΓaψ
BVa; ð3:5Þ

DλIA ≡ dλIA þ 1

4
ωabγabλ

I
A; ð3:6Þ

PI
AB ≡ dϕI

AB: ð3:7Þ
Imposing the cohomological condition d2 ¼ 0 on the

formal definitions (3.5), (3.6), (3.7), one obtains the
following Bianchi identities:

0 ¼ dHI − ia1dϕI
ABC

ACψ̄CΓaψ
BVa

þ 2ia1ϕI
BCC

ACψ̄AΓaρ
BVa − ia1ϕI

BCC
ACψ̄AΓaψ

BTa

¼ dHI − ia1dϕI
ABC

ACψ̄CΓaψ
BVa; ð3:8Þ

0 ¼ D2λIA −
1

4
RabΓabλ

I
A; ð3:9Þ

0 ¼ DPI
AB ¼ d2ϕI

AB; ð3:10Þ

where, in deriving Eq. (3.8), we have used the Fierz identity
(A20) and the expressions (3.2) for the background fields.
The Bianchi identities (3.8)–(3.10) are consistency state-
ments on the formal definitions of the dynamical field
strengths. However, they become nontrivial relations among
the dynamical degrees of freedom of the theory if we require
them to hold in superspace according to the principle of
rheonomy, that is if we endow the field strengths
HI;DλIA;ϕ

I
AB with an explicit expansion on a basis of the

cotangent bundle of superspace. The latter consists on
requiring the various components along basis elements
including odd directions to be algebraic functions (in
particular, linear tensor combinations) of the ones along
entirely bosonic directions. This is what was named rheo-
nomic parametrization in [23]. Besides, the closure of the
Bianchi identities (3.8)–(3.10) also implies the same equa-
tions of motion that will be derived from the Lagrangian in
Sec. III B. The rheonomic parametrization reads

HI ¼ HI
abcV

aVbVc þ b1CABψ̄AΓabλ
I
BV

aVb; ð3:11Þ

DλIA ¼ Daλ
I
AV

a þ b2PI
AB;aΓaψB

þ b3HI
abcΓabcψBCAB; ð3:12Þ

PI
AB ¼ PI

AB;aV
a þ ψ̄ ½Aλ

I
B�0 ; ð3:13Þ

where

b1 ¼
1

4
a1; b2 ¼ −2i; b3 ¼

i
2a1

: ð3:14Þ

The value of a1 is fixed by the choice of normalization of the
2-form BI and we will choose it to be a1 ¼ 1

2
. The fields

HI
abc; P

I
AB;a are usually referred to as the supercovariant

field strengths.
Besides implying the equations of motion, the consis-

tency of the rheonomic parametrizations (3.12) with the
Bianchi identities (3.8)–(3.10) also requires the anti-self-
duality constraint

HI
abc ¼ −

1

6
ϵabcdefHIjdef: ð3:15Þ

This condition is necessary for the correct on-shell match-
ing of bosonic and fermionic degrees of freedom and in this
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framework it is not to be imposed by hand, as it follows
from the closure of the Bianchi identities in superspace. In
particular, it emerges from the sector with two fermionic
directions of (3.8). This sector yields equations which are
equivalent to imposing the closure of supersymmetry
transformations on the fields. It is important to emphasize
that this condition does not follow from the spacetime
components of the Bianchi identitites alone, once the
parametrization of the supercurvatures is chosen.
From (3.6) and (3.12), one can derive the supersymmetry

transformations of the fields, as Lie derivatives along the
fermionic directions of superspace

δϵBI ¼ b1CABϵ̄AΓabλ
I
BV

aVb − 2ia1ϕI
BCC

ACϵ̄AΓaψ
BVa;

δϵλ
I
A ¼ b2PI

AB;aΓaϵB þ b3HI
abcΓabcϵBCAB;

δϵϕ
I
AB ¼ ϵ̄½Aλ

I
B�0 ; ð3:16Þ

which, on spacetime, after defining

HI
abcV

aVbVcjs:t: ¼
1

2
∂μBI

νρdxμdxνdxρ ¼
1

3!
HI

μνρdxμdxνdxρ;

PI
AB;aV

ajs:t: ¼ ∂μϕ
I
ABdx

μ;

being there ψA
μ ¼ 0, reduce to

δϵBI
μν ¼ 2b1CABϵ̄AΓμνλ

I
B;

δϵλ
I
A ¼ b2∂μϕI

ABΓμϵB þ b3
2
∂μBI

νρΓμνρϵBCAB;

δϵϕ
I
AB ¼ ϵ̄½Aλ

I
B�0 : ð3:17Þ

B. The superspace Lagrangian and its
spacetime projection

The geometric approach allows one to derive the
following ð6j0Þ-form Lagrangian in superspace, to be
integrated on a suitably chosen bosonic submanifold, as
previously mentioned. The Lagrangian reads

Lð6j0Þ ¼ α1ðPI
AB − ψ̄ ½Aλ

I
B�0ÞP̃a

ICDV
bcdefϵabcdefCACCBD −

α1
12

P̃I
AB;lP̃

l
ICDV

abcdefϵabcdefCACCBD

þ 5α1
2

PI
AB

�
λ̄AI Γabψ

BVcdefϵ
abcdef þ 4i

5
ϕI
CDC

DAψ̄BΓabcψ
CVabc

�

þ 40α1

�
HI −

1

8
ψ̄AΓlmλ

IAVlm

�
H̃abc

I Vdefϵabcdef − α1H̃I
lmnH̃

lmn
I Vabcdefϵabcdef

− 30α1HIðλ̄IAΓabψ
AVab þ 4iϕIABψ̄

AΓaψ
BVaÞ

−
iα1
4

λ̄IAΓa

�
DλAI V

bcdefϵabcdef þ
5i
2
λBIψ̄

AΓbcdψBVabcd

�

−
5α1
4

λ̄IAΓabcλ
I
Bψ̄CΓdψDVabcd

�
CABCCD þ 3

2
CADCBC

�
; ð3:18Þ

where Va1a2…ak ≡ Va1 ∧ Va2 ∧ … ∧ Vak . The fields
P̃a
IAB; H̃

I
abc are auxiliary and will ultimately be identified,

through their equations of motion, with the corresponding
supercovariant field strengths Pa

IAB;H
I
abc appearing in the

superspace parametrizations (3.12) of the supercurvatures.
They provide a first-order description of the kinetic terms of
the corresponding bosonic superfields. This is needed in the
present framework, being our Lagrangian a bosonic 6-form
immersed in the cotangent space of Mð6j16Þ superspace, in
order to avoid the use of the Hodge operator, which is not
well defined in this case. Note, however, that, using the
approach of integral forms, one can define, in a consistent
way, the notion of a Hodge-duality operator in superspace.
Moreover, the parameter α1 represents an overall normali-

zation of the Lagrangian: we fix it as α1 ¼ − 1
2·5! in order to

have a canonically normalized kinetic term for the scalar
fields, when the Lagrangian is projected on spacetime.
The spacetime Lagrangian is considerably simpler and

reads

Ls:t: ¼
�
1

4
∂μϕ

IAB
∂
μϕI;AB þ 3

4
∂½μBνρ�∂½μBνρ�

þ i
8
λ̄IAΓμDμλIA

�
d6x

¼
�
1

4
∂μϕ

IAB
∂
μϕI;AB þ 1

12
HI

μνρHIμνρ

þ i
8
λ̄IAΓμDμλIA

�
d6x: ð3:19Þ

The spacetime Lagrangian is a free Lagrangian for the
noninteracting fields of the supermultiplet and it is invariant
under the supersymmetry transformation in (3.17) up to a
total derivative:

δϵLs:t: ¼ ∂μKμd6x; ð3:20Þ

with
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Kμ ¼ 1

4

�
λ̄IAΓνΓμϵB∂νϕIAB−

1

4
λ̄IAΓρστΓμϵA∂ρBIστ

�
: ð3:21Þ

Off-shell invariance of the spacetime Lagrangian under
supersymmetry implies the presence of a conserved
Noether current, which reads

J ν
A ¼ −

1

2
ΓμΓνλIB∂μϕABI þ

1

8
ΓρστΓνλIA∂ρBστI: ð3:22Þ

One can see that it is indeed conserved ∂νJ ν
A ¼ 0, upon

the use of the equations of motion. Notice that this
invariance property does not require the anti-self-duality
condition on the tensor field strengths, which is, however,
necessary for closure of supersymmetry on the fields
and thus on the Lagrangian. Indeed, the spacetime
Lagrangian (3.19) depends on both the self-dual and the
anti-self-dual parts of ∂½μBI

νρ�, but the self-dual component

only enters the supersymmetry variation of (3.19) in the
total derivative term (3.20). However, the equations of
motion involve both the self-dual and the anti-self-dual
parts of ∂½μBI

νρ�, thus leading to unmatched propagating

degrees of freedom.
We emphasize that in the geometric approach pursued in

the present paper, the anti-self-duality condition is not
imposed by hand, but follows from the closure of the
Bianchi identities, and also, independently, from the Euler-
Lagrange equations in superspace derived from the super-
space Lagrangian 6-form (3.18), along the fermionic
directions of superspace. This is an instance of the general
property that the Euler-Lagrange equations in superspace
encode far more information than their restriction to
spacetime.
Let us conclude this section by listing the Euler-

Lagrange equations coming from the Lagrangian (3.18),
which are tensorial form equations in superspace, with a
short account of their implications in both even and odd
directions.
The components along the bosonic vielbein Va give the

standard field equations of the dynamical fields on space-
time, whereas the components along directions including at
least one odd vielbein ψA are constraints, some of which are
Fierz identities among the spinorial fields, that are iden-
tically satisfied, while the rest are constraints on the field
strengths of the dynamical fields that have to be satisfied
on-shell, among which the anti-self-duality condition
(3.15) on the supercovariant field strength of the 2-form
potential. The constraints resulting from the Bianchi
identities are in agreement with the Euler-Lagrange equa-
tions in superspace.

1. The equations of motion of the auxiliary fields

The equations of motion for H̃I
abc and P̃I

AB;a imply the
following identifications:

H̃I
abc ¼ HI

abc; P̃I
AB;a ¼ PI

AB;a: ð3:23Þ

2. Equations of motion of BI

The equations of motion for the field BI are

− 40dH̃abc
I Vdefϵabcdef − 60iH̃abc

I ψ̄AΓdψAVefϵabcdef

þ 30ðDλIAΓabψBÞVabCAB ð3:24Þ

− 30iðλ̄IAΓabψBÞðψ̄CΓaψCÞVbCAB

þ 120idϕIABðψ̄AΓaψ
BÞVa

− 60ϕIABðψ̄AΓaψ
BÞðψ̄CΓaψCÞ ¼ 0:

(i) The sector V4 gives

∂
aH̃I

abc ¼ 0 ⇒ ∂
aHI

abc ¼ 0: ð3:25Þ

The above equation, which matches what one would
obtain from the Bianchi identities, describes the
dynamics of BI .

(ii) The sector ψV3 relates the spinorial derivative of the
supercovariant field strength with the spacetime
derivative of the spinor field

∇BH̃I
abc ¼ −

1

8
Γ½abDc�λIB; ð3:26Þ

where the spinorial derivative ∇A is defined as
d ¼ Va

∂a þ ψ̄A∇A. This result once again coincides
with the one coming from the Bianchi identities once
we impose the anti-self-duality condition (3.15).

(iii) The sector ψ2V2 gives a relation between terms
containing HI

abc which is satisfied only if the anti-
self-duality condition on HI

abc

HI
abc ¼ −

1

6
ϵabcdefHIjdef ð3:27Þ

holds.
(iv) The sector ψ3V is automatically satisfied due to

Fierz identities among the spinors.
(v) The sector ψ4 leads to

ϕIABðψ̄AΓaψ
BÞðψ̄CΓaψCÞ ¼ 0; ð3:28Þ

which vanishes thanks to the Fierz identity (A20).
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3. Equations of motion of λ̄IA

− ψBPa
CDIV

bcdefϵabcdefCACCBD þ 5CABΓlmψBHabc
I Vlmdefϵabcdef − 30HIΓabψ

AVab −
i
2
ΓaDλAI V

bcdefϵabcdef

þ 5

8
ΓaλAI ðψ̄EΓbψEÞVcdefϵabcdef −

5

2
CEAΓabψ

FPIEFVcdefϵ
abcdef

þ ΓabcλIBðψ̄CΓdψDÞVabcd

�
−
5

2
CABCCD þ 15

8
CACCBD −

15

8
CADCBC

�

þ 5

4
ΓaλBIðψ̄CΓbcdψDÞVabcdCACCBD ¼ 0: ð3:29Þ

(i) The sector V6 leads to the equations of motion for the spin-1=2 field λAI as expected

DλAI ¼ 0: ð3:30Þ

(ii) The sector ψV5 again leads to an identity that can only be satisfied if HI
abc is anti-self-dual.

(iii) The sector ψ2V4 is identically satisfied with the given coefficients, due to Fierz identities.

4. Equations of motion of ϕI
AB

− dP̃a
CDIV

bcdefϵabcdefCACCBD −
5i
2
P̃a
CDIðψ̄EΓbψEÞVcdefϵabcdefCACCBD

þ 20iðψ̄ ½AΓlψ
B�0ÞHabc

I Vldefϵabcdef þ 15ðψ̄ ½AΓlψ
B�0Þðλ̄EIΓabψFÞVablCEF

þ 60iðψ̄ ½AΓlψ
B�0ÞϕIEFðψ̄EΓaψ

FÞVla − 120iHIðψ̄ ½AΓaψ
B�0ÞVa

−
5

2
ðDλ̄½AI Γabψ

B�0ÞVcdefϵ
abcdef þ 5iðλ̄½AI Γabψ

B�0Þðψ̄EΓcψ
EÞVdefϵ

abcdef

þ 40iPIDCðψ̄ ½AΓabcψ
jCjÞVabcCB�0D þ 30ϕIDCðψ̄DΓabcψ

½BÞðψ̄GΓaψ jGjÞVbcCjCjA�0 ¼ 0: ð3:31Þ

(i) The sector V6 leads to the Klein-Gordon equation
for the scalar field

□ϕI
AB ¼ 0: ð3:32Þ

(ii) The sector ψV5 yields the following relation be-
tween the spinorial derivative of PI

CD;a and the
spacetime derivative of λIA

∇CPI
AB;a ¼ −δC½ADaλ

I
B�0 : ð3:33Þ

(iii) The sector ψ2V4, as it happened for the other
equations of motion, can only be satisfied if
(3.15) holds.

(iv) The sectors ψ3V3 and ψ4V2 are satisfied thanks to
Fierz identities.

IV. RETRIEVING SEN’S LAGRANGIAN
AND ITS SUPERSPACE EXTENSION

The main goal of the present investigation is the
construction of an M5-brane, noninteracting Lagrangian
in superspace which would yield, when restricted to

spacetime, the description given by Sen of the same
physical system (see also [30]). In fact this theory is
chosen as a simplified model in order to devise a more
general prescription for achieving an extension of Sen’s
description of chiral forms to superspace. The aim of this
section is therefore to modify the superspace Lagrangian
6-form (3.18) so that:
(1) Once restricted to spacetime, it yields Sen’s descrip-

tion of the same system (or an equivalent version
of it).

(2) Its Euler-Lagrange equations in superspace give the
superspace constraints (rheonomic) for the physical
fields, besides yielding the supercovariant equations
of motion in spacetime.

To attain points 1 and 2 above, it is useful to rewrite the
Lagrangian 6-form in (3.18) in the following, more
compact, way:

Lð6j0Þ ¼ ðdBI þ ZIÞ ∧ �H̃I −
1

2
H̃I ∧ �H̃I

þ dBI ∧ ZI þ Lð6j0Þ
i ðΦÞ; ð4:1Þ
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where we have generically denoted by Φ the scalar and

spin-1=2 fields, so that Lð6j0Þ
i ðΦÞ does not depend either on

the 2-form or on H̃Iabc. Moreover we have defined:

H̃I ≡ H̃I
abcV

a ∧ Vb ∧ Vc;

ZI ¼ ZIðΦÞ

≡ 1

8
λ̄IAΓabψ

AVa ∧ Vb þ i
2
ϕI
ABψ̄

AΓaψ
BVa: ð4:2Þ

From Eqs. (3.5) and (3.11), we find (when the Bianchi
identities in superspace are satisfied):

dBI þ ZI ¼ HI ≡HIabcVa ∧ Vb ∧ Vc; ð4:3Þ

and the Bianchi identities in superspace imply the anti-self-
duality (3.15) ofHI

abc. It is straightforward to verify that the
Euler-Lagrange equations for H̃I and for BI read

H̃I ¼ dBI þ ZI ¼ HI; ð4:4Þ

0 ¼ dð�H̃ þ ZÞ: ð4:5Þ

The last equation is satisfied using the first one, Eq. (4.3),
and the anti-self-duality of HI . The variation of Lð6j0Þ with
respect to the other fields Φ yields:

δΦLð6j0Þ ¼ −δΦZI ∧ ½2HI − ZI� þ δΦL
ð6j0Þ
i ; ð4:6Þ

where δΦZI ¼ δZI
δΦ δΦ. Our theory is noninteracting since

ZI , having only components along ψV and ψψ , vanishes
when restricted to spacetime (θ ¼ 0 ¼ dθ).
Before setting out to extend Sen’s prescription to super-

space in order to formulate a Lagrangian 6-superform
satisfying the above points 1 and 2, we wish to first review
the construction by Sen in a specific class of bosonic
theories describing chiral forms on spacetime, and suggest
an equivalent first-order formulation which will be instru-
mental for our purposes. The reason for this, which we
anticipate here, is that Sen’s prescription requires the
introduction of new fields PI which appear in the
Lagrangian in terms of the form dPI ∧ �dPI . A straight
superspace extension of these terms requires a consistent
definition of the Hodge operator � in superspace, which
was achieved within the framework of integral forms
[43,44,53]. This formulation of the problem will be
discussed in the last section. In the present section we
wish to follow a different route. The definition of a Hodge
duality operator, which seems to be necessary in order to
write the kinetic term of the bosonic fields PI , can be
eluded by introducing a 0-form tensor field as is usual in the
first-order approach to the kinetic terms. This is indeed
what we did in writing the kinetic terms of the 2-form BI

and of the scalar fields ϕI
½AB� in the Lagrangian of the

(noninteracting) M5-brane in Sec. III. It follows that a
possible way of extending Sen’s construction to superspace
is to change the corresponding Lagrangian into a com-
pletely equivalent one, albeit the duality operator is
replaced by a first-order formulation.

A. Review of Sen’s construction
and its first-order formulation

Let us review Sen’s prescription for a particular bosonic
theory in a (4nþ 2)-dimensional spacetime, describing
chiral ð2nÞ-forms BI whose field strengths

HI ≡ dBI þ YI; ð4:7Þ
are required to be anti-self-dual,

HI ¼ −�HI:

An example of a model of this kind is that of Type IIB
theory in which the metric is frozen to be flat and the
fermionic fields are set to zero, which is discussed in the
first part of [26]. In that case, n ¼ 2 and there is just one
chiral 4-form B and Y ≡ Bð2Þ ∧ Fð3Þ. As opposed to the
type IIB example discussed in [26], here we require the
corresponding field strengths to be anti-self-dual instead of
self-dual.
Let us now consider the following class of (4nþ 2)-form

spacetime Lagrangians:

L ¼ ðdBI þ YIÞ ∧ �H̃I −
1

2
H̃I ∧ �H̃I þ dBI ∧ YI

þ LiðΦÞ; ð4:8Þ
which includes our bosonic model for n ¼ 1. Furthermore,
note the formal analogy between the above Lagrangian and
the one in (4.1). The difference, however, is that the
Lagrangian in (4.1) is a 6-form in superspace and ZI are
superspace-3-forms with vanishing spacetime restriction.
Nevertheless this formal analogy will guide us in the next
section in formulating a superspace Lagrangian for our
supersymmetric model meeting the requirements 1 and
2 above.
Applied to a Lagrangian of the form (4.8), Sen’s

prescription would yield

L̃ ¼ −
�
1

2
dPI ∧ �dPI þ ðdPI þ YIÞ ∧ QI− −

1

2
YI ∧ �YI

�

þ Lst
i ðΦÞ; ð4:9Þ

where

QI
− ≡QI

−abcV
a ∧ Vb ∧ Vc ¼ −�QI

− ð4:10Þ

is an auxiliary anti-self-dual (2nþ 1)-form, and PI new
2n-forms. Let us mention that, in this subsection, since we
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consider a purely bosonic theory in flat spacetime, we work
with the bosonic vielbein Va ¼ dxa. Note that the kinetic
terms for the PI fields have the wrong sign.3 The field
equations read [26]

δL̃
δQI

−
¼ 0 ⇔ PþðdPI þ YIÞ ¼ 0; ð4:11Þ

δL̃
δPI ¼ 0 ⇔ dð�dPI þQI

−Þ ¼ 0; ð4:12Þ

where we denote by P� the projectors to the self- and anti-
self-dual components of a (2nþ 1)-form, respectively.
Equations (4.12) are solved by equating �dPI þQI

− to an
exact form. It is useful to choose the latter in the following
two equivalent ways:

−dPI þ �dPI þQI
− ¼ 2dΞI

1; ð4:13Þ

dPI þ �dPI þQI
− ¼ 2dΞI

2: ð4:14Þ

where we have introduced two sets of forms ΞI
1;ΞI

2 related
as follows: ΞI

1 ¼ ΞI
2 − PI . From Eq. (4.13) it follows that

PþðdΞI
1Þ ¼ 0 ⇒ dΞI

1 ¼ −�dΞI
1 ⇒ d�dΞI

1 ¼ 0;

namely the forms ΞI
1 are free and decouple from all the

other fields. The forms ΞI
2, on the other hand, are

interacting and can be identified with the physical forms
BI . Indeed from Eqs. (4.14) and (4.11) we find

PþðdΞI
2Þ ¼ PþðdPIÞ ¼ −PþðYIÞ ⇒ PþðdΞI

2 þ YIÞ ¼ 0;

ð4:15Þ

and

P−ðdΞI
2 þ YIÞ ¼ QI

−

2
þ P−ðYIÞ: ð4:16Þ

Upon identifying BI ¼ ΞI
2 and the corresponding field

strength HI as

HI ≡ dBI þ YI; ð4:17Þ
and using (4.15), we find

2HI ¼ 2P−ðHIÞ ¼ QI
− þ 2P−ðYIÞ; ð4:18Þ

which corresponds to Eq. (3.16) of [26]. Then, computing
the variation of L̃ with respect to the other fields Φ, one
finds

δΦL̃ ¼ −δΦYI ∧ ½QI
− − �YI� þ δΦLi

st

¼ −δΦYI ∧ ½2HI − YI� þ δΦLi
st; ð4:19Þ

which coincides with the corresponding variation of the
Lagrangian L in (4.8), once one passes to second order for
H̃I , expressing it in terms of HI [see the analogous
Eq. (4.4)] which, as shown in (4.18), is anti-self-dual.
As discussed above, here we wish to rewrite the kinetic

terms for the PI fields in (4.9) in an equivalent first-order
form which will be instrumental to the application, in the
next subsection, of an appropriate extension of Sen’s
construction to the superspace Lagrangian (4.1). To this
end, we introduce the following auxiliary fields:

H̃I ≡ H̃I
abcV

a ∧ Vb ∧ Vc;

ĤI
− ¼ ĤI

−abcV
a ∧ Vb ∧ Vc ¼ −�ĤI

− ð4:20Þ

and write the following Lagrangian (4nþ 2)-form in
spacetime which, as we are going to show in the following,
is the first-order formulation of Sen’s Lagrangian (4.9):

L̃0 ¼ −½ðdPI þ YIÞ ∧ H̃I þ H̃I ∧ ĤI− þ YI ∧ ĤI
−�

þ Lst
i ðΦÞ: ð4:21Þ

We wish to prove that L̃0 is equivalent to L̃. To this end we
compute the field equations from L̃0, which read

δL̃0

δH̃I ¼ 0 ⇔ dPI þ YI ¼ ĤI
−; ð4:22Þ

δL̃0

δĤI
−
¼ 0 ⇔ PþðH̃IÞ ¼ −PþðYIÞ; ð4:23Þ

δL̃0

δPI ¼ 0 ⇔ dðH̃IÞ ¼ 0: ð4:24Þ

Equation (4.22) clearly implies that

PþðdPI þ YIÞ ¼ 0; P−ðdPI þ YIÞ ¼ ĤI
−: ð4:25Þ

Equation (4.24) is, as usual, solved by equating H̃I to exact
forms, namely by introducing a new set of forms ΞI and
setting

H̃I ¼ dΞI ↔ P−ðH̃IÞ ¼ −PþðH̃IÞ þ dΞI ¼ PþðYIÞ þ dΞI;

ð4:26Þ

where we have used (4.23). From the above relations
we find

P−ðdΞIÞ ¼ P−ðH̃IÞ; PþðdΞI þ YIÞ ¼ 0: ð4:27Þ

We now define the following sets of fields:

3Recall that we are using the “mostly minus” convention and
1
2
ωð3Þ∧ �ωð3Þ ¼ 1

23!
ωabcω

abcd6x, where ωð3Þ≡ 1
3!
ωabcVa∧Vb∧Vc

and d6x≡ − 1
6!
Va1 ∧ …Va6ϵa1…a6 .
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BI ≡ PI þ ΞI

2
; P̃ ¼ PI − ΞI

2
; ð4:28Þ

where BI are the physical forms. From the second of
Eqs. (4.27) and the first of Eqs. (4.25) it follows that

HI ≡ dBI þ YI ¼ P−ðHIÞ; PþðdP̃IÞ ¼ 0: ð4:29Þ

From this we conclude that the 2n-forms P̃I are free. They
indeed coincide with the fields −ΞI

1 ¼ PI − BI introduced
earlier in Eq. (4.13). Equation (4.22), the second of
Eqs. (4.25), and the first of Eqs. (4.27), on the other hand,
allow us to write

2HI ¼ ĤI
− þ P−ðH̃I þ YIÞ: ð4:30Þ

Comparing the above equation with (4.18) we derive the
following relation between the auxiliary fields of the
original second-order Lagrangian description and the ones
in the present first-order formulation:

QI
− ¼ ĤI

− þ P−ðH̃I − YIÞ: ð4:31Þ

Finally let us compute the variation of the Lagrangian with
respect to Φ:

δΦL̃
0 ¼ −δΦYI ∧ ½ĤI

− þ H̃I� þ δΦLi

¼ −δΦYI ∧ ½2HI − YI� þ δΦLi
st; ð4:32Þ

where we have used (4.30) and (4.23). We see that δΦL̃
0 ¼

δΦL̃ once the auxiliary fields are expressed in terms of the
dynamical ones.
Let us now comment on the off-shell equivalence

between L̃ and L̃0. The first-order formulation of L̃ is
effected by introducing two new sets of auxiliary fields ĤI

−
and PþðH̃IÞ. The equation of the former is (4.23), while the
equation of the latter is

P−ðdPI þ YIÞ ¼ ĤI
−: ð4:33Þ

Eliminating these extra auxiliary fields using their equa-
tions of motion (4.23) and (4.33), and relating P−ðH̃IÞ to
QI

− through (4.31),

QI
− ¼ ĤI

− þ P−ðH̃I − YIÞ ¼ P−ðH̃I þ dPIÞ; ð4:34Þ

the reader can derive L̃ from L̃0.4 We therefore conclude
that the Lagrangians L̃ and L̃0 are equivalent.

B. Extending Sen’s construction to superspace

In this section, we shall use the general first-order
expression of (4.21) as inspiration in order to devise a
Lagrangian 6-superform L̂, equivalent to the superspace
Lagrangian (3.18), describing the noninteracting M5-brane
and satisfying points 1 and 2 outlined earlier.
Let us first give some definitions. Writing a generic

3-form in superspace as

Ω ¼ Ωð3;0Þ þ Ωð2;1Þ þ Ωð1;2Þ þΩð0;3Þ;

where the four terms on the right-hand side are the
components of Ω along VVV; VVψ ; Vψψ ;ψψψ , respec-
tively, let us define the action of operators Pabc

� on a
3-superform Ω in superspace as the projections of the only
(3,0) component of Ω into its self- and anti-self-dual
components, respectively, leaving all other superspace
components of Ω unaltered. The equation

Pabc
� ðΩÞ ¼ 0

⇔

�
Va ∧ Vb ∧ Vc ∓ 1

6
ϵdefabcðVd ∧ Ve ∧ VfÞ

�
∧Ω¼ 0

ð4:35Þ

therefore implies that the self- or anti-self-dual part of
Ωð3;0Þ, respectively, vanish, while the other superspace
components of the same form must vanish separately:

Pabc
� ðΩÞ¼0

⇔

�
P�ðΩð3;0ÞÞ≡ 1

2
ðΩabc� 1

6
ϵabcefgΩefgÞVa∧Vb∧Vc¼0;

Ωð1;2Þ ¼Ωð2;1Þ ¼Ωð0;3Þ ¼0:

ð4:36Þ

We now introduce the following set of auxiliary fields in
superspace:

H̃I ¼ H̃I þ ΔH̃I; ĤI
−abc ¼ −

1

6
ϵabcdefĤ

Idef
− ; ð4:37Þ

Let us define, for notational convenience, ĤI
− ≡

ĤI
−abcV

a∧Vb∧Vc, so that ĤI
−¼−�ĤI

−, i.e., PþðĤI
−Þ¼0,

P� being defined on (3,0) components of 3-forms as
in (4.36).
Differently from the previously described spacetime

description, H̃I is now a superfield with (3,0) components
H̃I , and (1,2), (2,1), and (0,3) components encoded inΔH̃I .
Let us write the Lagrangian 6-form in superspace of the

same general expression (4.21), namely as follows:

4Note that the relation between Sen’s auxiliary field QI
− and

the one coming from our first-order formulation, H̃I
−, is coho-

mologically nontrivial, since their difference is not exact.
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L̂¼ −ððdPI þZIÞ ∧ H̃I þ H̃I ∧ ĤI
− þZI ∧ ĤI

−Þ þLiðΦÞ;
ð4:38Þ

where ZI ¼ ZIðΦÞ are given by (4.2).
Let us now compute the field equations in superspace:

δL̂

δH̃I ¼ 0 ⇔ dPI þ ZI ¼ ĤI
−; ð4:39Þ

δL̂

δĤI
−abc

¼ 0 ⇔ Pabcþ ðH̃I þ ZIÞ ¼ 0; ð4:40Þ

δL̂
δPI ¼ 0 ⇔ dH̃I ¼ 0: ð4:41Þ

Equation (4.39) implies that dPI þ ZI , being equal to ĤI
−,

is a (3,0)-form. It therefore makes sense to compute on
them the projectors P�, defined in (4.36), so that we have

PþðdPI þZIÞ ¼ 0; P−ðdPI þZIÞ ¼P−ðĤI
−Þ: ð4:42Þ

We solve equation (4.41) by equating H̃I to exact forms in
superspace:

H̃I ¼ dΞI ⇔ P−ðH̃IÞ ¼ −PþðH̃IÞ − ΔH̃I þ dΞI: ð4:43Þ

Equation (4.40) implies

PþðH̃IÞ ¼ 0; ΔH̃I ¼ −ZI; ð4:44Þ

since ZI have vanishing (3,0) components. From this and
applying Pabcþ to both sides of Eq. (4.43), we find

Pabcþ ðdΞI − H̃IÞ ¼ 0: ð4:45Þ

The above condition trivially follows from dΞI − H̃I being
everywhere zero. In particular the (2,1), (1,2), (0,3)
components of dΞI − H̃I vanish and thus we can define
on them the action of P�:

PþðdΞI þ ZIÞ ¼ 0: ð4:46Þ

In general we can write, using (4.43) and (4.44), the
following relations:

dΞI þ ZI ¼ P−ðH̃IÞ: ð4:47Þ

Using (4.39) and (4.47) we find

PþðdBI þ ZIÞ ¼ 0; PþðdP̃IÞ ¼ 0; ð4:48Þ

where, as usual, we have defined BI ≡ ðPI þ ΞIÞ=2,
P̃I ≡ ðPI − ΞIÞ=2. In the above equations the action of Pþ
is well defined being both dBI þ ZI and dP̃I (3,0)-forms.

The last of the above equations implies that P̃I is a free
field. Finally, from (4.41) and (4.39) we find an expression
for the supercovariant field strengths of BI:

HI ¼ dBI þ ZI ¼ P−ðHIÞ ¼ 1

2
ðĤI

− þ P−ðH̃IÞÞ: ð4:49Þ

Let us now consider the equations for the other fields Φ:

δΦL̂ ¼ −δΦZI ∧ ½ĤI
− þ H̃I� þ δΦLi: ð4:50Þ

Using Eqs. (4.49) and (4.44) we can rewrite the above
variation in the form:

δΦL̂ ¼ −δΦZI ∧ ½2HI − ZI� þ δΦLi; ð4:51Þ

which coincides with (4.6). Equations (4.49) and (4.51)
imply that the Euler Lagrange equations derived from L̂ are
equivalent, as far as the physical sector of the theory
(consisting of BI;ϕI

AB; λ
I
A) is concerned, with those

obtained from L, so that condition 1 is satisfied. Once
restricted to spacetime, L̂ reduces to L̃0 (though with
YI ¼ 0

5) which is equivalent to Sen’s spacetime description
of the same model. This implies that also condition 2 is
fulfilled.
Let us comment on the nonphysical sector which

decouples from the other fields and which consists of
the free fields P̃I . From Eqs. (4.43) and (4.44) we find

dP̃I ¼ H0I
− ≡ 1

2
ðĤI

− − P−ðH̃IÞÞ: ð4:52Þ

The above equations imply that P̃I are singlets with respect
to supersymmetry transformations on spacetime:

δϵP̃Ijθ¼0¼dθ ¼ ιϵH0I
− ¼ 0:

This is consistent with the analysis of [30] where it was
found that the free 2-form is a singlet under supersymmetry.
Supersymmetry of the Lagrangian on spacetime is easily

verified by restricting L̂ to spacetime and then using the
relations (4.34) to reduce it to the Lagrangian L̃ in Eq. (4.9)
(with YI ¼ 0). The latter is equivalent to the free
Lagrangian discussed in [30]. The supersymmetry trans-
formation of QI

− can be deduced from Eqs. (4.34) and
(4.49):

5We emphasize here that the general construction discussed in
the present subsection can, in principle, be applied also to rigid
supersymmetric, interacting theories in different dimensions in
which the forms ZI have a spacetime component YI .
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δϵQI
− ¼ δϵĤ

I
− þ P−ðδϵH̃IÞ ¼ 2P−ðδϵHIÞ

¼ 1

8
CAB

�
ϵ̄AΓab∂cλ

I
B −

1

6
ϵabcdef ϵ̄AΓde

∂
fλIB

�
Va

∧ Vb ∧ Vc; ð4:53Þ

where

δϵHI
abc ¼ ϵ̄A∇AHI

abc ¼
1

8
CABϵ̄AΓ½ab∂c�λIB:

As for the PI fields we have, using δϵP̃I ¼ 0 and
Eqs. (3.17), that

δϵPI
μν ¼ δϵBI

μν þ δϵP̃I
μν ¼ δϵBI

μν ¼
1

4
CABϵ̄AΓμνλ

I
B: ð4:54Þ

The supersymmetry variations of λIA and ϕI
AB are given

in (3.17).
The fact that P̃I do not participate in the supersymmetric

picture (being supersymmetry singlets) was to be expected
since, in the presence of these fields, the on-shell matching
of bosonic and fermionic degrees of freedom does not hold.
Related to this is the failure of an ordinary rheonomic
description for P̃I. One could try to derive a consistent
supersymmetric description of these fields by resorting to a
form of nonlinear supersymmetry. Such a construction
would however apply to an unphysical sector which
decouples from the physical one and therefore we shall
refrain from further dwelling on this issue in the present
work, leaving this analysis to a future investigation.
As a final remark, let us notice that this first-order

superspace description cannot be turned into a second-
order one as for bosonic theories, because this would
require the notion of the Hodge dual in superspace, which
is only defined in the integral forms framework.
We have thus put forward a consistent proposal for a

superspace extension of Sen’s prescription.

V. TOWARD A FULL DESCRIPTION
WITH INTEGRAL FORMS

In (3.18) we introduced the rheonomic Lagrangian as a
ð6j0Þ-superform Lð6j0Þ ∈ Ωð6j0ÞðMð6j16ÞÞ. The spacetime

manifold Mð6Þ ≡Mð6j16Þ
red coincides with the reduced

manifold (or base manifold) and we denote with i the
embedding map

i∶ Mð6Þ → Mð6j16Þ: ð5:1Þ

Vice versa, we can dualize (5.1) to study the pullback of
functions from the supermanifold to the reduced one, or, in
general, of forms from the supermanifold to its base as

i�∶ Ωð6j0ÞðMð6j16ÞÞ → Ωð6ÞðMð6ÞÞ; ð5:2Þ

so that we obtain a top form on the base manifold which can
be consistently integrated to define an action:

S ¼
Z
Mð6Þ↪Mð6j16Þ

i�Lð6j0Þ: ð5:3Þ

Now, we can then lift the Lagrangian to be a top form
on the supermanifold by means of what is known in
supergeometry as a picture changing operator (PCO)
Y ð0j6Þ; the latter maps superforms into top forms, which
are knowns as integral forms. The PCO is the Poincaré
dual of the embedding (5.1) and it can be realized as a
multiplicative operator which localizes on the reduced
manifold. For example, we can write the trivial embedding

i∶Mð6Þ → Mð6j16Þ

ðx0;…; x5Þ ↦ ðx0;…; x5; 0;…; 0Þ; ð5:4Þ

which corresponds to a PCO that projects on the locus
θα ¼ 0 ¼ dθα; ∀ α ¼ 0;…; 16. Namely, we have

Y ð0j16Þ
s:t: ¼ θ1…θ16δðdθ1Þ ∧ … ∧ δðdθ16Þ; ð5:5Þ

where the subscript “s.t.” indicates that (5.5) projects on the
spacetime. The action corresponding to the trivial embed-
ding (5.4) is then written as

S ¼
Z
Mð6j16Þ

Lð6j0Þ ∧ Y ð0j16Þ
s:t: ¼

Z
Mð6Þ

Ls:t:; ð5:6Þ

where Ls:t: was introduced in (3.19) and we are left with the

integration on the base (bosonic) manifold. Y ð0j16Þ
s:t: , as a

Poincaré dual, is a cohomology representative (with respect
to the de Rham differential) living in Hð0j16ÞðMð6j16Þ; dÞ.
Changing the representative corresponds to the choice of
different embeddings of the reduced manifold and, dually,
it corresponds to adding d-exact terms to the PCO:

Y ð0j16Þ
s:t: ↦ Y ð0j16Þ ¼ Y ð0j16Þ

s:t: þ dΣð−1j16Þ; ð5:7Þ
where we consider negative-degree integral forms because
of the unboudedness of the integral form complex (see, e.g.,
Appendix B).
In general, the action will be independent of the choice of

representative if L is closed: given two PCOs Y ð0j16Þ and
Y 0ð0j16Þ s.t. Y ð0j16Þ − Y 0ð0j16Þ ¼ dΣð−1j16Þ, we have

S0 ¼
Z
Mð6j16Þ

Lð6j0Þ ∧Y 0ð0j16Þ

¼
Z
Mð6j16Þ

Lð6j0Þ ∧ ðY ð0j16Þ þdΣð−1j16ÞÞ

¼
Z
Mð6j16Þ

Lð6j0Þ ∧Y ð0j16Þ−
Z
Mð6j16Þ

dLð6j0Þ ∧Σð−1j16Þ þb:t:

¼ S−
Z
Mð6j16Þ

dLð6j0Þ ∧Σð−1j16Þ þb:t:; ð5:8Þ
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where with “b.t.” we denote boundary terms. If we neglect
them, we immediately see that S ¼ S0 if the Lagrangian is
d-closed. In particular, this would mean that the action is
independent of the embedding of the spacetime in the
superspace. However, the closure of the Lagrangian is
guaranteed only in few known cases, in particular, when it
is possible to add auxiliary fields that guarantee off-shell
invariance of the Lagrangian. In the case of (3.18), it is
possible to show that the Lagrangian is not closed, hence
different choices of embedding give rise to different actions
and, in particular, to a different number of degrees of freedom.
Alongside, the analysis of the free differential algebra

associated to this model seems to suggest that it is not
possible to add fields to the theory s.t. we can match (off-
shell) degrees of freedom, so it seems impossible to derive a
consistent closed Lagrangian. However this is not the topic
of this article and will be discussed elsewhere.
The previous argument shows that the Euler-Lagrange

derived from the Lagrangian (3.18) do not coincide with the
equations of motion coming from a variational principle of
an action, as they do not keep track of the embedding.
In other words, given an action formally written as

S ¼
Z
MðDjNÞ

LðDj0ÞðϕÞ ∧ Y ð0jNÞ; ð5:9Þ

where we generically denote by ϕ the fields (eventually,
forms) contained in the Lagrangian, the variational prin-
ciple gives rise to constrained equations of motion:

δϕS ¼ 0 ⇒ δϕLðDj0ÞðϕÞ ∧ Y ð0jNÞ ¼ 0: ð5:10Þ
The fact that different choices of PCO reflect different
degrees of freedom of the theory (when the Lagrangian is
not closed) is a consequence of the kernel of the PCO
(which reflects with the kernel of the pull-back i�) on
ΩðDj0ÞðMðDjNÞÞ, which is always nonempty.
In order to derive the self-duality condition from a

superspace action, we will then need to implement Sen’s
principle on an action integrated on a supermanifold.
In [50] the authors have shown in the easier context of
the chiral boson that this corresponds to coupling the theory
to an external self-dual form (actually, a pseudoform); in
particular, this self-dual form needs to be coupled to the
3-form HI and make it inherit on-shell self-duality. We will
have the new action written as

S̃ ¼
Z
Mð6j16Þ

½Lð6j0ÞðϕÞ ∧ Y ð0j16Þ þHI ∧ Ỹ ð0j8Þ ∧ Qð3j8Þ
I �;

ð5:11Þ

whereQð3j8Þ
I ¼ ⋆Qð3j8Þ

I is the self-dual external pseudoform
and Ỹ ð0j8Þ is a half-PCO at picture equal to eight which is
half of the maximal picture number, needed to lift the

ð6j8Þ-form HI ∧ Qð3j8Þ
I to an integral form and “⋆” is the

Hodge operator on supermanifolds defined in Appendix B.

A. Changing the PCO

In order to prepare the stage for a subsequent analysis,
we sketch here two alternative PCOs and show how the
computation can be performed using the rheonomic
Lagrangian (3.18). This will be crucial to show that
different embeddings pick up different terms from the
Lagrangian which should contain all needed information,
but with a different degree of manifest supersymmetry (in
Appendix B some details are given). In particular, the
amount of explicit supersymmetry is related to the number
of explicit θ’s in the PCO (B19).
We now discuss the following two examples of PCO’s:

the first one, which has 11 naked θ’s, can be written as

Y 11 ¼ ðϵθ11Þα1A1…α5A5
ðVa1Γa1 ιÞα1A1…ðVa5Γa5 ιÞα5A5δ16ðψÞ;

ð5:12Þ

where ιαAψβB ¼ δβαδBA and ϵ denotes a collection of invari-
ant tensors of SOð1; 5Þ and CAB to reproduce the Levi-
Civita tensor ϵ in the 16-dimensional spinorial space.
If we multiply the rheonomic Lagrangian Lð6j0Þ by Y 11,

we select only one term

Lð6j0Þ ∧Y 11¼
i
2
ðHIϕIABψ̄

AΓaψ
BVaÞ

∧ ðϵθ11Þα1A1…α5A5
ðVa1Γa1 ιÞα1A1…

× ðVa5Γa5 ιÞα5A5δ16ðψÞ
¼ α0ϕIABðCA1ACA2BCA3B1…CA5B3Þ
× ðϵθ11Tι3HIÞA1…A5B1…B3

V6δ16ðψÞ; ð5:13Þ

where α0 is a suitable coefficient and

ðϵθ11Tι3HIÞA1…A5B1…B3
¼ Tα1…α5β1…β3ðϵθ11Þα1A1…α5A5

×HI
β1…β3B1B2B3

Tα1…α5;β1…β3 ¼ ϵaa1…a5ðΓaÞβ4β5ðΓa1Þα1β1…
× ðΓa5Þα5β5

HI
αβγABC ¼ ιαAιβBιγCHI: ð5:14Þ

The integration on the supermanifold leads to

S11 ¼
Z

Lð6j0Þ ∧ Y 11

¼ α0ðCA1ACA2BCA3B1…CA5B3Þ

×
Z
x;θ

ϕIABðϵθ11Tι3HIÞA1…A5B1…B3

¼ α0ðCA1ACA2BCA3B1…CA5B3Þ

×
Z
x
ðD5ðϕIABTι3HIÞjθ¼0ÞA1…A5B1…B3

; ð5:15Þ
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whereD5 is the product of five superderivatives and there is
only a single invariant spinorial contraction among the
tensors D5, T and ι3HI . The resulting integral over the
bosonic coordinates produces a component action, as
the five-order derivative D5 acting on a bilinear term yields
six terms of the formDpϕIABD5−pðι3HIÞwith p ¼ 0;…; 5.
It will be a matter of subsequent work to explore the
complete component expansion of the action (5.15).
The second PCO to be discussed is the following:

Y 14 ¼ ðϵθ14Þα1A1α2A2
ðVa1Γa1 ιÞα1A1ðVa2Γa2 ιÞα2A2δ16ðψÞ:

ð5:16Þ

Inserting it into the action, it will fish for terms with at most
four explicit V’s and two ψ’s. This PCO would again lead
to an action but pick some different terms as compared to
(5.15). In particular, it will extract the terms with V4ψ2

from (3.18), which are directly related to the self-duality
constraint, as seen from the rheonomic equations in full
superspace. In addition, the number of naked θs implies
that the calculation of the Berezin integral involves only
two superderivatives. Note that, compared to (5.12) this
new PCO selects different terms in the rheonomic
Lagrangian. Actions written using different PCOs differ
in the amount of manifest supersymmetry. The complete
expression will be presented in future work.

VI. CONCLUSIONS AND OUTLOOK

In this work, we set the basis for the complete con-
struction of an action for noninteracting tensor multiplets
living on a stack of M5-branes in superspace. As explained
in the text, the construction amounts to deriving a rheo-
nomic Lagrangian reproducing superspace parametriza-
tions, the equations of motion and ready to be integrated
on the full supermanifold.
In the first four sections we obtain an important

preliminary result in this sense, by first constructing a
rheonomic 6-superform Lagrangian yielding, in super-
space, all the dynamical equations, including the anti-
self-duality constraint on the 3-form field strengths. We
further propose a first-order formulation of Sen’s
Lagrangian on spacetime and its superspace extension,
which yields, on the one hand, all the rheonomic con-
straints on the physical fields in superspace and, on the
other hand, upon restriction to spacetime, all the dynamical
equations, which include the anti-self-duality constraint on
the 3-form field strengths.
In the last section, we discuss the relevant steps for the

construction of an action principle in superspace through
the use of integral forms and we illustrate two examples.
Let us conclude with some remarks. It is shown that the

Lagrangian presented in Eq. (3.18) encodes the information
about the tensor multiplet in a very compact and effective
way. It is the starting point for a complete analysis in

superspace language and for the coupling to supergravity.
In addition, it would be interesting to make contact with the
constructions of [12,54–59], involving harmonic and pure
spinor superspaces [60], which is left to future publications.
Finally, the complete Sen’s mechanism for any choice of
PCO will be studied deeply.
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APPENDIX A: USEFUL FORMULAS
AND CONVENTIONS

We work with a mostly minus spacetime signature
ημν ¼ diagðþ;−; � � � ;−Þ. Moreover, we adopt the follow-
ing conventions:

(i) ϵ0…5 ¼ −ϵ0…5 ¼ 1,
(ii) ϵμ1…μkν1…ν6−kϵ

μ1…μkρ1…ρ6−k ¼ −k!δρ1…ρ6−k
ν1…ν6−k ,

(iii) δ1…6−k
1…6−k ¼ 1,

(iv) dxμ1 ∧ … ∧ dxμ6 ¼ −ϵμ1…μ6dx0 ∧ … ∧ dx5,

(v) �gω ¼ 1
ð6−kÞ!

� ffiffiffi
g

p
k!

ϵμ1…μkρ1…ρ6−kω
μ1…μk

	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð�ωÞρ1…ρ6−k

dxρ1 ∧ … ∧

dxρ6−k ,
(vi) ��ω ¼ ð−1Þkð6−kÞþ1ω,
(vii) ω ∧ �η ¼ η ∧ �ω,
(viii) ðω; ηÞ ¼ R

ω ∧ �η,
(ix) ðω; ηÞ ¼ ðη;ωÞ,
(x) ð�ω; �ηÞ ¼ −ðω; ηÞ,

and we use

Ωð6Þ ≡ −
1

6!
Vabcdefϵabcdef ¼ d6x: ðA1Þ

For traceless antisymmetrizations in USpðnÞ have

V ½AWBC�0 ¼ V ½AWBC� −
2

n − 2
C½ABWC�EVDCED; ðA2Þ

where WAB is antisymmetric traceless. From this, setting
n ¼ 4, we find

V ½AWB�0C ¼ −
1

2
VCWAB þ CC½AWB�0EVDCED: ðA3Þ

1. Conventions on gamma matrices and spinors

Our convention for the spinorial derivative is

ψ̄A∇Að…Þ: ðA4Þ
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The gravitino 1-form is antichiral,

ΨA ¼ −Γ7ΨA; ðA5Þ

while the spinors λIA are chiral,

λIA ¼ þΓ7λ
I
A: ðA6Þ

Besides, we have

ΨA ¼ CABCψ̄ t
B; λIA ¼ −CABCðλ̄IBÞt: ðA7Þ

The 6-dimensional gamma matrices are constructed as
follows:

γa ¼ fσ1 ⊗ 12×2; iσ2 ⊗ σ1; iσ2 ⊗ σ2; iσ2 ⊗ σ3g;
a ¼ 0; 1; 2; 3; ðA8Þ

Γa¼fγa ⊗ σ1;14×4 ⊗ iσ3;14×4⊗ iσ2g; a¼ 0;…;5; ðA9Þ

Γ7 ¼ Γ0Γ1Γ2Γ3Γ4Γ5; ðΓ7Þ2 ¼ 1: ðA10Þ

The charge conjugation matrix is given by C ¼ Γ1Γ3Γ5 and
satisfies

C ¼ Ct; ðA11Þ

C2 ¼ 18×8; ðA12Þ

ðΓaÞt ¼ −C−1ΓaC: ðA13Þ

The C-symmetry of gamma matrices is listed below:
(i) symmetric: fC;CΓabΓ7; CΓabcg;
(ii) antisymmetric: fCΓ7; CΓa; CΓab; CΓaΓ7g.

The convention for raising and lowering the USp(4) indices
is the following:

VA ¼ CABVB; VA ¼ VBCBA; ðA14Þ

where

CAB ¼CAB ¼
�

02×2 12×2
−12×2 02×2

�
; CACCCB¼−δAB: ðA15Þ

The pseudo-Majorana condition for the gravitino can be
written as

ψA ¼ CABCðψ̄BÞt ¼ CABCΓ0ψ�
B ¼ CΓ0ðψAÞ� ðA16Þ

and can be inverted

ψ̄A ¼ ðψBÞtCBAC ¼ ðψAÞtC: ðA17Þ

For λ the result differs for a minus sign. Let us also give the
following useful Fierz Identities:

ψAψ̄B¼1

4

�
ΓaPþðψ̄BΓaψAÞ− 1

12
Γabcðψ̄BΓabcψAÞ

�
; ðA18Þ

λIAψ̄
B¼ −

1

4
Pþψ̄BλIA þ 1

8
ΓabPþψ̄BΓabλIA; ðA19Þ

CA½Cψ̄AΓaψ
B�0 ψ̄DΓaψD ¼ 0; ðA20Þ

λ̄DΓabψAψ̄CΓbψ
CCDA−4λ̄½DψA�0 ψ̄DΓaψCCAC ¼ 0; ðA21Þ

Γabψ
Aψ̄BΓbψB ¼ ψAψ̄BΓaψ

B − 4ψBψ̄BΓaψ
A

¼ 4CBCψ
Bψ t½CCΓaψ

A�0 ; ðA22Þ

where P� ¼ 1�Γ7

2
. Other useful relations are

ψ̄ ½Aλ
I
B�0 ¼ λ̄ICψDCD½ACB�0C; ðA23Þ

ψ̄AΓabλ
I
BC

AB ¼ −λ̄IAΓabψ
BCAB: ðA24Þ

APPENDIX B: INTEGRAL FORMS

In this appendix we collect some basic definitions and
facts about integration on supermanifolds and integral
forms. For exhaustive introductions to integral forms we
refer the reader to [42,52,61], while for their use in physics
we refer to [43,44,50,62,63].
Given a (smooth) supermanifold MðmjnÞ, the cotangent

space T �
PM

ðDjNÞ at a given point P ∈ MðDjNÞ has both an
even and an odd part, generated, in a given system of
local coordinates ðxi; θαÞ; i ¼ 1;…; D; α ¼ 1;…; N, by the
ð1j0Þ-forms fdxi; dθαg, called superforms, which are
respectively odd and even. They have the following
(super)commuting properties:

dxi ∧ dxj ¼ −dxj ∧ dxi;

dθα ∧ dθβ ¼ dθβ ∧ dθα;

dxi ∧ dθα ¼ −dθα ∧ dxi: ðB1Þ

A generic ðpj0Þ-form is an object of the (graded) sym-
metric power of T �

PM
ðDjNÞ and it locally reads as

ωðpj0Þ ¼ ω½i1…ir�ðα1…αsÞðx; θÞdxi1 ∧ … ∧ dxir

∧ dθα1 ∧ … ∧ dθαs ;

p ¼ rþ s; ðB2Þ

where the coefficients ω½i1…ir�ðα1…αsÞðx; θÞ are a set of
superfields and the indices a1…ar, α1…αs are antisymme-
trized and symmetrized, respectively, as to satisfy (B1). We
then immediately see that there is no notion of top form
among superforms, hence there is not the notion of a
superform which could be integrated on MðDjNÞ. The
notion analogous to the determinant bundle can be found
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in a different form complex, the complex of integral forms.
One can introduce the Berezinian bundle BerðMðDjNÞÞ,
i.e., the space of objects which transform as the Berezinian
(i.e., the superdeterminant) under coordinate transforma-
tions. Integral forms are then constructed on open sets
starting from this space and tensoring with (graded)
symmetric powers of the parity-changed tangent space
(see, e.g., [52] or the recent [61] for a rigorous introduction
to the subject). A practical and computationally powerful
realization of the Berezinian and of integral forms is given
in term of (formal) Dirac distributions on the cotangent
space (see [64] for these definitions and [42] for a complete
review of the formalism); a generic ðpjNÞ-integral form can
be locally described as

ωðpjNÞ ¼ ωðα1…αsÞ
½i1…ir� ðx; θÞdxi1 ∧ … ∧ dxir ∧ ια1…ιαsδðdθ1Þ

∧ … ∧ δðdθNÞ; p ¼ r − s; ðB3Þ

and the second number of the ðpjnÞ-form keeps track of the
number of Dirac deltas and is called picture number (see,
e.g., [65] for its introduction in string theory). The formal
Dirac deltas satisfy the following properties:

Z
dθ
δðdθÞ ¼ 1; dθ ∧ δðdθÞ ¼ 0;

δðdθαÞ ∧ δðdθβÞ ¼ −δðdθβÞ ∧ δðdθαÞ;

dx ∧ δðdθÞ ¼ þδðdθÞ ∧ dx; δðλdθÞ ¼ 1

λ
δðdθÞ;

dθ ∧ ιpδðdθÞ ¼ −pιp−1δðdθÞ: ðB4Þ

The first property defines how δðdθÞ’s have to be used in
order to perform form integration along the commuting
directions dθ’s; the second property reflects the usual
property of the support of the Dirac distribution; the third
and fourth properties imply that jδðdθÞj ¼ 1 mod 2, i.e.,
δðdθÞ’s are odd objects and together with the fifth property
they indicate that actually these are not really distributions,
but rather de Rham currents, i.e., they define an oriented
integration; the last property amounts for the usual inte-
gration by parts of the Dirac delta.
A “top form” then reads as

ωðDjNÞ
top ≡ ωðDjNÞ

¼ ωðx; θÞϵi1…iDdx
i1 ∧ … ∧ dxiD

∧ ϵα1…αNδðdθα1Þ ∧ … ∧ δðdθαN Þ; ðB5Þ

whereωðx; θÞ is a superfield. Any integral form of any form
degree p can be obtained by acting withD − p contractions
on (B5). By changing the coordinate system, the ð1j0Þ-
forms dxa; dθα change as

dxi → Ea ¼ Ea
i dx

i þ Ea
αdθα;

dθα → Eμ ¼ Eμ
i dx

i þ Eμ
αdθα; ðB6Þ

where E is the Jacobian (super)matrix of the transforma-
tion. A top form ωðmjnÞ transforms as

ωðDjNÞ → BerðEÞωðx; θÞϵi1…iDdx
i1 ∧ … ∧ dxiD

∧ ϵα1…αNδðdθα1Þ ∧ … ∧ δðdθαN Þ; ðB7Þ

where BerðEÞ is the superdeterminant of the (super)
matrix E.
One can also consider other classes of forms, with

nonmaximal and nonzero number of deltas: pseudoforms.
A general pseudoform with q deltas is locally given by

ωðpjqÞ ¼ ω½a1…ar�ðα1…αsÞ½β1…βq�ðx; θÞdxa1 ∧ …

∧ dxar ∧ dθα1 ∧ … ∧ dθαs ∧ δðt1Þðdθβ1Þ ∧ …

∧ δðtqÞðdθβqÞ; ðB8Þ

where we used the compact notation δðiÞðdθÞ≡ ðιÞiδðdθÞ.
The form number is obtained as

p ¼ rþ s −
Xq
i¼1

ti; ðB9Þ

since the contractions carry negative form number. The two
numbers p and q in Eq. (B8) correspond to the form
number and the picture number, respectively, and they
range as −∞ < p < þ∞ and 0 ≤ q ≤ N, so the picture
number counts the number of delta’s. If q ¼ 0 we have
superforms, if q ¼ N we have integral forms, if 0 < q < N
we have pseudoforms. These kinds of forms are to be used
for example in (5.11) in order to construct objects which
implement naturally the self-duality condition on super-
manifolds. This is a consequence of the fact that the Hodge
operator on supermanifolds changes not only the form
number, but also the picture number:

⋆∶ ΩðpjqÞðMðDjNÞÞ → ΩðD−pjN−qÞðMðDjNÞÞ: ðB10Þ

We refer the reader to [43,44] for the introduction of the
Hodge operator on supermanifolds. The action of the de
Rham operator d on pseudoforms is defined by the usual
Leibniz rule and by the action on Dirac deltas as

dδðEμÞ ¼ ðdEμÞδð1ÞðEμÞ: ðB11Þ

A notable example of integral form is the picture
changing operator described in Sec. II: it is a ð0jNÞ-form,
in the cohomology of the operator d. It is used to “lift” a
superform to an integral form by multiplication:
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Y ð0jNÞ∶ Ωðpj0ÞðMðDjNÞÞ → ΩðpjNÞðMðDjNÞÞ
ωðpj0Þ ↦ ωðpjNÞ ¼ ωðpj0Þ ∧ Y ð0jNÞ: ðB12Þ

As we discussed in Sec. II, its geometrical meaning is to
keep track of the embedding of the reduced manifold in the
supermanifold.

1. Other PCOs

Here we show how to construct PCOs corresponding to
nontrivial embeddings. In particular, we show how to
costruct PCOs which are manifestly invariant with respect
to the Killing spinors. Infinitesimal transformations of the
PCO’s are described by Lie derivatives: given a vector field
v ∈ TPMðDjNÞ they read

δvY ð0jNÞ ¼LvY ð0jNÞ ¼ ðdιvþð−1ÞjvjιvdÞY ð0jNÞ ¼ dιvY ð0jNÞ;

ðB13Þ

where the sign depends on the parity of v. Then we see
that Y ð0jNÞ is invariant by transformations induced by v if
and only if dιvY ð0jNÞ ¼ 0. In the present case, we will
construct the vector v in terms of the supercharge vector
Qα. In particular, fixed a basis of TPMðDjNÞ f∂a; Dαg, a ¼
1;…; D; α ¼ 1;…N whereDα¼ ∂α − θβðCΓaÞαβ∂a and the
dual basis of T�

PM
ðDjNÞ fVa;ψαg, where Va ¼

dxa þ θαðCΓaÞαβdθβ, ψα ¼ dθα, the supercharge vector
field reads

Qα ¼ ∂α þ θβðCΓaÞαβ∂a ¼ Dα þ 2θβðCΓaÞαβ∂a;
Q ¼ ϵαQα; ðB14Þ

where ϵα is a (Grassmann odd) spinor. Requiring that the
PCO is invariant with respect to transformations generated
by any Q then means

dιQY ð0jNÞ ¼ 0; ∀ ϵα; ðB15Þ

while requiring the same conditions for some choices of ϵα

would correspond to asking only for partial invariance. An
example of maximally invariant PCO can be obtained from
the spacetime one by performing the formal substitution
θα ↦ θα þ ldxaðΓaCÞαβιβ

Y ð0jNÞ
susy ¼ ϵα1…αN ðθα1 þ ldxa1ðΓa1CÞα1β1 ιβ1Þ…

× ðθαN þ ldxaN ðΓaNCÞαNβN ιβN Þδðψ1Þ…δðψNÞ;
ðB16Þ

and then determine a value of l s.t. δQY
ð0jNÞ
susy ¼ 0. The

supersymmetry invariance of (B16) can be verified by
using

δQθ
α¼ ϵα; δQdxa¼þϵαðCΓaÞαβψβ; δQψ

α¼0; ðB17Þ

so that we have

δQY
ð0jNÞ
susy ¼ Nϵα1…αN ðϵα1 þ lϵαðCΓa1ÞαβψβðΓa1CÞα1β1 ιβ1Þ…ðθαN þ ldxaN ðΓaNCÞαNβN ιβN ÞδNðψÞ

¼ Nϵα1…αnðϵα1−ð−1ÞslϵαðCΓa1Γa1CÞα1α Þ…ðθαN þ ldxaN ðΓaNCÞαNβN ιβN ÞδNðψÞ
¼ Nϵα1…αN ðϵα1−ð−1Þsþtð−1ÞsDlϵα1Þ…ðθαN þ ldxaN ðΓaNCÞαNβN ιβN ÞδNðψÞ ¼ 0; ðB18Þ

where δNðψÞ ¼ δðψ1Þ ∧ … ∧ δðψNÞ and where we have used the properties ψιδðψÞ ¼ −δðψÞ and ΓaΓa ¼ D1. The
coefficient s takes into account the C-symmetry of gamma matrices whereas t keeps track of the square of the charge

conjugation matrix C. We then see that if l ¼ ð−1Þsþt

D , Y ð0jNÞ
susy is invariant.

In the specific case of this paper, we have D ¼ 6, N ¼ 16 and the spinor indices α have to be split considering the
R-symmetry. Then, the PCO in (B16) reads

Y ð0j16Þ
susy ¼ Cα1α2CA2A3

…Cα15α16CA16A1

�
θα1A1 þ i

3
dxa1ðΓa1CÞα1β1 ιA1

β1

�
…

�
θα16A16 þ i

3
dxa16ðΓa16CÞα16β16 ιA16

β16

�
δðψ1Þ…δðψ16Þ;

ðB19Þ

where the factor l ¼ i
3
comes from the transformation of dx δQdxa ¼ i

2
ϵ̄AΓaψA. Notice that each term of (B16) or (B19) is

closed and nonexact, namely a PCO itself. In particular, we can tune the PCO by choosing some terms from (B19) in order
to maintain or cancel some terms of the rheonomic Lagrangian when restricting on the base manifold, as shown in Sec. VA.
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