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ABSTRACT 

The present investigation examines how the properties of the double concave friction pendulum 

(DCFP) devices influence the seismic performance of isolated multi-span continuous deck bridges. 

The numerical simulations are carried out using an eight-degree-of-freedom model to reproduce the 

elastic behavior of the pier, associated to the assumption of both rigid abutment and rigid deck, and 

the non-linear velocity-dependent behavior of the two surfaces of the double concave friction pen-

dulum isolators under a set of natural records with different characteristics. The results in terms of 

the statistics related to the relevant response parameters are computed in non-dimensional form 

with respect to the seismic intensity considering different properties of both DCFP isolators and 

bridge.  

SOMMARIO 

Il presente studio esamina come le proprietà degli isolatori attritivi a doppia superficie (Double 

Concave Friction Pendulum) influenzano le prestazioni sismiche di ponti a impalcato continuo a 

più campate. Le simulazioni numeriche sono effettuate utilizzando un modello a otto gradi di libertà 

per riprodurre il comportamento elastico della pila, associato all'assunzione sia di spalla rigida che 

di impalcato rigido, e il comportamento non lineare dipendente dalla velocità delle due superfici 

degli isolatori attritivi sotto una serie di eventi sismici naturali con caratteristiche diverse. I risultati 
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in termini di statistiche relative ai parametri di risposta rilevanti sono calcolati in forma non dimen-

sionale rispetto all'intensità sismica considerando differenti proprietà sia degli isolatori che del 

ponte.  

1 INTRODUCTION 

One of the main goals of seismic isolation is to enrich the performance of structures [1]-[2] and 
infrastructure [3] when subjected to seismic loading. The safety level associated with both struc-
tures [4] and infrastructures turns out to be a key aspect especially in seismic-prone areas.  
As a matter of fact, the non-linear behaviour of reinforced concrete (RC) elements strongly influ-
ences the overall seismic response when no isolation systems are provided. With a special reference 
to bridges, is it well known in the literature that seismic isolation allows to threat the superstructure 
and the substructure as a decoupled system, with a consequent reduction of the transmitted forces 
in case of an earthquake. Many research efforts have been carried out to study the influence of the 
installation of isolator devices on the bridges [5]. Particularly, numerous studies [7] have been fo-
cused on seismic isolation through friction pendulum systems (FPS). One of the greatest advantages 
of using FPS devices is the significant energy dissipation that occurs under seismic action, along 
with its recentering capability; furthermore, they make the natural period of the isolated bridge 
independent from the deck mass [8]. These devices can have single or multiple concave sliding 
surfaces [9]-[11]. Among those having multiple surfaces, the adoption of double concave sliding 
surface friction pendulum (DCFP) systems has shown to have a more positive influence on the 
seismic isolation of bridges [12]-[13]. Following this isolation approach, the present work presents 
a parametric analysis of multi-span continuous bridges isolated with DCFP devices, where the in-
teraction between abutments, pier and deck [14] is also taken into account. The bridge model is 
performed following an eight-degree-of-freedom (8-dof) system approximation. This simplification 
can be reasonably representative of real bridges similar to those investigated. The adopted model 
accounts for the RC pier stiffness, the RC rigid abutments and the DCFP devices behavior. To 
explicitly consider the uncertainties related to the so-called record-to-record variability, 30 different 
ground motions have been considered to perform all the analyses. In addition, the geometric con-
figuration of the pier and of the DCFP isolators are parametrically investigated. The maximum 
response of the deck and of the pier are identified and statistically post processed to evaluate their 
seismic performance as a function of the varying parameters. Finally, an optimum design value of 
the friction coefficient, i.e. able to minimize the pier top maximum displacement, is analyzed and 
provided into a regression model.  

2 DYNAMIC RESPONSE OF THE DECK-ABUTMENT-PIER STRUC-

TURAL SYSTEM 

The 8-degree-of-freedom (8-dof) system model as approximation of the three-span continuous deck 
bridge isolated with DPCF is shown in Fig. 1. In particular, 5 dofs are used to model the lumped 
masses of the elastic RC pier, while 2 dofs model DPCF devices and 1 dof is adopted for the rigid 
RC deck [6].  
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Fig. 1. Sc hematic illustration for the 8-dof model of the bridge. 

From the dynamic equilibrium of the multi-degree of freedom system depicted in Fig.1 the equa-

tions of motion governing the seismic problem can be expressed in terms of drift between the 

lumped masses along the longitudinal direction as follows: 

𝑚𝑑�̈�7(𝑡) + 𝑚𝑑�̈�6(𝑡) + 𝑚𝑑�̈�𝑝5(𝑡) + 𝑚𝑑�̈�𝑝4(𝑡) + 𝑚𝑑�̈�𝑝3(𝑡) + 𝑚𝑑�̈�𝑝2(𝑡) + 𝑚𝑑�̈�𝑝1(𝑡)

+ 𝑐𝑑�̇�𝑑(𝑡) + 𝐹1𝑎(𝑡) + 𝐹1𝑝(𝑡) = −𝑚𝑑�̈�𝑔(𝑡) 

𝑚𝑠𝑝�̈�6(𝑡) + 𝑚𝑠𝑝�̈�𝑝5(𝑡) + 𝑚𝑠𝑝�̈�𝑝4(𝑡) + 𝑚𝑠𝑝�̈�𝑝3(𝑡) + 𝑚𝑠𝑝�̈�𝑝2(𝑡) + 𝑚𝑠𝑝�̈�𝑝1(𝑡)

− 𝐹1𝑝(𝑡) + 𝐹2𝑝(𝑡) = −𝑚𝑠𝑝�̈�𝑔(𝑡) 

𝑚𝑠𝑎�̈�8(𝑡) − 𝐹1𝑎(𝑡) + 𝐹2𝑎(𝑡) = −𝑚𝑠𝑎�̈�𝑔(𝑡) 

𝑚𝑝5�̈�𝑝5(𝑡) + 𝑚𝑝5�̈�𝑝4(𝑡) + 𝑚𝑝5�̈�𝑝3(𝑡) + 𝑚𝑝5�̈�𝑝2(𝑡) + 𝑚𝑝5�̈�𝑝1(𝑡) − 𝑐𝑑�̇�𝑑(𝑡)

+ 𝑐𝑝5�̇�𝑝5(𝑡) + 𝑘𝑝5𝑥𝑝5(𝑡) − 𝐹2𝑝(𝑡) = −𝑚𝑝5�̈�𝑔(𝑡) 

𝑚𝑝4�̈�𝑝4(𝑡) + 𝑚𝑝4�̈�𝑝3(𝑡) + 𝑚𝑝4�̈�𝑝2(𝑡) + 𝑚𝑝4�̈�𝑝1(𝑡) − 𝑐𝑝5�̇�𝑝5(𝑡) − 𝑘𝑝5𝑥𝑝5(𝑡)

+ 𝑐𝑝4�̇�𝑝4(𝑡) + 𝑘𝑝4𝑥𝑝4(𝑡) = −𝑚𝑝4�̈�𝑔(𝑡) 

𝑚𝑝3�̈�𝑝3(𝑡) + 𝑚𝑝3�̈�𝑝2(𝑡) + 𝑚𝑝3�̈�𝑝1(𝑡) − 𝑐𝑝4�̇�𝑝4(𝑡) − 𝑘𝑝4𝑥𝑝4(𝑡) + 𝑐𝑝3�̇�𝑝3(𝑡)

+ 𝑘𝑝3𝑥𝑝3(𝑡) = −𝑚𝑝3�̈�𝑔(𝑡) 

𝑚𝑝2�̈�𝑝2(𝑡) + 𝑚𝑝2�̈�𝑝1(𝑡) − 𝑐𝑝3�̇�𝑝3(𝑡) − 𝑘𝑝3𝑥𝑝3(𝑡) + 𝑐𝑝2�̇�𝑝2(𝑡) + 𝑘𝑝2𝑥𝑝2(𝑡)

= −𝑚𝑝2�̈�𝑔(𝑡) 

𝑚𝑝1�̈�𝑝1(𝑡) − 𝑐𝑝2�̇�𝑝2(𝑡) − 𝑘𝑝2𝑥𝑝2(𝑡) + 𝑐𝑝1�̇�𝑝1(𝑡) + 𝑘𝑝1𝑥𝑝1(𝑡) = −𝑚𝑝1�̈�𝑔(𝑡) 

(1) 

where md, msp, and msa are respectively the masses of the deck and of the two isolation devices 

installed on the pier and on the abutment ; mpi (i=1,..,4,5) is the i-th lumped mass of the pier seg-

ment; kpi and cpi (i=1,..,5) are the stiffness and viscous damping, assumed equal for each dof asso-

ciated to the pier segments; t is the time instant; Fja(t) and Fjp(t) are the reaction forces of the DCFP 

referred to the abutment and the pier, respectively, for the upper (j = 1) and lower sliding surface (j 

= 2). In particular, according to [9]-[11], the reaction forces can be expressed as:  

𝐹1𝑎 =
𝑚𝑑𝑔

2
[

1

𝑅1𝑎
(∑ 𝑥𝑝𝑖 +

5

𝑖=1

𝑥6 + 𝑥7 − 𝑥8) + 𝜇1𝑎(�̇�9)(𝑠𝑔𝑛(�̇�9))] 

𝐹2𝑎 = (
𝑚𝑑

2
+ 𝑚𝑠𝑎) 𝑔 [

1

𝑅2𝑎

(𝑥8) + (𝜇2𝑎(�̇�8))(𝑠𝑔𝑛(�̇�8))] 

𝐹1𝑝 = (
𝑚𝑑𝑔

2
) [

1

𝑅1𝑝

(𝑥7) + (𝜇1𝑝(�̇�7)) (𝑠𝑔𝑛(�̇�7))] 

𝐹2𝑝 = (
𝑚𝑑

2
+ 𝑚𝑠𝑝) 𝑔 [

1

𝑅2𝑝

(𝑥6) + (𝜇2𝑝(�̇�6)) (𝑠𝑔𝑛(�̇�6))] 

(2) 

where 𝑥9 = ∑ 𝑥𝑝𝑖 + 𝑥6 + 𝑥7 − 𝑥8
5
𝑖=1 , R1 and R2 are the upper and lower radius of curvature of the 

DCFP devices and 𝜇𝑗(�̇�𝑗(𝑡)) (with j=1,2) is the sliding friction coefficient, estimated according to 

experimental investigation [16]-[18] with the following expression: 

𝜇𝑗(�̇�𝑗) = 𝑓𝑗,𝑚𝑎𝑥 − (𝑓𝑗,𝑚𝑎𝑥 − 𝑓𝑗,𝑚𝑖𝑛) ∙ 𝑒𝑥𝑝(−𝛼|�̇�𝑗|) (3) 

where fj,max and fj,min are the value of friction coefficient at high and near-zero sliding velocity re-

spectively. Finally it is assumed α=30 and fj,max=3 fj,min according to [16]-[18].  

Then, in line with previous studies [19], the system in (1) can be expressed in a non-dimensional 

form, by means of mass ratios; the circular frequency of vibration of the isolated deck and of the i-

th dof of the pier; the damping coefficient of the i-th dof of the pier, respectively as: 
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𝜆𝑝𝑖 =
𝑚𝑝𝑖

𝑚𝑑
, 𝜆𝑠𝑎 =

𝑚𝑠𝑎

𝑚𝑑
, 𝜆𝑠𝑝 =

𝑚𝑠𝑝

𝑚𝑑
, 𝜔𝑑 = √

𝑘𝑐𝑜𝑚𝑏

𝑚𝑑
, 𝜔𝑝𝑖 = √

𝑘𝑝𝑖

𝑚𝑝𝑖
, 𝜉𝑝𝑖 =

𝑐𝑝𝑖

2𝑚𝑝𝑖𝜔𝑝𝑖
 (4) 

In addition, according to [19], the time scale τ=tωd can be introduced together with the seismic 

intensity scale factor a0, evaluated with the expression �̈�𝑔(𝑡) = 𝑎0ℓ(𝜏), where ℓ(𝜏) is a non-dimen-

sional function of time which describes the time history of the seismic event. Finally, the non-

dimensional system of equations becomes: 

 

�̈�7(𝜏) + �̈�6(𝜏) + �̈�𝑝5(𝜏) + �̈�𝑝4(𝜏) + �̈�𝑝3(𝜏) + �̈�𝑝2(𝜏) + �̈�𝑝1(𝜏) + 2𝜉𝑑�̇�7(𝜏) + 

+
𝑔

2
[

1

𝑅1𝑝

1

𝜔𝑑
2 𝜓7(𝜏) +

𝜇1𝑝(�̇�7)

𝑎0
𝑠𝑔𝑛(�̇�7)] +

𝑔

2
[

1

𝑅1𝑎

1

𝜔𝑑
2 (∑ 𝜓𝑝𝑖(𝜏) +5

𝑖=1 𝜓6(𝜏) + 𝜓7(𝜏) − 𝜓8(𝜏)) +  

+ (
𝜇1𝑎(�̇�9)

𝑎0
) (𝑠𝑔𝑛 (∑ �̇�𝑝𝑖(𝜏)

5

𝑖=1

+ �̇�6(𝜏) + �̇�7(𝜏) − �̇�8(𝜏)))] = −ℓ(𝜏) 

𝜆𝑠𝑝[�̈�6(𝜏) + �̈�𝑝5(𝜏) + �̈�𝑝4(𝜏) + �̈�𝑝3(𝜏) + �̈�𝑝2(𝜏) + �̈�𝑝1(𝜏)] −
𝑔

2
[

1

𝑅1𝑝

1

𝜔𝑑
2

𝜓7(𝜏) +

+
𝜇1𝑝(�̇�7)

𝑎0
𝑠𝑔𝑛(�̇�7)] + (

1

2
+ 𝜆𝑠𝑝) 𝑔 [

1

𝑅2𝑝

1

𝜔𝑑
2 𝜓6(𝜏) +

𝜇2𝑝(�̇�6)

𝑎0
𝑠𝑔𝑛(�̇�6)] = −𝜆𝑠𝑝ℓ(𝜏)  

𝜆𝑠𝑎�̈�8(𝜏) −
𝑔

2
[

1

𝑅1𝑎

1

𝜔𝑑
2

(∑ 𝜓𝑝𝑖(𝜏) +5
𝑖=1 𝜓6(𝜏) + 𝜓7(𝜏) +

−𝜓8(𝜏)) + (
𝜇1𝑎(�̇�9)

𝑎0
) (𝑠𝑔𝑛 (∑ �̇�𝑝𝑖(𝜏)5

𝑖=1 + �̇�6(𝜏) + �̇�7(𝜏) − �̇�8(𝜏)))] +  

+ (
1

2
+ 𝜆𝑠𝑎) 𝑔 [

1

𝑅2𝑎

1

𝜔𝑑
2 𝜓8(𝜏) +

𝜇2𝑎(�̇�8)

𝑎0
𝑠𝑔𝑛(�̇�8)] = −𝜆𝑠𝑎ℓ(𝜏) 

𝜆𝑝5[�̈�𝑝5(𝜏) + �̈�𝑝4(𝜏) + �̈�𝑝3(𝜏) + �̈�𝑝2(𝜏) + �̈�𝑝1(𝜏)] − 2𝜉𝑑�̇�𝑑(𝜏) + 2𝜉𝑝5𝜆𝑝5
𝜔𝑝5

𝜔𝑑
�̇�𝑝5(𝜏) +

+
𝜆𝑝5𝜔𝑝5

2

𝜔𝑑
2 𝜓𝑝5(𝜏) − (

1

2
+ 𝜆𝑠𝑝) 𝑔 [

1

𝑅2𝑝

1

𝜔𝑑
2

𝜓6(𝜏) +
𝜇2𝑝(�̇�6)

𝑎0
𝑠𝑔𝑛(�̇�6)] = −𝜆𝑝5ℓ(𝜏)  

𝜆𝑝4[�̈�𝑝4(𝜏) + �̈�𝑝3(𝜏) + �̈�𝑝2(𝜏) + �̈�𝑝1(𝜏)] − 2𝜉𝑝5𝜆𝑝5
𝜔𝑝5

𝜔𝑑
�̇�𝑝5(𝜏) + 2𝜉𝑝4𝜆𝑝4

𝜔𝑝4

𝜔𝑑
�̇�𝑝4(𝜏) +

−𝜆𝑝5
𝜔𝑝5

2

𝜔𝑑
2 𝜓𝑝5(𝜏) + +𝜆𝑝4

𝜔𝑝4
2

𝜔𝑑
2 𝜓𝑝4(𝜏) = −𝜆𝑝4ℓ(𝜏)  

 𝜆𝑝3[�̈�𝑝3(𝜏) + �̈�𝑝2(𝜏) + �̈�𝑝1(𝜏)] − 2𝜉𝑝4𝜆𝑝4
𝜔𝑝4

𝜔𝑑
�̇�𝑝4(𝜏) + 2𝜉𝑝3𝜆𝑝3

𝜔𝑝3

𝜔𝑑
�̇�𝑝3(𝜏) +

−𝜆𝑝4
𝜔𝑝4

2

𝜔𝑑
2 𝜓𝑝4(𝜏) + 𝜆𝑝3

𝜔𝑝3
2

𝜔𝑑
2 𝜓𝑝3(𝜏) = −𝜆𝑝3ℓ(𝜏) 

𝜆𝑝2[�̈�𝑝2(𝜏) + �̈�𝑝1(𝜏)] − 2𝜉𝑝3𝜆𝑝3

𝜔𝑝3

𝜔𝑑
�̇�𝑝3(𝜏) + 2𝜉𝑝2𝜆𝑝2

𝜔𝑝2

𝜔𝑑
�̇�𝑝2(𝜏) − 𝜆𝑝3

𝜔𝑝3
2

𝜔𝑑
2 𝜓𝑝3(𝜏) + 

+𝜆𝑝2

𝜔𝑝2
2

𝜔𝑑
2 𝜓𝑝2(𝜏) = −𝜆𝑝2ℓ(𝜏) 

𝜆𝑝1�̈�𝑝1(𝜏) − 2𝜉𝑝2𝜆𝑝2
𝜔𝑝2

𝜔𝑑
�̇�𝑝2(𝜏) + 2𝜉𝑝1𝜆𝑝1

𝜔𝑝1

𝜔𝑑
�̇�𝑝1(𝜏) − 𝜆𝑝2

𝜔𝑝2
2

𝜔𝑑
2 𝜓𝑝2(𝜏) + 𝜆𝑝1

𝜔𝑝1
2

𝜔𝑑
2 𝜓𝑝1(𝜏) =

−𝜆𝑝1ℓ(𝜏)          (5) 

with the following non-dimensional parameters: 

𝛱𝜔𝑖 =
𝜔𝑝𝑖

𝜔𝑑
, 𝛱𝜆𝑖 = 𝜆𝑝𝑖 =

𝑚𝑝𝑖

𝑚𝑑
, 𝛱𝜆𝑠𝑎 = 𝜆𝑠𝑎 , 

(6) 
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𝛱𝜆𝑠𝑝 = 𝜆𝑠𝑝, 𝛱𝜇1𝑎(�̇�9) =
𝜇1𝑎(�̇�9)𝑔

𝑎0
, 𝛱𝜇1𝑝(�̇�7) =

𝜇1𝑝(�̇�7)𝑔

𝑎0
, 

𝛱𝜇2𝑎(�̇�8) =
𝜇2𝑎(�̇�8)𝑔

𝑎0
, 𝛱𝜇2𝑝(�̇�6) =

𝜇2𝑝(�̇�6)𝑔

𝑎0
, 𝛱𝜉𝑝𝑖

= 𝜉𝑝𝑖
 

In the end, the maximum response in terms of non-dimensional parameters is evaluated as: 

𝛹𝑢𝑑
=

𝑢𝑑,𝑚𝑎𝑥∙𝜔𝑑
2

𝑎0
, 𝛹𝑢𝑝

=
𝑢𝑝,𝑚𝑎𝑥∙𝜔𝑑

2

𝑎0
=

(∑ 𝑥𝑖
5
𝑖=1 )

𝑚𝑎𝑥
∙𝜔𝑑

2

𝑎0
, 𝛹𝑥𝑑

=
𝑥𝑑,𝑚𝑎𝑥∙𝜔𝑑

2

𝑎0
=

(𝑥6+𝑥7)𝑚𝑎𝑥∙𝜔𝑑
2

𝑎0
 (7) 

3 PARAMETRIC ANALYSIS OF THE STRUCTURAL SEISMIC RE-

SPONSE 

In the following, the outcomes of the performed parametric analysis for the bridge isolated with 

DCFP bearings are provided in terms of non-dimensional parameters. 

3.1 Selection of the seismic inputs 

Following the performance-based earthquake engineering (PBEE) framework [20], the uncer-

tainties related to the seismic input intensity are separated from the ones related to the characteris-

tics of the record (i.e., record-to-record variability) by introducing an intensity measure (IM). For 

the specific case, the IM corresponds to the seismic intensity scale factor a0. In this specific appli-

cation also, to reach efficiency, sufficiency and hazard compatibility criteria [21], the spectral 

pseudo-acceleration, SA(Td) function of the isolated period of the system (i.e., Td=2π/ωd), is adopted 

as intensity measure IM. This implies assuming a0 = SA(Td). As stayed above, the record-to-record 

variability is described through a set of 30 ground motion records as reported in [19]- [22].  

3.2 Probabilistic analysis of the seismic response  

In the present investigation, the maximum structural response variables considered are the fol-

lowing: the maximum deck response 𝑢𝑑,𝑚𝑎𝑥 , which correspondes to the maximum isolator global 

response on the abutment; the maximum displacement at the top of the pier 𝑢𝑝,𝑚𝑎𝑥  relative to the 

ground. 

By solving the (5), these responses can be evaluated as a function of the selected set of records, 

in non-dimensional form. According to the PBEE method [23], the non-dimensional response pa-

rameters may be assumed lognormally distributed. The statistical parameters for lognormal distri-

bution can be derived from the generic response parameter D (i.e., the maximum values of 𝜓𝑢𝑑
, 

𝜓𝑥𝑝
and 𝜓𝑢𝑝

expressed in (7)) by estimating the mean value GM(D) and the coefficient of variation 

β(D) of the observed samples calculated as in [19]. 

Finally, being valid the lognormality assumption, the k-th percentile of the generic response 

parameter D can be derived as follows: 

 𝑑𝑘 = 𝐺𝑀(𝐷) 𝑒𝑥𝑝[ 𝑓(𝑘)𝛽(𝐷)] (8) 

where f(k) is equal to f(50)=0 and f(84)=1 for the 50-th and 84-percentiles, respectively [24].  

3.3 Results of the parametric analysis 

The parametric analysis reported herein evaluates how the DCFP devices' properties, as well as 

the bridge geometry, influence the overall seismic performance of the structures or infrastrucutres, 

subjected to seismic loading. In particular: the non-dimensional parameters for the damping factor 

𝛱𝜉𝑑
= 𝜉𝑑and 𝛱𝜉𝑝

= 𝜉𝑝 are assumed equal to 0% and 5% respectively; the RC pier period Tp is 
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constant and equal to 0.2s [12]; the isolated bridge period Td is parametrically investigated as fol-

lows: 2s, 2.5s, 3s, 3.5s, 4s; the five pier lumped masses Пλ=λp are equal to 0.1, 0.15 and 0.2 [12]; 

the two DCFP isolators on the abutment and on the pier have identical properties (i.e., 𝛱∗
𝜇1𝑎

=

𝛱∗
𝜇1𝑝

= 𝛱∗
𝜇1

 and 𝛱𝜆𝑠𝑎
= 𝛱𝜆𝑠𝑝

= 𝛱𝜆𝑠. The DCFP bearing main properties are the following: 

R1/R2=2, μ1,max/μ2,max=2, μj,max/μj,min=3, with (j=1,2).  

For the parameter 𝛱∗
𝜇1

 , 80 values are considered in the range between 0 (no friction) and 2 

(very high friction). Following the non-dimensional parametric approach, a suite of 1200 different 

configurations is considered, by solving the equation of motion in (5) for the 30 different ground 

motions. To do so, the integration algorithm Bogacki-Shampine in Matlab-Simulink [25] has been 

used. In the following (Fig. 2,3), the statical parameters in terms of GM and of the non-dimen-

sional maximum responses are shown, as a function of the system properties. In each figure, three 

different surface plots are present, each of them corresponding to a value of 𝛱𝜆. Fig. 2 illustrates 

the maximum normalized displacement of the pier top with respect to the ground (i.e., 𝜓𝑢𝑝
). Re-

garding the mean Fig. 2 (left), for very low 𝛱∗
𝜇1

values, 𝐺𝑀(𝜓𝑢𝑝
)  decreases by increasing 𝛱∗

𝜇1
, 

and sligthly increases for high 𝛱∗
𝜇1

 values. This suggests that an optimal value for the 𝛱∗
𝜇1

 param-

eter can be achieved by minimizingthe pier top maximum displacement. This optimal value varies 

in the range 0 and 0.5 as function of the values assumed by the isolated deck period 𝑇𝑑 and the pier 

lumped masses factor 𝛱𝜆. Moreover the mean value of 𝜓𝑢𝑝
decreases significantly with increasing 

𝛱𝜆. Regarding the dispersion Fig. 2 (right), the maximum value of 𝛽(𝜓𝑢𝑝
) is in the same range of 

𝛱∗
𝜇1

that gives the minimization of the mean value 𝐺𝑀(𝜓𝑢𝑝
). In addition, 𝛽(𝜓𝑢𝑝

) increases with 

larger mass ratios 𝛱𝜆.  

 

 


  

 


 
Fig. 2. Pier top normalized displacement 𝜓𝑢𝑝

vs.𝛱∗
𝜇1

 and Td for Tp =0.05s and for Пλ 

=0.1,0.15,0.2 left) mean value; right) dispersion.  

The optimal values for the dimensionless friction parameter 𝛱∗
𝜇,𝑜𝑝𝑡

 can be used for multivariate 

non-linear regression analysis. This allows providing an optimal value for any combination of the 

main dynamic characteristics of an isolated bridge. As a matter of fact this expression may be used 

in both design or retrofit of an existing bridge, and its reliability is given by the R2 coefficient as 

reported in Table 1 along with the overall results of the regression analyses. A quadratic regression 

law has been calculated trough an ad-hoc Matlab routine for the different percentiles and the di-

mensionless pier displacement as follows: 

𝛱𝜇,𝑜𝑝𝑡𝑖𝑚𝑢𝑚
∗ (𝜓𝑢𝑝

(50𝑡ℎ, 84𝑡ℎ) = 𝑐1 + 𝑐2
𝑇𝑝

𝑇𝑑
+ 𝑐3𝑇𝑝

2 + 𝑐4
𝑇𝑝

𝛱𝜆
+ 𝑐5

𝑇𝑝
3

𝑇𝑑
+ 𝑐6

𝑇𝑝

𝑇𝑑𝛱𝜆
+ 𝑐7

𝑇𝑝
3

𝛱𝜆
+

+𝑐8 (
𝑇𝑝

𝑇𝑑
)

2
+ 𝑐9𝑇𝑝

4 + 𝑐10 (
𝑇𝑝

𝛱𝜆
)

2
  

(9) 
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𝜓𝑢𝑝
(50𝑡ℎ, 84𝑡ℎ) = 𝑐1 + 𝑐2

𝑇𝑝

𝑇𝑑
+ 𝑐3𝑇𝑝

2 + 𝑐4

𝑇𝑝

𝛱𝜆
+ 𝑐5

𝑇𝑝
3

𝑇𝑑
+ 𝑐6

𝑇𝑝

𝑇𝑑𝛱𝜆
+ 𝑐7

𝑇𝑝
3

𝛱𝜆
+ 𝑐8 (

𝑇𝑝

𝑇𝑑
)

2

  

+ 𝑐9𝑇𝑝
4 + 𝑐10 (

𝑇𝑝

𝛱𝜆
)

2

 

 

Table 1. Regression statistics for the friction and pier’s top displacement 

 Π*
μ,opt

(50th)   ψ
up

(50th)   Π*
μ,opt

(84th)   𝜓𝑢𝑝
(84𝑡ℎ) 

R2 0.8300803 0.995616 0.667019 0.986492 

c1 0.3553902 0.002046 0.412809 0.007069 

c2 -7.1923149 -0.249568 2.428517 -0.833586 

c3 34.315356 1.22837 16.0888 3.490969 

c4 -0.2680317 -0.00474 -0.299282 -0.011717 

c5 -43.21174 -14.67963 1091.082 -48.45321 

c6 5.8143672 0.265643 -7.451915 0.332688 

c7 -7.2993286 -0.283925 7.95924 -0.846431 

c8 -19.247373 5.065239 -221.9676 16.29055 

c9 -269.04039 13.08339 -1509.022 46.44189 

c10 -0.0070535 0.001179 0.185319 0.005984 

 

Fig. 3 shows the statistics for the normalized maximum deck displacement ψ
ud

, which also corre-

sponds to the maximum global response of the bearing placed on the abutment. The mean value 

Fig. 3 (left) 𝐺𝑀(𝜓𝑢𝑑
) decreases significantly as Π*

μ
1
 increases. In addition, the values of GM(ψ

ud
)  

slightly increase for larger values of Πλ. The values of the dispersion β(ψ
ud

) , represented in Fig. 

3 (right), are very low for low Π*
μ1

 values due to the high efficiency of the IM, and attain their peak 

for high values of Π*
μ1

.  

 

 


  

 


 
Fig. 3 Normalized deck displacement ψ

ud
vs. Π*

μ1
and 𝑇𝑑 for Tp = 0.05s and for Πλ =

0.10,0.15,0.2: left) mean value; right) dispersion.  
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4 CONCLUSIONS 

This work studies the seismic performance of multi-span continuous deck bridges isolated with 

DCFP devices by adopting a simplified 8dof system. A wide range of isolator and bridge properties 

is investigated through non-dimensional parametric analysis, recording both the deck and pier max-

imum response. The uncertainty in the seismic input is considered by solving the equations of mo-

tion for a set of 30 different ground motions. The outcomes of the dynamic analyses have been then 

statistically treated by computing the geometric mean and coefficient of variation. This has allowed 

concluding that: regarding the pier performance, an optimal value for the sliding friction coefficient 

can be obtained by minimizing the pier maximum response, depending on the bridge and isolator 

properties; concerning the deck performance, the response decreases significantly as the sliding 

friction coefficient is larger. 
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