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ABSTRACT 
The scope of the present study is focused on the evaluation of the seismic response of bridges iso-
lated by single concave sliding pendulum isolators (FPS) for the different structural properties 
when the presence of the rigid abutment is considered or neglected (i.e., isolated viaducts). In this 
way, they have been defined two specific multi-degree-of-freedom (mdof) models to simulate the 
elastic behavior of the reinforced concrete pier in combination to the infinitely rigid presence of 
the deck and to the presence of the rigid abutment if considered. Both the numerical models also 
account for the non-linear velocity-dependent behavior of the FPS bearings. Considering the alea-
tory uncertainty in the seismic input by means of several natural records with different character-
istics, a parametric analysis is developed for several structural properties. The relevant results ex-
pressed as the statistics in non-dimensional form with respect to the seismic intensity have permit-
ted to study the differences between the two numerical models in relation to the effectiveness of 
the seismic isolation.  

SOMMARIO 
Lo scopo del presente studio è focalizzato sulla valutazione della risposta sismica di ponti isolati 
da con dispositivi a pendolo scorrevole (FPS) per diverse proprietà strutturali considerando o tra-
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scurando la presenza rigida della spalla. In questo modo sono stati definiti due specifici modelli a 
più gradi di libertà per simulare il comportamento elastico della pila in combinazione alla presen-
za infinitamente rigida dell'impalcato e alla presenza rigida della spalla se considerata. Entrambi i 
modelli numerici tengono conto anche del comportamento non lineare dipendente dalla velocità 
dei dispositivi FPS. Considerando l'incertezza aleatoria nell'input sismico per mezzo di più regi-
strazioni accelerometriche naturali con caratteristiche differenti, viene sviluppata un'analisi para-
metrica al variare delle proprietà strutturali. I risultati rilevanti espressi come statistiche in forma 
adimensionale rispetto all'intensità sismica hanno permesso di studiare le differenze tra i due mo-
delli numerici in relazione all'efficacia dell'isolamento sismico. 

1 INTRODUCTION 
The goal of seismic isolation of bridges is to reduce the forces transmitted from the deck to the 
substructure, i.e., the piers, by increasing the period of the isolation system. During the past years, 
both the elastomeric and frictional isolators have demonstrated their effectiveness in enhancing 
seismic performance of structures and infrastructures [1]-[3]. In this context, an isolated three-
span continuous deck bridge, equipped with elastomeric bearings, is studied in [4], with the goal 
to evaluate the bearings peak displacement placed at abutment locations. On the other hand, 
among the widely adopted isolators, the friction pendulum system (FPS) bearings have the ad-
vantage of making the properties of the device independent from the mass deck, which is im-
portant in the design phase of the isolator [5]. In particular, the introduction of the optimal friction 
coefficient, able to minimize the seismic response of the pier, was first introduced by Jangid in 
[6]. In this respect, the optimal friction coefficient is studied in [7] by varying many properties of 
the structure and the seismic input.  
The goal of this work is to evaluate the pier-abutment-deck interaction when bridges are equipped 
with single concave friction pendulum isolators (FPS).  In particular, two six-degree-of-freedom 
(dofs) models are compared: one representative of a single column bent viaduct (i.e., neglecting 
the presence of the rigid abutment) and the other for the case of multi-span continuous deck 
bridge (i.e., including the presence of the abutment).  More precisely, for both cases, five dofs are 
adopted for the lumped masses of the elastic pier and one additional dof representative of the infi-
nitely rigid deck. The equations of motion under a set of seismic inputs are solved for both the 
models, by performing a non-dimensional analysis. The FPS behaviour is represented by a wide-
spread model that includes the dependency of the friction coefficient from the velocity. Many 
bridge properties are varied so as to perform a parametric analysis. Then, after having obtained 
the peak non-dimensional response at the pier level, the optimal sliding friction coefficient, able 
at minimizing this response, is investigated.  

2 NON DIMENSIONAL ANALYSIS AND PROBLEM PARAMETERS 
To model the seismic response of bridges, both including or neglecting the presence of the rigid 
abutment, a six-degree-of-freedom (dofs) model is adopted, where 5 dofs are used for the lumped 
masses of the reinforced concrete (RC) elastic pier, as suggested in [8], and 1 additional dof is for 
the infinitely rigid RC deck.  
Focusing on the case of multi-span continuous deck bridge, where the rigid RC abutment is mod-
elled (Fig. 1), subjected to a seismic input along the longitudinal direction, the equation of motion 
are: 
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where ud is the deck displacement with respect to the pier top, upi is the displacement of the ith 
lumped mass of the pier with respect to the lower one, md is the mass of the deck, mpi is the mass 
of the ith lumped mass of the pier, kpi is the corresponding stiffness, cd and cpi are, respectively, 
the viscous damping coefficient for the device and for the pier masses, Z(t) indicate the sign func-
tion of the velocity, with t the instant of time and the dots indicate differentiation. The resisting 
forces of the FPS bearings located on top of the abutment and on the pier are, respectively, Fa(t) 
and  Fp(t), expressed as the sum of an elastic component and a viscous component [9]: 
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where the stiffness of the deck is equal to / /d dk W R m g R= = , half for the bearing on the 
abutment and half for the pier, the radii of curvature of the FPS bearings are Ra and Rp, placed, 
respectively, on the abutment and on the pier and assumed equal, g is the gravity constant, µ  is 
the sliding friction coefficient of the bearings. As anticipated, the fundamental period of the deck 
only depends on the geometrical properties of the isolator, since it is expressed as 

2 / 2 / gd d dT m k Rπ π= =  [9]. It noteworthy that the two expressions in (2) differ only in 
terms of displacements, since Fa(t) depends on the relative displacement of the deck with respect 
to the ground while Fp(t) is function of the deck displacement with respect to the pier top. Regard-
ing the sliding friction coefficient, its dependency on the velocity is such that [10]: 
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( ) ( ) ( )max max min expd du f f f uµ α= − − ⋅ −   (3) 
where maxf  and minf  are the sliding friction parameters at maximum and zero velocity,α is a pa-
rameter that controls the transition from low to large velocities. In this work, it is assumed α  
equal to 30 and max min3f f= .  
The equation of motions expressed in (1) are then elaborated so as to obtain their nondimensional 
form, according to the Buckingham’s Π-theorem [11]. In particular, a time scale is introduced and 
assumed equal to 1 / dω , with k / md d dω = indicating the circular frequency of the isolation sys-
tem. Thus, passing from the time t  to dtτ ω= , the ground motion input of equation (1) becomes 

0 0( ) ( ) ( )gu t a l t a τ= =  , where ( )l t is a nondimensional function of the seismic input time-history 

over time t , while ( )τ  contains the same information in the new time τ . In addition, a length 
scale is introduced equal to 2

0 / da ω  , where 0a is an intensity measure for the seismic input. In the 
end, dividing the equations in (1) for the deck mass dm and introducing the time and length 
scales, the nondimensional equations become: 
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where 2
0d d du aψ ω=  and 2

0pi pi du aψ ω= are the nondimensional displacements, d d dk mω =  

and pi pi pik mω = are the circular vibration frequencies, 2d d d dc mξ ω=  and 2pi pi pi pic mξ ω=  

are the damping factors (respectively for the deck and for the i-th lamped masses of the pier) and 
p pi pi dm mλ λ= = is the mass ratio of the i-th lumped mass (all the lumped masses are assumed 

equal). Hence, the nondimensional parameters Π of the problem are: 
( )

0

, , , , ,
p g d p

p dd
p d pi

d g

g
aω ω λ ξ ξ µ

ω µ ψω λ ξ ξ
ω ω

Π = Π = Π = Π = Π = Π =


 (5) 

In the end, to discard the dependency of the nondimensional parameter µΠ  from the velocity, its 

value is substituted by *
max 0f g aµΠ = . Regarding the equations of motion for the case of a sin-

gle-column bent viaduct (Fig. 2), the nondimensional equation of motion are equal to the ones in 
(1) and (4), without the term Fa(t).  
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Fig. 2. Six dof model (neglecting the 
presence of the abutment) 

 
Regarding the main properties of the problem, the following assumptions are valid both for the 
case of considering or neglecting the presence of the pier-deck-abutment interaction. First of all, 
concerning the seismic input, a set of 30 seismic ground motions is considered, selected from 19 
different earthquakes [12]-[14]. The magnitude varies in the range 6.3 to 7.5, the source-to-site 
distance goes from 13 km to 98 km and the peak ground acceleration is in the range 0.13 - 0.82 g. 
The intensity measure (IM), as also previously indicated as the seismic intensity 0a , is herein 
chosen as the spectral pseudo-acceleration ( ),A d dS T ξ . Assuming the damping ratio dξ equal to 
zero [15], the spectral pseudo-acceleration becomes only function of the deck fundamental period, 
meaning that ( )0 ,A d da S T ξ= . Regarding the structural properties, the damping ratios are set 

equal to 0%
d dξ ξΠ = =  and 5%

p pξ ξΠ = = , the isolation period varies from 0.10s to 0.20s, 

the deck period is in the range 2s-4s, the mass ratio assumes the value 0.1, 0.15, 0.2 and, finally, 
the normalized friction coefficient is in between 0 and 2.  
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The equation of motions expressed in (4) are solved for each of the two models by varying the 
previously mentioned parameters and by considering each of the 30 ground motions, using the 
Runge-Kutta-Fehlberg integration algorithm available in Matlab-Simulink [16]. For each simula-
tion, the peak normalised response in terms of pier top displacement is numerically calculated and 
expressed as: 

,

5
2 2

max 0 0
1 max

p iu p d p d
i

u a u aψ ω ω
=

 
= =  

 
∑  (6) 

Then, the response parameters are probabilistically treated and assumed as lognormally distribut-

ed [15],[17], with geometric mean ( ) 1 ...
p p p

Nu u u NGM ψ ψ ψ= ⋅ ⋅ , where 
pu jψ  is the j-th reali-

zation of the response parameter and j=1,…,N with N=30 the total number of seismic inputs.  

4 SEISMIC RESPONSE AND OPTIMAL FRICTION COEFFICIENT 
In this section, the response of the pier and the optimal friction coefficient results are illustrated. 
Fig. 3 shows, for both the structural systems, the mean value of the maximum normalized pier 
displacement ( )puGM ψ  as function of dT  and *

µΠ  , for fixed values of pT  and λ . The mean 

value decreases for larger values of dT  and of λ . On the opposite, the response is lower for low-
er values of pier period.  
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Fig. 3. 50th percentile of the maximum normalized pier displacement as function of  Π∗µ , Td and 
fixed values of Tp: (a)-(c) considering the abutment; (b)-(d) neglecting the abutment 
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Fig. 4. Optimal friction coefficient as function of Tp and λ and for fixed values of Td: (a)-(c) con-
sidering the abutment; (b)-(d) neglecting the abutment 

In addition, it is possible to observe the existence of an optimal value where the response is min-
imized.  In fig. 4 it is illustrated the optimum of *

µΠ , which is not only function of the parameters 

involved in the problem (i.e., dT , pT  , λ ), but it also depends on the structural system (i.e., if 

considering or not the presence of the abutment).  In particular, the sagging zones of the response 
as function of *

µΠ  are more pronounced when the interaction with the abutment is not considered, 
since the bearing on top of the abutment slides faster than the device placed on the pier. Further-
more, when all the structural parameters *

µΠ , pT , dT  are considered with their maximum values, 

larger values of the optimum friction coefficient are required to increase the energy dissipation. 

5 CONCLUSIONS 
This work analyses the seismic performance of bridges isolated with single concave friction pen-
dulum bearings, focusing on the pier-abutment-deck interaction. In particular, two six-degree-of-
freedom structural systems are modelled: one including the presence of the abutment (i.e., multi-
span continuous deck bridge) and another neglecting its presence (i.e., single-column bent via-
duct). Different values for the main problem parameters are considered within a parametric analy-
sis and the uncertainty in the seismic input is included by considering a set of 30 natural ground 
motions. The equations of motions are numerically solved in a non-dimensional form so as to 
evaluate the maximum normalized response of the pier. This response tends to first decrease and 
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then increase as function of the normalized friction coefficient of the bearing. When the presence 
of the abutment is considered (i.e., multi-span continuous deck bridge), this minimum value is 
less pronounced, since the bearing on top of the abutment tends to slide faster than the one on the 
pier. The existence of a minimum value for the pier response has suggested to evaluate an optimal 
value for the normalized friction coefficient, as function of the other parameters involved. In the 
case multi-span continuous deck bridge, higher optimal values are observed. 
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