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Abstract 22 

The journey of a prosthetic user is characterized by the opportunities and the limitations of a 23 
device that should enable activities of daily living (ADL). In particular, experiencing a bionic 24 
hand as a functional (and, advantageously, embodied) limb constitutes the premise for 25 
promoting the practice in using the device, mitigating the risk of its abandonment. In order to 26 
achieve such a result, different aspects need to be considered for making the artificial limb an 27 
effective solution to accomplish activities of daily living. According to such a perspective, this 28 
review aims at presenting the current issues and at envisioning the upcoming breakthroughs in 29 
upper limb prosthetic devices. We first define the sources of input and feedback involved in the 30 
system control (at user-level and device-level), alongside the related algorithms used in signal 31 
analysis. Moreover, the paper focuses on the user-centered design challenges and strategies that 32 
guide the implementation of novel solutions in this area in terms of technology acceptance, 33 
embodiment, and, in general, human-machine integration based on co-adaptive processes. We 34 
here provide the readers (belonging to the target communities of researchers, designers, 35 
developers, clinicians, industrial stakeholders, and end-users) with an overview of the state-of-36 
the-art and the potential innovations in bionic hands features, hopefully promoting 37 
interdisciplinary efforts for solving current issues of ULPs. The integration of different 38 
perspectives should be the premise to a transdisciplinary intertwining leading to a truly holistic 39 
comprehension and improvement of the bionic hands design. Overall, this paper aims to move 40 
the boundaries in prosthetic innovation beyond the development of a tool and towards the 41 
engineering of human-centered artificial limbs. 42 

Keywords: bionics, biosignals, closed-loop, embodiment, feedback, prosthetic hand, user experience 43 

 44 
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1. Introduction 45 

Over the past twenty years, poly-articulated upper limb 46 
prostheses (ULPs) have undertaken several technological 47 
and scientific developments to satisfy the different needs 48 
of the upper limb amputee community. Nonetheless, in a 49 
recent study, Salminger et al. (2020) observed overall 50 
abandonment rates of ULPs of about 44% in a population 51 
of mainly (92%) myoelectric prostheses users. They also 52 
highlighted how the past decade of developments still 53 
presents technological limiting factors that did not permit 54 
the restoration of the full functionalities of a missing limb, 55 
hence leading to a substantial increased rate of prosthesis 56 
abandonment. The main cause of such ineffectiveness 57 
mainly resides in a non-sufficiently patient-tailored design 58 
process (Salminger et al., 2020).  59 

According to the American Orthotic & Prosthetic 60 
Association (AOPA, 2016), partial amputations, i.e. finger 61 
amputations, represent the majority of upper-limb losses 62 
(75.6%), while trans-radial and trans-humeral amputations 63 
constitute a percentage oscillating between 5 and 6%. 64 
Despite this, the level of impairment caused by trans-radial 65 
and trans-humeral amputations is greater than for partial 66 
amputations.  67 

Without tracing back all the evolution of upper limb 68 
prostheses – the reader might find useful the reviews of 69 
Trent et al. (2019) and Ribeiro et al. (2019)). Trent et al. 70 
(2019) work focuses on a classification of the upper-limb 71 
prostheses architectures based on the type of adopted 72 
actuation, e.g., passive, body-powered or active. On the 73 
other hand, Ribeiro et al. (2019)’s research investigates the 74 

most relevant control signals used for the man-machine 75 
interface. 76 

This work focuses on trans-radial and trans-humeral 77 
devices, excluding partial amputations, and it details the 78 
latest and most technologically advanced solutions, namely 79 
poly-articulated myoelectric prostheses. Moreover, this 80 
review aims at presenting and analyzing the key elements 81 
of state-of-the-art upper limb prostheses in a user-centered 82 
and human-in-the-loop fashion and to provide guidelines 83 
for the development of such prostheses and the relative 84 
control algorithms, to possibly achieve solutions capable of 85 
promoting the systems use and overcoming the elevated 86 
abandonment rates observed so far. Overall, the reader 87 
could take advantage of this review as an analytical 88 
collection of solutions constituting a premise to provide the 89 
user with a seamless control experience. 90 

2. Upper limb Prosthetics classification: a twofold 91 

perspective 92 

An ULP system can be observed from two main points 93 
of views: its mechatronics, namely the combination of the 94 
mechanical and electronic components necessary for its 95 
operation, and the control strategies and algorithms 96 
implemented to orchestrate its functions. Research groups 97 
have therefore attempted to solve the prostheses 98 
abandonment problem by addressing different 99 
technological and scientific challenges, either focusing on 100 
mechatronic design, or on control strategies aimed at 101 
increasing the human-machine interaction and, in some 102 
cases, introducing feedback sources, as detailed in the next 103 
sections.  104 

 

Figure 1. Graphical representation of a ULP system and its elements. The user level (left panel) includes: input data sent from subject to the prosthesis 

(Input Signals), artificial sensory feedback information delivered from the prosthesis to the user (Sensory Feedback), and external sources of interaction 
(External Factors), such as actuation coming from the unimpaired limb or environmental/accidental sources of feedback such as vision and sound. The 

device-level (right panel) includes the control commands used to drive the prosthesis and the feedback information collected by the end-effector. The user-

device interface is characterized by a bidirectional exchange of information (overlap of the two panels). 
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ULP control can be divided into two synergistically 105 
interacting sub-systems: the user-level and the device-106 
level, as depicted in Figure 1. The user-level includes the 107 
patients and the most proximal device component 108 
interacting with the user (i.e., the socket), while the device-109 
level extends from the socket to the ULP device. These two 110 
sub-systems overlap at the socket level, which is involved 111 
in a bidirectional flow of information. On one hand, it 112 
receives inputs from the user (i.e. movement intentions) 113 
and translates them into movement commands for the 114 
device; on the other hand, it receives information (both 115 
from the device and the environment) and communicates it 116 
to the user through sensory feedback (Figure 1). 117 
Importantly, the socket itself severely limits the user 118 
comfort, and together with the prosthetic weight highly 119 
contributes to the prosthetic abandonment. 120 

 Even if the state-of-the-art in prosthetic research 121 
encompasses studies based on psychological processes too, 122 
commercial ULP systems have focused on restoring 123 
functional capabilities by capitalizing on the device-level 124 
only, therefore on mechatronic, and several solutions can 125 
be found on the market for trans-radial level of 126 
amputations. Commercially available systems merge basic 127 
functionalities and aesthetic requirements, targeting the 128 
clinical needs given by a certain kind of amputation, rather 129 
than focusing on each patient's specific needs.  130 

Commercial solutions range from tri-digital hands, e.g., 131 
VaryPlus Speed, SensorHand Speed by Ottobock 132 
(Ottobock, 2020c) and Motion Control (MC) Hand by 133 
Fillauer (Fillauer, 2021); through polyarticulated hand 134 
under-actuated, e.g., Michelangelo by Ottobock 135 
(Ottobock, 2020b); to fully actuated polyarticulated hand, 136 
e.g., BeBionic by Ottobock (Ottobock, 2020a), i-Limb by 137 
Ossur (Ossur, 2020b),Vincent Hand by Vincent Systems 138 
(Systems, 2020), TASKA hand by Taska Prosthetics 139 
(Taska, 2022), BrainRobotics Hand by BrainRobotics 140 
(BrainRobotics, 2022) and Ability Hand by Psyonic 141 
(Psyonic, 2022). 142 

In the last decades, many research groups have focused 143 
on the mechatronic development of ULP devices, 144 
entrusting the intelligence of the device to the embedded 145 
mechanics in a very thorough design, structuring the 146 
development of the concept of under-actuation, such as the 147 
Vanderbilt Multigrasp Hand (Bennett et al., 2014), the 148 
MIA Hand (Controzzi et al., 2016), the SoftHand Pro 149 
(Godfrey et al., 2018), the KIT Hand (Weiner et al., 2018), 150 
and the Hannes Hand (Laffranchi et al., 2020). 151 

On the other hand, there is a family of very dexterous 152 
devices, not yet market-ready, that mimic the complexity 153 
of the human hand, implementing a fully-actuated multi-154 
degrees of freedom mechatronics, e.g. the University of 155 
Bologna Hand (Meattini et al., 2019) or the Shadow Hand 156 
(Company, 2020).  157 

High level of amputations, as the trans-humeral ones, 158 
require prosthetic elbows, such as the Dynamic Arm 159 
(Ottobock, 2022a), the Dynamic Arm Plus (Ottobock, 160 
2022b), and the ErgoArm (Ottobock, 2022c) from 161 
Ottobock; the Espire Elbow  (Classic, Classic Plus, Pro 162 
and Hybrid,) from Steeper Inc. (Steeper, 2022); and the 163 
Fillauer Motion E2 Elbow (Fillauer, 2022a) and the Utah 164 
Arm 3 (Fillauer, 2022b) from Fillauer. In the research 165 
context, full robotic arms include the DLR hand system 166 
(Grebenstein et al., 2011), the APL modular prosthetic 167 
limb (Johannes et al., 2011), the LUKE Arm (Bionics, 168 
2022), the Rehabilitation Institute of Chicago arm 169 
(Lenzi et al., 2016), and Edinburgh Modular Arm 170 
System (Gow et al., 2001). 171 

However, this great variety of products does not match 172 
with the elevated abandonment rates, demonstrating the 173 
lack of satisfaction of the patients’ needs from a 174 
mechatronic perspective. In particular, structural and 175 
supporting part lack of adjustability of user size, allow 176 
limited kinematic and motion possibilities and more 177 
advanced systems present limited operational time (Harte 178 
et al., 2017). This leads to limited satisfaction and feeling 179 
of security. Moreover, these systems generally present poor 180 
personal and social acceptance because of limited 181 

 

Figure 2. Graphical representation of information flow of a possible ULP architecture. Input flow (top panel): from user (input signals i.e., from EMG 

sensors) to prosthesis (control commands i.e., through power train). Feedback flow (bottom panel): from prosthesis (end-effector feedback i.e., from tactile 

force sensors) to user (sensory feedback i.e., through vibrotactile motors). 
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anthropomorphism, high weight and presence of acoustic 182 
disturbances during use (Harte et al., 2017), This suggests 183 
that ULP development should not only focus on the device 184 
level, but improvements at the user level could play a key 185 
role for truly meeting the user requirements and 186 
consequently obtain device acceptance. Motivated by this, 187 
in this review, we analyse all the possible approaches that 188 
could potentially address the user needs in terms of device 189 
controllability, robustness and hence embodiment and user 190 
experience. To this end, it is fundamental not only to focus 191 
on the functionality restoration but also on the sensory 192 
information recovery, which are fundamental to effectively 193 
control the device. All the described approaches range from 194 
improvements in decoding user intentions, hence analysing 195 
all possible input sources and their related control 196 
strategies, to inclusion of additional sources of feedback 197 
capable to restore the sensory information. These 198 
approaches tackle the issues related to poor device control 199 
because of lack of intuitiveness and sensory feedback. 200 

Therefore, in this review we present current and 201 
emerging methods in ULP development, detailing various 202 
sources of input and feedback signals, as well as control 203 
strategies. We also highlight current challenges and open 204 
issues in the field, specifically focusing on the importance 205 
of user experience and involvement in the design and 206 

development process. This is fundamental to promote 207 
patient-tailored approaches leading to the development of 208 
truly personalized devices, which are currently lacking. We 209 
finally provide an overview of the most promising 210 
approaches that if followed, may one day provide upper 211 
limb amputees with a true substitute of their missing arm. 212 

3. Input and Feedback Signals for Prosthetic 213 

Control 214 

Prosthetic control is regulated by a flow of signals, as 215 
depicted in Figure 2. Input signal runs from the user to the 216 
device and they are often of biological or 217 
electrophysiological nature, in which case are called 218 
biosignals. Signals flowing in the opposite direction 219 
convey information from the device to the user and are 220 
therefore defined as sensory feedback signals. Moreover, 221 
some external factors convey to the user additional source 222 
of feedback (i.e., incidental feedback), such as visual or 223 
auditory information that can be used to estimate the 224 
prosthesis state (Wilke et al., 2019, Sensinger and Dosen, 225 
2020, Gonzalez et al., 2021). 226 

Input signals include all the sources of information that 227 
can be taken from the amputee and translated into motor 228 
commands for driving the prosthesis (e.g., 229 

 

Figure 3. Input sources for ULP. 
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electromyography - EMG), see section 3.1. Instead, 230 
sensory feedback information encompasses different 231 
prosthetic sensing solutions acquired either from the 232 
prosthetic device or from the environment, see section 3.2 233 
that can be translated into sensory stimuli for the amputee 234 
(e.g., vibrotactile stimulation, see section 3.3). All types of 235 
signals can be classified according to their level of 236 
invasiveness, with consequent advantages and drawbacks.  237 

3.1. Input Signals 238 

In recent years, many research activities have focused 239 
on the extraction of useful information from the biological 240 
signals in order to suitably control upper limb prostheses. 241 
Traditionally, the surface EMG (sEMG) is the most 242 
widespread signal for prosthesis control but its use still 243 
faces many drawbacks (Kyranou et al., 2018). In the 244 
following, we describe various methods to employ EMG as 245 
input signal for ULP control and we also explain how other 246 
input sources can be exploited to obtain more dexterous 247 
prosthetic behavior, overcoming the limitations of current 248 
ULP systems.  249 

Figure 3 collects input signals for ULP control that will 250 
be described in the following subsections, ranging from 251 
those used by commercial systems, up to those currently 252 
under investigation. 253 

3.1.1. Biosignals  254 
The term biosignal indicates every possible signal that 255 

can be detected and measured from biological beings, 256 
humans – in our case. Usually, the term is used for signals 257 
of electric nature (i.e., EMG), but actually every signal 258 
collected from the activity of different tissues or organs 259 
belonging to the human body, can be considered as a 260 
biosignal.  261 

We here adopt this latter definition to group input 262 
sources that are described next. Given its large use both in 263 
research and commercial ULP devices, electromyography 264 
deserves a dedicated subsection, while other biosignals are 265 
grouped together. We also dedicate a whole subsection to 266 
brain-derived signals, which are especially used in brain-267 
machine and brain-computer interfaces (BMIs, BCIs), but 268 
that are also showing potential use for ULP applications. 269 
Table I summarizes biosignals for ULP control that will be 270 
described in the following subsections. 271 

Table I: biosignals used as input sources in prosthetic applications. 272 

        
Measured 

Property 

Sensors’ 

placement 
PROs CONs 

Sensor 

Fusion 
Examples 

E
le

ct
ro

m
y

o
g

ra
p

h
y

  

(E
M

G
) S

u
rf

a
ce

 

E
M

G
 

Muscle Electric 

Potentials 

On the skin over 

targeted 

muscles 

2–32, up to 192 

sensors 

Non-invasive, 

long-term use, a 

large number of 

people 

Sweating, 

electrodes shift, 

Muscle fatigue, 

Electromagnetic 

noise 

NIRS, 

IMU, 

FMG, 

SMG, 

MMG 

(Merletti et al., 2010) 

up to 27 gestures 

In
v

a
si

v
e 

E
M

G
 Underneath the skin, 

on or inside targeted 

muscles 

4-8 sensors 

High signal/noise 

ratio, directly on 

the nerve, no shift 

with respect to the 

source 

Invasive, 

infections 

(Cipriani et al., 2014, 

Ortiz-Catalan et al., 

2020) 

F
o

rc
e-

 

m
y

o
g

ra
p

h
y
 

(F
M

G
) 

Change of 

muscle 

morphology 

measured on the 

skin surface 

Over targeted muscle, 

over related tendons 

8, up to 126 sensors 

Physiologic, small 

size, high 

signal/noise ratio, 

flexible 

Muscle fatigue, 

sensors shift, pre-

load force, small 

spatial resolution, 

crosstalk 

EMG 

(Xiao and Menon, 

2019) 

up to 8 gestures 

M
ec

h
a

n
o

-

m
y

o
g

ra
p

h
y
  

(M
M

G
) Muscle fiber 

oscillations using 

microphone or 

accelerometers 

Over targeted muscle 

6-20 sensors 

low cost, no pre-

amplification, no 

precise 

positioning, no 

skin impedance or 

sweat influence 

Ambient acoustic 

noise, 

Adjacent muscle 

crosstalk, 

Sensor 

displacement 

EMG, 

IMU 

(Wilson and 

Vaidyanathan, 2017, 

Guo et al., 2017a, 

Castillo et al., 2020) 

up to 5 gestures 

S
o

n
o

- 

m
y

o
g

ra
p

h
y
 

(S
M

G
) Change of 

muscle 

morphology 

Over targeted muscle, 

over related tendons 

transducers of 

different shapes  

Deep and 

superficial 

muscles, some 

models are cheap 

and energy-

efficient 

Probe shift, tissue 

impedance, no 

wireless, some 

models expensive 

and bulky 

EMG 
(Dhawan et al., 2019) 

up to 15 gestures 
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N
ea

r-

In
fr

a
re

d
 

S
p

ec
tr

o
sc

o
p

y
 

(N
IR

S
) 

Tissue 

oxygenation 

through 

the amount of 

scattered light 

Over targeted muscle 

2-4 sensors 

Deep and 

superficial 

muscles, high 

spatial resolution, 

no electronic 

interference 

Ambient light, 

Muscle fatigue, 

tissues heating 

EMG, 

IMU 

(Paleari et al., 2017) 

up to 9 gestures 

E
le

ct
ri

ca
l 

Im
p

ed
a

n
ce

 

T
o

m
o

g
ra

p
h

y
 

(E
IT

) 

Tissue 

impedance 

Over targeted muscle, 

over related tendons 

8, up to 64 sensors 

No need precise 

positioning 

Low time 

resolution, 

sweating, 

Electromagnetic 

noise, high 

consumption 

- 

(Zhang et al., 2016, Wu 

et al., 2018) 

up to 8 gestures 

C
a

p
a

ci
ta

n
ce

  

se
n

si
n

g
 

Tissue 

capacitance 

Over targeted muscle, 

over related tendons 

3 receiver sensors 

Non-invasive, low 

cost, deep and 

superficial muscles 

Sweating, 

Electromagnetic 

noise, 

displacement, 

ambient 

temperature 

- 

(Cheng et al., 2013, 

Truong et al., 2018) 

up to 2 gestures 

M
a

g
n

et
o

-

m
y

o
g

ra
p

h
y
 

Magnetic fields 

generated by 

muscle 

Over/inside targeted 

muscle 

7 sensors 

Not sensitive to 

sensor’s shift and 

sweat 

Magnetic 

interference, 

can be invasive, 

movement artifacts 

- 
(Zuo et al., 2020) 

concept 

P
er

ip
h

er
a

l 
N

eu
ra

l 

In
te

rf
a

ce
s 

(P
N

Is
) 

Electrical 

activity of the 

nerves 

Microelectrode arrays 

placed on different 

fascicles within the 

median and ulnar 

nerves 

Intuitive, direct 

maps of complex 

movements, high 

accuracy, robust  

Invasive, difficult 

to separate EMG 

and PNI 

components, 

recording channels 

really closed each 

other 

- 
(Nguyen et al., 2020) 

up to 15 DoFs 

In
tr

a
co

rt
ic

a
l 

n
eu

ra
l 

si
g

n
a

ls
 

Intracortical 

neural signals 

from the brain, 

action potentials 

of individual 

neuron 

16-192 high-density 

channels electrodes 

inserted into the 

motor cortex tissue 

Accurate and 

capable of 

collecting the most 

information-rich 

data, high spatial 

resolution 

Very invasive, 

influenced by 

tissue reactions 

- 

(Hochberg et al., 2006, 

Hochberg et al., 2012, 

Collinger et al., 2013, 

Wodlinger et al., 2014) 

7-10 DoFs 

E
le

ct
ro

co
rt

ic
o

g
ra

p
h

y
 

(E
C

o
G

) 

Electrical 

activity of 

brain’s surface 

32-128 high-density 

channels on 

sensorimotor regions 

Less attenuated 

than EEG, good 

spatial resolution 

and wide 

frequency content 

Surgical procedure 

and lack to 

measure single cell 

activity 

- 

(Wang et al., 2013, 

Fifer et al., 2013, 

Bleichner et al., 2016, 

Hotson et al., 2016) 

4 gesture recognition 

and wrist movements 

E
le

ct
ro

en
ce

p

h
a

lo
g

ra
p

h
y

 

(E
E

G
) Electrical 

activity of the 

brain 

6-32 channels 

headsets 

Not invasive, low 

cost, portable, 

stable, and very 

easy to use 

Signal attenuated 

by the dura, the 

skull, and the 

scalp, loss of 

important 

information 

- 

(McFarland et al., 

2010, Yang et al., 

2012, Edelman et al., 

2019, Fuentes-

Gonzalez et al., 2021) 

single DoF 
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S
p

ec
tr

o
sc

o
p

y
 (

fN
IR

S
) 

Activity-related 

brain 

oxygenation, 

near-infrared led, 

and a 

photodetector 

measure the 

amount of IR 

light absorbed by 

the hemoglobin 

in the brain 

10-200 channels of 

optodes 

Non-invasive, 

simultaneous 

detection 

information under 

the skin, low cost 

Few centimeters 

penetration of 

cortical tissue, not 

great accuracy, 

and system too 

cumbersome 

- 

(Syed et al., 2020) 

3 DoFs trans-humeral 

amputees 

273 

3.1.1.1. Electromyography 274 
While cosmetics, electronic components and 275 

computational efforts have undergone a significant 276 
improvement, the control strategies currently used in 277 
prosthetic applications have not changed since their first 278 
appearance in the 1960s (Schmidl, 1965). The EMG has 279 
been one of the major sources to control upper limb 280 
prostheses (Merletti and Farina, 2016). These signals carry 281 
information about neuromuscular activity, and they are 282 
used to retrieve human intention. EMG is indeed a 283 
technique for studying the activation of the skeletal 284 
muscles through the recording of electrical potentials 285 
produced by muscle contraction (Hudgins et al., 1993). The 286 
theory behind the sEMG electrodes is that they form a 287 
chemical equilibrium between the detecting surface of the 288 
electrode and the skin of the body through electrolytic 289 
conduction, so that the current can flow into the electrode. 290 

Multiple methods have been used to obtain the intended 291 
gesture from the processed EMG signals, all of which 292 
exploit the fact that the amputees can still generate different 293 
and repeatable muscular patterns related to each forearm 294 
movement with residual muscles of the stump. Low-295 
density EMG is commonly used in prosthetic application, 296 
both in research and commercial context. Noteworthy, 297 
EMG signals can also be collected with invasive methods. 298 
The sEMG can be thus classified according to the level of 299 

resolution and density of the sensors. In the following, we 300 
provide an overview of the different types of EMG-based 301 
biosignals. 302 

Surface EMG 303 
The sEMG can be classified according to the number of 304 

electrodes used (Figure 4). Low-density EMG generally 305 
refers to the use of a small (<10) number of EMG bipolar 306 
sensors, that can be either wet, i.e. contain an electrolytic 307 
substance that serves as interface between skin and 308 
electrodes, or dry (Jamal, 2012). Conversely, high-density 309 
EMG is typically composed by wet monopolar sensors 310 
spread on a planar patch, around 1cm apart, and with the 311 
ground reference generally placed on the wrist or on the 312 
elbow (Drost et al., 2006). Importantly, sEMG electrodes 313 
also differ in their electronic configuration, as they can be 314 
either preamplified or not (Zheng et al., 2021). Merletti and 315 
Muceli (2019) provided a guide with the best practice to 316 
acquire and manipulate EMG data according with the 317 
different aims, from signal analysis to motion prediction. 318 

Prosthetic control with low-density EMG is generally 319 
obtained by using two bipolar electrodes placed on 320 
antagonist muscles. This configuration allows the control 321 
of the prosthetic system in a robust and simple way 322 
(Hudgins et al., 1993). However, the detection of complex 323 
and simultaneous movements of the phantom limb can be 324 
improved by using an array of EMG electrodes placed on 325 
the superficial skin of the residual forearm (COAPT, 2017, 326 
Dellacasa Bellingegni et al., 2017, Ottobock, 2019, 327 
Marinelli et al., 2020), The use of sEMG in prosthetic 328 
applications has become the most widespread source of 329 
information about voluntary movement (Schmidl, 1965) 330 
because of the direct correlation between EMG activity and 331 
subjects’ intentions. 332 

Differently from the low-density, the high-density 333 
sEMG (HD-sEMG) is based on a higher number of 334 
electrodes placed on a small portion of the body. Recently, 335 
a growing number of researchers has focused on the use of 336 
these electrodes aiming to increase the amount of collected 337 
data, although at the cost of a greater computational 338 
burden. HD-sEMG sensors have been used to discriminate 339 
muscular patterns related to different gestures. Their 340 
signals can be handled in various ways to retrieve unique 341 

 

Figure 4. sEMG electrodes. A: bipolar dry sensors, Ottobock and 
IIT/INAIL (Marinelli et al., 2021) respectively. B: high-density wet 

sensors (OT Bioelettronica). 
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and repeatable information, as described in section 4. 342 
These sensors have to be positioned according to the 343 
distribution of the underlining muscle fibers and this 344 
configuration provides a low resolution map of the 345 
synergistic activation of the muscles during movement 346 
production (Winters, 1990, Sartori et al., 2018). For 347 
example, from contraction of the muscles under the 348 
acquisition grids, it is possible to extract bi-dimensional 349 
images, in which the EMG amplitude is mapped to a color 350 
scale. These maps can be thus handled by complex 351 
algorithms, as the ones used for objects detection in robotic 352 
navigation (Chen et al., 2020). The main limitation of the 353 
HD-sEMG, which currently bounds its application to a 354 
laboratory scenario, is the skin-electrode contact since it 355 
requires conductive gel to reduce the interface impedance. 356 
The wet area is mainly needed to reduce artifacts in the 357 
EMG signals since it is generally acquired in monopolar 358 
configuration. Another disadvantage of this technique 359 
consists in the fact that computation is time-consuming. 360 

Overall, the main drawback of sEMG-based approaches 361 
is constituted by the influence that skin impedance, sweat, 362 
and electrode shift have on the stability of the input signals 363 
(De Luca, 1997). Additionally, muscle crosstalk and the 364 
difficulty to reach deep muscles further limit the quality of 365 
the collected signal. In the context of ULP, the use of 366 
sEMG can be further complicated by the fact that the 367 
amputation strongly affects muscles strength and 368 
organization and therefore signal quality, as discussed in 369 
section 6.4. 370 

Invasive EMG and Surgical Procedures 371 
The invasive approach has been exploited to explore the 372 

activity related to the production of movement for many 373 
years (Adrian and Bronk, 1929) and it is still investigated 374 
by many groups. However, the main drawback of this 375 
approach is constituted by the surgery and by the 376 
technological barriers still faced by the available 377 
equipment. On the other hand, invasive 378 
electromyography (iEMG) allows to measure single 379 
motor unit action potentials, enabling a higher selectivity 380 
and a better accuracy of the input signal, overcoming the 381 
limitations imposed by sEMG. There are several examples 382 
of iEMG, which vary in the type of electrodes and level of 383 
invasiveness, as detailed hereafter. 384 

EMG can be invasively detected by inserting electrodes 385 
into the internal surface of muscles (Merletti and Farina, 386 
2009). This invasive technique exploits two different 387 
percutaneous electrodes: needles and fine wires (Jamal, 388 
2012, Rubin, 2019). The most used are needle electrodes. 389 
These electrodes are concentric, and their bare hollow 390 
needles contain an insulated fine wire into their cannula, 391 
which is exposed on the beveled tip, which is the active 392 
recording site. Wire electrodes are typically made of non-393 
oxidizing and stiff materials with insulation, they can be 394 

implanted more easily and are usually less painful than 395 
needle electrodes.  396 

Since both these sensors are percutaneous, i.e., passing 397 
through unbroken skin and leaving an open passage 398 
between the internal structures of the body and the external 399 
world, the risk of infection is quite probable. For this 400 
reason, and because of their intrinsic discomfort due to the 401 
percutaneous wire that can easily break, their usage is 402 
limited to laboratory research (Hargrove et al., 2007, 403 
Cloutier and Yang, 2013a). A detailed description of 404 
invasive electrodes both to record biological signals and to 405 
deliver electrical stimulation can be found in Raspopovic 406 
et al. (2021a). 407 

In the last decades, growing attention has been paid to 408 
the development of intramuscular electrodes that could 409 
be implanted under the skin of the subject to achieve the 410 
advantages of invasive sensors and simultaneously avoid 411 
the risks and inconvenience of percutaneous instruments. 412 
For example, Weir et al. (2008) developed an implantable 413 
myoelectric sensor (IMES), a system able to receive and 414 
process up to 32 implanted sensors with wireless telemetry. 415 
A transcutaneous magnetic link between the implanted 416 
electrodes and the external coil allows reverse telemetry, 417 
which transfer data from the sensors to the controller, 418 
commanding the control of the prosthesis, and forward 419 
telemetry to supply power and configuration settings to the 420 
electrodes. These sensors are designed for permanent long-421 
term implantation without any kind of servicing 422 
requirement and have been tested on animals. Four months 423 
after the implantation of IMESs in the legs of three cats, the 424 
sensors were still functioning (Weir et al., 2008). 425 
Intramuscular electrodes have been used in prosthetic 426 
application to decode 12 different hand gestures from 4 427 
healthy subjects (Cipriani et al., 2014). Moreover, it has 428 
been shown that the application of this invasive approach 429 
enhances the simultaneous control of multi-DoFs system 430 
(Smith et al., 2014). 431 

Recently, the group of Ortiz-Catalan showed an invasive 432 
procedure for ULP control. They positioned EMG 433 
electrodes under the skin of amputated subjects and sutured 434 
them directly on the external surface of the muscles (Ortiz-435 
Catalan et al., 2020). More precisely, sensors were sewn 436 
onto the epimysium of the two heads of the biceps’ muscles 437 
and the long and lateral heads of the triceps muscles. These 438 
invasive electrodes were used in combination with an 439 
osseointegrated prosthesis, i.e. a system obtained following 440 
a very invasive surgical procedure, which allows to anchor 441 
the prosthesis to the remaining limb’s bone (Ortiz-Catalan 442 
et al., 2020). In the context of ULP, osseointegration is 443 
offered for trans-humeral amputees, and the prosthesis is 444 
anchored to the humerus with two mechanical elements: 445 
the fixture, a screw made of titanium placed inside a hole 446 
made in the bone that becomes osseointegrated, and the 447 
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abutment, placed within the fixture and extending outside 448 
of the body in a percutaneous way, onto which the 449 
prosthesis is connected. This technique was tested on four 450 
osseointegrated patients. 451 

This latter example indicates that also surgical 452 
approaches can be taken to improve the quality of the 453 
collected EMG. A promising surgical technique that is 454 
performed in case of high-level amputation is Targeted 455 
Muscle Reinnervation (TMR). This method was developed 456 
by the group of Kuiken in the early 2000s and consists in 457 
transferring residual arm nerves to alternative muscle sites. 458 
Following reinnervation, these target muscles are able to 459 
produce EMG that can be collected and used to control 460 
prosthetic arms (Kuiken et al., 2009). This strategy works 461 
at the condition that each reinnervated muscle produces an 462 
EMG signal in response to only one transferred nerve, with 463 
the consequence that native nerves innervating the target 464 
muscle has to be cut during the surgical procedure to avoid 465 
unwanted EMG signals (Kuiken et al., 2017). In the last 15 466 
years, TMR has allowed intuitive control of ULP to several 467 
subjects with high-level amputation for whom standard 468 
ULP devices allowed a poor restoration of motor functions 469 
(Kuiken et al., 2017). Importantly, given that it is 470 
performed on complex amputations, this technique is 471 
strongly tailored to each patient's physical and clinical 472 
status (Cheesborough et al., 2015, Mereu et al., 2021). 473 

Recently, a new surgical method for improving EMG-474 
based control has emerged: the regenerative peripheral 475 
nerve interface (RNPI) (Vu et al., 2020a). Just as TMR, its 476 
goal is to turn a muscle into a biological amplifier of the 477 
motor command, in order to improve the quality of the 478 
EMG signal recorded, processed and used to drive the 479 
prosthesis. To this end, RNPI exploits the regeneration 480 
capabilities of nerves and muscles, to implant a transected 481 
nerve into a free muscle graft. Following regeneration, 482 
revascularization and reinnervation by the transected 483 
nerve, the muscle graft effectively becomes a stable 484 
peripheral nerve bioamplifier, able to produce high-485 
amplitude EMG signals (Urbanchek et al., 2012). The 486 
potential of this novel interface has been tested by Vu et al. 487 
(2020b): they used EMG signals collected by intramuscular 488 
bipolar electrodes implanted into RNPIs obtained in 489 
amputated individuals, who could successfully perform 490 
real-time control of an artificial hand. Surprisingly, 491 
subjects were able to control the device with a high level of 492 
accuracy even 300 days post-implantation, without 493 
recalibration of the control algorithm. 494 

Another surgical technique, not directly related to EMG 495 
signals but worth mentioning, is cineplasty, an old method 496 
revived in the last years with a new and more modern 497 
approach. This method was introduced for the first time by 498 
Vanghetti in 1899 and then replicated by Sauerbruch ten 499 
years later (Tropea et al., 2017). It consisted of the direct 500 

mechanical linking of residual muscles and/or residual 501 
tendons of the affected limb to the prosthesis through 502 
external cables (i.e., Bowden cables). In 2001, 503 
Heckathorne and Childress (2001) implemented an 504 
evolution of this surgical solution for the control of 1 DOF 505 
ULP by exploiting exteriorized tendons directly linked to a 506 
force sensor. 507 

3.1.1.2. Other biosignals 508 
The limitations imposed by the use of EMG (either 509 

invasive or non-invasive), have led researchers to study 510 
new approaches, aiming at increasing algorithms 511 
robustness and accuracy. Some may be soon used in 512 
commercial prosthetic systems, while others represent 513 
promising research scenarios, but still far from real-life 514 
applications. We here describe some of these peripheral 515 
signals, both non-invasive and invasive. 516 

For example, forcemyography (FMG) has been widely 517 
investigated in the past 20 years (Xiao and Menon, 2019) 518 
(Table I). This approach is based on force sensors able to 519 
record muscle stiffness around the forearm during different 520 
movements. The muscle deformation of the stump can be 521 
measured with various types of sensors, such as: force 522 
sensing resistors (Prakash et al., 2020), optical fiber 523 
transducers (Fujiwara et al., 2018), capacitance-based 524 
deformation sensors (Truong et al., 2018), Hall-effect 525 
based deformation sensors (Kenney et al., 1999), 526 
barometric sensors (Shull et al., 2019), thin arrays of 527 
adhesive stretchable deformation sensors (Jiang et al., 528 
2019), or high density myo-pneumatic sensors for 529 
topographic maps of pressures and residual kinetic images 530 
of the stump (Phillips and Craelius, 2005, Radmand et al., 531 
2016). The accuracy of the sensors may limit the 532 
robustness of FMG-based control. Therefore, FMG is often 533 
fused with other input sources, such as IMU (Ferigo et al., 534 
2017) or EMG (Nowak et al., 2020). FMG is indeed 535 
complementary to EMG due to its capability to get 536 
information about extrinsic hand muscles placed in several 537 
layers underneath the skin, and therefore difficult to be 538 
detected with the EMG sensors. Moreover, with respect to 539 
EMG-based control strategies, FMG is not influenced by 540 
electrode shifting.  541 

Another technique is mechanomyography (MMG), 542 
which measures the lateral oscillations, detected as low-543 
frequency vibrations (in the range of 1-100 Hz), generated 544 
by deformation in muscle fibers actively involved in the 545 
contraction (Table I). This approach can be considered as 546 
the mechanical counterpart of EMG and it is also known as 547 
acousticmyography, phonomyography or 548 
vibromyography, depending on the type of sensor used. It 549 
can actually be based on different types of sensors, such as: 550 
low mass accelerometers (Farina et al., 2008, Youn and 551 
Kim, 2010), microphones (Meagher et al., 2020, Castillo et 552 
al., 2020), piezoelectric contact (Orizio et al., 2008, Tanaka 553 
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et al., 2011), force sensing resistors (Esposito et al., 2018), 554 
and laser distance sensors (Scalise et al., 2013). With 555 
respect to EMG, this technique shows some advantages: it 556 
is low cost, it does not require pre-amplification or precise 557 
positioning, and signals are not influenced by skin 558 
impedance or sweat. However, it is very susceptible to 559 
environmental noise and motion. Artifact removal can be 560 
implemented with the integration of an IMU, as proposed 561 
by (Wilson and Vaidyanathan, 2017) and (Woodward et 562 
al., 2017). MMG has also been used in combination with 563 
EMG signals (Guo et al., 2017a), achieving better control 564 
performance and robustness. 565 

The sonomyography (SMG) measures muscle volume 566 
changes and thickness using reflected ultrasound waves 567 
(Table I). Wave amplitude depends on the acoustic 568 
impedance of the tissue, and it can be detected using 569 
ultrasound transducers. Currently, no portable prosthetic 570 
systems based on SMG have been developed, but the 571 
results obtained using this technique are very promising. 572 
For example, Dhawan et al. (2019) were able to detect 573 
eleven different movements in real-time placing the sensor 574 
on the stump of a trans-radial amputee, obtaining better 575 
results than using EMG signals alone. This non-invasive 576 
approach allows a faster user training and the detection of 577 
both superficial and deep muscles, but even a small shift of 578 
the sensor can change the cross-section view and bring to 579 
the failure of the control algorithm. SMG signals have been 580 
used in combination with EMG signals, leading, to 581 
improved performances with respect to EMG alone (Xia et 582 
al., 2019, Engdahl et al., 2020a). 583 

Near-Infrared Spectroscopy (NIRS) is a non-invasive 584 
technique measuring the level of oxygenation of active 585 
muscles under contraction (Table I). The detection unit 586 
consists of a near-infrared led emitter and a photodetector, 587 
placed on the skin surface. The emitted IR light is partly 588 
absorbed by the tissue, mostly by hemoglobin, and partly 589 
scattered back to the skin surface and detected by the 590 
photodetector. NIRS thus detects changes in the amount of 591 
IR light scattered back due to muscle contraction 592 
(Schneider et al., 2003). This technique has a high spatial 593 
resolution and is immune to electronic interference. 594 
However, tissue heating may take place after prolonged 595 
use. Recently, Paleari et al. (2017) developed a wireless 596 
NIRS unit for hand gesture recognition, indicating the 597 
potentiality of this technique for ULP control. NIRS has 598 
indeed been used in this context in conjunction with EMG 599 
(Guo et al., 2017b) and IMU (Zhao et al., 2019). 600 

The electrical impedance tomography (EIT) measures 601 
the internal electrical impedance of the tissues in the cross-602 
section plane covered by specific surface electrodes (Table 603 
I), which may range from 8 to 64 (Padilha Leitzke and 604 
Zangl, 2020). The measurement is executed by exciting a 605 
sine wave of electrical current (amplitudes ranging from 10 606 

µA to 10 mA and frequencies from 10 kHz to 1 MHz 607 
(Grushko et al., 2020)) and by recording the voltages 608 
collected by surface electrodes. The detected changes in 609 
phase and amplitude represent the distribution changes of 610 
internal conductivity within the affected area, identifying 611 
patterns of movement. Wearable systems for ULP control 612 
have been developed, such as the ones proposed by Zhang 613 
et al. (2016) capable to recognize hand gestures, and by Wu 614 
et al. (2018), who also tested an EIT-based hand prosthesis 615 
control system on healthy people, achieving an accuracy of 616 
98.5% with a grouping of three gestures and an accuracy of 617 
94.4% with two sets of five gestures. This non-invasive 618 
method does not require a precise positioning of the 619 
electrodes, it only needs changes in impedance to be large 620 
enough. On the other hand, the current available systems 621 
have slow measurement and long processing time, leading 622 
to a high-power consumption. Moreover, the technique is 623 
affected by surface electrodes issues, namely skin contact 624 
conditions, electromagnetic interference, etc. 625 

Capacitance sensing measures capacitance variations 626 
between two or more conductors (Table I). A capacitance 627 
exists when the two conductors are separated by a given 628 
distance d. In ULP context, electrodes may be placed on 629 
the prosthetic fingers, which work as capacitor plates. 630 
When a user performs a gesture, the skin deformation will 631 
cause a change in distance (d) between the conductors. This 632 
technique was used for hand gesture prediction in (Cheng 633 
et al., 2013) and in (Truong et al., 2018), using wearable 634 
systems. This technique is low cost, non-invasive, and it is 635 
capable to detect deep and complex signals, but it owns the 636 
standard disadvantages affecting surface electrodes, and it 637 
is susceptible to ambient temperature changes. 638 

Magnetomyography is a promising approach aimed at 639 
measuring the magnetic fields produced by electrical 640 
currents propagating through muscles during contraction 641 
(Table I). This technique foresees the placement of 642 
magnetometers on the muscle, either non-invasively or 643 
beneath the skin, following a surgical procedure. The 644 
magnetometers convert the magnetic fields into 645 
measurable quantities, such as currents or voltages that can 646 
be used for the control of the prosthesis. Small implantable 647 
magnetometers have been proposed in Zuo et al. (2020), 648 
but they still need to be clinically tested. This technique is 649 
less sensitive to sensors’ shift or sweat but may be strongly 650 
influenced by the environmental magnetic noise and the 651 
magnetic field of the Earth. 652 

Peripheral neural interfaces (PNIs) measure the 653 
electrical activity of the motor peripheral with an invasive 654 
approach (Table I). There are three types of electrodes: 655 
extraneural, like CUFF or FINE, which embrace the nerve; 656 
intraneural, which run longitudinally (LIFE) or 657 
transversally (TIME or USEA) through the nerve; and 658 
regenerative, such as SIEVE or Microchannel, attached 659 
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between the two extremities of a severed nerve (del Valle 660 
and Navarro, 2013, Raspopovic et al., 2021b). Nguyen et 661 
al. (2020) enabled an amputee to control a 15 DOFs 662 
prosthesis, by using four implanted LIFE arrays, two in the 663 
medial nerve and two in the ulnar one. The negative aspects 664 
of this method reside in its profound invasiveness and in 665 
the acquisition of noisy signals. 666 

3.1.1.3. Brain signals 667 
The first neuroprosthetic application on humans was 668 

reported by the group of Donoghue, who demonstrated that 669 
tetraplegic individuals implanted with arrays of 670 
microelectrodes over the motor cortex were able to 671 
remotely control the movement of a cursor on a screen 672 
(Hochberg et al., 2006). This clinical trial was soon 673 
followed by another from the same group reporting the 674 
control of reaching and grasping actions of a robotic arm 675 
(Hochberg et al., 2012). The group of Schwartz also 676 
showed similar results of an individual with tetraplegia 677 
successfully controlling a 7 DoF robotic arm (Collinger et 678 
al., 2013). In all these examples, intracortical brain 679 
signals were used, i.e., action potentials of individual 680 
neurons were detected with an array of electrodes inserted 681 
into the brain, usually in the motor cortex (Table I).  682 

Less invasive measurements of cortical currents using 683 
electrocorticography (ECoG) have been widely used for 684 
neuroprosthetic control in the lab. ECoG detects the 685 
electrical activity of the brain with strips of electrodes laid 686 
on the brain’s surface, usually in the motor cortex area. 687 
ECoG signals have been used for hand gesture recognition 688 
(Bleichner et al., 2016), for the control of a virtual 689 
prosthesis (Wang et al., 2013) and of a robotic limb (Fifer 690 
et al., 2013), and also with a detached prosthesis with active 691 
digits (Hotson et al., 2016).  692 

ECoG provides an ideal trade-off between the 693 
invasiveness of intracortical recordings and the poor spatial 694 
resolution of electroencephalography (EEG) (Thakor et 695 
al., 2014). However, whether non-invasively collected 696 
signals convey enough motor information to control a 697 
neuroprosthetic hand is still debated (Fukuma et al., 2016).  698 

EEG measures the electrical activity of the brain with an 699 
external helmet made of electrodes (Table I). In a ULP 700 
application, a motor imagery task is typically used, and the 701 
subject only needs to think about the movement. EEG 702 
signals corresponding to the intention of the movement are 703 
therefore used to drive the end-effector. Recently, 704 
McDermott and coworkers were able to extract from EEG 705 
recordings relevant brain states in real-time and indicated 706 
such states as prospective therapeutic targets for motor 707 
neurorehabilitation (McDermott et al.). Similarly, the 708 
group of Wolpaw showed that paralyzed patients could use 709 
EEG signals to control a cursor in 3-dimensional space 710 
(McFarland et al., 2010), suggesting that noninvasive 711 
EEG-based BCIs can be exploited for control of robotic 712 

devices or neuroprostheses. EEG-based neuroimaging is 713 
indeed emerging as a useful tool for robotic device control, 714 
as demonstrated by Edelman et al. (2019).  715 

Another promising technique is the functional Near-716 
Infrared Spectroscopy (fNIRS), which detects activity-717 
related brain oxygenation. The instrumentation is the same 718 
used for NIRS, i.e., a near-infrared led, and a photodetector 719 
are used to measure the amount of scattered back light and, 720 
therefore, the amount of IR light absorbed by the 721 
hemoglobin in the brain, which increases during brain 722 
activity. In 2020, Syed et al. (2020) used these 723 
hemodynamic brain responses to control a ULP for trans-724 
humeral amputees with 3 DOFs, gaining eight out of ten 725 
classified movements in real-time. 726 

These examples demonstrate that groundwork for brain 727 
control of motor prosthetics has been laid. However, it has 728 
been limited to the lab and mostly addresses paralyzed 729 
patients. Nevertheless, there is a growing interest in brain-730 
derived measures for prosthetic applications and different 731 
recording techniques have been investigated for ULP 732 
control. 733 

3.1.2. Other techniques under investigation 734 
Besides the detection of physiological changes in 735 

residual muscles of the stump or in the brain during 736 
movements, described above, there are many other input 737 
sources and techniques capable or with the potentiality to 738 
control an upper limb prosthesis. Some of these are mainly 739 
used in the research field and since they lack usability, they 740 
do not find a real application in everyday life of amputees, 741 
or they are conceived for patients without the possibility to 742 
exploit other more convenient and intuitive sources (i.e., 743 
tetraplegic people). Some of them, instead, have been still 744 
only proposed as proof-of-concept. 745 

The most studied approach is based on the use of inertial 746 
measurement units (IMUs). IMU sensors are cheap, small 747 
and can therefore by easily embedded in the prosthesis. 748 
They can increase the amount of data useful to successfully 749 
discriminate between different gestures of ULP during 750 
distinct phases of the reaching movement. These devices 751 
exploit accelerometers, gyroscopes and magnetometers to 752 
understand which is the actual altitude, position and 753 
orientation of the prosthesis. These sensors deliver 754 
information through quaternions and they are often used 755 
together with EMG to improve the classifier robustness 756 
(Georgi et al., 2015). Zhang et al. (2011) depicted the 757 
possibility to manipulate objects and perform complex 758 
tasks using both inertial measurement unit (IMU) and 759 
EMG sensors. As a matter of fact, the accelerometers can 760 
capture information that sEMG sensors cannot easily 761 
detect, such as hand withdrawal or rotation (Chen et al., 762 
2007). It has been shown that the use of IMU sensor 763 
coupled to EMG is more advantageous than increasing the 764 
number of EMG sensors (Fougner et al., 2011). Similar 765 
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results have been achieved by Krasoulis et al. (2017), who 766 
have combined EMG and IMU to feed pattern recognition 767 
systems (see section 4.3.1). They demonstrated that this 768 
combination could significantly improve the real-time 769 
completion rates compared to the traditional methods, 770 
exclusively based on sEMG signals. Moreover, the data 771 
coming from IMU can be used alone to control a single 772 
module, usually the wrist or the elbow (Merad et al., 2018) 773 
or to realize other types of control for rehabilitation 774 
purposes, such as shadow control, in which the control 775 
policy consists in replicating the movement captured by the 776 
IMU sensors (Rapetti et al., 2020). These devices were also 777 

placed on feet to directly control an ULP by implementing 778 
precise foot movements (Resnik et al., 2014). The adoption 779 
of IMU sensors is specifically promising in sensor fusion 780 
approaches, as discussed in section 3.1.3. Besides EMG 781 
signals, IMU data have been also combined with NIRS 782 
(Zhao et al., 2019) and MMG (Wilson and Vaidyanathan, 783 
2017, Woodward et al., 2017). 784 

Table II summarizes the use of IMU and other input 785 
sources investigated for the control of ULP, many of which 786 
are described in (Grushko et al., 2020). 787 

 788 

Table II: Alternative input sources investigated for the control multi-DoF prosthesis devices. 789 

 790 
791 

Input 

source 

Measured 

property 
Sensors’ placement PROs CONs 

Sensor 

Fusion 
Examples 

IM
U

 Specific force, 

angular rate, 

orientation of 

the body 

Up to 8 IMU sensors 

located on feet 

Non-invasive, 

simple, low cost,  

Problems during 

walking, not 

intuitive, 

unnatural 

EMG, 

NIRS, 

MMG 

(Resnik et al., 2014) 

DEKA Arm control 

M
y

o
k

in
et

ic
 

co
n

tr
o

l 

Change of 

muscle 

morphology 

trough 

magnetic 

fields 

Permanent magnet 

markers implanted 

over targeted muscles 

and external three-axis 

magnetic field sensors 

placed in the socket 

Intuitive control, 

force and position 

feedback 

Magnetic 

interferences, 

misalignments 

between socket 

and initial 

position, invasive 

- 
(Tarantino et al., 2017, 

Clemente et al., 2019) 

V
o

ic
e 

Throat 

vibration  

Piezoelectric sensor on 

the throat 

Ease of use 

sequence of 

movements 

External noise, 

input sound level, 

unintuitive control 

EMG 
(Mainardi and Davalli, 

2007) 

Voice 

commands  

Microphone near 

mouth 
IMU (Alkhafaf et al., 2020) 

T
o

n
g
u

e Pressures 

made by the 

tongue 

Board of coils on the 

palate and activation 

unit on the tip of the 

tongue 

Mobile, wireless, 

invisible 

Unintuitive 

control, 

uncomfortable 

EMG 
(Johansen et al., 2016, 

Johansen et al., 2021) 

F
ee

t Pressures 

made by the 

feet 

Insole made of force 

sensing resistors 

Simple 

Low cost 

Unintuitive 

control, problem 

during walking, 

need of accurate 

calibration 

IMU 

EMG 
(Carrozza et al., 2007) 

O
p

ti
ca

l 

m
y

o
g

ra
p

h
y
 

(O
M

G
) 

Skin surface 

deformations 

caused by 

underlying 

muscle 

contraction 

Single low-resolution 

camera and marker-

based tracking methods 

Simple 

Low cost 

No space for 

camera in the 

socket, low 

robustness 

- 
(Nissler et al., 2016, Wu et 

al., 2019) 
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3.1.3. Integrative sources 792 
An integrative input source is not used as the main 793 

responsible for the actual command of the prosthesis, but it 794 
is used to help and to facilitate its control, which usually 795 
depends on EMG signals. The integrative input sources 796 

work in parallel and together with the main ones, 797 
integrating their information and implementing the so-798 
called data-fusion or sensor-fusion methods, see also 799 
section 4.3.3. Table III summarizes integrative sources 800 
found in the literature that have been used for ULP control. 801 

 802 

Table III: integrative sources of information used to improve prosthesis control. 803 

Integrative 

input 

source 

Instruments 

and measured 

information 

Application PROs CONs Fusion Examples 

C
o

m
p

u
te

r 
v

is
io

n
 Two cameras used 

to collect images 

and estimate depth 

Estimation of 

size, distance 

and grasp type 

for a semi-

autonomous 

control of the 

prosthesis 

Ease of use 

fixing of errors 

without looking at 

the prosthesis 

automatic help in 

controlling the 

prosthesis 

Expensive, 

cumbersome and 

uncomfortable 

EMG 

IMU 

(Markovic et al., 2014) 

Stereovision (depth?) 

Depth estimated by 

the colour intensity 

of the pixel 

collected by the 

camera 

(Mouchoux et al., 2021) 

Depth and colour camera 

RGB 

E
y

e 
m

o
v

em
en

ts
 

4 Superficial 

electrodes for the 

measuring of the 

corneo-retinal 

standing potentials 

between the front 

and the back of the 

human eye 

Estimation of 

the 

position/length/

width/orientatio

n of a final 

target and 

preparation of 

the preshape 

and direction of 

the hand 

Ease of use 

automatic help in 

controlling the 

prosthesis 

Distinction with 

random eye 

movements, 

cumbersome and 

uncomfortable 

EMG 

(Hao et al., 2013)  

Electro-oculography 

Camera mounted 

on a pair of glasses 

measuring the 

reflection of infra-

red (IR) light from 

the eyeball 

(Krausz et al., 2020) Eye 

tracking glasses 

O
p

ti
ca

l 
se

n
so

r 

Led-based optical 

sensor mounted on 

fingertips 

Slip detection 

and eventual 

automatic 

suppression 

Accurate, robust 

simple, low cost 

and power 

consumption 

Poor detection 

with transparent 

surfaces 

EMG 

(Sani and Meek, 2011) LED 

motion detection sensor 

miniature 

reflective optic 

sensor that 

combines an 

Infrared LED and a 

phototransistor in 

the same package. 

(Nakagawa-Silva et al., 

2018) Reflective optic 

sensor 

IM
U

 Accelerometers, 

Gyroscopes, 

Magnetometers 

Decreased 

#sensors, better 

controllability, 

artifact 

detection 

Non-invasive, 

simple, low cost, 

motion artifact 

deletion 

Prone to error 

cumulate over time 

EMG, 

NIRS, 

MMG 

(Krasoulis et al., 2017, 

Krasoulis et al., 2019b) up 

to 6 gestures 

804 

3.2. Prosthetic Sensing 805 
Natural movements occur with a bidirectional flow of 806 

neural information, i.e., motor commands on one direction 807 
and sensory feedback on the other. In prosthetic 808 
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applications, while many efforts have been spent to provide 809 
signals carrying motor intentions, a less explored path is 810 
the integration of sense of touch into the prosthesis 811 
(Clemente et al., 2015). This lack is highly responsible for 812 
the missing perception of the prosthesis as part of one’s 813 
own body and is also precluding a closed-loop control of 814 
the prosthesis.  815 

More recently, the scientific community has started 816 
exploring different methods to equip prosthetic devices 817 
with perception of tactile and pressure information 818 
(Schmitz et al., 2008, Tee et al., 2012, Lucarotti et al., 2013, 819 
Hammock et al., 2013, Taunyazov et al., 2021), although 820 
often resulting in very complex, unreliable, or unpractically 821 
cumbersome solutions. The few solutions tested on real 822 
prosthetic setups impacted on their anthropomorphism and 823 
dexterity.  824 

To integrate touch sensors into robotic and prosthetic 825 
devices (Figure 2, end-effector feedback) (Lucarotti et al., 826 
2013, Iskarous and Thakor, 2019, Dimante et al., 2020), 827 
different technologies have been investigated and 828 
employed (Ciancio et al., 2016), namely capacitive 829 
(Maiolino et al., 2013, Jamali et al., 2015), resistive 830 
(Beccai et al., 2005, Tee et al., 2012, Zainuddin et al., 831 
2015), piezoelectric (screen printed piezoelectric polymer, 832 
PVDF) (Alameh et al., 2018), and magnetic sensors 833 
(Ahmadi et al., 2011). Other examples include 834 
technologies based on electrical impedance (Zainuddin et 835 
al., 2015, Wu et al., 2018), pressure and electrical 836 
impedance (Lin et al., 2009), optical fibers (Bragg fiber 837 
(Massari et al., 2019)), Micro-electro-mechanical 838 
Systems (MEMS, texture sensing (Mazzoni et al., 2020)) 839 
combined with Spiking based on Izhikevich neuron model 840 
(Gunasekaran et al., 2019)) and Optoelectronic (Alfadhel 841 
and Kosel, 2015). 842 

Examples of the application of these sensors into 843 
prosthetic devices include the E-dermis (piezoelectric 844 
sensors integrated on the Bebionic’s fingertips) (Osborn et 845 
al., 2018), E-skin (integrating different types of sensors) 846 
(Iskarous and Thakor, 2019), and BioTac (impedance 847 
sensor integrated on the Shadow Hand (Robot, 2022)) 848 
(Fishel and Loeb, 2012). 849 

Among commercial devices, the SensorHand Speed 850 
(Ottobock, 2021) made by Ottobock is the only one 851 
including tactile sensors based on resistive technology  852 
(Ottobock, 2021). 853 

Therefore, tactile sensation is the first step towards 854 
novel and more efficient control strategies that do make use 855 
of feedback information (Raspopovic et al., 2014). To this 856 
end, artificial intelligence can be exploited to detect the 857 

grasp of different objects from sensor data (Alameh et al., 858 
2020). 859 

3.3. Sensory Feedback 860 

Sensory feedback patterns are designed to enrich the 861 
perceived responsiveness of the device and the subjective 862 
experience of its use as a limb (Antfolk et al., 2013b, 863 
Svensson et al., 2017, Raspopovic et al., 2021a). Such a 864 
result derives from the elicitation of physiological and 865 
psychological reactions that promote embodiment 866 
processes (described in paragraph 5.1). Furthermore, such 867 
stimulations (haptic feedback in many cutting-edge 868 
devices) are designed as a fundamental component of 869 
bidirectional human-machine interfaces empowering 870 
prosthetic control (Navaraj et al., 2019). Establishing such 871 
a closed-loop can trigger learning processes even for 872 
artificial sensations (Cuberovic et al., 2019), pointing at 873 
somatosensory plasticity processes. These phenomena 874 
provide the user with an engaging guidance within a natural 875 
interaction, facilitating the execution of prosthetic 876 
maneuvers during calibration, training, and daily use. 877 
Importantly, such an enhanced practice will ease the 878 
production of consistent biosignals that will progressively 879 
become easier to interpret as user commands. 880 

However, current commercial prostheses generally do 881 
not incorporate an explicit haptic feedback but the 882 
incidental feedback, like visual and the sound cues, could 883 
be exploited by the user to estimate the prosthesis state 884 
(Wilke et al., 2019). For example, the acoustic feedback 885 
provides a guidance on how to reach target during the 886 
rehabilitation session, in this way the rehabilitation step can 887 
be more interactive and engaging if appropriately designed 888 
(never obnoxious, possibly plausible). Overall, the next 889 
sub-sections will discuss the design of sensory feedback in 890 
prosthetics, distinguishing invasive and non-invasive 891 
stimulation modalities. 892 

3.3.1. Non-invasive methods  893 
Non-invasive feedback restoration for upper limb 894 

amputees is a hot topic in the research community, and yet 895 
it has not achieved broad clinical application (Sensinger 896 
and Dosen, 2020). Many solutions have been proposed, but 897 
the main problem lays in their poor robustness. (Ribeiro et 898 
al., 2019) highlighted the most widespread types of non-899 
invasive feedback, described in Table IV. 900 

 901 
 902 

Table IV Non-invasive methods for sensory feedback in ULP. 903 
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Feedback 

sense 

Instruments and 

feedback information 
Application PROs CONs Examples 

T
o

u
ch

 

(c
u

ta
n

eo
u

s 
st

im
u

la
ti

o
n

) 

V
ib

ra
ti

o
n

a
l 

Eccentric rotating motors, 

proprioception, force 

Array over the 

forearm or over the 

arm 

Non-invasive, 

robustness 

control, brief 

training period, 

intuitive, cheap, 

small 

(Bark et al., 2014, 

Markovic et al., 2019) 

up to 3 DoFs or different 

force levels 

Non-physiological, need 

calibration, coupled 

intensity and rotation 

frequency, position 

displacement 

M
ec

h
a

n
o

ta
ct

il
e 

Linear actuator, pressure 

sensation, spatial touch 

sensation 

Detected areas to 

reproduce real 

touch sensation, 

array over the arm 

Non-invasive, 

intuitive, brief 

training period, 

decoupled 

intensity and 

frequency 

(Antfolk et al., 2013a, 

Svensson et al., 2017, 

Tchimino et al., 2021) 

different pression level, 

touch sensation 

Need spatial and 

intensity calibration, 

bulky, position 

displacement 

E
le

ct
ri

ca
l 

Transcutaneous stimulation 

using bipolar electrodes, 

pressure, slip, proprioception 

Array over the 

forearm or arm 

No electrode 

displacement, 

low power 

consuming, 

high sensor 

skin contact, 

intensity or 

frequency 

modulation 

(Jorgovanovic et al., 

2014, Xu et al., 2015, 

Garenfeld et al., 2020) 

touch location, pression, 

proprioception 

Noise during 

acquisition, long 

calibration, not localized 

sensation 

S
o

u
n

d
 

(A
co

u
st

ic
) 

Acoustic speaker, 

proprioceptive movements 

Laptop speaker to 

guide the training 

acquisition and 

improve the pattern 

recognition strategy 

Low cost, no 

calibration, 

intuitive 

- 
(Gigli et al., 2020) 

multiple arm positions 

V
is

io
n

 

(V
is

u
a

l)
 

Camera on board, external 

camera 

head-mounted 

displays, laptop 

displays, virtual 

reality, augmented 

reality 

Increase 

perceptual 

experience, 

engagement, 

intuitive, 

promote 

training 

Bulky, not portable, 

uncomfortable 

(Clemente et al., 2016, 

Markovic et al., 2017, 

Sharma et al., 2018, 

Hazubski et al., 2020, 

Sun et al., 2021b) 

trajectory, force 

904 
The most investigated feedback relies on the sense of 905 

touch and therefore consists of cutaneous stimulation. This 906 
can be performed with different modalities namely, 907 
vibrational, mechanotactile or electrical stimulation.  908 
The vibrational feedback is generally implemented with 909 
the addition of eccentric rotating motors placed in contact 910 
with the skin surface of the stump (Ribeiro et al., 2019). 911 
This method is generally employed to augment the 912 
robustness of the control system by providing the user with 913 
additional information regarding the position of the 914 
prosthetic device but it lacks intuitiveness, as the 915 
association between perceived sensation and the 916 
corresponding information has to be learned by the user. 917 
For example, in Bark et al. (2014), the motors were placed 918 

in 4 distinct areas of the stump to guide the user through 919 
the desired trajectory while grasping object and the results 920 
showed a significant decrease in the root mean square angle 921 
error of their limb during the learning process. More 922 
recently, Markovic et al. (2019) proposed a joint-oriented 923 
feedback criterion consisting of three vibromotors placed 924 
on the arm to provide the information on which joint is 925 
currently activated by the user, thus restoring 926 
proprioceptive sensation. The experiment was performed 927 
by 12 able-body subjects and 2 amputees controlling 3 DoF 928 
prosthesis, and it was found that the myoelectric multi-929 
amplitude control outperformed the pattern recognition 930 
method when the feedback was applied. 931 
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Differently from the vibrational, the mechanotactile 932 
feedback is based on the application of linear actuators on 933 
the skin and provides pressure sensation. Antfolk et al. 934 
(2013a) exploited this technique and proposed a multisite 935 
mechanotactile system to investigate the localization and 936 
discrimination threshold of pressure stimuli on the residual 937 
limbs of trans-radial amputees. They demonstrated that 938 
subjects were able to discriminate between different 939 
location of sensation and to differentiate between three 940 
different levels of pressure. This study demonstrated that it 941 
is possible to transfer tactile input from an artificial hand to 942 
the forearm skin after a brief training period. Recently, 943 
Svensson et al. (2017) used it to translate the interaction 944 
between a virtual reality environment and a virtual hand 945 
into user sensation. The authors showed that by placing the 946 
tactile actuators in correspondence with the areas of the 947 
skin involved in object manipulation, subjects were able to 948 
feel a real touch sensation that increased their sense of body 949 
ownership. For example, pressure applied to the prosthetic 950 
fingers was perceived as a tactile sensation on the skin 951 
(Svensson et al., 2017). 952 
The electrical feedback is based on transcutaneous 953 
stimulation. The elicited sensations range from perception 954 
of pressure (Jorgovanovic et al., 2014) to slip sensations 955 
(Xu et al., 2015), depending on the electrical parameters 956 
(i.e., current amplitude, pulse frequency, pulse width). One 957 
advantage of this approach with respect to the vibrotactile 958 
and mechanotactile ones is the lack of moving components 959 
avoiding problems of electrode displacement and, thus, 960 
improving the sensors-skin contact. Nevertheless, it is 961 
important to take into account that the noise introduced by 962 
the electric stimulation can corrupt the acquisition of 963 
muscular activity, causing errors if the ULP is 964 
myoelectrically controlled. Moreover, the perceptions are 965 
not strictly confined to the zone under the stimulating 966 
device but they can spread in a wider region if the area 967 
above a nerve is considered. 968 

Another sensory modality exploited for feedback 969 
delivery is the acoustic one. Gigli et al. (2020) recently 970 
tested a novel acquisition protocol with additional acoustic 971 
feedback in 18 able-body participants to improve 972 
myoelectric control. The protocol consisted in dynamically 973 
acquiring EMG data in multiple arm positions while 974 
returning an acoustic signal to urge the participants to 975 
hover with the arm in specific regions of their peri-personal 976 
space. The results showed that the interaction between user 977 
and prosthesis during the data acquisition step was able to 978 
significantly improve myoelectric control. Auditory 979 
feedback has also been employed to convey artificial 980 
proprioceptive and exteroceptive information. Lundborg et 981 
al. (1999) and Gonzalez et al. (2012) employed auditory 982 
feedback by encoding the movement of different fingers 983 
into different sounds. The method demonstrated that the 984 

inclusion of auditory feedback reduces the mental effort 985 
and increase the human-machine interaction; furthermore, 986 
better temporal performance and better grasping 987 
performance were obtained. 988 

In the last years, there have been some examples 989 
exploiting vision to deliver sensory feedback. Indeed, 990 
visual stimulation can be provided as explicit feedback 991 
through screens during game-like exercises, helping the 992 
prosthetic user to learn how to control the device (e.g., 993 
adjusting trajectory or grasping force) (Markovic et al., 994 
2018). However, adding sensory information to the 995 
prosthetic user’s perceptual experience in real contexts 996 
requires solutions like Augmented Reality (AR, occurring 997 
when computer-generated items overlay a real setting) or 998 
Mixed Reality (MR, a term that represented different 999 
combinations of real and virtual items) (Milgram and 1000 
Kishino, 1994, Speicher et al., 2019). AR and MR 1001 
environments, implemented through wearable solutions 1002 
like head-mounted displays, can support the actual control 1003 
of a prosthetic device through visual feedback that does not 1004 
occlude the real context (Clemente et al., 2016, Markovic 1005 
et al., 2017, Hazubski et al., 2020). However, they can also 1006 
be used for prosthetic use training (Anderson and Bischof, 1007 
2014, Sharma et al., 2018) – in such a case, Virtual Reality 1008 
(VR, a fully computer-generated setting) can offer visual 1009 
feedback too (Lamounier et al., 2010, Sun et al., 2021b), 1010 
especially within game-based frameworks (Nissler et al., 1011 
2019) for engaging the users and motivating their activity. 1012 

3.3.2. Invasive methods 1013 
There are different technologies that can be employed to 1014 

provide a sensation directly to the nerve (Cutrone and 1015 
Micera, 2019, Raspopovic et al., 2021a). The most used 1016 
employ intrafascicular electrodes, such as transverse 1017 
intrafascicular multichannel electrodes (TIME) and 1018 
wire and thin-film longitudinal intrafascicular 1019 
electrodes (LIFE), which can both record muscle activity 1020 
(e.g., iEMG) and stimulate nerves. Other solutions are 1021 
characterized by the fact that the electrodes are placed 1022 
around the nerves, such as cuff electrodes and flat 1023 
interface nerve electrodes (FINE). 1024 

The first example of ULP with sensory stimulation dates 1025 
back to 1979 and it was based on the remapping between 1026 
pressure signals acquired by prosthesis sensors to an 1027 
amplitude-frequency modulation. This consisted of a series 1028 
of pulses delivered with a pulse rate proportional to the 1029 
increment of the pinch force and provided through dry 1030 
electrodes placed over the skin in correspondence of the 1031 
median nerve, as described in Shannon (1979). Later, the 1032 
group of Micera employed thin-film intrafascicular 1033 
electrodes longitudinally implanted in peripheral nerves 1034 
(tf-LIFE4) to deliver electrical stimulation. With this 1035 
method, they were able to elicit sensation of missing hand 1036 
in the fascicular projection territories of the corresponding 1037 
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nerves and to modulate the sensation by varying the pulse 1038 
width and pulse frequency (Benvenuto et al., 2010). 1039 
Importantly, this method avoids muscle crosstalk, 1040 
fundamental for guaranteeing myoelectric control. More 1041 
recently, new bioinspired paradigms have been suggested 1042 
to better induce natural sensations (Raspopovic et al., 1043 
2021a). In particular, the study of Oddo et al. (2016) 1044 
showed that it is possible to restore textural features 1045 
recorded by an artificial fingertip. This device embedded a 1046 
neuromorphic real-time mechano-neuro-transductor, 1047 
which emulated the firing dynamics of SA1 cutaneous 1048 
afferents. The emulated firing rate was converted into 1049 
temporal pattern of electrical spikes that were delivered to 1050 
the human median nerve via percutaneous 1051 
microstimulation in one trans-radial amputee.  1052 

Valle et al. (2018) suggested a ‘hybrid’’ encoding 1053 
strategy based on simultaneous biomimetic frequency and 1054 
amplitude modulation. This kind of stimulation was 1055 
perceived more natural with respect to classical stimulation 1056 
protocol, enabling better performance in tasks requiring 1057 
fine identification of the applied force. This paradigm was 1058 
tested and validated during a virtual egg test (Valle et al., 1059 
2018), where the subject needed to modulate the force 1060 
applied to move sensorized blocks. This encoding strategy 1061 
not only improves gross manual dexterity in functional task 1062 
but also improved the prosthesis embodiment, reducing 1063 
abnormal phantom limb perceptions.  1064 

Similarly, Osborn et al. (2018) implemented a 1065 
neuromorphic feedback paradigm based on Izikevich 1066 
neuron model to generate the current spike train to inject 1067 
directly in the median and ulnar nerves, using beryllium 1068 
copper (BeCu) probes. Their prosthesis proposes a 1069 
neuromorphic multilayered artificial skin to perceive touch 1070 
and pain. Their transcutaneous electrical nerve stimulation 1071 
(TENS) allows to elicit innocuous and noxious tactile 1072 
perceptions in the phantom hand. The multilayered 1073 
electronic dermis (e-dermis) produces receptor-like spiking 1074 
neural activity that allows to discriminate object curvature, 1075 
including sharpness in a more natural sensation spanning a 1076 
range of tactile stimuli for prosthetic hands. The authors 1077 
were able not only to restore finger touch discrimination 1078 
and objects recognition, but also to provide a pain sensation 1079 
when the prosthesis touched sharp objects. In particular, 1080 
they found that pain sensation is generated by a stimulation 1081 
of 15-20Hz. 1082 

Tan et al. (2014) suggested that simple electronic cuff 1083 
placed around nerves in the upper arm can directly activate 1084 
the neural pathways responsible for hand sensations. This 1085 
neural interface enabled the restoration of different 1086 
sensations at many locations on the neuroprosthetic hand. 1087 
Different stimulation patterns could transform the typical 1088 
“tingling sensation” of electrical stimulation into multiple 1089 

different natural sensations, enabling the amputees to 1090 
perform fine motor tasks and improving the embodiment. 1091 

In George et al. (2019a) a biomimetic method was 1092 
described to restore both force and haptic sensation. The 1093 
sensory feedback was implemented to restore the force 1094 
sensation and promote objects recognition: Utah Slanted 1095 
Electrode Array (USEA) electrodes were used to deliver 1096 
stimulation proportional to the variation of contact force 1097 
exchanged between the prosthesis and the object during 1098 
manipulation. Instead, the haptic sensation was based on 1099 
the distribution of stimulation delivered during contact 1100 
with the object with a fixed frequency and amplitude. The 1101 
characteristic of this encoding scheme is based on electrical 1102 
biphasic, charge – balanced of 200- or 320-µs phase 1103 
durations. The biomimetic model describes the 1104 
instantaneous firing rate of the afferent population using 1105 
the contact stimulus position, velocity, and acceleration 1106 
simulating all tactile fibers to any spatiotemporal 1107 
deformation of the skin and hand. This strategy allows the 1108 
amputee to augment the active exploration experience and 1109 
to discriminate object size and stiffness. 1110 

Liu et al. (2021b) have shown that primary afferents 1111 
encode different stimulus features in distinct yet 1112 
overlapping ways: scanning speed and contact force are 1113 
encoded primarily in firing rates, whereas texture is 1114 
encoded in the spatial distribution of the activated fibers, 1115 
and in precisely timed spiking sequences. When multiple 1116 
aspects of tactile stimuli vary at the same time, these 1117 
different neural codes allow for information to be 1118 
multiplexed in the responses of single neuron and 1119 
populations of neurons. Exploiting this sensory 1120 
architecture with invasive methods may lead to the 1121 
development of prosthetic devices able to truly evoke 1122 
natural sensations.  1123 

Another promising approach is targeted sensory 1124 
reinnervation (TSR), i.e. the sensory version of TMR, 1125 
which consists in coupling a pressure sensor placed on the 1126 
prosthetic device to surgically redirected cutaneous 1127 
sensory nerves (Marasco et al., 2011). This technique 1128 
strongly helps discrimination of objects size and stiffness 1129 
during active exploration, especially if the tactile feedback 1130 
is biomimetic (George et al., 2019b). Recently, Marasco et 1131 
al. (2021) have developed a prosthetic system based on 1132 
both targeted sensory and motor reinnervation. TSR was 1133 
used to deliver both touch and kinesthetic feedback. The 1134 
authors showed that the system was able to significantly 1135 
improve device control and promote embodiment. 1136 

These results indicate that, in order to close the loop on 1137 
user and provide useful sensation (regardless the specific 1138 
feedback modality), an optimal feedback control policy is 1139 
necessary (Sensinger and Dosen, 2020), as discussed in 1140 
section 4.4. 1141 
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4. Prosthetic Control Strategies and Algorithms 1142 

Although the focus of this section is on the active 1143 
prosthesis, it is worth mentioning that an important portion 1144 
of the amputees still uses body-powered prosthesis (Carey 1145 
et al., 2015). These are cable-operated devices usually 1146 
equipped with split hook or hand as terminal part (Millstein 1147 
et al., 1986). 1148 

Ranging from standard control approaches (e.g., dual-1149 
site control (Scott and Parker, 1988)) to simultaneous 1150 
control of multiple degrees of freedom (e.g., pattern 1151 
recognition (Hahne et al., 2018)), the literature offers 1152 

disparate solutions for ULP control depending on the type 1153 
of input signal and the sensors density. 1154 

In general, prosthetic control is performed at different 1155 
levels. The low level refers to motor actuation (Figure 5 1156 
D) and, more in general, to the control of the active degrees 1157 
of freedom of the device; the medium level consists of the 1158 
translation of movement intentions into joint references 1159 
and gestures (Figure 5 C); the high-level control translates 1160 
input signals collected from the user (Figure 5 A) into 1161 

movement intentions (Figure 5 C, yellow panel – layer 1). 1162 
In the next sections, we describe these different levels of 1163 
control and provide examples of the different strategies that 1164 
can be used. 1165 

4.1. Low-level control: from control commands to 1166 

motor actuation 1167 

The low-level control combines the well-known 1168 
strategies implemented in the automation industry to 1169 
operate autonomous machines, e.g., industrial robots. We 1170 
will not detail the structure and mathematical formality of 1171 

these control architectures. However, if the readers are 1172 
curious, a more complete and detailed analysis of robot 1173 
lower-level control is provided by the comprehensive work 1174 
of Siciliano et al. (2010).   1175 

In brief, at the base of these controls, there is always an 1176 
active and controllable actuator, that for upper limb 1177 
prosthetic solutions coincides – most of the times – with an 1178 
electrical motor (either brushed or brushless) often coupled 1179 
to a dedicated transmission system (e.g., a planetary gear) 1180 

 

Figure 5. Architecture of ULP control: actuation and feedback. Input signals collected from the user (A) are processed into the embedded processing unit 

(C) to generate control commands for the single joint control unit (D). Feedback information coming from the prosthesis or its interaction with the 

environment (E) are also processed in the embedded processing unit (C) to deliver sensory feedback (B). The embedded processing unit (C) can be set up 
by different layers: layer 1 (intention detection, yellow panel) is the software turning the input signals (A) sampled by master board into detected movement 

intentions, by means of specific control algorithms (e.g., machine learning or deep learning algorithms); layer 2 (human-robot interaction, green panel) is 

the software responsible of processing prosthesis position (joint and cartesian space control) and external information (tactile identification, E); layer 3 
(encoding haptic feedback, blue panel) is the software responsible for encoding the information processed in layer 2 into sensory feedback.  The output 

of the embedded processing unit are control commands (mediated by actuator drivers) both to move the device and to provide sensory feedback. This has 
a direct impact on the user experience (F) in terms of learning how to use the device (training) and of user-prosthesis integration (embodiment). 
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to reach the desired torque-speed characteristic. It is 1181 
possible to present the low-level control of upper limb 1182 
prostheses as the combination of three possible nested 1183 
controllers: the current, the speed and the position control 1184 
loops (Figure 5 D). 1185 

The current control loop takes care of reliably tracking 1186 
desired current trajectories. To be implemented, it requires 1187 
the presence of reliable and precise current measurement 1188 
sensors. The current control also provides a relatively good 1189 
force/torque control of the system, being the current 1190 
absorbed by the actuator directly proportional to the 1191 
generated output torque. On top of the current controller, it 1192 
is usually found a speed control loop to regulate the 1193 
rotational speed of the motor and, thus, the speed of the 1194 
actuated system. The combination of an external speed 1195 
controller with an internal current control guarantees the 1196 
possibility of safely operate the actuating unit in terms of 1197 
desired speeds and torques. Sometimes, on top or in 1198 
substitution to the speed controller, systems also 1199 
implement a position control loop. The position controller 1200 
guarantees the tracking of desired angular trajectories. It is 1201 
therefore preferable to use the speed controller if the goal 1202 
is to precisely track given trajectories in specific time 1203 
intervals. The implementation and application of speed and 1204 
position controllers can be performed either before (fast 1205 
shaft) or after (slow shaft) of the transmission system. The 1206 
decision depends on the availability of sensing devices 1207 
(e.g., angular sensors such as encoders or resolvers) to 1208 
measure the required physical quantities.  1209 

All these controllers are implemented in a negative 1210 
feedback architecture and typically controlled by means of 1211 
PID controllers, whose proportional (P), integrative (I) 1212 
and derivative (D) parameters are tuned to reach the desired 1213 
system response in terms of control reactivity (rise time and 1214 
settling time), precision (steady-state error and overshoot) 1215 
and stability. It is worth mentioning that a negative 1216 
feedback architecture is typically only bounded to the low-1217 
level control of the prosthesis, while higher level 1218 
controllers and especially high-level control (see Section 1219 
4.3) are often treated in an open-loop fashion, where the 1220 
user directly generates the reference control signal without 1221 
any feedback verification. The generated reference 1222 
commands will then be directly sent to the low-level 1223 
controller. 1224 

4.2. Mid-level control: from movement intention to 1225 

control commands 1226 

The mid-level techniques (Figure 5 C, yellow panel – 1227 
layer 1) aim to synthetize the control commands to 1228 
suitably activate the electric motors of the multiple DoFs 1229 
ULP (actuation drivers in Figure 5 C). These signals are the 1230 
input of the aforementioned low-level control.  1231 

A major classification of the mid-level control strategies 1232 
for multi-DoFs robots divides them in two categories: 1233 
joint-space and task-space (Cartesian) controllers 1234 
(Siciliano et al., 2008, Corke and Khatib, 2011). 1235 

Joint-space control strategies directly feed the 1236 
commands to each of the actuated joints, namely DoFs, of 1237 
the upper-limb robotic device. It is a direct approach that 1238 
does not require any particular mathematical manipulation. 1239 
In such a scenario, the mid-level control receives 1240 
information from the high-level (see Section 4.3), then it 1241 
assigns specific commands to each low-level controller 1242 
(see Section 4.1). The logic used to assign the control 1243 
commands is strongly based on the kind of information 1244 
coming from the high-level side. Nonetheless, it will most 1245 
likely reduce to a set of independent commands for each of 1246 
the actuated joints. 1247 

On the other side of the spectrum, we have task-space 1248 
based control strategies. In this case, the control 1249 
commands for each of the joints are the results of a 1250 
mathematical manipulation that involves the 1251 
transformation from the Cartesian space to the joint space. 1252 
If the aim is to regulate the Cartesian trajectory, the 1253 
controller will need to translate the Cartesian trajectories 1254 
into joint angles, by means of a process known as inverse 1255 
kinematics. If instead the aim is to regulate the Cartesian 1256 
force, the controller will transform the Cartesian forces into 1257 
joint forces (or torques) utilizing the process of inverse 1258 
dynamics. 1259 

Both these approaches are well known to robotic 1260 
applications and will not be treated in detail in this review. 1261 
Nonetheless, the authors suggest the comprehensive works 1262 
of Corke and Khatib (2011) and Siciliano et al. (2008) to 1263 
get the fundamentals of the aforementioned approaches. 1264 

In general, Cartesian based controls are more intuitive 1265 
for the external user, namely any subject interacting with 1266 
the robot as an external tool. In fact, the robot behavior can 1267 
be more naturally interpreted being the forces or the 1268 
trajectories referred to the three-dimensional space we are 1269 
used to deal with. However, from a computational and 1270 
complexity point of view, task-space controllers require a 1271 
bigger effort and introduce limitations to their application, 1272 
e.g., singularities, redundancies. On the other hand, joint 1273 
space control behavior is less intuitive to predict but it is 1274 
easier and less complex to implement. 1275 

Which approach is better for upper-limb prosthetic 1276 
devices is still unclear. However, it is important to notice 1277 
that, even if Cartesian controls are more intuitive from an 1278 
external perspective, they might appear more complex 1279 
from an internal perspective, such as the one of a prosthesis 1280 
user, where the motion of the arm is more likely imagined 1281 
in terms of joint motions and not Cartesian ones. 1282 
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4.3. High-level control: from input signals to 1283 

movement intentions 1284 

This section summarizes the most assessed techniques 1285 
for ULP control. Considering the prostheses available on 1286 
the market but also the research activities, the main input 1287 
source exploited to control such devices is the EMG. On 1288 
the basis of the EMG type multiple control strategies can 1289 
be employed, and the last decades of studies on active 1290 
prostheses mainly focused on the control strategy design 1291 
and development. 1292 

The most common control strategy is based on dual site 1293 
control which consist in two electrodes placed in two 1294 
antagonist muscles (Scott and Parker, 1988). This solution 1295 
allows the control of the motor in two directions according 1296 
to the muscle amplitude of the selected electrodes. The 1297 
synthetized reference usually is proportional to the 1298 
amplitude of the muscle signal in term of speed or force. 1299 
With the introduction of multiple DoFs, a co-contraction 1300 
strategy has been implemented to switch between 1301 
controlled joints (Resnik et al., 2018). This allows the 1302 
control of a single DoF at a time using two electrodes as in 1303 
dual-site control. When both muscles are simultaneously 1304 
contracted the control signal switches the joint to be 1305 
controlled. This is a simple solution yet unnatural and 1306 
lacking intuitiveness. 1307 

Another diffused strategy to control prosthesis with 1308 
multiple active DoF is the finite state machine (FSM) 1309 
(Moon et al., 2005). Commercially available ULPs 1310 
implement this strategy to switch the position of the thumb 1311 
to reproduce different types of grasp (Ottobock, 2020b, 1312 
Ottobock, 2020a, Ossur, 2020b). For example, the 1313 
Michelangelo hand allows to switch the thumb position 1314 
when a signal of opening is triggered with the hand in a 1315 
fully opened configuration (Ottobock, 2020b). 1316 

With the aim of increasing the number of controlled 1317 
DoFs, many different methods were proposed, such as 1318 

muscle synergies, feature extraction (FE), multi-1319 
amplitude threshold control and machine learning 1320 
methods. Muscle synergies capture muscle activation 1321 
invariance during motor production and can be exploited 1322 
as control variables for ULP, with aim of obtaining a 1323 
biomimetic human-like behavior (d'Avella and Bizzi, 1324 
2005). The main idea is to extract motion primitives from 1325 
muscle synergies and combine them to generate complex 1326 
arm movements (Jiang et al., 2013, Liu et al., 2021a). Furui 1327 
et al. (2019) propose a biomimetic control based on muscle 1328 
synergies to extract motion primitives and combine them 1329 
to generate complex movements. Feature extraction 1330 
methods foresee the computation of some EMG-based 1331 
metrics that reflect movement intentions (Guo et al., 2015). 1332 
Multi-amplitude threshold methods work as dual-site 1333 
control, but they associate different amplitudes of the input 1334 
signal to different DoFs (Markovic et al., 2019). Although 1335 
robust, these techniques are poorly used because they lack 1336 
intuitiveness (Markovic et al., 2019). Machine learning 1337 
methods will be described in the following paragraph. 1338 

4.3.1. Machine Learning Algorithms 1339 
Figure 6 illustrates the main machine learning methods 1340 

employed for ULP control These methods generally solve 1341 
a pattern recognition problem in which, given the input 1342 
signal, an output movement have to be identified. 1343 

The first PR-based control schemes arose around the 1344 
second half of 1960s (Scheme and Englehart, 2011). In this 1345 
configuration, the acquired EMG signals are elaborated by 1346 
the controller to determine the action to be performed by 1347 
the prosthesis. The five pillars of this computation process 1348 
are: pre-processing, data segmentation, feature extraction, 1349 
classification, and post-processing. Each step is briefly 1350 
described in Table V. 1351 

 1352 
 1353 

Table V: Pattern recognition steps. 1354 

Pre-processing 
During this phase, the incoming signals are firstly filtered to delete the interferences, such as acquisition noise 

and artifacts. 

Data segmentation This process divides the signals into time-windows, overlapping or adjacent (Parajuli et al., 2019). 

Features extraction 

It reduces the signal information into a set of representative features in time domain (e.g., variance, zero crossing, 

etc.), frequency domain (e.g., mean frequency, spectral properties, etc.) or time-frequency domain (e.g., the 

wavelength transform, an alternative to the traditional Fourier Transform useful for noise-removal and data 

compression (Hartwell et al., 2018)), as described in Boostani and Moradi (2003). Importantly, this part can 

greatly affect the computational costs. 
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Classification 
This is the crucial step for the classifier, where the controllers recognize and classify the signals input information 

and generate an output for the actuators. 

Post-processing 

It has the main goal to reduce as much as possible the misclassification. An example is the majority vote strategy, 

in which the current output is calculated on the previously most recognized class. The majority vote scheme is 

used for eliminating spurious misclassifications caused by too short windows on which the most recurrent class 

is selected; it employs the previous classification results and evaluates the current output on the basis of the 

previously most recognized class (Englehart et al., 2003). 

1355 
EMG-based pattern recognition controllers are now 1356 

investigated by many groups and are even available in 1357 
commercial prostheses (COAPT, 2017, Ottobock, 2019, i-1358 
biomed, 2021). 1359 
The PR-based controllers apply linear and non-linear 1360 
methods to classify the EMG signal into a possible large 1361 
number of movements. The two main families of 1362 
classification methods used in this context are regression 1363 
(Hahne et al., 2014) and classification techniques 1364 
(Hudgins et al., 1993). While the former is usually simple 1365 
to implement and train, the latter are generally more 1366 
difficult to employ. The embedding of neural networks 1367 
(NN) in an ULP strictly depends on the structure of the 1368 
algorithm (number of layers and neurons), since complex 1369 
architecture requires high computational effort (Hagan et 1370 
al., 1997).  1371 

Statistical regression models usually produce good 1372 
results in terms of high accuracy percentages. However, the 1373 
out-of-laboratory results are particularly poor, because 1374 
these techniques are extremely sensitive to changes of the 1375 
input signals (Parajuli et al., 2019). Motivated by this issue, 1376 
in the last decade, many groups focused on classification-1377 
based techniques to implement more reliable decoders. 1378 
Importantly, training classifiers requires longer than 1379 
training linear models, however, the formers can achieve 1380 
better results during real-time execution. Different 1381 
classifiers have been exploited in ULP control such as 1382 
Support Vector Machine, Regularized Least Squares, 1383 

whereas the gold-standard is the Linear Discriminant 1384 
Analysis (Scheme and Englehart, 2011, Cloutier and Yang, 1385 
2013b, Di Domenico et al., 2021). Among NN, the most 1386 
common architecture is the Multi-Layer Perceptron 1387 
(MLP) (Amrani et al., 2017, Shahzaib and Shakil, 2018). 1388 
The MLP is a supervised ML technique, which exploits 1389 
labeled data to train the algorithm. It is characterized by 1390 
three types of layers: input, hidden and output layer. The 1391 
first one contains the same number of neurons as the input 1392 
signals (for example, features extracted from EMG 1393 
signals), the second stage can have one or more layers 1394 
where there are all the trainable neurons, while the last 1395 
layer comprises all the output nodes representing the 1396 
results (for example, classification likelihood of each class 1397 
of movement). Neurons of a certain layer are fully 1398 
connected to the neurons in the next layer via nonlinear 1399 
activation functions. However, as for the regression 1400 
algorithms, the performance results obtained in the lab are 1401 
not easily replicated in the real-life scenario. Moreover, the 1402 
complexity of the controlled prosthesis (e.g., the number of 1403 
DoFs) corresponds to a higher number of neurons in the 1404 
NN, with important consequence not only on the 1405 
computational burden, but also on the memory 1406 
consumption. 1407 

When considering an increase in the number of 1408 
controllable DoFs, current pattern recognition approaches 1409 
demonstrated poor performance (Piazza et al., 2020). As a 1410 
matter of fact, to enhance the classification rate (i.e., 1411 
number of correctly recognized movement) a greater 1412 
content of information should be handled. The higher the 1413 
amount of input data, the more complex would the ML 1414 
algorithm be.  1415 

Therefore, HD-sEMG can be exploited to increase the 1416 
amount of muscular information but this comes at the cost 1417 
of higher computational burden. It has been proven that the 1418 
use of this type of data can be helpful in increasing the 1419 
robustness against electrode shift (Pan et al., 2015), 1420 
allowing an improvement of the classification by 1421 
exploiting spatial images of the muscular contractions 1422 
(Geng et al., 2016), and for retrieving measures of motor 1423 
unit potentials, which can be difficult to assess without 1424 
invasive techniques (Merletti et al., 2008).  1425 

Figure 6: Division of machine learning approaches for ULP control. 
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Different techniques can be exploited to extract motor 1426 
units' activity from the HD-sEMGs. The main used 1427 
decomposition algorithm is the blind source separation 1428 
(with the Convolution Kernel Compensation described by 1429 
Holobar and Zazula (2007)) which seems to be the most 1430 
suitable since it does not make any prior assumptions on 1431 
the action potential shapes. The main problems related to 1432 
this technique is the lack of a useful output for the 1433 
prosthesis control, since the decomposition provides an 1434 
extraction of principal features of the EMG signals. On the 1435 
one hand, the algorithm returns reliable information about 1436 
neural activity, but, on the other hand, it increases the 1437 
computational burden required to the system. Indeed, the 1438 
Holobar algorithm has been used together with ML 1439 
algorithms to control robotic arm in real-time 1440 
(Barsakcioglu and Farina, 2018).  1441 

Another approach includes the exploitation of ML 1442 
algorithms where the input EMG signals are considered as 1443 
numeric values and the definition of the output is based on 1444 
a Black Box technique. Therefore, the mathematical tools 1445 
contained in the Black Box do not take into account the 1446 
biomechanics of the amputated limb and they are not 1447 
specific for prosthetic applications.  1448 

It is relevant to feed the ML algorithm via a set of EMG 1449 
signals (muscular patterns) specific for different prosthesis 1450 
movements in such a way that the classifier does not 1451 
misclassify. However, it is not always feasible to acquire 1452 
the same signals for each movement due to different 1453 
sources of errors (i.e., muscle fatigue, sweating, electrode 1454 
misalignment). Indeed, more complex classifiers 1455 
belonging to the Deep Learning (DL) field are exploited 1456 
to make the control more robust. A possible application can 1457 
be the use of Convolutional Neural Network (CNN), 1458 
which exploits dimensionality reduction to extract complex 1459 
features from the activation maps of the HD-sEMG without 1460 
dramatically increasing the computation time (Olsson et 1461 
al., 2019). This type of algorithm is also ideal for increasing 1462 
the number of DoFs (and therefore the number of classes 1463 
to be recognized) while keeping a quite high accuracy rate 1464 
(Hartwell et al., 2018). Moreover, Zhai et al. (2017) has 1465 
proved that the exploitation of CNN can help in removing 1466 
issues of daily life noise, updating its feature map to 1467 
include this new information, avoiding the need of 1468 
periodical readjustment. 1469 

Adaptive technique based on reinforcement learning 1470 
(Vasan and Pilarski, 2017, Wu et al., 2022) has been 1471 
recently investigated, with the aim of facilitating the 1472 
learning process of prosthetic use. This approach is 1473 
promising as it points towards the development of a 1474 
“human–prosthesis symbiosis in which human motor 1475 
control and intelligent prosthesis control function as one 1476 
system”, as defined by the group of Huang et al. (2021).  1477 

Other DL algorithms take into account time series with 1478 
feedback loops with prior hidden layers (Sun et al., 2021a). 1479 
This architecture allows storing the history of the input 1480 
signals by considering the information of previous time 1481 
instants, also resulting in performance improvements with 1482 
respect to simpler DL architectures (Amado Laezza, 2018). 1483 

Recently, novel DL strategies have also been proposed 1484 
for ULP: Recurrent Neural Networks process temporal 1485 
or sequential information; Temporal Convolutional 1486 
Networks take advantage of a one-dimensional 1487 
convolution layer running along the time dimension to 1488 
learn the time dependence of a given input signal (Li et al., 1489 
2021); Transformers are attention-based architectures 1490 
applied to HD-sEMG data (Montazerin et al., 2022, 1491 
Burrello et al., 2022). 1492 

Overall, the main problem related to ML applied to the 1493 
bionic field is the evident gap between the results observed 1494 
in a closed safe environment, such as a laboratory, and in 1495 
real daily life (Resnik, 2011). 1496 

4.3.2. Model-based approaches 1497 
To overcome the limitations of ML algorithms for ULP 1498 

control, some groups investigated the model-based 1499 
approach, which consists of an accurate description of the 1500 
muscles and bones involved in the movements starting 1501 
from the Hill model of muscle fiber (Winters, 1990). For 1502 
example, the neuromusculoskeletal model extracts from 1503 
the residual EMGs the activation dynamics of the limb (Pan 1504 
et al., 2018, Zhao et al., 2022). The activation dynamics 1505 
combined with the kinematics of the limb produces the 1506 
contraction dynamics. This consists of the modification of 1507 
fiber length involved in the motion along the specific DoFs. 1508 
In particular, Sartori et al. (2018) implemented a control 1509 
strategy based on the physiology and kinematics of a real 1510 
hand and tested it with an amputated subject performing 1511 
some complex grasping tasks. This approach needs a 1512 
calibration step to scale the model to the subject specific 1513 
activation EMGs. Results showed great stability over the 1514 
noise introduced by sensors or movements artifacts. 1515 
Moreover, the amputee was able to reproduce simultaneous 1516 
multi-DoF gestures. The limitation of this approach is its 1517 
susceptibility to electrode shift and fatigue condition that 1518 
affects the EMG acquisition. The real-life scenario is yet to 1519 
be tested, but preliminary results appear very promising 1520 
(Sartori et al., 2018). 1521 

4.3.3. Sensor/Data-fusion and other techniques 1522 
For ULP control using different input sources together 1523 

with or without EMG signals, other methods can be 1524 
adopted. In case of force myography, the same algorithms 1525 
used for EMG input can be applied. For example, machine 1526 
learning techniques can be used to analyze and synthetize 1527 
output starting from FMG input (Cho et al., 2016). The 1528 
adoption of other input signals different from EMG clearly 1529 
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requires the implementation of ad-hoc methods for their 1530 
processing. For example, voice control introduces audio 1531 
analysis method to detect and translate command into 1532 
prosthetic movements (Mainardi and Davalli, 2007, 1533 
Alkhafaf et al., 2020). Further, tongue control allows the 1534 
motion of the prosthesis using a wireless controller 1535 
resembling a dental retainer and providing the functionality 1536 
of a wireless joystick or keyboard (Johansen et al., 2016). 1537 

The high complexity of ULP control has led to the 1538 
development of sensor fusion approaches, in which input 1539 
signals of different nature are simultaneously collected and 1540 
then processed to estimate the intended movement more 1541 
reliably and accurately. 1542 

On low-density sEMG, we can find robust and semi-1543 
autonomous control solutions based on custom multi-1544 
amplitude algorithms, as those implemented on the 1545 
Michelangelo hand with CMAC control (Markovic et al., 1546 
2019, Mouchoux et al., 2021). The adoption of IMU 1547 
sensors may lead to further improvements, such as the 1548 
automatic adaptation to unexpected external factors, 1549 
including sweat, muscle fatigue, mental stress, electrode 1550 
re-positioning and weather conditions. The state-of-the-art 1551 
algorithms have to cope with these challenging issues. 1552 
Therefore, the combination of EMG and IMU as input to a 1553 
classifier could provide useful localization information of 1554 
the hand position, which could delete possible false 1555 
positives, actively improving the obtained accuracy 1556 
(Krasoulis et al., 2017, Krasoulis et al., 2019b). Moreover, 1557 
it has been observed that integrating EMG, IMU and 1558 
artificial vision sensors could benefit both the classifier 1559 
accuracy and the increment of available DoFs (Mouchoux 1560 
et al., 2021). Other promising research advancements 1561 
demonstrated that mixing EMG with FMG could lead to an 1562 
improved multi-DoFs control as proposed by (Nowak et 1563 
al., 2020). Similarly, Jiang et al. (2020) proposed a sensor 1564 
fusion approach among EMG and FMG. Moreover, by 1565 
fusing FMG and IMU, other interesting results were 1566 
presented by (Ferigo et al., 2017). In addition, other 1567 
research activities treated NIRS fused with EMG (Guo et 1568 
al., 2017b) and IMU respectively (Zhao et al., 2019). 1569 

In conclusion, a data fusion aims at compensating some 1570 
of the main limiting factors of single input approaches 1571 
(such as EMG-based or others) as these latter suffer from 1572 
artifacts, electrodes shift, etc. 1573 

4.4. Control strategies for the Sensory Feedback and 1574 

Closed-Loop approaches 1575 

Recent developments in the prosthetic field have 1576 
focused attention on sensory feedback restoration. In 1577 
particular, many groups began studying how to provide the 1578 
user with information about the interaction between the 1579 
prosthetic system and the physical world. This information 1580 
needs to be collected (Figure 5 E), processed (Figure 5 C, 1581 

green panel – layer 2) and encoded into control signals 1582 
(Figure 5 C, blue panel – layer 3) for the feedback system 1583 
(Figure 5 B, e.g., vibromotors, electrostimulation, etc.). 1584 

The control strategy implemented to encode this 1585 
information depends on the type of sensation to restore as, 1586 
for instance, tactile feedback (pressure, temperature, pain) 1587 
or proprioception feedback (gestures, joint movements). o 1588 
this aim, different solutions have been developed.  1589 

Mamidanna et al. (2021) focused their research activity 1590 
on the force feedback that the prosthesis applies to the 1591 
grasped objects by using vibromotors attached to the 1592 
forearm skin. To do that, an encoding scheme of the current 1593 
absorbed by the prosthetic motor was translated into 1594 
vibromotors amplitude. Other sensorized solutions have 1595 
been developed to directly translate the prosthesis 1596 
interaction to user sensation like artificial skin able to 1597 
translate the distribution of pressure and intensity to tactile 1598 
and pain sensations on users with invasive interfaces (Jiang 1599 
et al., 2019). Similarly, Markovic et al. (2019) 1600 
implemented a proprioceptive feedback translating 1601 
prosthesis movements into vibration orientation and shape 1602 
to be intuitively interpreted by users. 1603 

In addition to prosthetic feedback, some groups are 1604 
working on user feedback in terms of providing 1605 
information about how the prosthesis is controlled by 1606 
means of closed-loop approaches. For example, 1607 
Schweisfurth et al. (2016) have tested on amputees a ULP 1608 
system in which EMG input used to drive the prosthesis 1609 
was translated into intensity of vibromotors activation. In 1610 
this configuration, the amount of EMG activity detected is 1611 
directly proportional to prosthesis grasping strength and to 1612 
intensity of vibration amplitude. In another work, the 1613 
control commands generated by the user and translated into 1614 
joint angles were encoded as proprioceptive information 1615 
delivered through electrical stimulation (Garenfeld et al., 1616 
2020). This allowed user to understand if the intended 1617 
control command was correctly detected by the algorithms. 1618 

Similarly, Tecnalia developed a ULP system with 1619 
sensory feedback by merging into a unique device EMG 1620 
acquisition and electrical stimulation (Štrbac et al., 2016). 1621 
Although this solution significantly reduced the problem of 1622 
encumbrance, it still faces some issues mainly related to the 1623 
artifacts that the stimulation produces on the EMG signal 1624 
and that cannot be removed using standard signal 1625 
processing algorithms (Li et al., 2019). 1626 

As for decoding of movement intention from input 1627 
signals, the interpretation of feedback information needs a 1628 
calibration procedure aimed at familiarizing the user with 1629 
the ULP device. In this context, it is fundamental to guide 1630 
the user to: (i) produce the correct input signal to perform 1631 
the desired movement, and (ii) to intuitively convert the 1632 
feedback signal into useful information for motor planning. 1633 
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A user-centered approach can maximize and speed-up the 1634 
learning process, as detailed in next section. 1635 

5. User-Centered Solutions in Upper Limb 1636 

Prosthetics 1637 

As observed in previous sections, multiple efforts in 1638 
research and development offer heterogeneous 1639 
technological solutions to enable a proficient control of an 1640 
ULP device. However, selecting a sub-set of these 1641 
solutions is compulsory for implementing and validating 1642 
them. Accordingly, this section will discuss user-centered 1643 
solutions based on the technologies described in the 1644 
previous paragraphs, highlighting the opportunity of 1645 
overcoming a separation (often, an opposition) between 1646 
(for instance) user-centered features and technical ones, or 1647 
between ADL-related performance and biomimetic one. 1648 
Nevertheless, we decided to proceed in the selection of 1649 
each solution by pragmatically moving from one 1650 
perspective towards the other. 1651 

Fundamentally important criteria for performing such a 1652 
selection should come from the analysis of the prosthetic 1653 
user experience (Figure 5 F). Indeed, special attention 1654 
should be paid to the user needs in order to promote the 1655 
daily use of prosthetic devices, a prerequisite for checking 1656 
the validity of any technological solution presented in 1657 
previous sections.  1658 

In particular, the prosthetic technology acceptance 1659 
constitutes a dramatic issue in this domain. Overall, ULP 1660 
technology acceptance (Longfellow, 2014) is tied to 1661 
several interdependent functional factors related to ease of 1662 
use (sensory feedback, control), dexterity (motion 1663 
complexity, force output, actuation speed, manipulation), 1664 
body integration (anthropomorphism, autonomy, weight), 1665 
technology transfer (cost, reliability). Further factors 1666 
embrace several domains, namely clinical (age, level of 1667 
amputation, fitting timespan), cultural (education, social 1668 
conditions, living environment, country development), and 1669 
personal (psychological attitudes, subjective expectations, 1670 
occupation, activity, environment). 1671 

Low acceptance can contribute to the abandonment of a 1672 
prosthetic hand, erasing any chance of improvement in the 1673 
control skills of the users (Castellini, 2020). Thus, it is 1674 
important to promote an intrinsically motivated and 1675 
continuous ULP practice, which must be experienced by 1676 
the users as immediate and rewarding in order to achieve 1677 
high degrees of technology acceptance (Rodgers et al., 1678 
2019) and integration (Shaw et al., 2018). The users must 1679 
also feel engaged enough to surpass the impact of feeling 1680 
social stigma or the doubts on the functional impact of the 1681 
system on daily life. Intuitive patterns of system control  1682 
play a critical role in this context to facilitate a spontaneous 1683 
use of the system and to improve the user experience 1684 
(Krasoulis et al., 2019a). 1685 

Obviously, the absence of appropriate acceptance, 1686 
usability, and user engagement creates a barrier for the 1687 
introduction (and the further development) of any 1688 
technological improvement in prosthetics. 1689 

5.1. Towards User-Centered Upper Limb Prosthetics 1690 

In order to improve the ULP acceptance, different 1691 
approaches can be adopted, especially in terms of user 1692 
research (Figliolia et al., 2019). A review of Cordella et al. 1693 
(2016) provided a rich set of guidelines for enhancing the 1694 
prosthetic hand technology acceptance through the analysis 1695 
of the user requirements, considering literature and case 1696 
studies like Luchetti et al. (2015). Among these 1697 
requirements: the capability to accomplish basic grasping 1698 
actions during activities of daily living with minimal visuo-1699 
attentional focus, high dexterity, appropriate strength 1700 
control; biomimetic features of sensory feedback and 1701 
anthropomorphism; duration and reliability of the device 1702 
and its component; technical features with impact on 1703 
comfort like heat dissipation and motor noise reduction.  1704 

All features must be designed according to individual 1705 
preferences. These preferences can depend on 1706 
demographic factors, type and level of amputation, pain 1707 
symptoms, and type of prosthesis (e.g., body-powered or 1708 
myoelectric) (Biddiss and Chau, 2007, Biddiss et al., 2007, 1709 
Davis and Onge, 2017, Uellendahl, 2017, Smail et al., 1710 
2020, Kerver et al., 2020). The amputees’ preferences must 1711 
also be investigated to design virtual and augmented 1712 
environments for prosthetic use training (Garske et al., 1713 
2021b). If appropriately devised, game-like engaging 1714 
exercises can motivate the user to train, feeding the 1715 
prosthetic with consistent biosignals that efficiently 1716 
represent different types of grasps, an advantageous 1717 
condition for ML based control (Tabor et al., 2017). This 1718 
can possibly happen with a successful generalization if the 1719 
training is adequately designed with solutions like task 1720 
switching (Heerschop et al., 2021). Overall, the training 1721 
designers should focus not only on playfully engaging the 1722 
user to train the muscles, but also on accurately 1723 
representing prosthetic use tasks to enable the related skills 1724 
transfer (Garske et al., 2021a). Furthermore, the parameters 1725 
of meaningful and, possibly, ecological interactive settings 1726 
can be experimentally controlled by the clinician or the 1727 
researcher (Resnik et al., 2011, Bouwsema et al., 2014, 1728 
Paljic, 2017, Markovic et al., 2017, Nissler et al., 2019, 1729 
Phelan et al., 2021, Boschmann et al., 2021). In addition, 1730 
interactive settings can be adjusted to the individual needs 1731 
and reactions. To understand the individual needs in 1732 
prosthetic use (training and daily activities), the 1733 
improvement of user research methodologies themselves 1734 
becomes a priority to promote effective co-creation 1735 
frameworks. Recent works (Jones et al., 2021) described 1736 
surveys and workshops to investigate the point of view of 1737 
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amputees and all stakeholders (clinicians, academics, 1738 
experts and managers in industry and charity), observing a 1739 
gap between laboratories and the real life of prosthetic 1740 
users (whose issues are typically misrepresented by media 1741 
too). Interestingly, initiatives like the Cybathlon 1742 
competitions for assistive and prosthetic technology users 1743 
are also devised for overcoming such a gap (Riener, 2016). 1744 

The users’ involvement in iterative activities of design 1745 
and evaluation of products and of product services is highly 1746 
important (O’Sullivan et al., 2017).  Such activities must 1747 
be planned for checking and improving the usability of 1748 
prostheses as medical devices according to the 1749 
international standards (Pelayo et al., 2021) and for 1750 
estimating the impact of  user experience on the technology 1751 
acceptance (Longo, 2018, Lah et al., 2020). Obviously, 1752 
user-centered evaluation methodologies and metrics must 1753 
be adjusted to the specific case of ULPs (Resnik, 2011, 1754 
Zahabi et al., 2019), especially considering how their user 1755 
interface is not based just on buttons, plugs, and LEDS and 1756 
their behavior and feedback are eminently biomimetic in 1757 
hand-like manipulation tasks.  1758 

The functional resemblance of the ULP design to a real 1759 
hand is a wise strategy for promoting a positive interaction 1760 
between user and prosthesis. Such an approach (implicitly 1761 
and explicitly) aims at building artificial limbs that are 1762 
spontaneously used by the amputees as their own. Such a 1763 
“prosthetic ownership” experience is deeply investigated 1764 
within the domain of the embodiment research, crossing 1765 
disciplines like cognitive psychology and robotics 1766 
according to the roadmap in Beckerle et al. (2018). 1767 

The embodiment phenomenon can be constituted across 1768 
its components, i.e., self-location, ownership, and agency, 1769 
by the sensation that an artifact is integrated in one’s body 1770 
scheme (Kilteni et al., 2012, Maimon Mor and Makin, 1771 
2020, Toet et al., 2020). Overall, the technology 1772 
embodiment promotes intuitive control with improved user 1773 
experience and acceptance (Makin et al., 2017, Nelson et 1774 
al., 2020, Toet et al., 2020). About ULPs, the embodiment 1775 
improves: (i) movement control (Grechuta et al., 2017), (ii) 1776 
object discrimination and manipulation (Tan et al., 2014), 1777 
(iii) manual accuracy and sensitivity. Furthermore these 1778 
processes contribute to: (iv) the reduction of the phantom-1779 
limb pain (Page et al., 2018) and (v) the mitigation of the 1780 
risk of prosthesis abandonment (McDonnell et al., 1989, 1781 
Beckerle et al., 2019).  1782 

Obviously, we must ponder how to measure and to 1783 
stimulate the prosthetic embodiment. Overall, the 1784 
embodiment evaluation is typically entrusted to methods 1785 
(questionnaires, biosignal analysis, proprioceptive drift) 1786 
based on the Rubber Hand Illusion (RHI) studies 1787 
(Botvinick and Cohen, 1998, Tsakiris and Haggard, 2005, 1788 
Ehrsson et al., 2008, Romano et al., 2021). RHI can be also 1789 
implemented on its different versions - e.g., Virtual Hand 1790 

Illusion (Pyasik et al., 2020, Beckerle, 2021) and Robotic 1791 
Hand Illusion (Romano et al., 2015, Huynh et al., 2019). 1792 
However, these methodologies are still debated in 1793 
cognitive studies (Gallagher et al., 2021) which show the 1794 
complexity of the processes underlying the embodiment 1795 
itself. 1796 

Understanding such processes is required for designing 1797 
appropriate strategies to enhance the embodiment of an 1798 
artificial limb. First of all, it must be said that daily 1799 
prosthetic practice, individual characteristics (like the 1800 
cause of limb absence), and multisensory feedback 1801 
congruency play fundamental roles in this process, which 1802 
does not necessarily require cosmetic improvements or 1803 
specific control patterns (body-powered or myoelectric) 1804 
(Dornfeld et al., 2016, Engdahl et al., 2020b, Zbinden et al., 1805 
2021, Moore et al., 2021). Embodiment training strategies 1806 
can also be explored in virtual and augmented settings 1807 
(Barresi et al., 2021), even if the generalization of their 1808 
effects to actual prostheses must be investigated. 1809 
Importantly, establishing optimal techniques to promote 1810 
the embodiment of an artificial limb is a way to fully 1811 
engage the user in exploring the prosthetic device and its 1812 
potential, further improving its embodiment too within a 1813 
virtuous circle.  1814 

However, it is necessary to consider what technological 1815 
challenges must be faced for achieving a truly 1816 
“biomimetic” experience as the prosthetic embodiment to 1817 
improve the use and the acceptance of an artificial limb.  1818 

5.2. Promoting Prosthetic Use and Acceptance 1819 

through Improved Mechatronics and Control 1820 

To improve ULPs, two main classes of approaches can 1821 
be taken: one focusing on mechatronic development and 1822 
the other on control implementation. From the mechatronic 1823 
side we suggest optimized actuation, anthropomorphism, 1824 
human-like grasping behaviour, and biomimetic 1825 
performance as key factors to take into account for 1826 
promoting ULP use and acceptance, while from the control 1827 
perspective we identify robust control strategies and use of 1828 
smart prostheses. Moreover, we believe the inclusion of 1829 
multimodal sensory feedback a fundamental prerequisite of 1830 
next generation prostheses. Each approach contributes to 1831 
approximate the prosthetic user experience and the user-1832 
prosthesis system performance to, respectively, the 1833 
sensations provided by a natural limb and its spontaneous 1834 
and effective usage. However, all approaches face issues 1835 
that must be solved in order to obtain a robustly controlled 1836 
prosthetic system easily accepted by the user. These 1837 
approaches thus constitute research challenges, 1838 
summarized in Table VI with their actual potential 1839 
solutions. 1840 
 1841 

Table VI: Current issues affecting ULP mechatronics and control. 1842 
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 Challenge Description Current and Possible Solutions 

M
E

C
H

A
T

R
O

N
IC

S
 

Optimized Actuation 

The actuation architecture (i.e., the number of actuators 

employed) influences the overall performance of the device 

in terms of: 

• amount of possible gestures/configurations 

(therefore controllability and dexterity); 

• contribution to ULP weight; 

• grasping strength; 

• acoustic noise during actuation (i.e., reduction 

stage). 

There are two possible strategies to optimize the actuation of 

ULPs. 

From a qualitative point of view, a fully actuated system might 

lead to independent control of each single joint thus allowing to 

replicate the full amount of gestures of a real hand. However, this 

solution is typically characterized by a heavier and bulkier or 

poorly performing system. Moreover, this configuration prevents 

the use of power motors to generate human-like grasping 

strength. 

On the other hand, an underactuated device might guarantee 

compactness, light weightiness and the possibility to achieve 

more efficient actuation and therefore higher performance, at the 

cost of passive uncontrolled degrees of freedom. 

Both actuation solutions are still affected by acoustic noise during 

prosthetic movements and this constitutes room for improvement 

for future development. 

Anthropomorphism 

Anthropomorphism also represents a key design feature for 

an ULP. In fact, users are more prone to adopt and utilize 

anthropomorphic devices that anatomically and functionally 

resemble their missing limb as much as possible (Varol et al., 

2014). 

In two useful reviews on mechanical and anthropomorphic 

aspects of prosthetic hands, Belter and colleagues proposed a list 

of guidelines to achieve, by mechanical and mechatronic means, 

the desired hand anthropomorphism in terms of size, weight, 

shape and kinematic capabilities (Belter and Dollar, 2011, Belter 

et al., 2013).  

The group of Metta proposed a systematic approach to 

benchmark different robotic and prosthetic hands in terms of 

shape, feature and performance, observing a continuous need for 

weight, payload and generic grasps improvement while 

maintaining an anthropomorphic appearance (Vazhapilli 

Sureshbabu et al., 2019). 

However, it should be mentioned that a minority of ULP users do 

not recognize anthropomorphism as priority, focusing their needs 

on functionality. In some cases, the ULP is deliberately 

unconventional and worn as a fashion gadget or stylized wearable 

art pieces (De Oliveira Barata, 2021).  

Human-like grasping behavior 

Human-like grasping behavior represents the aesthetic 

capability of the ULP to synergistically operate and adapt its 

configuration and to robustly perform different sets of 

grasping tasks.  

Underactuated solutions greatly simplify the accomplishment of 

this due to their intrinsic capability of conforming to the object to 

be manipulated during grasp (Catalano et al., 2014, Weiner et al., 

2018, Laffranchi et al., 2020). On the other hand, in systems with 
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such architecture, human-like behavior is limited exclusively to 

the grasping function. 

Biomimetic performance 

The biomimetic performance is intended as the capacity of 

reaching the desired biomechanical force and speed 

requirements in the different activities of daily living.  

Achieving the force and speed of the biological hand in an 

anthropomorphic prosthesis is an extremely challenging task. 

High integration density can be facilitated by adopting 

mechatronic architectures with high efficiency. This can be 

achieved by using once again underactuation, which centralizes 

the power source (motor) and minimizes the number of 

transmission components which dissipate mechanical power 

(Laffranchi et al., 2020). 

C
O

N
T

R
O

L
 

Robust Control strategies 

The control strategy is a fundamental element to provide the 

ability of simultaneous actuation of multiple joints and to 

improve the activities of daily living (ADLs) of the amputees. 

It is strongly linked to the onboard mechatronics, and in 

particular the number of active joints plays an important role.  

In the case of fully actuated systems, the relationship between 

inputs and outputs is complex and unintuitive, due to the 

limited amount of input information, for example carried 

from the superficial EMG signal (i.e. extrinsic muscles, 

residual muscular activity) (Farina et al., 2004). Typically, 

control strategies on commercial devices are based on 

buttons (Ottobock, 2020a) or smartphone apps (Ossur, 

2020a) to respectively configure the hand grasps and 

gestures.  

Considering an underactuated system, the relation between 

inputs and outputs for trans-radial case is typically based on 

the real residual muscle of the forearm. In this case, the 

research is focused on finding a connection between EMG 

and movements (Marinelli et al., 2020, Nguyen et al., 2021). 

Considering a trans-humeral or interscapular/ shoulder 

disarticulation, the loss of muscles related to the actuation of 

hand and wrists increases the complexity of relation between 

inputs and outputs, resulting in a less intuitive control. 

Innovative solutions based on ML algorithms are routinely used 

for trans-radial amputation and have been proposed not only for 

underactuated but also for fully actuated ULPs to translate the 

user intentions into single finger movements (Nguyen et al., 

2021). These methods are intuitive and functional, but they are 

still not widespread in the market due to their limited robustness 

over time, requiring frequent recalibration of the entire system 

(Marinelli et al., 2020). Possible solutions in this regard are 

constituted by maximizing the user experience during training 

(Del Vecchio et al., 2021), or by incremental learning strategies 

for device control that allows continual adaptation to the changes 

in the input signals (Gijsberts et al., 2014). 

For trans-humeral amputation, the target muscle reinnervation 

(TMR) is the most promising solution for simultaneous control 

of a multi-DoF prosthetic system (Mereu et al., 2021). Also in 

this case, ML algorithms represent an interesting approach to 

relate the muscular activity of the reinnervated limb into more 

intuitive and physiological movements. 

Smart prostheses 

Current prostheses lack of the possibility to automatically 

process an incoming stream of information, differently from 

the human hand that is equipped whit automatic behavior in 

response to certain stimuli. For example, our hand 

immediately reacts when touching a burning heat source, 

even before we consciously perceive the thermal sensation. 

This kind of features can be a precious improvement of the 

current solutions in shared-control (Cipriani et al., 2008, 

Yang and Liu, 2021).  

It would be desirable to have a prosthesis able to take decisions 

in those situations that require an immediate response. This 

would free the user from the need of constantly monitoring 

prosthesis status, limiting the damaging events and allowing the 

user to operate the device only for voluntary motor production, 

consequently reducing the mental effort. 

Equipping the prosthesis with specific sensors and related 

processing can enable shared control solutions aimed at 

completing the action-perception coupling with the missing 

contribute of sensory information. We define this solution as 
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feedback-to-prosthesis. This can be obtained by sensors 

embedded on the prosthesis, which can measure the interactions 

between the device and the external world. This can be done 

exploiting different measurements ranging from the motor 

current (Ajoudani et al., 2013, Laffranchi et al., 2020, Deng et al., 

2020), to tactile/pressure sensors (Tomo et al., 2018), Inertial 

measurement units (IMU) to understand the actual pose of the 

prosthesis (Krasoulis et al., 2019b), or artificial vision 

(Mouchoux et al., 2021) to understand which is the shape and 

orientation of the nearby objects. 

F
E

E
D

B
A

C
K

 

Multimodal sensory feedback 

The sensory feedback, namely the possibility to restore the 

feel of interaction with the external world, represents the last 

key element of ULPs. Current ULP systems rely solely on 

vision as feedback information. However, we cannot 

consider just visual (unimodal) feedback to catch the 

complexity of the human-machine-environment interactions. 

Multimodal sensory feedback is necessary to empower the 

prosthetic control training and to trigger the embodiment 

processes. 

Many groups are now exploring novel solution, both invasive and 

non-invasive, to provide sensory information about prosthetic 

movement. Regardless the specific methodology used, it is 

fundamental to achieve an intuitive or easily learnable strategy to 

associate the perceived feeling with a specific posture of the 

controlled device. 

The feedback-to-user can also be adjusted to the user through 

intelligent solutions, for instance through EMG biofeedback 

strategies based on the individual monitoring of the physiological 

input (Dosen et al., 2015).  

1843 
These technological approaches constitute the premise 1844 

for many kinds of breakthrough in prosthetics. Obviously, 1845 
we need to consider that tradeoff calculations must be made 1846 
for selecting the most rational set of features that can be 1847 
combined for providing a satisfying (without creating 1848 
excessive expectations in users and any stakeholder) and 1849 
(also economically) sustainable design of the devices. 1850 
However, the features we described, and their user-1851 
centered synergies, can make us foresee the perspectives 1852 
on bionic hands innovation that will be discussed in next 1853 
section. 1854 

6. Perspectives on Tomorrow’s Upper Limb 1855 

Prosthetics 1856 

By analyzing the state-of-the-art techniques for ULP 1857 
input (section 3.1) and feedback (section 3.2) signals, it 1858 
emerges that there exist two parallel directions for future 1859 
development, namely the non-invasive and invasive 1860 
approaches. This is due to different reasons: first of all, 1861 
because non-invasive solutions may provide the amputees 1862 
with a plug and play device ready to be used for ADLs, 1863 
while invasive solutions still need to overcome 1864 
technological barriers before they can be routinely adopted 1865 
by the majority of amputee population. Moreover, the 1866 
specific choice of non-invasive vs invasive strategy is 1867 
highly dependent on the level of amputation. For example, 1868 
for trans-humeral amputees, TMR represents the most 1869 
promising opportunity for restoration of lost functionality, 1870 

which could not be achieved with non-invasive 1871 
approaches. In the following, we describe possible 1872 
direction for future prosthetics. In particular, for non-1873 
invasive solution we suggest the use of multiple input 1874 
sources and of sensory feedback. For invasive solution, we 1875 
recommend strategies promoting a direct translation of user 1876 
intentions into prosthetic movements. These directions are 1877 
also outlined in Table VII. 1878 

6.1. Short-term non-invasive solutions 1879 

The most widespread technique for non-invasive control 1880 
is based on sEMG. This technique has lots of advantages, 1881 
such as low cost, direct correlation between muscle 1882 
activation and movements, and intuitive control, as 1883 
described in sections 3.1.1.1.Surface EMG and 4.3. 1884 
Nevertheless, EMG-based systems lack of robustness, due 1885 
to EMG susceptibility to artifacts of biological nature 1886 
(sweating, hair, muscle fatigue), instrumental source 1887 
(electromagnetic disturbances), intrinsic to the device 1888 
(movement artifacts, electrode shift, variations in 1889 
contraction depending on the orientation of the arm), or 1890 
intrinsic to the control algorithm (optimization of the 1891 
classifier). 1892 

For this reason, there is ample room for improvement in 1893 
non-invasive approaches for ULP control. One research 1894 
direction points towards the use of sensors fusion 1895 
techniques, in which multiple input data is taken into 1896 
account to estimate the movement intentions, as described 1897 
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in section 4.3.3. However, the use of great number of 1898 
sensors may be impractical for creating an embedded 1899 
system for everyday applications. Future ULP should be 1900 
equipped with multi-modal control based on minimal 1901 
number of sensors (Jiang et al., 2012, Di Domenico et al., 1902 
2021). Moreover, recent studies are investigating the 1903 
miniature technology to limit the encumbrance within the 1904 
socket (Marinelli et al., 2021). 1905 

With the aim of improving ULP control, we pose that a 1906 
fundamental element is the feedback. This will allow a 1907 
closed-loop interaction between user and prosthesis, a 1908 
essential prerequisite for promoting the integration of the 1909 
prosthesis into the body scheme and for facilitating the 1910 
controllability of the entire system. In this direction, many 1911 
studies have pointed out the usefulness of vibrotactile 1912 
stimulation for providing sensory feedback information 1913 
(Sensinger and Dosen, 2020). This technique is cheap, 1914 
easily integrated into a socket, and its modulation in 1915 

frequency and intensity allows to provide various 1916 
information. 1917 

In the last years, wearable technology has largely 1918 
expanded in many fields, influencing also prosthetics. For 1919 
example, the CTRL Labs have realized a wearable 1920 
wristband, which reads EMG signals and translates them 1921 
into finger movements (Melcer et al., 2018), later improved 1922 
by the Facebook Reality Labs by means of advanced ML 1923 
algorithms (Basu, 2021). This technology could be 1924 
exploited for prosthetic applications with a strong impact 1925 
for ADLs usage. 1926 

Another promising approach consists in providing 1927 
sensory information by stretching the skin of the stump. 1928 
This can be done with a wearable haptic device producing 1929 
rotational skin stretch according to the movement of the 1930 
controlled device (Kayhan et al., 2018, Battaglia et al., 1931 
2019).1932 

Table VII: Perspectives on Tomorrow’s Upper Limb Prosthetics 1933 

Future 

perspectives 
Short-term non-invasive solutions Long-term invasive solutions 

Increase of input 

sources 

Multiple input data to estimate the movement 

intentions; data fusion. 

Increase the number of myoelectric input sites; 

neuroprosthetics. 

Restoration of 

sensory feedback 

Build artificial feedback, i.e., proprioception and 

tactile sensations by use of vibrotactile feedback 

or skin stretching. 

Restore natural sensation, i.e., proprioception (by 

kinesthetic illusion), spatial sensation and phantom limb 

cortical representation (by refer touch strategies). 

Closed-loop 
Implementation of a bidirectional communication between user and prosthesis to restore a link between motor 

and sensory counterparts. 

User-prosthesis 

co-adaptation 

Promote learning with engaging/immersive training and rehabilitation protocols (from user to prosthesis). 

Adaptive control, advanced PR algorithms (from prosthesis to user). 

Co-adaptive feedback (feedback-to-user and feedback-to-prosthesis). 

Miniaturization Miniature technology to limit the encumbrance within the socket. 

Modular 

architecture 

Modular prosthetic system enabling the progressive replacement of the non-invasive input and feedback 

sources with implanted ones. 

Standardization of 

amputation and 

surgery 

procedures 

Standardization of level of amputation to help designing sockets that are simultaneously comfortable, 

anthropomorphic, and spacious (to integrate the circuitry and the power system). 

- Chronic and reliable implants. 

1934 
These examples show that innovative ULP solutions can 1935 

be adopted for restoring lost functionality in the short-term 1936 
using non-invasive approaches. 1937 

6.2. Long-term invasive solutions 1938 

The great advantage of invasive approaches is a direct 1939 
bidirectional contact with the nervous system. This comes 1940 

at the cost of several issue related to the surgical procedure. 1941 
Nevertheless, there are some promising approaches whose 1942 
invasiveness drawbacks are counterbalanced by 1943 
considerable improvements in device functionality, 1944 
usability, and embodiment. 1945 
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Moreover, although still far from clinical usage due to 1946 
technological barriers, brain-based approaches seem a 1947 
promising solution for prostheses of the future. 1948 

6.2.1. Peripheral bionics implants 1949 
Among the invasive approaches, surgical procedures 1950 

aimed at augmenting the signal containing the motor 1951 
commands have gained popularity in the last decades. 1952 
Indeed, TMR is now routinely adopted in case of trans-1953 
humeral amputation, and it allows to increase the number 1954 
of myoelectric input sites, which can be exploited for 1955 
multi-DoFs control. Differently from invasive procedures 1956 
for electrodes implantation, TMR is permanent, turning the 1957 
reinnervated muscles into natural bioamplifiers of motor 1958 
commands. It is also adopted for phantom limb pain 1959 
reduction (Mereu et al., 2021). 1960 

Similarly, the more recent RNPI represents another 1961 
promising technique for bioamplification of motor signals 1962 
and its successful demonstration in experimental trials 1963 
encourages their potential adoption in clinical practice (Vu 1964 
et al., 2020b). 1965 

As for delivery of feedback information, invasive 1966 
approaches represent the more intuitive and natural 1967 
solution towards the retrieval of sensations, as 1968 
demonstrated in (Osborn et al., 2018, Nguyen et al., 2021). 1969 
However, the main limitation towards the diffusion of these 1970 
techniques is represented by their invasiveness, i.e., poor 1971 
compatibility of electrodes, risk of infection due to external 1972 
cables, scar tissue formation on the nerve, etc. 1973 

6.2.2. Neuroprostheses 1974 
Ideally, a prosthetic limb should be a perfect replication 1975 

of the natural limb, both in terms of control and perception, 1976 
such as Luke Skywalker’s arm in the Star Wars saga. In 1977 
this scenario, control signals should directly derive from 1978 
the brain and communicate the intended movement to the 1979 
robotic device, while sensory information should be 1980 
encoded into stimulation patterns delivered to the brain. 1981 
The field of Neuroprosthetics, among other things, aims at 1982 
addressing these fascinating goals and in the last 50 years 1983 
several progresses have been made, indicating that these 1984 
visionary scenarios might one day become true.  1985 

Fetz (1969) demonstrated that monkeys could 1986 
voluntarily modulate the firing rates of neurons in the 1987 
primary motor cortex, in the absence of movement. At the 1988 
same time, Humphrey et al. (1970) were able to predict arm 1989 
displacement from the activity recorded from small 1990 
populations of neurons in the motor cortex. These exciting 1991 
and pioneering works thus proved the possibility of 1992 
controlling artificial devices with the mind and eventually 1993 
led to a rapid flourishing of investigations aimed at 1994 
interfacing the brain with machines. These studies 1995 
culminated with the first demonstration by the group of 1996 
Nicolelis, of a robotic arm controlled with signals produced 1997 

by an ensemble of neurons recorded from the motor cortex 1998 
of a rat (Chapin et al., 1999). At the beginning of this 1999 
century, brain-machine interfaces (BMIs) were thus born 2000 
and scientists were therefore hoping that in few decades, 2001 
fully functional bionic limbs would have been routinely 2002 
adopted by amputees and paralyzed individuals (Nicolelis 2003 
and Chapin, 2002). Sadly, this is not at all how the story 2004 
ended. Indeed, more than 20 years after the first 2005 
demonstrations of brain-controlled devices, we still do not 2006 
have the technology nor the computational capabilities to 2007 
effectively control artificial devices with cortical brain 2008 
signals.  2009 

However, in the last few years, some groups have 2010 
presented promising examples of paralyzed individuals 2011 
with neural implants in the motor and premotor cortices 2012 
controlling artificial limbs for several months/year, while 2013 
other groups worked on non-invasive applications on 2014 
neurological populations, as detailed in section 3.1.1.3. 2015 
Although the target population of these studies is mostly 2016 
composed by stroke or paralyzed patients, exploitation of 2017 
results for prosthetics applications clearly emerges, i.e., the 2018 
possibility to perform device control by reliably and timely 2019 
accessing to the subject’s motor intentions. These 2020 
examples indeed demonstrate that groundwork for brain 2021 
control of motor prosthetics has been laid. However, it has 2022 
been limited to the lab and mostly addressing paralyzed 2023 
patients, for whom there are currently not viable solutions 2024 
to enable dexterous device control as for amputees, whose 2025 
residual motor functions can be successfully leveraged for 2026 
prosthetic control signals. 2027 

In sum, brain control approaches are still far from 2028 
clinical and personal applications, not only because of the 2029 
poor controllability that they exert over the prosthetic 2030 
device, but mainly because of the cumbersome apparatus 2031 
they need for their collection and processing. However, the 2032 
dream of brain-controlled devices has spread outside the 2033 
academic labs and has contaminated also visionary 2034 
entrepreneurs from venture capitals and tech giants, with 2035 
the consequent birth of some important companies 2036 
interested in brain-interfacing technology, such as 2037 
Neuralink (Musk, 2021), Facebook Reality Labs 2038 
(Zuckerberg, 2021), and Google DeepMind (Deepmind, 2039 
2021). In conclusion, cutting edge research that we are 2040 
currently witnessing both in academic and non-academic 2041 
contexts may thus soon push the envelope of 2042 
Neuroprosthetics up to its diffusion in our everyday life, 2043 
with important consequences also for amputees. 2044 

6.3. User-Prosthesis Co-Adaptation 2045 

Designing user-centered prosthetic devices and user-2046 
centered prosthetic trainings is necessary to guide an 2047 
appropriate learning of the system, as explained in section 2048 
5.1. Indeed, motivating the user to exercise and to get 2049 
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practice in using the bionic hand constitute the main way 2050 
to improve the prosthetic control. Such approach can 2051 
facilitate and accelerate the co-adaptation between humans 2052 
and machines, as described in the following. 2053 

Humans implicitly learn how to control devices, even if 2054 
initially they must adopt explicit strategies. Indeed, it must 2055 
be underlined that ULP control training is an important step 2056 
of rehabilitation. In particular, the ability of generating 2057 
distinct muscle contractions increase with time and 2058 
exercise. The use of functional tasks, like Target 2059 
Achievement Test (Simon et al., 2011) or activities of daily 2060 
living, allows users to learn how to produce repeatable 2061 
patterns of contraction to better control the prosthesis. 2062 
However, the learning process can be long and sometimes 2063 
stressful, as described in (Zecca et al., 2002). The 2064 
development of more engaging training tasks and of a more 2065 
immersive rehabilitation protocol could promote the 2066 
learning process by increasing the engagement of the users 2067 
(Roche et al., 2019). In this context, user-centered design 2068 
can truly make a difference in the effectiveness of a training 2069 
procedure, as better discuss in paragraph 5. 2070 

While humans have to learn ULP control, machines 2071 
need to be trained with growing datasets for classifying the 2072 
signals in terms of user’s commands. For effective ULP 2073 
control, PR-based algorithms currently represent the most 2074 
effective solution, as they are able to recognize the human 2075 
intentions on the basis of training data. An important aspect 2076 
that can affect the accuracy of the classifiers is thus the way 2077 
in which these data are collected. Indeed, the prosthesis 2078 
control might not ensure good performances under 2079 
different arm positions and several studies have been 2080 
conducted on the evaluation of the impact of upper limb 2081 
position during the data acquisition on classifier 2082 
performance (Geng et al., 2017). For example, as far as 2083 
EMG is concerned, muscle activation is not completely the 2084 
same when performing a given movement under different 2085 
elbow and shoulder configurations. The signals on which 2086 
the algorithm is trained are thus different from the ones 2087 
obtained in a daily living scenario. Indeed, the 2088 
classification performances strictly depend on the labeled 2089 
data assigned to the specific movement. Moreover, because 2090 
the method used for the acquisition strongly affects the 2091 
classification accuracy, it is important to collect data under 2092 
the same conditions of ADLs, i.e. by wearing the 2093 
prosthesis, in order to have the training signals as similar 2094 
as possible to the online ones. Cipriani et al. (2011) 2095 
highlighted that indeed EMG signals do not carry just 2096 
information about the desired arm movement, but they also 2097 
contain the muscular contribution to sustain the prosthesis 2098 
weight. This aspect has to be taken into account in order to 2099 
avoid misclassification and unwanted prosthetic 2100 
movements, because as soon as the signals change, the 2101 
classifier is no longer able to behave properly. 2102 

To cope with these problems, a possible solution 2103 
consists in the adaptation of the control algorithm while 2104 
using the prosthesis. This is of paramount importance, 2105 
since the biggest issue of ULP control lies in the variability 2106 
of the sEMG input signal due to electrodes shift, muscle 2107 
fatigue, sweat, etc. ML algorithms are highly performing 2108 
after training, but deterioration of the input signal or 2109 
subsequent doffing/donning of the prosthesis can lead to 2110 
misclassifications. For these reasons, amputees must 2111 
regularly perform the training from scratch of the 2112 
algorithm, which typically takes long time (Phinyomark 2113 
and Scheme, 2018). To address this issue, the incremental 2114 
learning focuses on the adjustment of internal weights of 2115 
the model without the need of re-training- (Gijsberts et al., 2116 
2014). In this way the training data is continuously 2117 
updated, and the control system is capable to cope with 2118 
possible sources of errors (i.e., unwanted changes in input 2119 
signals). 2120 

A promising approach to innovate the ULP field is the 2121 
adoption of co-adaptive features through bidirectional 2122 
human-machine interfaces (De Santis, 2021). In this case, 2123 
the human and the machine reciprocally adjust their 2124 
activity in order to improve their task-specific joint 2125 
performance as a human-machine system. Co-adaptive 2126 
features constitute a convergence of user activity and 2127 
machine activity (including feedback towards the user and 2128 
the machine), i.e., an “agreement” between human and 2129 
machine on the biosignals produced by the first and on their 2130 
interpretation performed by the second. Co-adaptation can 2131 
modulate both (human and machine) training processes 2132 
within the same framework (DiGiovanna et al., 2008, 2133 
Zbyszynski et al., 2019, Yeung et al., 2019, Igual Bañó, 2134 
2021). This is performed through the feedback of human 2135 
and machine on each other, further supporting the 2136 
opportunity of designing feedback-to-user and feedback-2137 
to-prosthesis. Such a research effort requires innovative 2138 
approaches to training processes as interactions between 2139 
human and machine. In the next we present two building 2140 
blocks for a user-prosthesis co-adaptation: closed-loop 2141 
sensorimotor systems and interactive training. 2142 

6.3.1. Toward closed-loop sensorimotor prosthesis 2143 
While great progress has been made in recognizing 2144 

human motor intention and translating it into prosthesis 2145 
joint movements, sensory feedback restoration is one of the 2146 
many challenges that many research groups are still 2147 
addressing (see section 3.2) (Farina et al., 2021). Obtaining 2148 
a reliable and efficient way to artificially convey sensory 2149 
information to prosthetic users would allow to develop 2150 
smart devices able to truly mimic the behavior of human 2151 
limbs, establishing the premise for a true co-adaptation 2152 
between user and machine. 2153 

However, such a sensorimotor prosthesis would still 2154 
need to face technological barriers for its development and 2155 
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use in ADLs. For example, all the circuitry and components 2156 
needed to operate the device (i.e., acquire signals for motor 2157 
intention decoding and translate sensory information into 2158 
stimulation patterns) should fit into the socket space. One 2159 
possible solution to obtain an embedded device is to rely 2160 
on a hybrid approach. For example, a non-invasive 2161 
sensorimotor prosthesis could use EMG signals to extract 2162 
motor intentions and vibrotactile feedback to deliver 2163 
sensory information. This configuration requires the 2164 
embedding of an ADC amplifier to acquire EMG data, and 2165 
motor drivers to control vibromotors. All these components 2166 
could be placed on the same board, overcoming the 2167 
problem of electrical coupling. 2168 

However, although this design is very articulated, we 2169 
believe that this is not the real end point for a fully-2170 
integrated prosthetic system capable of maximizing patient 2171 
acceptance. It simply turns out to be a developmental test 2172 
bench for what will be the next generation of prostheses on 2173 
a longer temporal horizon, namely neuroprostheses. By 2174 
creating a modular architecture, in fact, it will be possible 2175 
to maintain the physical prosthetic system and to 2176 
progressively replace the non-invasive input and feedback 2177 
sources with implanted ones, namely: (i) the standard 2178 
sensors for surface electromyography replaced by an intra 2179 
neural implant; (ii) the hardware for feedback delivery 2180 
replaced by a chronic implant; and (iii) the hardware on 2181 
which run the control strategies replaced by a smaller and 2182 
more performing dedicated hardware able to process 2183 
neuromorphic algorithms (e.g., ASIC). 2184 

The realization of bidirectional ULP systems able to 2185 
restore both sensory and motor functions will open new 2186 
research scenario for embodiment process and neuroplastic 2187 
phenomena. Indeed, about neuroplasticity in amputees 2188 
using bionic hands as prostheses, Di Pino et al. (2009) 2189 
highlighted how the reorganization of the central nervous 2190 
system after the usage of the device can be the source of 2191 
indices of prosthetic effectiveness in functional recovery. 2192 
Furthermore, the effects of the device on the central 2193 
nervous system can make the prosthesis work as a 2194 
neurorehabilitative solution mitigating aberrant plasticity 2195 
phenomena and facilitating positive neural changes. 2196 
Finally, novel human-machine interfaces should consider 2197 
neuroplasticity principles for restoring the efferences and 2198 
afferences of the central nervous system with the lost limb 2199 
in order to exploit them for connecting a prosthesis.  2200 

The processes described above are an excellent 2201 
expression of the technologies that can lead to a user-2202 
prosthesis co-adaptation. They care for providing the 2203 
human with sensations matching the motor activity and the 2204 
events occurring on or for the artificial limb, which needs 2205 
to learn how to offer appropriate feedback to the user. Next 2206 
paragraphs will describe how this can happen.  2207 

6.3.2. Innovation in Interactive Training 2208 

Establishing interactions between user and prosthesis 2209 
requires a human-centered design of the technology 2210 
“behavior”. Since the term co-adaptation implies that two 2211 
or more entities are adjusting to each other, possibly 2212 
learning through the interaction itself for reaching a goal 2213 
that can be the improvement of the human-machine 2214 
performance. The attention to the interactive aspects of 2215 
learning and training was recommended in Castellini et al. 2216 
(2016). In this context, intriguing opportunities come from 2217 
theoretical frameworks in psychology like the 2218 
constructivism to define and improve the paradigm of 2219 
interactive ML in prosthetic training and control (Nowak et 2220 
al., 2018, Bettoni and Castellini, 2021). Accordingly, a 2221 
myocontrol system should learn and forget on demand, 2222 
under request of each one of the components of the human-2223 
machine system. For instance, the users can label the 2224 
violation of their expectations on the prosthesis 2225 
interpretation of their commands, starting a novel data 2226 
collection cycle. Additionally, the machine itself can 2227 
highlight the need of collecting further data (especially 2228 
from correct execution of a training exercise) through 2229 
acoustic feedback to the user. Through this, the myocontrol 2230 
models are updated. 2231 

Moreover, certain biosignal features could guide an 2232 
automated labeling of the violation of the observer’s 2233 
expectations without any explicit command, as in 2234 
neuroprosthetic interfaces using Error-related Potentials 2235 
(Chavarriaga et al., 2014). Such an advance (still explored 2236 
in laboratories) could enable self-calibrating intention 2237 
detection processes, leading to a true (and fruitful) human-2238 
machine symbiosis. Such symbiosis is based on the online 2239 
processing of users’ neurocognitive states. The machine 2240 
interprets such states for implicitly adjusting (without 2241 
direct and declarative commands of the user) its activity to 2242 
the individual current capabilities and preferences. 2243 
Exploiting this process as a further example of  the closed-2244 
loop previously envisioned, the human-machine system 2245 
will become a fully functional unit able to enact manual 2246 
and bimanual biomimetic behaviors (Chavarriaga et al., 2247 
2014). 2248 

However, when the practical applications of this kind of 2249 
implicit learning will move outside the laboratories, its 2250 
advantages should be evaluated in real-world cases of 2251 
prosthetic learning. Currently, a human-machine explicit 2252 
communication component in initial co-training sessions 2253 
can highlight an active role of the users with positive 2254 
impact on their self-efficacy and engagement. In this 2255 
context, biofeedback strategies (self-regulation of 2256 
perceptually represented physiological changes) in co-2257 
adaptive systems could be especially useful for easing the 2258 
integration of both implicit and explicit aspects within the 2259 
user-prosthesis co-training (even during daily re-2260 
calibrations) (Kalampratsidou and Torres, 2017). 2261 
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6.4. Amputation matters: the key role of the 2262 

surgeon 2263 

A further reflection that emerges in order to maximize 2264 
patient acceptance is related to the clinical situation 2265 
immediately preceding amputation. In fact, although it is 2266 
clear that in case of injury/accident the doctor/surgeon has 2267 
to manage a situation of immediate danger in which the 2268 
priority is to secure the patient trying to save "as much as 2269 
possible of the injured limb", on the other hand, on the 2270 
engineer side, the ideal would be to be able to standardize 2271 
the level of amputation. In this case, in fact, it would be 2272 
possible to avoid "extreme" situations in terms of 2273 
amputation levels: a very distal amputation does not allow 2274 
the orthopedic technician, and therefore also the engineer, 2275 
to have enough space to integrate the circuitry and the 2276 
power system inside the cavity between the internal and 2277 
external lamination of the reservoir itself, on the other 2278 
hand, a very proximal amputation does not allow the 2279 
orthopedic technician to create a socket capable of 2280 
allowing the patient's stump to support the weight (thus not 2281 
even having enough residual muscles from which to extract 2282 
the electromyographic signal) of the dedicated prosthetic 2283 
system. Therefore, having the possibility, even in case of 2284 
extreme danger, to be able to define a "standard" level of 2285 
amputation in which the surgeon is able to have a slightly 2286 
longer-term vision, would allow a greater number of 2287 
patients to take advantage of these fantastic biomedical 2288 
technologies. In fact, at present, many patients find 2289 
themselves having to request an additional surgical 2290 
operation, thus further compromising the patient's 2291 
willingness to use these solutions. 2292 

7. Conclusions 2293 

In this manuscript, we have detailed and discussed 2294 
several strategies to substitute and restore the functionality 2295 
of human upper limb when missing. We specifically 2296 
focused on input and feedback signals for bidirectional 2297 
device control and on aspects regarding the user needs that 2298 
should be addressed with a user-centered prosthetic design 2299 
approach. We also stressed that in order to have a fully 2300 
embodied prosthetic system it is essential to implement a 2301 
synergistic collaboration of three components: 2302 
mechatronics, control algorithm and the user perception. 2303 
These have to be combined by a real rehabilitation process 2304 
that is necessarily user-centered. 2305 
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