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Abstract

High dimensional simulation of exchangeable multivariate Bernoulli distributions is a

challenging and important issue in applications, for example in credit risk models. The

main contributions of this paper are, even for high dimensions, algorithms to sample from

exchangeable multivariate Bernoulli distributions and to determine the distributions and

the bounds of a wide class of indices and measures of probability mass functions. Unlike

the algorithms present in the literature the proposed method gives the possibility to

simulate also from negatively correlated distributions. Such a method is based on the

geometrical structure of the class of exchangeable Bernoulli probability mass functions,

which are points in a convex polytope whose extremal points are analytically known.

Estimation and testing are also addressed.

Keywords: Exchangeable Bernoulli distribution, convex polytope, extremal points,

uniform sampling, simulation.



1 Introduction

Multivariate Bernoulli distributions are important in many fields such as human sciences,

finance, biology and medicine. Binary data come out from social survey responses with

“yes/no” questions, from responses to treatments in clinical trial, from measurements of

genetic or epigenetic variations among individuals and from credit risk models, see [1].

In many applications correlations among variables cannot be ignored. As a consequence

simulation of dependent multivariate Bernoulli distributions is an important issue in ap-

plications. In this paper we address this issue under the condition of exchangeability and

also for high dimension. Exchangeable multivariate Bernoulli variables are very impor-

tant for example in finance, where they represent the indicators of default of obligors in a

credit risk portfolio. Usually credit risk portfolios include a large number of obligors, thus

the necessity to work in high dimension (see, e.g. [2]). All credit risk models can be rep-

resented as Bernoulli mixture models and the simplest Bernoulli mixture model implies

infinite exchangeability, see [3] as a standard reference. De Finetti’s representation theo-

rem asserts that if we have an infinite sequence of exchangeable Bernoulli variables, they

can be seen as a mixture of independent and identically distributed Bernoulli variables.

Using this representation it is possible to easily estimate, test and simulate exchangeable

Bernoulli variables also in high dimension. The only drawback of De Finetti’s represen-

tation is that it requires an infinite sequence. A finite form of De Finetti’s theorem has

been given in [4], based on the geometrical structure of the class Ed of d-dimensional

exchangeable Bernoulli variables. In fact, Ed is proven to be a d-dimensional simplex and

therefore each probability mass function in Ed has a unique representation as a mixture

of the d+1 extremal points. This result has been extended in [5] where it is proved that

the class of multivariate Bernoulli probability mass functions with some given moments

is a convex polytope, i.e. a convex hull of extremal points. Furthermore, [6] provides an

analytical expression of the extremal probability mass functions under exchangeability.

The representation of exchangeable Bernoulli probability mass functions as points in a

convex polytope and the ability of explicitly finding the extremal points are key steps

in simulating, estimating and testing, also in high dimension.

The class Ed(p) of exchangeable multivariate Bernoulli probability mass functions

with given mean p is extremely relevant for the applications. For example in homoge-

neous credit risk portfolios the obligors belong to the same class of rating, and therefore

have the same given marginal default probability. In this paper we study the statistical

properties of Ed and Ed(p), building on their geometrical structure. We show that we

can find the values of a wide class of measures as convex combinations of their values on

the extremal points. As a consequence we are not only able to find their extremal values

on the class, but we can also numerically find their distribution across the class. For low

dimensions the distribution is exact while for high dimension it is based on sampling.

Two important issues in the statistical literature are the simulation of high dimen-
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sional binary data with given correlation and the simulation of negatively correlated

binary data. The geometrical structure of Ed(p) allows us to easily construct paramet-

rical families of probability mass functions able to cover the whole correlation range.

We can therefore select a multivariate Bernoulli probability mass function with any

given correlation in the whole range of admissible correlations. This overcomes the limit

of the models used in the literature to simulate exchangeable binary data, that only

cover positive correlations. This is not a big issue in high dimensions, since at the

limit negative correlation is not possible, but it comes out to be a strong limitation for

low dimensions: as an example the three dimensional exchangeable Bernoulli random

variables with mean p = 1
3

admit negative correlations up to ρ = −1
2
. For example,

negatively correlated Bernoulli variables are of interest in insurance where they model

safe dependent structures among risks, [7].

The geometrical structure also turns out to be crucial to perform uniform sampling

from a convex polytope. Even for high dimensionality, uniform sampling can be used

to find the approximate distribution across the class of general statistical indices, that

cannot be expressed as combinations of their extremal values.

The explicit form of the extremal points is important in estimation and testing, which

are also addressed. We find the maximum likelihood estimator for a probability mass

function in the classes Ed and Ed(p) and provide a generalized likelihood test for the null

hypothesis of exchangeability or exchangeability with a given mean.

The results can be extended to the more general framework of partially exchangeable

multivariate Bernoulli distributions. To give an overall idea, we show that partially

exchangeable Bernoulli distributions can also be seen as points in a convex polytope,

but we leave their investigation to future research.

The paper is organized as follows. Section 2 introduces the polytope of exchange-

able Bernoulli distributions and studies the distribution of statistical indices and mea-

sures across the class. Section 3 addresses high dimensional simulations and presents

an application to credit risk. Section 4 finds the maximum likelihood estimator of

exchangeable distributions using the representation of a probability mass function as

linear combinations of the extremal points and provides a generalized likelihood ratio

test for exchangeability. Section 5 opens the way to the generalization of this work to

partially exchangeable Bernoulli distributions. Section 6 concludes the paper. A col-

lection of SAS/IML modules and R scripts have been developed and it is available in

the supplementary material. It can be used for working with different dimensions d and

probabilities p.

2 Exchangeable Bernoulli distributions
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Let Bd and Ed ⊂ Bd be the classes of d-dimensional Bernoulli distributions and d-

dimensional exchangeable Bernoulli distributions, respectively. Let Ed(p) ⊂ Ed be the

class of d-dimensional exchangeable Bernoulli distributions with the same Bernoulli

marginal distributions B(p). If X = (X1, . . . , Xd) is a random vector with joint dis-

tribution in Ed, we denote

• its cumulative distribution function (cdf) by F and its probability mass function

(pmf) by f ;

• the column vector which contains the values of f over Xd := {0, 1}d, by fχ =

(fχ(x) : x ∈ Xd); we make the non-restrictive hypothesis that the set Xd of 2d

binary vectors is ordered according to the reverse-lexicographical criterion. For

example X2 = {00, 10, 01, 11} and X3 = {000, 100, 010, 110, 001, 101, 011, 111}. We

assume that vectors are column vectors;

• the expected value of Xi as p, E[Xi] = p, i = 1, . . . , d and q = 1− p;

Let us consider a pmf f ∈ Ed. Since, by exchangeability, f(x) = f(σ(x)) for any

permutation σ on {1, . . . , d}, any mass function f in Ed defines fi := f(x) if x =

(x1, . . . , xd) ∈ Xd and #{xj : xj = 1} = i, i = 0, 1, . . . , d. Therefore we identify a mass

function f in Ed with the corresponding vector f := (f0, . . . , fd).

Let Sd be the class of distributions pY of the sum Y =
∑d

i=1 Xi with X ∈ Ed.
The pmf pY is a discrete distribution on {0, . . . , d}. Let P (Y = j) = pY (j) = pj and

pY = (p0, . . . , pd). The map:

H : Ed → Sd

fj → pj =

(
d

j

)
fj.

(2.1)

is a one-to-one correspondence between Ed and Sd. It is also a one-to-one correspondence

between Ed(p) and Sd(p). Let Dd and Dd(dp) be the classes of discrete distributions and

of discrete distributions with mean dp, respectively. The paper [6] proves that the three

classes Ed, Sd and Dd (Ed(p), Sd(p) and Dd(dp)) are essentially the same class, i.e.

Ed ↔ Sd ≡ Dd. (2.2)

and

Ed(p)↔ Sd(p) ≡ Dd(dp). (2.3)

For the sake of simplicity we write X ∈ Ed or X ∈ Ed(p) meaning that the distribu-

tion of X belongs to Ed or Ed(p), respectively. Analogously for Y ∈ Sd or Y ∈ Sd(p).
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2.1 Polytope of Exchangeable Bernoulli distributions

This section summarizes the geometrical structure of the family of exchangeable Bernoulli

distributions. We consider here the class Ed(p) of exchangeable Bernoulli distributions

with given mean p. In [6] further details can be found including the proof of Proposition

2.1 (which is also reported in Appendix A) and the analysis of exchangeable Bernoulli

distributions with given mean and correlation.

We recall that a polytope (or more specifically a d-polytope) is the convex hull of a

finite set of points in Rd called the extremal points of the polytope. We say that a set

of k points is affinely independent if no one point can be expressed as a linear convex

combination of the others. For example, three points are affinely independent if they

are not on the same line, four points are affinely independent if they are not on the

same plane, and so on. The convex hull of k + 1 affinely independent points is called a

simplex or k-simplex. For example, the line segment joining two points is a 1-simplex,

the triangle defined by three points is a 2-simplex, and the tetrahedron defined by four

points is a 3-simplex. A complete reference on computational geometry is [8].

The class of discrete distributions p = (p0, . . . , pd) on {0, . . . , d} is the d-simplex

∆d = {p : pi ≥ 0,
∑d

i=0 pi = 1}, with extremal points gj = (0, . . . , 1, . . . , 0), j = 0, . . . , d.

By means of the equivalence Sd ≡ Dd and the map H we have that the class Ed is

a d-simplex. In 1977, [4] proved that Ed has d + 1 extremal points g′0, . . . , g
′
d, where

g′j = (g′j(x);x ∈ χd) is the measure

g′j(x) =

{
1

(dj)
if #{xh : xh = 1} = j

0 otherwise
.

The same result can be obtained by inverting the map H.

The class Sd(p) is a d-polytope, i.e. for any Y ∈ Sd(p) there exist λ1, . . . , λnp ≥ 0

summing up to 1 and rj ∈ Sd(p) such that

pY =

np∑
j=1

λjrj. (2.4)

We call rj = (rj(0), . . . , rj(d)), j = 1, . . . , np the extremal points or the extremal densi-

ties of Sd(p).

The extremal points of Sd(p) have been analytically found in [6] for any dimension.

Proposition 2.1 provides them and their number explicitely. Because of the importance

of this result to our aims, its proof, given in [6], is reported in Appendix A.

Proposition 2.1. The extremal points rj in (2.4) have support on two points (j1, j2)

with j1 = 0, 1, . . . , jM1 , j2 = jm2 , j
m
2 + 1, . . . , d, jM1 is the largest integer less than pd and

jm2 is the smallest integer greater than pd. They are
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rj(y) = r(j1,j2)(y) =


j2−pd
j2−j1 y = j1
pd−j1
j2−j1 y = j2

0 otherwise

. (2.5)

If pd is integer the extremal densities contain also

rpd(y) =

{
1 y = pd

0 otherwise
. (2.6)

If pd is not integer there are np = (jM1 + 1)(d − jM1 ) extremal points. If pd is integer

there are np = d2p(1− p) + 1 extremal points.

Thanks to the one-to-one correspondence H defined in Eq. (2.1) also Ed(p) is a

d-polytope, i.e. for any X ∈ Ed(p) there exist λ1, . . . , λnp ≥ 0 summing up to 1 and

ei ∈ Ed(p) such that

f =

np∑
j=1

λjej. (2.7)

We call ej the extremal points of Ed(p). The map H allows us to explicitly find the

extremal points ej. They are:

ej(x) =

{
rj(k)

(dk)
if #{xh : xh = 1} = k

0 otherwise
. (2.8)

We denote by Rj and Rpd the random variables whose pmfs are rj and rpd respectively

and by Ej and Epd the random variables whose pmfs are ej and epd respectively. We

will refer to rj, rpd, ej and epd as extremal densities.

Example 1. As an illustrative example we consider the class of exchangeable distribu-

tions of dimension d = 3 and mean p = 0.4, i.e. E3(0.4). In dimension d = 3, the

polytope S3(0.4) is 2-dimensional. The extremal densities of S3(0.4) are the columns

in Table 1. The extremal densities of E3(0.4) can be derived by inverting H as defined

in (2.1). The extremal densities are points in R4 which lie in a subspace of dimension

d− 1 = 2. Using standard Principal Component Analysis we can project these 4 points

to R2. The points inside the polygon in Figure 1 represent all the densities which belong

to S3(0.4)↔ E3(0.4).

2.2 Expectation measures

Functionals Φ defined on a class F0 of d-dimensional distributions, Φ : F0 → R, Φ(f) =

E[φd(Xf )], where Xf ∈ F0 has pmf f and φd is a real valued function of the random

variable Xf , are commonly used in applications to define for example measures of risk,

see e.g. [9]. Examples of such functionals in our framework are:
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Table 1: Extremal densities of S3(0.4)

y r1(y) r2(y) r3(y) r4(y)

0 0.4 0.6 0 0

1 0 0 0.8 0.9

2 0.6 0 0.2 0

3 0 0.4 0 0.1

Figure 1: 2-dimensional polytope E3(0.4): x1 and x2 are the principal component coor-

dinates of the densities.

1. Moments and cross moments of distributions in Ed or Ed(p) and moments of discrete

distributions in Sd or Sd(p).

2. The entropic risk measure on Sd or Sd(p) for γ ∈ (0,∞):

Γ(f) =
1

γ
log(E[e−γY ]), (2.9)

where Y has pmf f .

3. Excess loss function on Sd or Sd(p), defined by

Φ(Y ) = E[(Y − k)+], k ∈ R, (2.10)

where (x− k)+ = max{x− k, 0}.

4. Von Neumann-Morgestern expected utilities on Sd or Sd(p). These are expectation

measures, where the function φd is some increasing utility function.

Proposition 2.2 allows us to have an analytical expression for a wide class of statistical

indices defined as functionals on Ed (Ed(p)) and Sd (Sd(p)), such as all the moments of

the Bernoulli exchangeable distributions.

Proposition 2.2. 1. Let X ∈ Ed [X ∈ Ed(p)] and let be φd : Rd → R a measurable

function. Then

E[φd(X)] =
m∑
i=1

λiE[φd(Ej)], (2.11)
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where E1, . . . ,Em are the extremal points of Ed [Ed(p)].

2. Let Y ∈ Sd [Y ∈ Sd(p)] and let be φ : R→ R a measurable function. Then

E[φ(Y )] =
m∑
i=1

λiE[φ(Rj)], (2.12)

where R1, . . . , Rm are the extremal points of Sd [Sd(p)].

Proof. We only prove part 1, because part 2 is analogous.

It holds

E[φd(X)] =
∑
x∈χd

φd(x)f(x) =
∑
x∈χd

φd(x)
m∑
j=1

λjrj(x) =
m∑
j=1

λjE[φd(Ej)]. (2.13)

We call expectation measures the measures defined by expectations and by their one-

to-one transformations. Proposition 2.2 states that measures defined by expectation of

the mass functions in a given class are themselves a convex polytope whose extremal

points are the measures evaluated on the extremal points of the class. Therefore, they

are bounded by their evaluations on the extremal points. Notice that also the entropic

risk measure has its bounds on the extremal points, since the logarithm is a monotone

transformation. Another important measure that reaches its bound on the extremal pmfs

is the α-quantile of the sum Y as proved in [6]. Now we focus on the cross moments.

By exchangeability the cross moments of X = (X1, . . . , Xd) depend only on their order.

We therefore use µα to denote a moment of order α = ord(α) =
∑d

i=1 αi, where α ∈ Xd.
We have

µα = E[X1 · · ·Xα] =
d∑

k=α

(
d−α
k−α

)(
d
k

) pk,

where pk = P (
∑d

i=1Xi = k). In particular the second order moment of the class Sd(p)
are given by

E[Y 2] = E[(X1 + . . .+Xd)
2] = pd+ d(d− 1)µ2. (2.14)

We want to determine the distribution E[φd(X)] where X is a random variable which

has been chosen uniformly at random from Ed(p) or Ed. Other distributions over Ed(p),
different from the uniform, can be easily considered if necessary. Since classes of mul-

tivariate Bernoulli distributions with pre-specified moments, as e.g. Ed(p), are poly-

topes, the representation of each mass function as a convex linear combination of the

extremal points is not unique. Therefore we need a partition of the convex polytope
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Ed(p) into simplices, i.e. a triangulation of Ed(p). See [8] as a general reference in com-

putational geometry. To reduce dimensionality we work on Dd(dp) instead of Ed(p).
This can be done using the map H defined in (2.1) under the exchangeability condition

f(x) = f(σ(x)) for f ∈ Ed(p). As a consequence the distribution of E[φd(X)] can be

studied in Dd(dp) if φd(x) = φd(σ(x)); we make this assumption in this section. We

perform a triangulation of Dd(dp) that is equivalent to perform a triangulation of the

polytope C = {p : pi ≥ 0,
∑d

i=0 pi = 1,
∑d

i=0 ipi = dp}. The dimension of C is d − 1

because C is defined by two constraints. We can partition C into simplices Ti, i ∈ I (e.g.

using a Delaunay triangulation)

C =
⋃
i∈I

Ti, (2.15)

where I is a proper set of indices, and Ti ∩ Tj = ∅ for i 6= j. We observe that from a

geometric point of view the intersection between two simplices Ti and Tj is not empty,

being the common part of their borders. But this common part has zero probability of

being selected and so we can neglect it assuming that each Ti, i ∈ I coincides with its

interior part.

Let φ(y) = φd(x), where y =
∑d

i=1 xi, y = {0, . . . , d}. Let us denote by Fφ the

distribution of E[φ(Y )], where Y is a random variable with pmf pY from Sd(p) or Sd.
We get

Fφ(t) = P (E[φ(Yp)] ≤ t) =
∑
i∈I

P (Ti)P (E[φ(Yp)] ≤ t|Ti). (2.16)

If we assign a uniform measure on the space Ed(p) the probability P (Ti) of sampling

a probability mass function in the simplex Ti is simply the ratio between the volume of

Ti and the total volume of C, i.e.

P (Ti) =
vol(Ti)
vol(C)

. (2.17)

The volume of each Ti and consequently that of C can be easily computed because the

volume of an n-simplex in n-dimensional space with vertices (v0, . . . , vn) is∣∣∣∣ 1

n!
det
(
v1 − v0, v2 − v0, . . . , vn − v0

)∣∣∣∣
where each column of the n × n determinant is the difference between the vectors rep-

resenting two vertices [10].

The probability P (E[φ(Y )] ≤ t|Ti) is the ratio between the volume of the region

Ri,t = {pY ∈ Ti : E[φ(Y )] ≤ t} (2.18)

and the volume of Ti, i.e.

P (E[φ(Y )] ≤ t|Ti) =
vol(Ri,t)

vol(Ti)
. (2.19)

8



The computation of the volume of Ri,t will depend on the definition of φ in the expec-

tation measure E[φ(Y )].

We now consider the k-order moments µ
(Y )
k of the random variable Y = X1 + . . .+Xd

whose pmf is denoted by pY

µ
(Y )
k = E[Y k] =

d∑
i=0

ikpY (i) =
d∑
i=0

ikpi

From Eq. (2.1) we have pY (i) =
(
d
i

)
fi and fi := fp(x) for x = (x1, . . . , xd) ∈ Xd and

#{xk : xk = 1} = i.

The pmf pY will lie in exactly one of the simplices Ti, i ∈ I. Let’s denote this simplex

by Ti? . We can write pY =
∑

j∈J ∗ λjrj, where J ∗ is the set of indexes that defines the

subset of points which generate the simplex Ti? , i.e. Ti? = simplex({rj : j ∈ J ∗}). As a

corollary of Proposition 2.2 we can write

µ
(Y )
k =

∑
j∈J ∗

λjµ
(j)
k

where µ
(j)
k are the k-moments of the extremal random variables Rj, µ

(j)
k = E[Rk

j ]. For

k-order moments the region Ri,t = {pY ∈ Ti : µk(Y ) ≤ t} is the subset of the standard

simplex defined as {(λj; j ∈ J ∗) : λj ≥ 0,
∑

j∈J ∗ λj = 1,
∑

j∈J ∗ λjµ
(j)
k ≤ t}. For k-order

moments the ratio of the volumes in Eq. (2.19) can be computed using an exact and

iterative formula, see [11] and [12]. It follows that the distribution of E[Y k] can be

computed exactly.

The same methodology can be applied also to other measures defined as function of

expected values like the entropic risk measures. In the next section, using Proposition

2.2 and convexity, we numerically find the distribution of the above measures across the

class of pmf where they are defined.

3 High dimensional simulation

The representation of Bernoulli pmfs as convex combinations of extremal densities allows

us to build high dimensional exchangeable Bernoulli distributions in Ed(p). The simplest

way to do that is to generate directly from an extremal density. Extremal densities have

support on two points. We can also use combinations of extremal points to choose a

distribution in the interior of the polytope. As an example we could choose λi = 1
np

in

(2.7). Such a choice identifies a pmf inside the polytope.
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3.1 Simulation of the whole correlation range

The extremal densities allow us to simulate from a family of distributions that cover

the whole range spanned by a measure of dependence, meaning that we can construct a

parametrical family of mass functions such that for any admissible value of the measure

there is a mass function in the class for which the measure takes that value. Let M and

m the maximum and minimum values of an expectation measure. If rM and rm are two

corresponding extremal densities, the parametrical family f = λrm+(1−λ)rM span the

whole range [m,M ]. We can therefore use this family to simulate a sample of binary

data from a pmf with a given value of the measure or we can simulate binary variables

with different values of the measure, by moving λ.

An important example is correlation. The problem to simulate from multivariate

Bernoulli distributions with given correlations and in particular negative correlations is

of interest in many applications and is addressed in the statistical literature, see [13].

The geometrical structure of Ed(p) allows us to solve this problem for exchangeable

random vectors. Let us suppose that pd is not an integer. We can choose a pmf with the

required correlation simply by using rρm = r(jM1 ,jm2 ) and rρM = r(0,d), the two extremal

densities in Ed(p) with the minimum and maximum of allowed correlations, respectively.

The pmfs in the family rλ = λrρm + (1− λ)rρM span the whole correlation range. If the

desired value of the correlation is ρ0, ρm ≤ ρ0 ≤ ρM it is enough to choose λ = ρM−ρ0
ρM−ρm

.

If pd is integer we must use rρm = rpd. We observe that ρM = 1.

This case is interesting because the families of multivariate Bernoulli variables com-

monly used for simulation of exchangeable binary variables incorporate only positive

correlations. We consider here two families of exchangeable Bernoulli models used in

the literature to simulate binary data. The first family is proposed in [1] and we term it

family of one-factor models, taking the name from the one-factor models used in credit

risk, that have a similar dependence structure. The second family is the mixture model

based on De Finetti’s representation theorem. The construction proposed in [1] pro-

vides an algorithm to generate binary data with given marginal Bernoulli distributions

with means (p1, . . . , pd) and exchangeable dependence structure, meaning that they are

equicorrelated. However, by assuming that the marginal parameters are equal to a

common parameter p, their construction gives a vector X ∈ Ed(p). This is the case con-

sidered here. We therefore define the multivariate Bernoulli variable in this framework.

Let

Xi = (1− Ui)Yi + UiZ, i = 1, . . . , d, (3.1)

where Ui ∼ B(
√
ρ), Yi ∼ B(p), i = 1, . . . , d and Z ∼ B(p) and they are independent. We

say that X = (X1, . . . , Xd) and its pmf f ∈ Ed(p) have a one-factor structure. Clearly,

X is exchangeable, has distribution B(p) and correlation ρ. By construction we have

ρ ≥ 0 and the case ρ = 0 implies that Ui, i = 1, . . . , n put all the mass on 0.

According to De Finetti’s Theorem if f ∈ Ed(p) is the pmf of a random vector
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(X1, . . . , Xd) extracted from an exchangeable infinite sequence then f = (f0, . . . , fd) has

the representation

fj =

∫ 1

0

pj(1− p)d−jdΨ(p), j = 0, . . . , d,

where Ψ(p) is a pdf on [0, 1]. Clearly, these vectors can only have positive correlations.

One of the most used mixed Bernoulli model is the β-mixing models, where Ψ ∼ β(a, b)

is a β-distributed mixing variable. In this case we have

p = E[Ψ]

µ2 = E[Ψ2].

Therefore we determine the β parameters a and b by solving the equations

p =
a

a+ b

µ2 =
a(a+ 1)

(a+ b)(a+ b+ 1)
.

For this model ρ = 0 is not admissible, therefore the model cannot include independence.

Notice that the β model has two parameters and, chosen a β-mixture model in Ed(p) it

can be parameterized by ρ.

In [6] the authors analytically found the correlation bounds for exchangeable pmf

for each dimension d and the minimum attainable correlation. The minimal correlation

ρm goes to zero if the dimension increases, according to De Finetti’s representation

theorem. Therefore, the capability to generate binary data with negative correlations

is more important in low dimensions. Nevertheless, simulation of a pmf in the family

rλ = λrρm + (1− λ)rρM is easy and can be performed also in high dimension. In Section

3.4.1 we discuss an example where the three methods are compared.

3.2 A simple algorithm for high dimensionality

Now we describe a general and simple algorithm to simulate also high dimensional ex-

changeable Bernoulli distribution from Ed(p), given the vector λ = (λ1, . . . , λnp) in

(2.4) or equivalently in (2.7). The vector λ can be chosen as we discussed above

(λi = 1/np, i = 1, . . . np) or it can be chosen by giving a distribution PΛ on the simplex

Λ = {λ ∈ Rnp :
∑np

i=1 λi = 1, λi > 0, i = 1, . . . , np} in (2.4) or as an extremal density.

Once λ is selected, it represents a probability distribution on the set of extremal densi-

ties, i.e. λj is the probability to extract the extremal density rj. Given the pmf λ on

the set of extremal points, Algorithm 1 allows us to simulate also in high dimension. We

observe that Algorithm 1 does not require to store any big structure of data and then

it can be easily used for large d, e.g. d = 105. The Algorithm 1 together with the algo-

rithms ”one-factor model” (Algorithm 2) and ”β-mixture Bernoulli model” (Algorithm

11



Algorithm 1

Input: the expected value p, the dimension d, the vector λ ∈ Λ.

1) Select an extremal density rj with probability λj; rj has support on j1, j2, see (2.5).

2) Select j∗ ∈ {j1, j2} with probability rj(j1) and rj(j2) respectively, see (2.5) .

3) Select a binary vector with j∗ ones among the combinations
(
d
j∗

)
.

Output: One realization of a d dimensional binary variable with pmf as in (2.7).

Table 2: Computational times [seconds. hundredths of a second]. Algorithm 1 has been

implemented without specifiying correlation (Algorithm 1 “norho”) and with specifying

correlation (Algorithm 1 “rho”).

Algorithm d = 100 d = 100 d = 1000 d = 1000

n = 100 n = 10000 n = 100 n = 10000

Algorithm 1 “norho” 0.12 0.31 0.18 7.17

Algorithm 1 “rho” 0.9 0.15 0.8 0.50

Algorithm 2 0.12 0.14 0.39 31.25

Algorithm 3 0.8 0.13 0.7 0.47

2) have been implemented in SAS/IML. It is worth noting that in the case d = 100,

p = 0.4 and ρ = 0.1 the computational time for getting a sample of size n = 100 is very

small for all the algorithms (some hundredths of a second on a standard laptop). We

also tested the cases d = 100 and n = 10000, d = 1000 and n = 100; 10000. We always

obtain the output in a few seconds. The computational times are reported in Table 2.

The advantage of Algorithm 1 is that while keeping low the computational time allows

the users to explore all the extremal densities of Ed(p) including those with negative

correlation. For example, we observe that in the case d = 100 and p = 0.4 there are

85 extremal densities with negative correlations and these densities cannot be simulated

using Algorithms 2 and 3. We also observe that Algorithm 1 with given correlation

performs similarly to Algorithm 2 and better than Algorithm 3.

3.3 Uniform simulation

There are famous measures that are not expectation measures and for which Proposition

2.2 does not apply, for example the α-quantile or value at risk of a balanced portfolio

of exchangeable Bernoulli variables, widely used in applications as a measure of risk. In

particular, the distribution of the value at risk of the loss of a large portfolio is important

to evaluate the risk associated to the choice of a specific model. Another famous measure
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of risk is the entropy. For a discrete pmf pY ∈ Sd it is given by:

E(pY ) = −
d∑
i=0

pi log pi.

The entropy does not satisfy Proposition 2.2 and does not reach its bound on the ex-

tremal densities. We therefore are not able to use the geometry of a pmf in Sd (Sd(p)) to

numerically find its exact distribution across the Sd (Sd(p)). However, we can address

this goal using simulations. For other measures for which the exact value of the ratio

in (2.19) cannot be computed, an estimate of it can be simply obtained by sampling

uniformly at random over Ti and determining the relative frequency of the points that

fall in the region Ri,t, as defined in (2.18)

̂(
vol(Ri,t)

vol(Ti)

)
=

#{pk ∈ Ri,t, k = 1, . . . , N}
N

,

where N is the size of the sample. In these cases an estimate F̂φ of the distribution Fφ
will be obtained. Being able to perform uniform sampling allow us to sample also for

any given distribution on Ed (Ed(p)).

Let’s start considering uniform sampling from Ed. From Eq.(5.1) we know Ed ↔ Sd ≡
Dd. It follows that sampling uniformly at random from Ed is equivalent to sampling

uniformly at random from Dd and then it is equivalent to sampling uniformly at random

from the d-simplex ∆d = {p : pi ≥ 0,
∑d

i=0 pi = 1}. Sampling from a simplex is a

standard topic in the statistical literature.

Let’s now consider uniform sampling from Ed(p). From Eq.(2.3) we know Ed(p) ↔
Sd(p) ≡ Dd(dp). It follows that sampling uniformly at random from Ed(p) is equivalent to

sampling uniformly at random from Dd(dp) and then is equivalent to sampling uniformly

at random from the polytope C = {p : pi ≥ 0,
∑d

i=0 pi = 1,
∑d

i=0 ipi = dp}. We therefore

have to consider one possible triangulation of C as defined in (2.15). We can consider

sampling from Ed as a special case of sampling from Ed(p). For this purpose when

sampling from Ed we denote the d-simplex by T1, T1 ≡ ∆d. We have I = {1}.

Remark 1. In case we want to sample from a distribution on the politope C with pdf f̃

different from the uniform we can adapt the algorithm. We move from a point p0 ∈ C
to another point p1 ∈ C with probability min{1, f̃p1

f̃(p0)
}. Further details can be found in

the classical reference [14].

3.4 Application

We discuss a possible application in credit risk modelling. As an example we consider

an homogeneous portfolio of credit card holders extracted from the Kaggle database
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on credit card defaulters1. This dataset is a collection of data from 30000 clients of a

bank issuing credit cards in Taiwan, from April to September 2005. In this dataset, the

proportion of default customer is almost 40% for the ones that have already registered

one or more defaults in their history, while it is less than 20% for those who have

never had a default. Consider a d dimensional portfolio of credit card holders belonging

to the former homogenous group. A random vector in X ∈ Ed(0.4) represents the

vector of default indicators of each card holder. With our choice of p = 0.4 we are

considering a high marginal default probability, therefore we imagine to handle a high

risk portfolio. Nevertheless, the following analysis can be performed for any p ∈ (0, 1),

since the proposed method does not put any restriction on p. To evaluate the risk of a

credit portfolio P of d card holders we consider the number of defaults Y ∈ Sd(0.4)

Y =
d∑
i=1

Xi.

The number of defaults Y represents the loss of a balanced portfolio. Banks are interested

to measure the risk associated to a given portfolio. One of the most used measures of

risk is the so called value at risk (VaR), that is the α- quantile of the distribution of

the loss for a given level α ∈ (0, 1). The VaR of Y for exchangeable portfolios has

been analysed in [6] where analytical bounds have been found, since they are reached

on the extremal points of the class. Nevertheless, the main factors influencing the VaR

of Y are the default probability and the correlation among defaults [3]. For this reason,

we consider the second order moment and the correlation distribution across the class

Ed(0.4). As a measure of risk and randomness of the portfolio, we consider the entropy

because it does not reach its bounds on the extremal points and therefore it is necessary

to simulate its distribution across the class. We present two different scenarios. The

first scenario consider a low dimension portfolio, d = 3, with the purpose to explicitly

see the triangulation and the exact numerical distribution of the moments. The second

example considers a portfolio of 100 card holders, therefore it is performed in E100(0.4).

3.4.1 Scenario 1

In this first application we use both an ad-hoc module written in SAS/IML [15] and the

R package uniformly [16] which uses a triangulation based method to provide uniform

samples from a given convex polytope. We consider the class of all the possible default

scenarios in E3(0.4), the class of exchangeable distributions of dimension d = 3 and mean

p = 0.4. We get:

1. the exact distribution of the second-order moment;

1https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset, accessed on 07 July 2022
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2. a family of pmfs that spans the whole range of correlation, showing that we can

simulate a portfolio with any admissible correlation and not only positively corre-

lated portfolios;

3. the sampling distribution of the entropy.

We also analyse the joint distribution of the first-order moment and correlation in E3,

the class of exchangeable distributions of dimension d = 3.

The extremal densities of E3(0.4) are the columns in Table 1. The polygon in Figure

1 represent all the densities which belong to S3(0.4)↔ E3(0.4).

Figure 2: Triangulation of S3(0.4).

Figure 3 shows one possible triangulation. We have two triangles: T1, the largest one

with area 3.74 and T2, the smallest one with area 1.40. Then, the sampling probabilities

are P (T1) = 0.73 and P (T2) = 0.27.

For 2-order moments the region Ri,t = {pY ∈ Ti : µ2(Y ) ≤ t} is the subset of the

standard simplex defined as {(λj; j ∈ J ∗) : λj ≥ 0,
∑

j∈J ∗ λj = 1,
∑

j∈J ∗ λjµ
(j)
2 ≤ t}.

We recall that in this case the ratio of the volumes in Eq. (2.19) can be computed using

an exact and iterative formula, see [11] and [12].

Figure 3 (left side) exhibits the exact numerical cumulative distribution function

(cdf) P (µ2(Y ) ≤ t|T1) of µ2(Y ) across T1. The distribution of µ2(Y ) across T2 is similar.

The cdf Fµ2 of µ2(Y ) across the whole polytope is obtained by mixing the conditional

cdfs as in (2.16). Figure 3 - right side - shows the probability density function (pdf) of

the mixture obtained from the cdf of µ2 by fµ2(t) =
Fµ2 (t+∆)−Fµ2 (t)

∆
, where ∆ has been

chosen equal to (max(µ2)−min(µ2))/10000.

The pmfs in the family rλ = λrρm + (1−λ)rρM span the whole correlation range and

can be simulated according to the proposed Algorithm. Figure 4 shows the family in the

polytope E3(0.4) together with the families of β-mixture models and one-factor models

in the same class. It is evident that our approach allows us to consider also pmfs with

negative correlations (green straight line in the figure), while the other two approaches

provide only positive correlations (blue and red lines in the figure, that in this case are

almost overlapped). In dimension three the range of negative correlation [−0.39, 0] is

wide, as shown in the figure.
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Figure 3: Distribution of the 2-order moment across E3(0.4).

Figure 4: Families of distributions: rλ (straight line: yellow line are positive correlations,

green line are negative correlations), β-mixture (red line) and one-factor (blue line) across

E3(0.4). The blue and red line are almost overlapped.

The simulated pdf of the entropy in the class E3(0.4), where the entropy of X ∈
E3(0.4) is defined to be the entropy of the number of defaults Y =

∑d
i=1Xi, is found by

sampling using the methodology in Section 3.3. It is shown in Figure 5.

Figure 5: Empirical distribution of the entropy across E3(0.4).

The simulated pdf can also be found for the second order moment µ2(Y ). It is shown

in Figure 6 for completeness. The simulated pdf is obviously in agrement with the exact

numerical one (right side of Figure 3).

Since mean and correlation are the relevant factors influencing the tail of the number

of defaults, the pairs (p, ρ) correspond to different risk profiles. Figure 7 shows the

simulated bivariate distribution of the mean p and the correlation ρ across E3. The joint

behavior of p and ρ is in accordance with the theoretical bounds found in [6]. In this

case, where d = 3, the minimal correlation is −0.5 and it is attained for p = 1
3

and p = 2
3
.
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Figure 6: Empirical distribution of the second order moment across E3(0.4).

Figure 7: Bivariate distribution of the first order moment and correlation across E3.

3.4.2 Scenario 2 - high dimensional portfolio

In real credit risk applications the dimensionality is high and the triangulation based

method becomes unfeasible from a computational point of view. In this second scenario

we use both an ad-hoc module written in SAS/IML [15] and the R package volesti [17]

which does not use a triangulation but a random-walk-based method to provide uniform

samples from a given convex polytope.

We generate a sample of size 2000 portfolios from E100(0.4) and we study the empirical

distribution of the correlation, the VaR and the entropy. In this case we have 2401

extremal points. The simulated pdf of the VaR in the class E100(0.4) is shown in Figure

8. As Figure 8 shows we are dealing with a high risk portfolio (the VaR is at least 83),

and this is a consequence of having a high marginal default probability. The analytical

bounds for the VaR can be computed using Proposition 5.4 in [6]. Since we consider

α = 0.95 we find min(VaR)=40 and max(VaR)=100. The empirical distribution shows

that the observed VaR are all significantly higher than the minimum possible value,

that is reached on an extreml point of the class. This fact shows that the empirical

distribution can be useful to properly evaluate the risk of a portfolio. The distribution

of the correlation across E100(0.4) is in Figure 8.

Figure 8 also shows the simulated pdf of the entropy in the class E100(0.4); the entropy

does not reach its bounds on the extremal points.
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Figure 8: From left to right: empirical distribution of VaR, corrlation and entropy across

E100(0.4).

Figure 9: From left to right: joint empirical distribution of VaR vs correlation, VaR vs

entropy and correlation vs entropy across E100(0.4).

We conclude this section with an empirical analysis of the joint behavior of correla-

tion, VaR and entropy, see Figure 9. Figure 9 - left side- shows that the range spanned

by correlation is different for different values of VaR. Specifically correlations are con-

centrated on higher values in correspondence of higher values of the portfolio VaR. This

fact empirically exhibits that correlations among obligors is an important issue to take

into account in the portfolio management. On the contrary, the entropy seems to be

not linked to correlation - Figure 9 right side- and it also seems to be a measure of risk

independent of VaR - Figure 9, middle side.

4 Estimate and testing

4.1 Maximum likelihood estimation

In many applications it is necessary to fit exchangeable Bernoulli models to historical

data. For example in credit risk this is done on default data for a single homogeneous

group of obligors with some common credit rating, see [18]. We focus on the maximum

likelihood estimation in the classes of exchangeable distributions and exchangeable dis-

tributions with given margins, Ed and Ed(p) respectively.

Proposition 4.1. Let f ∈ Fd. A maximum likelihood estimator of f̂ which belongs to
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Ed (Ed(p)) always exists.

Proof. Ed (Ed(p)) is a closed convex sets in Rd, hence it is compact and the likelihood

functions for the models in (4.6) are continuous.

The maximum likelihood estimator (MLE) in the class Ed can be found analytically

using the map in (2.1).

Let us assume to observe a sample of size n drawn from a d-dimensional Bernoulli

distribution X and let Y =
∑d

i=1Xi have pmf pY = (p0, . . . , pd) that gives rise to counts

N . The count N = (N0, . . . , Nd) has a multinomial distribution with parameters n,p,

i.e. N ∼ Multinomial(n,p), where the parameter p belongs to the d-simplex ∆d. The

likelihood function is

L(n;p) = P (Ni = ni, i ∈ {0, . . . , d}) =

(
n

n0 · · ·nd

) d∏
j=0

(pj)
nj , (4.1)

where we set 00 := 1. The MLE is the solution of the constrained maximization problem

maxp logL(n;p),

sub

d∑
i=0

pj − 1 = 0

(4.2)

By using the Lagrange multipliers we find:

p̂j =
Nj

n
, j = 0, . . . , d.

The MLE in the class Ed is

f̂j =
p̂j(
d
j

) =
Nj
n(
d
j

) , i = 0, . . . , d

We now consider the class Ed(p). The MLE estimator in Dd(dp) can be numerically

found by solving the constrained maximization problem:

maxp logL(n;p),

sub

d∑
i=0

pj − 1 = 0

d∑
i=0

jpj − pd = 0,

(4.3)
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Then we use the map H again to have the MLE in Ed(p).

We can also use a direct approach and look for the MLE in Ed(p). Let us assume

to observe a sample of size n drawn from a d-dimensional Bernoulli distribution X

with pmf (f(x) : x ∈ Xd) that gives rise to counts N = (N1, . . . Nm), where m = 2d.

Then the count N has a multinomial distribution with parameters n,fχ, i.e. N ∼
Multinomial(n,fχ), where the parameter fχ = (fχi : i = 1, . . . ,m) := (f(x) : x ∈ Xd)
belongs to the m− 1-simplex ∆m−1. The likelihood function is

L(n;fχ) = P (Ni = ni, i ∈ I) =

(
n

n1 · · ·nm

) m∏
j=1

(fχj )nj , (4.4)

where we set 00 := 1.

If we assume that X ∈ Ed(p), then fχ = fχ(λ) has the form:

fχ =
k∑
i=1

λie
χ
i , (4.5)

where eχi = (e(x) : x ∈ Xd) are the extremal points of Ed(p) and np is their number.

The likelihood function of the count N is

L(n;fχ) =

(
n

n1 · · ·nm

) m∏
j=1

(

np∑
i=1

λie
χ
ij)

nj (4.6)

where λ = (λ1, . . . , λnp) ∈ ∆np . The MLE can be found by maximizing the log-likelihood

function in the simplex.

Example 2. Let X ∈ E2(1/2). We have two extremal densities: the upper and lower

Fréchet bound ([5]) eU and eL. The countN has support on four points and the likelihood

becomes:

L(n;fχ) =

(
n

n1 · · ·n4

) 4∏
j=1

(λ1eUj + λ2eLj)
nj , λ ∈ ∆2. (4.7)

By standard computations we find

L(n;fχ) =

(
n

n1 · · ·n4

)
(
λ1

2
)n1+n4(

λ2

2
)n2+n3 , λ ∈ ∆2. (4.8)

The MLE can be found using the log-likelihood and the Lagrange multipliers and it

is:

λ̂1 =
N1 +N4

n
, λ̂2 =

N2 +N3

n
.

The same result has been found in [19] for the palindromic Bernoulli distributions, that

in the 2-dimensional case coincide with the whole Fréchet class Ed(1/2).
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4.2 Testing

Let E∗d be one of the classes Ed or Ed(p). This section provides a generalized likelihood

ratio (GLR) test for

H0 : fχ ∈ E∗d
versus

HA : fχ ∈ Bd \ E∗d ,

where in this case the class E∗d is a d-simplex or a d-polytope and Bd is a (2d−1)-simplex.

Letm = 2d and f̂χ = (N1

n
, . . . , Nm

n
) be the MLE estimator ofN ∼ Multinomial(n,fχ),

where the parameter fχ = (fχi : i = 1, . . . ,m) := (f(x) : x ∈ Xd) belongs to the (m−1)-

simplex ∆m−1 and let λ̂ be the MLE estimator for X ∈ E∗d with pmf fχ = fχ(λ) as

determined in the previous section. The GLR statistics is

Λ(N ) =

∏m
i=1(fχ)j(λ̂)Nj∏m
i=1(

Nj
n

)Nj
, (4.9)

where N is the count arised from X. The α-level critical region is defined by

α = P0(Λ(N ) < c), (4.10)

where P0 is the probability measure under H0. The value c is obtained observing that

−2 log(Λ(N )) is approximatively a χ2
k distribution with k = m − 1 − dim(E∗d ), where

dim(E∗d ) = d if E∗d = Ed and dim(E∗) = d− 1 if E∗d = Ed(p).

Example 3. Consider the MLE of X ∈ E2(1/2) in Example 2. The test statistics for

H0 : fχ ∈ E2(1/2)

versus

HA : fχ ∈ B2 \ E2(1/2),

is

Λ(N ) =

(
N1+N4

2n

)N1+N4
(
N2+N3

2n

)Y2+Y3∏4
i=1

Nj
n

Nj
, (4.11)

and −2 log(Λ(N )) has approximatively a χ2
2 distribution. If we consider α = 0.05 and

c1 = 5.991 the upper 0.95 quantile of a χ2
1 distribution the critical region is defined by

c = e−2c1.

21



Table 3: Extremal densities of S5(1
2
) ≡ E5(1

2
) and estimated MLE pmf

y r1(y) r2(y) r3(y) r4(y) r5(y) r6(y) r7(y) r8(y) r9(y) pMLE(y)

0 0.167 0.375 0.5 0 0 0 0 0 0 0.031

1 0 0 0 0.25 0.5 0.625 0 0 0 0.153

2 0 0 0 0 0 0 0.5 0.75 0.833 0.318

3 0.833 0 0 0.75 0 0 0.5 0 0 0.311

4 0 0.625 0 0 0.5 0 0 0.25 0 0.156

5 0 0 0.5 0 0 0.375 0 0 0.167 0.031

4.3 Example

Over the Spring 2009 semester, two Berkeley undergraduates undertook 40,000 tosses

of a coin. The dataset and the description of the protocol which followed are avail-

able at https://www.stat.berkeley.edu/~aldous/Real-World/coin_tosses.html.

Here, we rearrange this dataset as if the tosses had been undertaken five at a time and

we use this dataset to find the MLE in the class E5(1
2
). After finding the MLE in E5(1

2
),

we perform the GLR test described in Section 4.2.

To simplify the computations we look for the ML estimates in S5(1
2
). We have nine

extremal densities, provided in Table 3. The MLE estimate λ̂ = (λi, i = 1, . . . , 9) which

is also the ML estimate in E5(1
2
) is

λ̂ = (0.1, 0.019, 0.015, 0.188, 0.202, 0.008, 0.173, 0.174, 0.121). (4.12)

For completeness we also exhibit the estimated ML pmf pMLE in S5(1
2
) in the last column

of Table 3.

We now perform the GLR test for

H0 : fχ ∈ E5(
1

2
)

versus

HA : fχ ∈ Bd \ E5(
1

2
).

Let f̂χ = ( N1

40000
, . . . , N32

40000
) be the MLE for N ∼ Multinomial(40000,fχ) and let

λ̂ be the MLE estimator for X ∈ E5(1
2
) provided in (4.12). The GLR statistics is

Λ(N ) in (4.9). Since −2 log(Λ(N )) is approximatively a χ2
k distribution with k =

dim(B5) − dim(S5(1/2)) = 31 − 4 = 27 degree of freedom, its observed value is 39.49

and χ2
0.95 = 40.113 we do not reject the null hypothesis at level 0.05.

4.4 Power of the test

We test the alternative hypothesis that f has independent margins g1, . . . , g5, where

gi ∼ B(1/2), i = 1, . . . 4 and g5 ∈ B(p), and we move p. We therefore consider the power
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of this test at level α = 0.05 for the following alternative hypothesis:

HA : f = g1g2g3g4g5; gi ∼ B(1/2), i = 1, . . . 4, g5 ∈ B(p),

where p = 0.5 + 0.01n, n = 1, . . . 10. Clearly if p = 0.5, then f ∈ E5(1
2
) otherwise

f /∈ E5(1
2
). This choice of HA allows us to move from exchangeability by moving a

single parameter. Thus, we study the power function γ(p) as a function of p. The power

fiunction γ(p) has been estimated by simulation. For each value of p (p = 0.5+0.01n, n =

1, . . . 10), N = 1000 samples of size n = 1000 are taken from f = g1g2g3g4g5. The

estimate γ̂(p) of γ(p) is computed as Np
N

, where Np is the number of times H0 is rejected

for the given p. The estimated power function γ̂(p) is shown in Figure 10. If p = 0.5 ,

f is exchangeable and the observed α is 0.057, which is close to α = 0.05. We can see

that the power function is low if p < 0.52, than it increases and it becomes higher that

0.8 from p = 0.58. The power function is close to one when p = 0.6.

Figure 10: Power of the test HA : f = g1g2g3g4g5, where gi ∼ B(1/2), i = 1, . . . 4, g5 ∈
B(p) and p = 0.5 + 0.01n, n = 0, . . . 10.

5 Further developments

This section shows that the geometrical structure of exchangeable Bernoulli pmfs holds

in a more general framework, partial exchangeability. We also show that as well as

exchangeable pmfs are in a one-to-one relationship with discrete distributions, partially

exchangeable pmfs are in a one-to-one relationship with multivariate discrete distribu-

tions. The results we present here open the way to the study of this more general class

of multivariate Bernoulli pmfs.

Definition 5.1. Let G be a partition of I = {1, . . . , d}. A multivariate Bernoulli dis-

tribution f(x) is partially exchangeable if f(σ(x)) = f(x) for any σ ∈ Pd such that

σ(G) = G for any G ∈ G. We say that σ and f(x) are compatible with G. We de-

note by Pd(G) the set of partitions compatible with G and Ed(G) the family of partially

exchangeable distributions compatible with G.

Partial exchangeability is an extension of exchangeability, that is recovered by choos-

ing the trivial partition G = {I}.

23



Let Dd1,...,dn be the class of multivariate discrete distributions with support on J1 ×
. . . × Jn and Jk = {0, . . . , dk} and Dd1,...,dn(µ) = Dd1,...,dn(µ1, . . . , µn) the class of

multivariate discrete distributions with support on J1 × . . . × Jn and mean vector

µ = (µ1, . . . , µn).

Theorem 5.1. Let G = {G1, . . . , Gn}, and dj = #Gj. There is a one to one map FG
between Ed(G) and Dd1,...,dn.

Proof. Let f ∈ Ed(G). Since f(x) = f(σ(x)) for any σ ∈ Pd(G), any mass function f(x)

in Ed(G) uniquely defines a function g : J1 × . . . × Jn →, where Jk = {0, . . . , dk} and

dk = #Gk given by g(j1, . . . , jn) := f(x) if x = (x1, . . . , xd) ∈ Xd and #{xh ∈ Gi : xh =

1} = ji, i = 1, . . . n. The map

FG : Ed(G)→ Dd1,...,dn
f → pD.

(5.1)

where pD(j1, . . . , jn) =
(
d1
j1

)
. . .
(
dn
jn

)
g(j1, . . . , jn) is a bijection.

Notice that if X is partially exchangeable, each dj-dimensional margin of the form

(Xi)i∈Gj is a vector of exchangeable Bernoulli variables.

Remark 2. Let S(G) be the class of random variables Y = (Y1, . . . , Yn) defined by:

Yj =
∑
h∈Gj

Xh, (5.2)

then pY (j1, . . . , jn) = pD(j1, . . . , jn). Thus, S(G) = Dd1,...,dn .

Corollary 5.1. The class Ed(G) is a dG-simplex, where dG = (d1 +1)× . . .× (dn+1)−1.

The class Ed(G)(µ) of partially exchangeable distributions compatible with G and set of

moments µ is a dG-polytope, where dG = (d1 + 1)× . . .× (dn + 1)− 1.

This last result implies that all the analysis performed in the previous sections can

be extended to partially exchangeable distributions.

Example 4. Let X ∈ E4(G), where G = {{1, 2}, {3, 4}}. Let Y = (Y1, Y2) defined by

Y1 = X1 +X2, Y2 = X3 +X4. (5.3)

Y ∈ D2,2 and pS(j1, j2) =
(

2
j1

)(
2
j2

)
f(j1, j2), (j1, j2) ∈ J1 × J2. Therefore the vector

pY = (pY (j1, j2))j1,j2∈J1×J2 is a point in R9 and E4(G) is a 8-simplex in R9.
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5.1 Given means: the class Ed(G)(p)

Let X ∈ Ed(G), G = {G1, . . . , Gn} and assume that E[Xi] = pj if i ∈ Gj. Let p =

(p1, . . . , pn) the mean vector. We consider here the class Ed(G)(p) of Bernoulli pmf with

mean vector p. The map FG induces a bijection between Ed(G)(p) and Dd1,...,dn(dp) =

S(G)(dp), where dp := (d1p1, . . . , dnpn).

Proposition 5.1. Let Y ∈ Dd1,...,dn and let pY be its pmf. Then

Y ∈ Sd(dp) ⇐⇒
dl∑

j1=0

· · ·
dn∑
jn=0

(jk − pkdk)pY (j1, . . . , jn) = 0, k = 1, . . . , n.

Proof. Let Y ∈ Dd1,...,dn . By Theorem 5.1 Y ∈ Sd(G)(dp) iff E[Yk] = pkdk. It holds

E[Yk] = pkdk ⇐⇒ E[Yk − pkdk] = 0⇐⇒
dl∑

j1=0

· · ·
dn∑
jn=0

(jk − pkdk)pY (j1, . . . , jn) = 0.

From this proposition it can be proved that the extremal points of the polytope

Ed(G)(p) have support on at most n+ 1 points.

Example 5. Let X ∈ E4(G), where G = {{1, 2}, {3, 4}} as in Example 4 and let p =

(p1, p2) the mean vector. The convex polytope Ed(G)(p) is the set of solutions of the

linear system:{
−2p1(p00 + p01 + p02) + (1− 2p1)(p10 + p11 + p12) + (2− 2p1)(p20 + p21 + p22) = 0

−2p2(p00 + p10 + p20) + (1− 2p2)(p01 + p11 + p21) + (2− 2p2)(p02 + p12 + p22) = 0
,

therefore the extremal points have support on at most three points. As an example Table

4 provides the extremal points for p = (1
2
, 1

4
).

6 Conclusions

Building on the geometrical structure of the class of exchangeable Bernoulli distributions

with given means as studied in [6], in this paper we have addressed different statistical

issues: high dimensional simulation, estimation and testing. We provide an algorithm

to simulate from a multivariate Bernoulli distribution with given mean even in high

dimension. We also provide an algorithm to simulate a random sample with given mean

from a parametrical family of distributions able to span the whole correlation range. This

can be done virtually in any dimension with a small computational effort. Furthermore,

we also perform uniform simulation on the class of exchangeable Bernoulli distributions
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Table 4: Extremal densities of S(G)(1, 1
2
) ≡ Ed(G)(1

2
, 1

4
)

y r1(y) r2(y) r3(y) r4(y) r5(y) r6(y) r7(y) r8(y) r9(y) r10(y) r11(y) r12(y) r13(y) r14(y)

00 0 0 0 0 0 0 0 0 0.5 0.25 0.25 0.25 0.5 0.38

10 0 0.5 0.5 0.5 0.75 0.67 0.67 0.75 0 0 0 0.5 0 0

20 0.5 0 0 0.25 0 0 0 0 0 0.25 0.5 0 0.25 0.38

01 0.5 0 0.25 0 0 0 0.17 0 0 0 0 0 0 0

11 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0

21 0 0 0.25 0 0 0.17 0 0 0.5 0 0 0 0 0

02 0 0 0 0.25 0 0.17 0 0.13 0 0 0.25 0 0 0

12 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0.25

22 0 0 0 0 0 0 0.17 0.13 0 0 0 0.25 0.25 0

with given mean in high dimension. The importance of high dimensional simulation of

exchangeable Bernoulli variables is particularly evident in finance. The loss associated to

a credit risk portfolio is a convex linear combination of indicators of defaults. Indicator

of defaults are often assumed to be exchangeable, for example in homogeneous portfolios,

where the obligors belong to the same class of rating. In a first application to credit

risk, we show that using uniform simulation, we can investigate the relevant factors and

measures of risk and their behavior across the class of possible joint defaults in a high

dimensional portfolio (d = 100 in our application).

The extension to partially exchangeable distributions, that concludes this paper,

opens the way to the simulation of partially homogeneous portfolios.
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A Proof of Proposition 2.1

Let Y be a discrete random variable defined over {0, . . . , d} and let pY be its pmf. Then

it is easy to show that Y ∈ Sd(p) iff E[Y ] = pd. It holds

E[Y ] = pd⇐⇒ E[Y − pd] = 0⇐⇒
d∑
j=0

(j − pd)pY (j) = 0.
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Therefore,

Y ∈ Sd(p) ⇐⇒
d∑
j=0

(j − pd)pY (j) = 0.

Hence, the extremal points of Sd(p) are the positive, normalized extremal solutions

pS = (p0, . . . , pd) of
d∑
j=0

(j − pd)pj = 0. (A.1)

with the conditions pj ≥ 0, j = 0, . . . , d and
∑d

j=0 pj = 1. Let aj = j − pd and consider

the case pd not integer. Equation (A.1) becomes

d∑
j=0

ajpj = 0.

Using the standard theory of linear systems [6] proved that the extremal points of Sd(p)
have at most two non zero components, say j1, j2. Therefore the extremal solutions

r = (r0, . . . , rd) of A.1 can be found considering the equations

aj1rj1 + aj2rj2 = 0,

where we make the non restrictive assumption j1 < j2. The equation (A.1) has positive

solutions only if aj1aj2 < 0. We observe that aj1 < 0 for 0 ≤ j1 ≤ jM1 and aj2 > 0 for

jm2 ≤ j2 ≤ d . In this case we have jm2 = jM1 + 1. It follows that for 0 ≤ j1 ≤ jM1 and

jm2 ≤ j2 ≤ d we have aj1aj2 < 0. A positive solution of Equation (A.1) is{
r̃y(j1) = j2 − pd
r̃y(j2) = pd− j1

.

We have r̃y(j1) + r̃y(j2) = j2 − pd+ pd− j1 = j2 − j1 and then the normalized extremal

rays corresponding to j1 and j2 are given by (2.5). If pd is integer we have apd = 0. It

follows that (2.8) is also an extremal solution. The number of extremal solutions easily

follows.
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