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Article
Relationship between fitness and heterogeneity
in exponentially growing microbial populations
Anna Paola Muntoni,1,2 Alfredo Braunstein,1,2,3 Andrea Pagnani,1,2,3 Daniele De Martino,4,*

and Andrea De Martino1,2,5,*
1Politecnico di Torino, Corso Duca degli Abruzzi, 24, I-10129, Torino, Italy; 2Italian Institute for Genomic Medicine, IRCCS Candiolo, SP-142,
I-10060, Candiolo (TO), Italy; 3INFN, Sezione di Torino, Torino, Italy; 4Biofisika Institute (CSIC, UPV-EHU) and Ikerbasque Basque Foundation
for Science, Bilbao 48013, Spain; and 5Istituto di Nanotecnologia (CNR-NANOTEC), Consiglio Nazionale delle Ricerche, I-00185 Roma, Italy
ABSTRACT Despite major environmental and genetic differences, microbial metabolic networks are known to generate
consistent physiological outcomes across vastly different organisms. This remarkable robustness suggests that, at least in bac-
teria, metabolic activity may be guided by universal principles. The constrained optimization of evolutionarily motivated objective
functions, such as the growth rate, has emerged as the key theoretical assumption for the study of bacterial metabolism. While
conceptually and practically useful in many situations, the idea that certain functions are optimized is hard to validate in data.
Moreover, it is not always clear how optimality can be reconciled with the high degree of single-cell variability observed in ex-
periments within microbial populations. To shed light on these issues, we develop an inverse modeling framework that connects
the fitness of a population of cells (represented by the mean single-cell growth rate) to the underlying metabolic variability
through the maximum entropy inference of the distribution of metabolic phenotypes from data. While no clear objective function
emerges, we find that, as the medium gets richer, the fitness and inferred variability for Escherichia coli populations follow and
slowly approach the theoretically optimal bound defined byminimal reduction of variability at given fitness. These results suggest
that bacterial metabolism may be crucially shaped by a population-level trade-off between growth and heterogeneity.
SIGNIFICANCE Evolutionary reasoning suggests that growth rate maximization may be the key organization principle of
microbial metabolism. While appealing, optimality is hard to validate by directly extracting objective functions from data.
Using a maximum entropy framework to infer metabolic phenotypes from population-level experiments, we show here that,
as growth conditions improve, Escherichia coli cells approach a theoretical limit that connects their average growth rate to
cell-to-cell variability in metabolic phenotypes. Specifically, as the former increases, the reduction in variability stays close
to a minimum. This suggests that the organization of microbial metabolism (and some of the trade-offs that characterize it)
may result from the need to preserve large metabolic heterogeneity in any growth condition.
INTRODUCTION

A standard assumption of theoretical models of microbial
metabolism is that cells regulate the fluxes through metabolic
reactions to maximize their growth rate (i.e., their biomass
output) (1–4). While intuitive and highly successful in many
applications (5), this idea is not easy to validate in
exponentially growing microbial populations. Quantitative
studies of the interplay betweenmetabolism and gene expres-
sion suggest, for instance, that microbial fitness is strongly
gauged by regulatory constraints (6,7), biosynthetic costs
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(8,9), and the ability to respond to changing environments
(10–14). As a consequence, the trade-offs arising from a com-
plex multiobjective optimization often give a more accurate
description ofmicrobial growth than straightforward biomass
maximization (15–17). Moreover, experiments character-
izing bacterial growth at single-cell resolution have shown
tight links between fitness and cell-to-cell variability
(18–20). Growth rate distributions and metabolic fluxes
indeed appear to be best captured bymodeling suchvariability
rather than assuming growth rate maximization (21,22), with
the implication that trade-offs between metabolism and gene
expression may affect not only bulk (average) properties but
also the overall structure of a microbial population. While
genome-scale models of metabolic networks can account
for some of these facts (23–26), the maximization of biomass
output remains a key conceptual premise.
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Addressing the question of ‘‘what cells actuallywant’’ (27)
requires in essence to reverse the usual theoretical pipeline
and infer from empirical data (reaction fluxes, growth rates,
nutrient intake rates, etc.) 1) how the flow of metabolites
through the metabolic network is organized and 2) whether
some objective function is optimized. In this work we
develop a framework to learn the probability distribution of
metabolic phenotypes (namely, whole network flux configu-
rations) using mass-spectrometry data (28) to inform a
constraint-based model of E. coli’s metabolism. This
approach differs significantly from previous inference
studies, specifically those of Refs (21,22), where the proba-
bility to observe a certain phenotypewas effectively assumed
to be a Boltzmann-like exponential function of its growth
rate. No such assumption is made here. Rather, for each
experimental sample, we compute the most likely distribu-
tion of phenotypes compatible with flux data resorting to
the maximum entropy (MaxEnt) principle. In a nutshell,
this approach prescribes that, if one has to infer a probability
distribution subject to a given set of constraints, the distribu-
tion having the largest entropy provides the best guess, in the
sense of being closest to uniform (i.e., minimizing its diver-
gence from the uniform distribution), thus avoiding the intro-
duction of biases that are not needed to accommodate
constraints (see (29) for a simple introduction to this idea).
Each inferred distribution is then characterized via 1) its
mean biomass output (a proxy for the fitness) and 2) its
‘‘information content,’’ a global measure of cell-to-cell
variability introduced in (21) that in essence quantifies the
‘‘volume’’ of the space of allowed phenotypes over which
the inferred distribution is spread, with high information con-
tent corresponding to small volume. Fitness and information
values inferred at different glucose levels appear to draw a
well-defined curve in the fitness-information plane, support-
ing the idea of a tight link between growth and (inferred) vari-
ability. As a benchmark, we compare this curve against a
purely theoretical bound obtained by maximizing, in each
condition, the mean biomass output at fixed information
content (similar to a ‘‘rate-distortion curve’’ in information
theory (30)). We found that empirical populations qualita-
tively follow and slowly approach the theoretical limit as
the growth medium gets richer. In other words, as the fitness
(mean biomass output) increases, the inferred phenotypic
variability tends to remain as large as possible. This quantita-
tively supports the idea that heterogeneity plays a key role in
shaping the fitness of a microbial population.
MATERIALS AND METHODS

Constraint-based model of the metabolic network

Given a network reconstruction defined by the matrix S of the stoichio-

metric coefficients of metabolic reactions (with N the number of reactions

andM that of chemical species, including exchange fluxes between the cell

and the medium), feasible flux vectors v ¼ fvig are assumed to satisfy the

nonequilibrium steady state (NESS) mass balance conditions Sv ¼ 0 (5)
1920 Biophysical Journal 121, 1919–1930, May 17, 2022
(Fig. 1 A). Once ranges of variability of the form vi ˛ ½vi;min; vi;max� are sup-
plied for each flux, solutions span a convex polytope of dimension at least

equal to N � rankðSÞ (31). This represents the ‘‘feasible space’’ F of the

metabolic network. In principle, all vectors v˛F are viable network states

(phenotypes). Flux balance analysis and related approaches typically focus

on the optimal phenotype, defined as the flux vector that maximizes a spe-

cific objective, usually the ‘‘biomass synthesis rate’’ vbm included in the

network reconstructions (2), which quantifies the rate at which biomass pre-

cursors are produced, in the correct proportions, in state v. It follows that the

vector v˛F , which maximizes vbm, can be found by Linear Programming.

We shall hereafter write vmax
bm hmaxv˛F vbm. Here, we aim at using experi-

mental data on fluxes to infer a probability density on F that most effi-

ciently represents our empirical knowledge. Since the biomass synthesis

rate corresponds to the growth rate according to the metabolic model, the

variable vbm has the dimension of a rate, i.e., h� 1. In the following we

make use of a heavy notation to denote the biomass synthesis rate under

different conditions and approximations. For sake of clarity, we summarize

in supporting material, ‘‘notation used for the biomass production rate’’ the

notation associated with this quantity.
Experimental data and network reconstruction

We have considered the 17 experiments described in (32) and the 16 from

(15), which study glucose-limited E. coli growth and employ the same

network reconstruction for flux estimation. Taken together, data cover 33

values of the growth rate, from ca. 0.05/h to 1/h (a range that includes

the key phenotypic crossover marked by the onset of acetate overflow

(9,33)) and provide, for each condition, estimates for the population-aver-

aged fluxes through a small set of reactions from the central carbon path-

ways (34). The former dataset yields the expectation values of 26 fluxes

at various growth rates and glucose intakes below the acetate onset point.

The latter quantifies instead 25 fluxes in a nutrient-rich medium, with ace-

tate excretion observed in 11 experiments. As fluxes were measured relative

to the glucose uptake in (15), we converted them to net fluxes using the

glucose uptake values reported in Table S5 of (15). The data we used finally

comprised 33 vectors vxp of average fluxes and the vector sxp of their exper-

imental errors. To define the feasible space F , we derived the stoichio-

metric matrix relative to the network reconstruction given in Table S1 in

(15), after mapping these fluxes to those measured in (32) via their chemical

equations (supporting material, ‘‘reactions mapping’’). To define reaction

reversibility, we assigned bounds ½ � 1000; 0� or ½0; 1000� to irreversible re-
actions, and ½ � 1000; 1000� to reversible ones. We then implemented two

modifications. First, we turned reaction udhA from positive irreversible to

reversible to allow for negative values (measured). Next, using the algo-

rithm given in (35), we found that reaction sdhABCD was responsible for

a thermodynamically infeasible loop in the network. To prevent it, we

changed it from reversible to positive irreversible, so that all flux configu-

rations we consider are thermodynamically consistent. We finally per-

formed flux variability analysis (36) to restrict the range of variability of

each flux. To define the growth medium, the glucose import flux was set

to the value reported in each experiment. The corresponding flux can

then be encoded in an experiment-dependent vector b, so that the NESS

conditions take the form Sv ¼ b. The network we consider is ultimately

composed of N ¼ 73 fluxes and M ¼ 49 metabolites, while the feasible

space F is a convex polytope of dimension 26, i.e., with 26 independent de-

grees of freedom. Fig. 1 B shows, for all experiments, the measured biomass

rate vxpbm (markers) together with the maximum value of the biomass vmax
bm

predicted by flux balance analysis for the network just described (black

line).
MaxEnt distribution

To infer the probability density of flux configurations (pðvÞ), we use empir-

ical data to constrain the space of probability densities on F . Specifically,



FIGURE 1 (A) Constraint-based models use large-scale reconstructions of cellular metabolic networks, encoded in a stoichiometric matrix S, together with

biochemical or regulatory constraints on fluxes. Nonequilibrium steady states (NESSs) of the network satisfy the conditions Sv ¼ 0. The (high-dimensional,

as N[M) polytope of solutions is the feasible space F of the system. The biomass output associated with each feasible flux vector (phenotype) represents

its fitness. (B) Empirical mean biomass rate vxpbm (markers, from (15,32)) and maximum biomass output vmax
bm (continuous line) predicted by flux balance anal-

ysis for the metabolic network and glucose uptakes from (15,32). (C) Experiment-derived averages for a small set of fluxes and the bounds defined by the

feasible space can be used to inform a maximum entropy inference procedure that allows us to determine the most likely distribution of phenotypes for the

entire network. The distribution inferred for each experiment yields a point in the (fitness, information) plane. (D) Inferred fitness-information values for a set

of 33 experiments probing E. coli growth in glucose-minimal medium. Green line: fitness-information (F-I) bounds numerically computed by EP for the 33

experiments (all curves perfectly overlap). In each condition, fitness values CvDbm ¼ voptmbm have been rescaled by the corresponding value of vmax
bm . Markers:

fitness is computed according to the inferred distribution, i.e., CvDbm ¼ vinfbm. The black marker denotes the rescaled fitness CvbmDqðv;b¼ 0Þ=vmax
bm corresponding to

a uniform distribution on F (I ¼ 0, b ¼ 0), which separates the upper branch of the F-I bound (growth faster than CvbmDqðv;0Þ, b> 0) from the lower one

(growth slower than CvbmDqðv;0Þ, b< 0). The gray area represents the infeasible region. In color bars in (B) and (D), orange and blue shades are used for data

coming from (15) and (32), respectively.

Fitness versus heterogeneity
we would like to impose that the mean flux CvjD ¼ R
F
vj pðvÞ dv of every re-

action j that has been experimentally quantified matches its experimental

estimate vxpj . We denote by E the set of experimentally measured fluxes. Ac-

cording to the MaxEnt principle, the least-biased guess for pðvÞ compatible

with these constraints is given by the solution of

max
pðvÞ

H½p� subject to CvjD ¼ vxpj cj˛ E ; (1)
whereH½p� ¼ �
F
pðvÞlog2pðvÞ dv is the entropy and E stands for the set of
R
measured fluxes. This yields

pðv; cÞ ¼ 1

ZðcÞ exp

"X
j˛ E

cjvj

#
; (2)
where c ¼ fcjg is the vector of Lagrange multipliers (‘‘fields’’ for short)

enforcing the constraints (1) and ZðcÞ is a factor ensuring proper normali-
zation (
R
F
pðv; cÞ dv ¼ 1). The values of the fields cj must be determined

from the conditions

CvjDh
Z
F

vj pðv; cÞ dv ¼ vxpj cj˛ E : (3)
To solve Eq. (3) in a general setting one can neither rely on the Monte

Carlo schemes employed in (21) nor to Boltzmann learning (supporting ma-

terial, ‘‘fitting averages using HR-based Boltzmann machine learning’’) due

to exceeding computational costs. Furthermore, we observed that, due to

experimental uncertainties, some empirical means vxpj given in (15,32) lie

outside the feasible polytope F defined by the network reconstruction em-

ployed in those studies. In other words, there is no configuration v˛F
satisfying vj ¼ vxpj exactly, therefore the above-mentioned approach

cannot directly be applied. To account for the last issue, we introduce in

the next section a slightly modified MaxEnt model, whose parameters are

determined by expectation propagation (EP), a highly efficient algorithm

for approximate Bayesian inference with broad applicability (37–39).
Computation of the MaxEnt distribution via EP

We define for each measured flux j˛ E, the auxiliary variable vej ¼
vxpj þ hj, where hj is a Gaussian random variable with zero mean and stan-

dard deviation g� 1=2 (no cross correlations between different fluxes are

assumed). We then aimed at determining the distribution of phenotypes v

such that 1) v lies in F , 2) fluxes in E take on values as close as possible

(within experimental errors) to those encoded in the auxiliary vector ve,

and 3) averages of ve match empirical averages vxp. The (MaxEnt) distribu-

tion satisfying these constraints reads

pðv; ve; cÞ ¼ 1

ZeðcÞ
Y
j˛ E

e�
g
2ðvej � vjÞ2þcjv

e
j ; (4)
Biophysical Journal 121, 1919–1930, May 17, 2022 1921
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where ZeðcÞ ¼ R
Rn

dve
R
F
dv pðv; ve; cÞ is the normalization constant, and c is

the vector of Lagrange multipliers ensuring that

Cvej Dpðv;ve;cÞ ¼ vxpj for each j ˛ E : (5)

In the limit of large g the distribution will concentrate on the point (or

face) that is ‘‘closest’’ to the empirical vector vxp. To set a specific value

for g, however, we imposed that the average variances of auxiliary fluxes

ve match the average variance of experimental errors, i.e.,

1

jEj
X
j˛ E

C
�
vej � vxpj

�2

Dpðv;ve;cÞ ¼ 1

jEj
X
j˛ E

�
s
xp
j

�2
(6)

(see supporting material, ‘‘mathematical details of the expectation prop-

agation algorithm’’ for details). Note that (4) is tightly related to (2), sinceZ
Rn

pðv; ve; cÞdvehpðv; cÞ : (7)

To avoid the high computation cost of calculating the vector c and the sca-

lar g through Boltzmann learning, we propose to employ a variant of EP

(37–39), an algorithm computing a multivariate Gaussian approximation

qðv; ve; cÞ of pðv; ve; cÞ. Note that, thanks to the relation in (7) and the

Gaussian approximation provided by EP, we can characterize the fluxes

v˛F by means of a marginal density qðv; cÞ, fully parametrized by a vector

of means m and a covariance matrixS. Details are given in supporting mate-

rial, ‘‘mathematical details of the expectation propagation algorithm.’’ After

applying EP to each experiment a to compute the distribution qðv; ve; caÞ
approximating pðv;ve; caÞ, expectation values of constrained fluxes coincide
within error bars with empirical means as well as with results obtained by

(potentially more accurate but less efficient) Monte Carlo Hit-and-Run cal-

culations (40) (supportingmaterial, ‘‘fitting averages using HR-based Boltz-

mann machine learning’’ and ‘‘fitting quality’’; Figs. S3, S4, and S5). The

script performing EP to compute the joint distribution (4) along with its sin-

gle-flux marginals using constraints derived from the datasets considered in

this paper is available at https://github.com/infernet-h2020/MetaME.
Inferred fitness and information content

To characterize the inferred distributions (4) (one per experimental popula-

tion), we use two quantities (Fig. 1 C): 1) the mean inferred biomass output

vinfbm ¼ CvbmDqðv;cÞ ¼
Z
F

vbm q
�
v; c

�
dv ; (8)

and 2) the ‘‘information content’’ per degree of freedom defined as

Iinf ¼ H½pðv; 0Þ� � H½pðv; cÞ�
dimðFÞ ln2 ½bits� : (9)

vinfbm is a proxy for the population growth rate (fitness) when cell-to-cell vari-

ability is sufficiently small (19). Iinf , namely the entropy loss relative to the

uniform density on F , quantifies instead how ‘‘spread’’ over F is pðv; cÞ.
Low entropy or low phenotypic variability implies high information content

and vice versa. We calculated the information content per degree of

freedom from the Gaussian approximation to (4), i.e.,

Ha½q� ¼ 1

2
log detð2peSaÞ ; (10)
1922 Biophysical Journal 121, 1919–1930, May 17, 2022
inf H0 � Ha

Ia ¼

dimðFÞ ln2 ; (11)

where H0 is the entropy of the multivariate Gaussian distribution approxi-

mating the uniform distribution on F .
F-I bound

To benchmark inferred distributions, we reasoned that a large population of

cells can be described by a probability density pðvÞ over F as long as the

feasible space can be taken to be the same for all cells in the population

(i.e., if all cells obey the same set of physicochemical, regulatory, and envi-

ronmental constraints). Clearly, the same fitness (mean biomass output

CvbmD ¼ R
F
vbm pðvÞdv) can be achieved by different probability densities

pðvÞ. Among equally fit populations, however, thosewith the largest entropy

encode less information into pðvÞ and are hence likely to face smaller costs

associated with the regulation of fluxes. Therefore, it is reasonable to define

the optimal population for any given information content as the one solving

max
pðvÞ

CvbmD subject to I½p� ¼ I : (12)

Equivalently, the optimal population is the one achieving a given fitness

at the smallest reduction of flux variability, i.e., the solution of

min
pðvÞ

I½p� subject to CvbmD ¼ vbm : (13)

The solution of Eq. (13) has the form

p+ðvÞ ¼ 1

ZðbÞ ebvbm ; (14)

where b is the Lagrange multiplier enforcing the constraint CvbmD ¼ vbm
and ZðbÞ is a normalization constant. The distribution Eq. (14) depends

on the single parameter b. As b increases, vbm increases and the values of

CvbmD and I associated with Eq. (14) will change, drawing a curve in the

ðI; CvbmDÞ plane that only depends on the specifics of F . We call this curve

the ftness-information (F-I) bound. By definition, optimal populations (fast-

est-growing if b> 0, slowest-growing if b< 0) have fitness and information

values that lie on this curve.

Given a feasible space F , the F-I bound can be computed by EP, as the

latter yields a multivariate Gaussian approximation qðv;bÞ to the distribu-

tion Eq. (14). The mean biomass synthesis rate increases as b increases. We

therefore selected 103 values of b in the range ½0; 104� and, for each of these,
computed qðv;bÞ, and the corresponding mean biomass voptmbm ¼ CvbmDqðv;bÞ
and information content Ioptm. The latter quantities give the F-I bound (the

green line in Fig. 1 D). (The same curve can also be computed thorough the

Monte Carlo protocols described in (21,22).) Note that, in principle, one ob-

tains different F-I bounds in each condition, since both F and vmax
bm change

with the glucose level. However, when the values of voptmbm are rescaled by

vmax
bm , all curves collapse on the green line due to inherent linear scaling

of fluxes with the glucose uptake. In this respect, the F-I bound shown in

Fig. 1 D provides a highly robust characterization of the cell’s metabolic

capabilities.
RESULTS

Inferred fitness-information relationship

Inferred values of (rescaled) fitness and information ðvinfbm =
vmax
bm ; IinfÞ for the 33 experiments used to inform the

https://github.com/infernet-h2020/MetaME


Fitness versus heterogeneity
MaxEnt problem (materials and methods) are shown by the
markers in Fig. 1 D. Different color groups (orange versus
blue) are used for data coming from (15) and (32), respec-
tively, with shades corresponding to different growth condi-
tions, while triangles versus circles denote the presence
(nxpace > 0) or absence (nxpace ¼ 0) of acetate excretion. As
the growth medium gets richer, both the mean biomass
output and the information encoded in inferred distributions
increase, following a remarkably well-defined behavior. In
other terms, faster-growing populations tend to spread
over smaller and smaller portions of the feasible space.
Such a relationship represents the trade-off between static
(instantaneous) fitness and cell-to-cell variability in bacte-
rial populations starting from reaction fluxes rather than
through direct quantification of elongation rates or interdivi-
sion times (see, e.g., (19)).
Empirical versus optimal fitness-information
relationship

The theoretically optimal fitness-information relationship is
encoded by the F-I bound describing the maximal mean
biomass output achievable in F at any given information
content (or, vice versa, the minimum information content
required to achieve a given mean biomass) (materials and
methods). The bound obtained for network reconstruction
of (15,32) is shown by the green line in Fig. 1 D. The top
(respectively, bottom) branch of the line corresponds to
optimal states with b> 0 (respectively, b< 0) in Eq. (14),
where the biomass synthetic rate is higher (respectively,
lower) than the value obtained by an unbiased uniform sam-
pling of F (b ¼ 0 in Eq. (14)). Such a value is displayed as
a black square in Fig. 1 D. F-I pairs lying within the two
branches of the F-I bound (white area) are feasible,
while pairs in the gray area are forbidden. Inferred F-I
pairs consistently lie in the feasible region. A comparison
FIGURE 2 (A) Vertical distance between the F-I bound and inferred F-I pair

Norms of the projections of the fields c onto the feasible space F (supporting

as a function of the experimentally measured biomass. In color bars, orange an
between inferred and optimal scenarios reveals, however,
two qualitatively different regimes (Fig. 2 A). In poorer me-
dia, populations appear to be significantly suboptimal but
rapidly close the gap with the theoretically optimal mean
biomass production rate as the medium improves. Here, in-
ferred values of I are larger than optimal ones by about 1 bit
across the whole range of growth rates (Fig. 1 D). This sug-
gests that a remodeling of the protein repertoire leading to
faster growth at roughly the same regulatory costs is likely
the key driver of the organization of flux patterns, as
described, e.g., in (7). In richer media (faster growth), the
fitness remains instead at a roughly constant (small) distance
to the optimum, suggesting that growth is mainly informa-
tion limited: increases in fitness require fine-tuning meta-
bolic fluxes to encode more information into pðv; cÞ.
Noticeably, the crossover from one regime to the other
occurs around the growth rate where acetate overflow sets
in (9).
Physical meaning of the inferred Lagrange
multipliers

Qualitative changes in the flux distributions are also re-
flected in the behavior of the inferred fields c ¼ fcjg (see

(2)). Roughly speaking, these quantities can be interpreted
as ‘‘forces’’ acting on fluxes: the larger cj, the more pðv; cÞ
is deformed in the direction of flux j with respect to the uni-
form distribution onF with the prescribed glucose uptake in

order for Cvej D to match vxpj (materials and methods). The pro-

jection cproj of the fields vector c onto the feasible space F
(or, more precisely, its norm jjcprojjj, see supporting mate-
rial, ‘‘projections of the coefficients along individual flux di-
rections’’) therefore quantifies the overall deformation
required to reproduce data once the glucose uptake rate is

given. One sees (Fig. 2 B) that jjcprojjj decreases approxi-

mately as v� 0:4
bm as the growth rate increases. In other words,
s versus empirical growth rate. The dashed line is a guide for the eye. (B)

material, ‘‘projections of the coefficients along individual flux directions’’)

d blue shades are used for data coming from (15) and (32), respectively.

Biophysical Journal 121, 1919–1930, May 17, 2022 1923
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as the glucose uptake increases, inferred distributions get
closer to being as broad as possible given the glucose up-
take. Because optimal populations are the least constrained
at any given fitness, one may think that experimental popu-
lations also get globally less constrained as the medium gets
richer. This is, however, not the case. To show it, one must
compute, for every experiment, the fitness-information pairs
obtained by varying only the biomass output (i.e., the coef-
ficient associated with the biomass reaction) at fixed fields c.
For any given experiment (i.e., for any given c), this proced-
ure returns a line in the fitness-information plane describing
the values of I that would correspond to a population subject
to the same fields, but carrying a higher fitness. By construc-
tion, populations lying to the left of this line at any given
growth rate encode less information into the flux distribu-
tion than the reference population and are therefore globally
less constrained. A representative example in Fig. S8 shows
the isofield lines for two experiments from (32) and one
from (15). One sees that populations tend to lie to the right
of these lines. Hence, contrary to intuition, faster-growing
populations are slightly more constrained than slower ones
despite being closer to the optimal fitness and information
content.

Finally, the projections of c along the directions of indi-
vidual degrees of freedom of the feasible space F provide
information about the degree of regulation of individual re-
actions (Fig. S10). At slower growth, reactions belonging to
glycolysis, the Entner-Doudoroff pathway and the glyoxy-
late shunt get more and more downregulated compared
with the unbiased mean as the glucose level is limited, while
fluxes through the pentose phosphate pathway, the TCA cy-
cle and oxidative phosphorylation are mostly upregulated.
This picture effectively recapitulates known patterns of pro-
teome allocation in E. coli (7). The projection of c on the
biomass production rate is relatively large at faster growth
but behaves erratically in poor media. Marginal flux distri-
butions (supporting material, ‘‘probability densities of the
nonmeasured fluxes’’ and Fig. S7) confirm this picture in
greater detail.
Inferred versus optimal patterns of pathway
regulation

Besides quantifying the distortion of the inferred phenotype
distribution (2) with respect to a uniform distribution (at
given nutrient intake), the fields c also provide information
about how different metabolic pathways are used in
different conditions. At the simplest level, principal-compo-
nent analysis (PCA) performed on the ensemble of the 33
inferred c vectors (one per experiment) shows that experi-
ments are classified by the projection on the first component
in two clusters characterized by distinct acetate excretion
profiles (supporting material, ‘‘dimensionality reduction’’
and Fig. S1; note that PCA correctly assigns the data from
(15) to the two clusters). This confirms carbon overflow as
1924 Biophysical Journal 121, 1919–1930, May 17, 2022
the key separator of phenotypic behavior in carbon-limited
E. coli growth.

At a more refined level, one can consider the average vari-
ance of fluxes in each pathway P defined according to the
network reconstruction provided in Table S1 from (15)
defined as

VarðviÞi˛P ¼ 1

jPj
X
i˛P

Sii: (15)

A larger (respectively, smaller) variance indicates that the
pathway is globally less (respectively, more) regulated, as its
fluxes are allowed larger variability on average. Fig. 3 re-
ports a comparison between optimal and inferred values
for six key pathways. While glycolysis, Entner-Doudoroff,
and pentose phosphate pathways appear to be tightly
controlled in all conditions (both in optimal and inferred dis-
tributions), respiration and the TCA cycle display a signifi-
cant (and remarkably similar) pattern of variability in both
cases. Noticeably, their variability undergoes strong modu-
lations as the growth rate changes. The major difference be-
tween the two cases is seen in the fermentation pathway,
which appears to be much more variable in empirical popu-
lation than it is at optimality. Finally, in both optimal and in-
ferred distributions the overall variability of fluxes within
pathways appears to decrease close to the acetate onset point
(ca. 0.6/h), again pointing to the occurrence of a major reg-
ulatory transition. Detailed results for all pathways included
in the network model are given in Fig. S9. Taken together,
changes in the variability of pathways (Fig. 3) and in the
regulation of different reactions (Fig. S10) suggest that
some of the known empirical facts regarding the use of
cellular resources may result from the need to preserve
a sufficiently large metabolic variability in any growth
condition.
Reduced representations of metabolic activity are
not sparse

An important problem arising in the analysis of metabolic
networks concerns the possibility that whole network flux
configurations might be efficiently represented by a small
number of collective variables (‘‘pathways’’), whose control
would be the central task of metabolic regulation. Experi-
ments probing these variables would effectively allow us
to reconstruct the activity across the whole network. Fig. 4
indeed shows that about 90% of the empirical variance of
inferred fields c (red line) is explained by the first five prin-
cipal components, suggesting that a significant reduction of
dimensionality might be possible (as found, e.g., in (41)).
Encouraged by this, we then estimated how well one can
reconstruct inferred Lagrange coefficients and mean fluxes
from PCA coefficients as a function of the number of
PCA components included in the calculation. Ideally, an
efficient representation would only require a small number



FIGURE 3 Mean variance of fluxes (Eq. 15) through six metabolic pathways as a function of the growth rate (empirical values) in optimal (purple) and

inferred (cyan) distributions. (Note that markers appear darker at points where many of them overlap. This is mainly due to replicated experiments in

(32).)
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of components. Denoting by k the number of PCA compo-
nents included, as quality indicators we used the quantities

εcoeffðkÞ ¼
������cproja � c

PCAðkÞ
a

������; (16)

� � ���� ����

εmeans k ¼ ��CvEDca � CvEDcPCAðkÞa

�� ; (17)
FIGURE 4 Explained variance of the coefficients (in percentage, red

line) and reconstruction error of the original fields (continuous blue line)

and phenotypes (dashed blue line) as a function of the number of PCA com-

ponents employed to compute their low-rank counterpart.
where cproja (respectively, c
PCAðkÞ
a ) is the projected vector of

Lagrange multipliers for experiment a ¼ 1;.; 33 from
the full inference problem (respectively, obtained by
including only the first k PCA components), while CvEDð:Þ
collects the mean values of the measured fluxes E according
to a MaxEnt distribution parametrized by the external
fields ð:Þ. The over-bar denotes the average over the 33 ex-
periments. Fig. 4 shows that εcoeff is generically small and
decreases fast with k, in line with the fact that the first five
principal components explain most of the variability of the
original coefficients. εmeans, however, decreases much
more slowly. In practice, lossless inference of the coeffi-
cients c (and hence the reconstruction of mean fluxes) re-
quires the inclusion of the first 18 principal components
(supporting material, ‘‘accessing the most informative
fluxes’’ and Fig. S2). Incidentally, this number coincides
with the number of fluxes measured in (15,32) that are
linearly independent. Note that, besides the achievable
effectiveness in reproducing measured fluxes, inferred dis-
tributions also yields predictions for metabolic fluxes that
are inaccessible to labeling experiments, stored in the mar-
ginal densities of individual fluxes (supporting material,
‘‘probability densities of the nonmeasured fluxes’’ and
Fig. S7). Likewise, they allow for accurate predictions of
the values of physiological parameters quantified indepen-
dently of fluxes, such as growth and acetate excretion rates,
when such quantities are excluded from the inference pro-
cedure (Fig. 5).
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Metabolic control coefficients

The fact that the complexity of metabolic activity is not
captured by a few effective variables indicates that the mo-
ments of (2) are highly sensitive to the values of the inferred
fields c: small changes in the latter can induce large rear-
rangements in the distribution. Metabolism, in other words,
forms a system of globally coupled processes. Within the
theoretical framework employed here, this aspect is fully
quantified by the flux-flux correlation matrices. Indeed,
starting from the definition of ZðcÞ, i.e., (see (2))

ZðcÞ ¼
Z
F

exp

"X
j˛ E

cjvj

#
dv ; (18)

one can easily show by a direct calculation that

vln ZðcÞ
vci

¼ 1

ZðcÞ
Z
F

vi exp

2
4X

j˛ E
cjvj

3
5 dvh CviDc (19)

v2 ln ZðcÞ

vcivcj

¼ CvivjDc � CviDcCvjDc hCij (20)

vCviDc vCvjDc

vcj

¼
vci

¼ Cij ; (21)
FIGURE 5 Mean values of the acetate excretion rate (top) and biomass pro

distribution (cyan) for the different experiments from (15,32). For comparison,

vmax
bm ¼ 1, respectively. Error bars represent experimental errors as reported in
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where C/Dc ¼ R
/pðv; cÞdv. Hence (see (21)), flux-flux

correlations Cij (computable by EP, see supporting material,
‘‘mathematical details of the expectation propagation algo-
rithm’’) can be immediately interpreted as ‘‘metabolic con-
trol coefficients’’ relating changes in flux i to changes in
field j (or vice versa). For instance, the correlation matrix
computed for a representative experiment from (32) shown
in supporting material, ‘‘correlation matrices’’ and Fig. S6
suggests that glycolitic reactions are positively coupled to
other glycolytic reactions (e.g., an upregulation in one reac-
tion, quantified by a change in the corresponding field, will
increase the mean flux through the other), whereas they are
mostly negatively coupled to reactions in the pentose phos-
phate pathway (upregulations in the latter will decrease the
flux through the former). These couplings span across the
entire metabolic network. Indeed one sees that changes in
one field typically propagate to a large number of reactions,
supporting the idea that the cross talk between metabolic re-
actions is significantly nonlocal.
DISCUSSION

Biological significance of the information content

While the idea that fitness and information content of flux
distributions are interrelated seems rather natural, the physi-
ological meaning of the latter is not obvious. Technically, I
quantifies the deviation of the inferred distribution pðv; cÞ
duction rate (bottom) measured (purple) and predicted from the inferred

bare flux balance analysis predictions correspond to vex ace ¼ 0 and vbm=

([15,32])
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from uniformity in a given medium. Small values of I imply
that experiment-derived constraints do not significantly
modify our previous knowledge of the flux distribution, cor-
responding to all flux vectors in the feasible space defined by
the given uptake rates being equally likely. On the other hand,
large values of I imply that the inferred likelihood has a small
overlap with the uniform distribution in the samemedium. In
this sense, one can say that I provides a proxy for the amount
of metabolic regulation required to grow in a given medium.
We have seen that the information content per degree of
freedom more than doubles as the growth rate goes from
0.05/h to about 1/h (Fig. 1 D). Such a gain is mainly due to
a systemic fine-tuning of fluxes and correlations rather than
to the tightened control of a few pathways, in agreement
with evidence suggesting that system-wide rearrangements
underlie response to changing carbon levels in E. coli (7).

Our analysis also shows that inferred distributions exceed
the minimum required information content by roughly 1 bit
per degree of freedom in all growth conditions (Fig. 1 D).
This suggests that the biochemical constraints used to define
the feasible space (flux reversibility, ranges of variability,
etc.) might be too conservative. Further ingredients
affecting the metabolism of single cells, such as biosyn-
thetic costs (25), might also reduce the feasible space and
bring data closer to the theoretical bound. However, the
gap may also indicate that population growth requires a
minimum amount of regulatory information, in line with
the idea that minimal complexity (as opposed to minimal
number of components) is the defining characteristic of cells
(42). That regulatory interactions and mechanical effects are
crucial in determining E. coli’s overall metabolic capabil-
ities is indicated by the fact that they remain substantially
unchanged after a large-scale removal of unnecessary genes
(43–45). By contrast, they are significantly affected by the
selective knockout of a small number of genes through
which specific cellular tasks are optimized (46–48). In this
sense, constraint-based models may be missing a substantial
amount of regulatory interactions that would effectively
reduce the size of the feasible space F . Identifying these
constraints could bring empirical populations closer to the
F-I bound and provide crucial hints about the nature of opti-
mality in bacterial growth.

It is finally important to remark that the F-I bound we
define is fundamentally different from the fitness-informa-
tion relationship derived in (49). In that case, one quantifies
the information about nutrient availability that has to be en-
coded in the level of a nutrient-processing enzyme to
achieve a given fitness. In our case, information is a measure
of the high-dimensional space of flux configurations that is
effectively accessible to the system.
Limitations of the study

Besides the information encoded in the network structure,
the key physical assumption made in our inference is that
metabolic networks are at a NESS described by the mass
balance conditions alone. This means that we do not account
for factors such as biosynthetic costs, molecular crowding,
membrane occupancy, etc. All of these are likely essential
for the metabolic behavior single cells. However, including
them in an inverse model defined on F would necessarily
require additional assumptions about how they are linked
to metabolic fluxes.

On the technical side, our study is limited by two not-
easily avoidable facts. 1) The data sets we used are not ho-
mogeneous, so it is a priori difficult to consider one as a
continuation of the other at different growth rates. Carrying
out this study on a broader, unique fluxomic data set
covering a large enough range of growth rates would likely
yield a more clean-cut picture. That a consistent scenario
can emerge despite this limitation is in this respect quite
remarkable. 2) In our framework, we implicitly interpret
measured flux variances as proxies for the cell-to-cell vari-
ability. While this assumption has given consistent results
when used in the context of single-cell data (21,22), a
more detailed understanding of the sources of variability
and error in fluxomics would allow to fine-tune the applica-
tion of the MaxEnt scheme for the inverse problem consid-
ered here. It is, however, important to note that, while our
approach is capable of efficiently representing the empirical
variability, it cannot point to specific causal factors behind
it. For this goal, different types of models (e.g., biochemi-
cally detailed dynamical models) are necessary.
Relation to other approaches

The most immediate comparison for our results is given by
standard biomass maximization, which corresponds to the
limit b/N in (14). Previous work has shown that empirical
data, including distributions of elongation rates in exponen-
tially growing populations and measured fluxes, are better
described using (14) with finite b rather than its b/N limit
(21,22). Here, we have effectively quantified how close flux
distributions inferred from data are to (14) in terms of fitness
and information content. Another set of potentially related
problems concerns the experiment-guided determination
of an objective function for constraint-based models.
Different techniques have been proposed in the past to infer
objectives or discriminate between various alternatives
(50–55). While the vector c of Lagrange multipliers does
partially align with the biomass output, our analysis does
not highlight a clear objective function for constraint-based
models. On the contrary, our results support the idea that
the growth of bacterial populations is governed by a trade-
off between mean single-cell biomass and heterogeneity.
Notice that optimizing the mean biomass over time provides
individual cells with an effective way to cope with multiple
sources of variability (56). For instance, bacteria in fluctu-
ating environments may be unable to adjust fluxes to the
distribution that maximizes the instantaneous biomass
Biophysical Journal 121, 1919–1930, May 17, 2022 1927
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synthetic rate due to the biosynthetic cost of the regulatory
machinery implementing the adjustments. Regulatory pro-
grams selected over longer timescales would essentially
optimize the frequency with which metabolism is adjusted
in varying conditions.

Finally, we note that MaxEnt-based models of metabolic
networks have been employed in the past for a variety of
purposes: to guide the decomposition of flux configurations
into physiologically significant modes (57,58); explain the
variability observed in bacterial populations (21,59) and
continuous cell cultures (60,61) (note: the latter article ap-
peared while the present paper was under review); repro-
duce empirical data on fluxes (22); derive dynamic
strategies of cellular resource allocation (62); or predict
response times to changing environments (63). While also
based on the MaxEnt principle, the work presented here
faces the question of heterogeneity from a rather different
viewpoint, aiming essentially at bridging the gap between
optimization-based methods and empirical results by build-
ing an efficient representation of metabolic data using
constraint-based models. Our hope is that such an approach
will lead to new theoretical insights into the nature and opti-
mality of bacterial growth.
CONCLUSION

We have shown here that, as the growth medium gets richer,
phenotype distributions inferred for E. coli populations
appear to follow and slowly approach a theoretical limit
that quantitatively relates the mean biomass production
rate to the cell-to-cell variability in metabolic phenotypes.
Specifically, the mean biomass gets closer to the maximum
allowed by the inferred heterogeneity of the population.
Despite the fact that large fluctuations affect the activity
of metabolic pathways, the scenario we obtain reproduces
some of the well-known trade-offs that characterize E. coli
growth under carbon limitation, including downregulation
of glycolysis, upregulation of respiration and the TCA cy-
cle, and the transition to acetate overflow. This suggests
that E. coli populations trade some of their fitness to main-
tain their metabolic heterogeneity nearly as large as possible
in all growth conditions considered.
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SUPPORTING TEXT

A. Reactions mapping

The reaction network used in this work is that reported in Table S1 of [1]. For the experiments in [2] we need to map each
measured flux to one of the model in [1]. Looking at the chemical equations reported in [2] and those associated with the fluxes
in Table S1 of [1] we perform the following mapping:

Measured reaction fluxes in [2] Mapping to the reaction network in [1]
GLC+ATP→G6P glk

G6P→6PG+NADPH zwf
6PG→P5P+CO2+NADPH gnd

6PG→F6P pgi
6PG→T3P+PYR eda
F6P+ATP→2T3P pfk
2P5P→S7P+T3P tktA

P5P+E4P→F6P+T3P tktB
S7P+T3P→E4P+F6P talA

T3P→PGA+ATP+NADH gapA
PGA→PEP eno

PEP→PYR+ATP pyk
PYR→AcCoA+CO2+NADH aceEFlpd

OAA+AcCoA→ICT gltA
ICT→OGA+CO2+NADPH icd

OGA→FUM+CO2+1.5ATP+2NADH sucABlpd
FUM→MAL fum

MAL→OAA+NADH mdh
MAL→PYR+CO2+NADH maeA

OAA+ATP→PEP+CO2 pck
PEP+CO2→OAA ppc

ICT+AcCoA→MAL+FUM+NADH aceA
NADPH→NADH udhA

O2+2NADH→2P/O x ATP ndh
Acetate production rate ex ace

Glucose consumption rate ex glc
Biomass biomass

B. Mathematical details of the Expectation Propagation algorithm

In this section we report (i) the detailed derivation of the statistical model involving the fluxes v and ve presented in the main
text and (ii) the derivation of the Expectation Propagation approximation scheme for the target distribution.

1. Modeling the posterior probabilities of the fluxes given experimental evidence

Let us briefly mention how to probabilistically treat the constrained fluxes, as done in [3]. Within a Bayesian framework,
we can investigate what is the a posteriori probability of observing a configuration of fluxes given a vector b, encoding the
mass-balance equations into a likelihood function, and the constraints on the range of variability into single-variable priors:

p (v; b) =
1

Zp
δ (Sv − b)

∏
i

1[vmaxi ,vmini ](vi)

vmaxi − vmini

(1)

where δ (Sv − b) is the Dirac delta function equals to 1 for configurations of fluxes satisfying the mass-balance conditions and
0 otherwise, Zp is the normalization constant, or partition function in the statistical mechanics jargon.
Here we are interested in the joint probability distribution between the auxiliary ‘experimental’ fluxes (affected by noise) ve, and
the ‘constrained’ ones (confined within the polytope described by the stoichiometric constraints and the boundaries of variability)
v, shown in Eq. (4) of the main text. For sake of simplicity we define as E = |E| the number of observed fluxes (it varies from
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26 to 25 when considering [2] or [1] respectively), and we restrict the analysis on ve ∈ RE , hence, at difference with the
main text, the latter collects only the values of the noisy and measured fluxes. Furthermore, we recall that the indices of the
measured fluxes in E allow for the mapping between ve and the corresponding components in v; finally, we can define the joint
distribution of the two sets of fluxes as

p (v,ve; c,b) ∝ δ (Sv − b)

N∏
i=1

ψi(vi)

E∏
i=1

e−
γi
2 (vei−vE(i))

2
+cE(i)v

e
i (2)

being ψi(vi) =
1[vmaxi

,vmin
i ](vi)

vmaxi −vmini
, c the vector containing the Lagrange multipliers in correspondence to the measured fluxes and

γi the inverse variance of the noise affecting the ith auxiliary flux, i.e. vei . Notice that estimating any observable from the joint
distribution p (v,ve; c,b) turns out to be intractable because the computation of the partition function is analytically unfeasible
as it corresponds to the calculation of the volume of a convex polytope in high dimensions. We cope with this issue exploiting
the approximation scheme provided by Expectation Propagation (EP). EP is an iterative algorithm that provides a Gaussian
approximation of intractable probability distributions. In the context of metabolic fluxes reconstruction, it has been shown in
[3] its ability in treating the marginal probability density of fluxes satisfying the mass-balance constraints Sv = b and bounded
intervals of variability, i.e. vi ∈

[
vmini , vmaxi

]
. While the likelihood function alone, expressed as a Dirac delta function, would

allow for a treatable separation between free and dependent flux, the single variable priors are responsible for the intractability
of the partition function. The idea behind EP scheme is to approximate each ‘hard’ term ψi (vi) through a univariate Gaussian
density having mean ai and variance di, to be determined within the approximation. Following the approximation in [3], we
can easily define a multivariate Gaussian approximation of the joint posterior distribution in Eq. (2) as

q (v,ve; c,b) ∝ δ (Sv − b)

N∏
i=1

e
− (vi−ai)

2

2di

E∏
i=1

e−
γi
2 (vei−vE(i))

2
+cE(i)v

e
i (3)

keeping in mind that here, together with the parameters of the overall Gaussian approximation a, d, we have to concurrently
determine the values of the unknown Lagrange multipliers c and γ. We show in the following that both measures can be itera-
tively determined within the EP approximation through a two-steps algorithm: at each iteration t, we can update the parameters
(at+1, dt+1) in Eq. (3), for fixed (ct,γt) using the ‘standard’ EP fixed point equations [3]. Then, we can proceed updating
(ct+1,γt+1), for fixed (at and dt), requiring that the matching constraints in Eqs. (5) and (6) of the main text are satisfied.
Notice that practically, the update is slightly differently performed, as described in Section B 5.
In the following we will first exploit the linear relationship among fluxes to identify the set of dependent and independent fluxes
(notice that the Expectation Propagation scheme for this subdivision of the target variables has been already exploited in [4, 5]
in different contexts). Then, we will derive the two-steps EP update scheme for a general framework in which each experimental
flux i ∈ E has its own experimental error and a parameter γi associated with it (the scheme exploiting a unique value for γ can
be straightforwardly derived from the general one as described in the following). Finally, we give some implementation details
of the overall scheme.

2. Pre-process of the fluxes

Applying the Gaussian eliminations on the rows of the stoichiometric matrix (together with the known term b), allows us to
get the equivalent row echelon form A

′
associated with the system of equations Sv = b

A
′

=



1 0 . . . 0 A1,1 . . . A1,n′

0 1 . . . . . . . . . . . .
. . . 0 . . . . . . . . .

. . . . . . 0 . . . . . .
. . . . . . . . . 1 Am′,1 . . . Am′,n′
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 . . . 0

|

y1

. . .

. . .
ym′
. . .
0


(4)

where m′ (n′) is the number of dependent (independent) fluxes. Here, we can identify on the left the identity matrix of size
m′ × m′, in the central part a submatrix A ∈ Rm′×n′ encoding the linear relationships among free (hereafter denoted as vf )
and dependent fluxes (called in the following vd) and a vector y ∈ Rm′ containing the transformed constant terms. As a
consequence, the set of dependent fluxes can be retrieved from the free ones using

vd = −Avf + y (5)
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As for the fluxes, we can split the vector of the Lagrange multipliers c in (cd, cf ) where the first (second) set is associated with
the dependent (free) fluxes, taking non-zeros values only in correspondence to the measured fluxes.
In the following, we will focus on the distributions of the two subsets of fluxes (vf ,vd) and the original stoichiometric equations
δ (Sv − b) will be replaced by the constraints δ(vd + Avf − y). Besides, we should also differentiate within the full set of
auxiliary and noisy fluxes ve (and the associated coefficients ce), those that belong to the set of dependent or free fluxes; to this
end, we define four extra auxiliary vectors, ve,d ∈ Rm, ce,d ∈ Rm and ve,f ∈ Rn, ce,f ∈ Rn being m (n) the number of
measured and dependent (free) auxiliary fluxes. Obviously, m ≤ m′, n ≤ n′, and m + n = E. Therefore, it is possible to
re-phrase the target distribution in Eq. (2) and the full Gaussian approximation in Eq. (3) as:

p
(
vd,vf ,ve,f ,ve,d; ce,d, ce,f ,y

)
∝ δ(vd + Avf − y)

m′∏
i=1

ψi(v
f
i )

n′∏
i=1

ψi(v
d
i )× (6)

×
m∏
i=1

e
− γi2

(
ve,di −v

d
Ed(i)

)2
+ce,di ve,di

n∏
i=1

e
− γi2

(
ve,fi −v

f
Ef (i)

)2

+ce,fi ve,fi

q
(
vd,vf ,ve,f ,ve,d; ce,d, ce,f ,y

)
∝ δ(vd + Avf − y)

m′∏
i=1

e
− (vdi −adi )

2

2dd
i

n′∏
i=1

e
− (vfi −a

f
i )

2

2d
f
i × (7)

×
m∏
i=1

e
− γi2

(
ve,di −v

d
Ed(i)

)2
+ce,di ve,di

n∏
i=1

e
− γi2

(
ve,fi −v

f
Ef (i)

)2

+ce,fi ve,fi

where (ad,dd) and (af ,df ) are the set of means and variances of the Expectation Propagation approximation for dependent
and free fluxes respectively, while Ed and Ef are the indices of measured dependent and free fluxes within the sets vd and vf

respectively.

3. Determining a and d, fixed c and γ

Let us first determine the update equations of the means (ad,af ) and the variances (dd,df ) of the Gaussian approximation,
following the usual scheme of the Expectation Propagation algorithm, for fixed Lagrange multipliers c and γ. Since the ‘hard‘
single-prior terms involve the constrained fluxes only (and as a consequence the parameters a and d), we will first proceed
marginalizing the approximated joint distribution over the noisy fluxes ve.
For sake of simplicity, let us define:

• Aexp
d , a sub-matrix of A composed of all the columns and only the rows associated with measured (and dependent) fluxes.

Similarly, we define yexp
d as the sub-vector of y aggregating only the components related to the measured dependent

fluxes. As a consequence, the dependent fluxes that have been experimentally observed can be expressed in terms of all
free ones as vdEd = yexp

d −Aexp
d vf ;

• γm×m and γn×n, the diagonal matrices containing the Lagrange multipliers γi being i a measured flux of the set of the
dependent or the free fluxes respectively. For uniform γ, the two matrices coincide with γIm×m and γIn×n, where Ix×x
is the identify matrix of size x;

• Dd and Df , two diagonal matrices containing the inverse variances of the approximation, dd and df , i.e. Dd =
diag( 1

dd1
, . . . , 1

dd
m′

), Df = diag( 1

df1
, . . . , 1

df
n′

).

Using the formalism just introduced and the Dirac delta function in Eq. (7) we explicitly remove the dependent variables vd in
the joint distribution q

(
vd,vf ,ve,f ,ve,d; ce,d, ce,f ,y

)
and re-write it as

q
(
vf ,ve,f ,ve,d; ce,d, ce,f ,y

)
∝ e−

1
2 (vf−af)

T
Df(vf−af)− 1

2 (y−Avf−ad)
T

Dd(y−Avf−ad)ec
e,dT ·ve,d+ce,f

T
·ve,f × (8)

×e−
1
2 (yexp

d −Aexp
d vf−ve,d)

T
γm×m(yexp

d −Aexp
d vf−ve,d)e

− 1
2

(
vfEf
−ve,f

)T
γn×n

(
vfEf
−ve,f

)
Let us briefly re-introduce the auxiliary fluxes, sorted as ve = (ve,d,ve,f ), and let us marginalize the (approximated) joint
distribution over them, i.e. let us compute q

(
vf ; ce,d, ce,f ,y

)
=
∫
dveq

(
vf ,ve; ce,d, ce,f ,y

)
. To do this we introduce

Σ−1
e =

(
γm×m 0

0 γn×n

)
(9)

µe = Σe

[
ce,d + γm×m

(
yexp
d −Aexp

d vf
)

ce,f + γn×nvfEf

]
(10)
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which allows us to write the integrand in standard form. Therefore

q
(
vf ; ce,d, ce,f ,y

)
∝ e−

1
2 (vf−af)

T
Df(vf−af)− 1

2 (y−Avf−ad)
T

Dd(y−Avf−ad) × (11)

×e−
1
2 (yexp

d −Aexp
d vf)

T
γm×m(yexp

d −Aexp
d vf)− 1

2 vf
T

Ef
γn×nvf

Ef ×

×e 1
2µ

eT Σ−1
e µe

∫
dvee−

1
2 (ve−µe)

TΣ−1(ve−µe)

The results of the Gaussian integration gives us a factor which is independent of vf and thus it can be absorbed by the

normalization constant. The term e
1
2µ

eT Σ−1
e µe allows for a further simplification of the expression which, using the equivalence

vdEd = yexp
d −Aexp

d vf , can be nicely stated as

q
(
vf ; ce,d, ce,f ,y

)
∝ e−

1
2 (vf−af)

T
Df(vf−af)− 1

2 (y−Avf−ad)
T

Dd(y−Avf−ad)e
vdEd

T ce,d+vf
T

Ef
ce,f

(12)

We remark that the approximate distribution of the constrained fluxes does dependent on the coefficients ce, which, in a statistical
mechanics picture, act as external fields on them, independently of γn×n and γm×m. This is also retrieved in the true distribution
in Eq. (7) of the main text.
Re-expressing the dependent and measured fluxes in terms of the free ones, and noticing that the following equivalences hold
vf

T

Ef ce,f = vf
T

cf and (yexp
d −Aexp

d vf )T cd,e = (y−Avf )T cd, we can re-formulate the distribution of the constrained fluxes
given the coefficients and the constant terms as

q
(
vf ; cd, cf ,y

)
∝ e−

1
2 (vf−µ)

T
Σ−1(vf−µ) (13)

for {
Σ−1 =

(
Df + ATDdA

)
µ = Σ

[
Dfaf + ATDd

(
y − ad

)
+ cf −AT cd

] (14)

It is easy to see that the statistics of both the set of constrained and dependent fluxes (vd,vf ), according to the Gaussian density,
can be computed as 〈

vfi

〉
q

= µi

〈
vf

2

i

〉
q
−
〈
vfi

〉2

q
= Σii i = 1, . . . , n′〈

vdi
〉
q

= [−Aµ+ y]i

〈
vd

2

i

〉
q
−
〈
vdi
〉2
q

=
[
AΣAT

]
ii

i = 1, . . . ,m′
(15)

Let us introduce the so-called ‘cavity’ marginal distribution for flux vfi (or vdi ) obtained by (i) removing in Eq. (7) the
univariate Gaussian factor associated with the target flux (here we multiply the full Gaussian by its inverse), (ii) marginalizing
over the auxiliary fluxes, and (iii) marginalizing over all other fluxes except vfi (or vdi ), that is

q\i,f
(
vfi ; ce,d, ce,f ,y

)
∝
∫
dvf

/vfi
dvd

∫
dve,ddve,fq

(
vd,vf ,ve,f ,ve,d; ce,d, ce,f ,y

)
e

(vfi −a
f
i )

2

2d
f
i (16)

q\i,d
(
vdi ; ce,d, ce,f ,y

)
∝
∫
dvd/vdi

dvf
∫
dve,ddve,fq

(
vd,vf ,ve,f ,ve,d; ce,d, ce,f ,y

)
e

(vdi −adi )
2

2dd
i (17)

Performing the Gaussian integration in Eqs. (16), (17), we get a univariate density for the target flux, which we parametrize by
a mean µ\i,αi and a variance Σ

\i,α
ii (for α = d, f ):

q\i,α
(
vαi ; ce,d, ce,f ,y

)
∝ e
−

(vαi −µ
\i,α
i

)2

2Σ
\i,α
ii (18)

Let us also introduce the ‘tilted’ distribution for flux vfi (or vdi ) which is defined as the ‘cavity’ density times the exact prior
of the considered flux, i.e.

q(i,α)
(
vαi ; ce,d, ce,f ,y

)
∝ q\i,α

(
vαi ; ce,d, ce,f ,y

)
ψi,α(vαi ) (19)

Intuitively, the marginal probability of flux vfi (or vdi ) is more accurate if computed from the ‘tilted’ distribution than from
the full Gaussian as it encodes the exact term of the prior involving the ith free or dependent flux. This is exploited by EP
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approximation where, in fact, we determine each pair of parameters
(
afi , d

f
i

)
(or
(
adi , d

d
i

)
) requiring that the ‘tilted’ distribution

is as close as possible to the multivariate Gaussian in Eq. (13) (which it can be easily re-phrased in terms of both set of fluxes).
Practically one can minimize the Kullback-Leibler distance between the two distributions [3] realizing that this computation
leads to the moment matching conditions 〈v

α
i 〉q(i,α) = 〈vαi 〉q〈
vα

2

i

〉
q(i,α)

=
〈
vα

2

i

〉
q

α = f, d (20)

to be solved with respect to the unknown parameters of the approximation (afi , d
f
i ) or (adi , d

d
i ).

At each iteration of the algorithm (and for fixed c), we compute the l.h.s. of Eq. (20) and we adjust the parameters (aαi , d
α
i )

for α = f, d appearing in the r.h.s. to ensure the two conditions. At the fixed point, we can extract an approximation of the
marginal probability densities from the set of the ‘tilted’ distributions and an approximate covariance matrix of the constrained
fluxes, Σ. The expectation values of the tilted densities depend on the single-variable priors. In this context, it turns out that the
first and second moments we are interested in are those of a truncated Gaussian:

〈vαi 〉q(i,α) = µ
\i,α
i +

N

(
vmin
i,α −µ

\i,α
i√

Σ
\i,α
ii

)
−N

(
vmax
i,α −µ

\i,α
i√

Σ
\i,α
ii

)

Φ

(
vmax
i −µ\i,αi√

Σ
\i,α
ii

)
− Φ

(
vmin
i −µ\i,αi√

Σ
\i,α
ii

) √Σ
\i,α
ii (21)

〈vα
2

i 〉q(i,α) − 〈vαi 〉2q(i,α) = Σ
\i,α
ii

1 +

vmin
i,α −µ

\i,α
i√

Σ
\i,α
ii

N

(
vmin
i,α −µ

\i,α
i√

Σ
\i,α
ii

)
− vmax

i,α −µ
\i,α
i√

Σ
\i,α
ii

N

(
vmax
i,α −µ

\i,α
i√

Σ
\i,α
ii

)

Φ

(
vmax
i,α −µ

\i,α
i√

Σ
\i,α
ii

)
− Φ

(
vmin
i −µ\i,αi√

Σ
\i,α
ii

) + (22)

−


N

(
vmin
i −µ\i,αi√

Σ
\i,α
ii

)
−N

(
vmax
i,α −µ

\i,α
i√

Σ
\i,α
ii

)

Φ

(
vmax
i,α −µ

\i,α
i√

Σ
\i,α
ii

)
− Φ

(
vmin
i −µ\i,αi√

Σ
\i,α
ii

)


2


We remark that, apparently, the update scheme requires to compute, at each iteration, the statistics of all the tilted distributions,
and hence of all the possible cavity distributions. Fortunately, the expressions of the cavity parameters can be directly computed
from the parameters of the full Gaussian density, i.e. by marginalization, reducing the computational time of a factor N (see
[3] for more details). Besides, when dealing with the set of dependent and free variables, the statistics of the dependent set is
retrieved from those of the free one, according to Eq. (15) as already noticed in [4]. The running time is therefore dominated
by one matrix inversion per iteration aimed at computing the covariance matrix of the free fluxes, which scales as O(n′3). We
report here the expression for the means and variances that ensure the moment matching condition in Eq. (20) as a function of
the cavity statistics, i.e. 

dαi =

(
1

〈vα2
i 〉q(i,α)−〈vαi 〉2q(i,α)

− 1

Σ
\i,α
ii

)−1

aαi = dαi

[
〈vαi 〉q(i,α)

(
1
dαi

+ 1

Σ
\i,α
ii

)
− µ

\i,α
i

Σ
\i,α
ii

] (23)

where the latter are computed from the full Gaussian distribution (once the free and dependent fluxes are identified):
Σ
\i,f
ii = Σii

1−Σii
1

d
f
i

µ
\i,f
i =

µi−
a
f
i

Σii

d
f
i

1−Σii
1

d
f
i


Σ
\i,d
ii =

[AΣAT ]
ii

1−[AΣAT ]ii
1

dd
i

µ
\i,d
i =

[−Aµ+y]i−
adi [AΣAT ]

ii
dd
i

1−[AΣAT ]ii
1

dd
i

(24)

4. Determining c and γ, given a and d

At difference with the parameters (a,d) which are associated with the approximation of the constrained fluxes distribution,
the Lagrange multipliers (c,γ) must be set to ensure that the means and the variances (or an average variance for the unique
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γ case) of the distribution of the auxiliary fluxes ve, match the empirical observations. Hence, considering the sub-division
into free and dependent fluxes, we are interested in q

(
ve,d,ve,f ; ce,d, ce,f ,y

)
which can be computed marginalizing the joint

distribution in Eq. (8) with respect to the free fluxes belonging to the polytope, i.e.

q
(
ve,d,ve,f ; ce,d, ce,f ,y

)
∝ ec

e,dT ·ve,d+ce,f
T
·ve,f

∫
dvfe−

1
2 (vf−af)

T
Df(vf−af)− 1

2 (y−Avf−ad)
T

Dd(y−Avf−ad) × (25)

×e−
1
2 (yexp

d −Aexp
d vf−ve,d)

T
γm×m(yexp

d −Aexp
d vf−ve,d)e

− 1
2

(
vfEf
−ve,f

)T
γn×n

(
vfEf
−ve,f

)

For sake of simplicity, let us introduce the ‘extended’ matrix γn′×n′ , a diagonal matrix having non-zeros entries in the indices
contained in Ef , i.e.

[
γn′×n′

]
j,j

=

{
γi for j = Ef (i) , i = 1, ..., n

0 otherwise
(26)

and an ‘extended’ vector t ∈ Rn′ which collects the auxiliary free fluxes (in the indices Ef ) and taking zero values in correspon-
dence to non-observed free fluxes:

tj =

{
νe,fi for j = Ef (i) , i = 1, ..., n

0 otherwise.
(27)

As a consequence, the following equivalence holds:

−1

2

(
vfEf − ve,f

)T
γn×n

(
vfEf − ve,f

)
= −1

2
vf

T

γn′×n′v
f + vf

T

γn′×n′t−
1

2
ve,f

T

γn×nve,f (28)

Therefore, we can re-phrase Eq. (25), writing the integrand in standard form, as

q
(
ve,d,ve,f ; ce,d, ce,f ,y

)
∝ ec

e,dT ·ve,d+ce,f
T
·ve,f e−

1
2 (yexp

d −ve,d)
T
γm×m(yexp

d −ve,d)e−
1
2 ve,fTγn×nve,f × (29)

×e 1
2 hTΛ−1h

∫
dvfe−

1
2 (vf−h)

T
Λ−1(vf−h)

where Λ
−1 = Df + ATDdA + AexpT

d γm×mAexp
d + γn′×n′

h = Λ
[
Dfaf + ATDd

(
y − ad

)
+ AexpT

d γm×m
(
yexp
d − ve,d

)
+ γn′×n′t

] (30)

Notice that the integration in Eq. (29) returns a constant term which can be absorbed by the normalization constant, while
the exponential term e

1
2 hTΛ−1h depends on (ve,d,ve,f ). Developing further the argument of the exponential, and recalling

term-by-term the equivalence in Eq. (28), allows us to formulate the distribution of the free and dependent auxiliary fluxes as a
multivariate Gaussian density

q
(
ve,d,ve,f ; ce,d, ce,f ,y

)
∝ e
− 1

2 (ve,d,ve,f)M−1

 ve,d

ve,f

+ve,d
T
·(ce,d+ue,d)+ve,f

T
·(ce,f+ue,f)

(31)

where

M−1 =

(
U V
VT Y

)
(32)

U = γm×m − γm×mAexp
d ΛAexpT

d γm×m (33)
V = γm×mAexp

d [Λ]1:n′,Efγn×n (34)

Y = γn×n − γn×n[Λ]Ef ,Efγn×n (35)

ue,d = γm×myexp
d − γm×mAexp

d Λ
[
Dfaf + ATDd

(
y − ad

)
+ AexpT

d γm×myexp
d

]
(36)

ue,f = γn×n[Λ]Ef ,1:n′

[
Dfaf + ATDd

(
y − ad

)
+ AexpT

d γm×myexp
d

]
(37)

The symbol [Λ]x,y denotes a sub-matrix of Λ (whose inverse is defined in Eq. (30)) in which we consider the rows associated
with indices x and the columns associated with indices y.
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The constraints on the averages allows us to fix the values of the coefficients c. More precisely, since the expectation values of(
ve,d,ve,f

)
, with respect to the distribution in Eq. (31), must coincide with the experimental ones (properly divided in those

associated with dependent and independent fluxes)
(
vxp,d,vxp,f

)
,

M

(
ce,d + ue,d

ce,f + ue,f

)
=

(
vxp,d

vxp,f

)
(38)

we can obtain, inverting the relation, an update equation for the coefficients c, that is(
ce,d

ce,f

)
= M−1

(
vxp,d

vxp,f

)
−
(

ue,d

ue,f

)
(39)

Finally, we can proceed, using the same argument, with the determination of an update equation for γn×n and γm×m. In this
case, we seek the values of the Lagrange multipliers ensuring that the diagonal terms of the covariance matrix

M =

(
U V
VT Y

)−1

(40)

are equal to the experimental variances. In the following we treat the most general case but we recall that, when one value of
γ is sought, it is sufficient to require that the sum of the diagonal elements of M coincides with the sum of the experimental
variances (being the mean obtained by dividing by the same number, that is the number of experimentally measured fluxes).
Notice that, as in this case, if the matrix to be inverted can be sub-divided in four blocks (in which those in the diagonal are
squared), this property holds [6]

M =

( (
U−VY−1VT

)−1
...

...
(
Y −VTU−1V

)−1

)
(41)

Therefore, to get the update equations we are seeking, it is sufficient to compute the diagonal blocks of M and to fix their
diagonal elements to the experimental variances. For sake of simplicity let us define and develop

W =
(
U−VY−1VT

)−1
(42)

=
[
Im×m −Aexp

d ΛAexpT

d γm×m −Aexp
d [Λ]1:n′,Efγn×n

(
γn×n − γn×n[Λ]Ef ,Efγn×n

)−1×

× γn×n[Λ]Ef ,1:n′A
expT

d γm×m

]−1

γ−1
m×m

T =
(
Y −VTU−1V

)−1
(43)

=

[
In×n − [Λ]Eexp

f ,Eexp
f
γn×n − [Λ]Ef ,1:n′A

expT

d γm×m

(
γm×m − γm×mAexp

d ΛAexpT

d γm×m

)−1

×

×γm×mAexp
d [Λ]1:n′,Efγn×n

]−1
γ−1
n×n

Hence, imposing

Wi,i = σxp,d
i i = 1, . . . ,m (44)

Ti,i = σxp,f
i i = 1, . . . , n,

where (σxp,d,σxp,f) are the experimental error associated with the corresponding dependent and free fluxes, we obtain

γ
(i,i)
n×n =

[[
In×n −ΛEf ,Efγn×n −ΛEf ,1:n′A

expT

d γm×m

(
γm×m − γm×mAexp

d ΛAexpT

d γm×m

)−1

γm×mAexp
d Λ1:n′,Efγn×n

]−1
]
i,i

σxp,f
i

γ
(i,i)
m×m =

[[
Im×m −Aexp

d ΛAexpT

d γm×m −Aexp
d Λ1:n′,Efγn×n

(
γn×n − γn×nΛEf ,Efγn×n

)−1

γn×nΛEf ,1:n′A
expT

d γm×m

]−1
]
i,i

σxp,d
i
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5. Implementation details

As already explored in [3], since the values taken by the fluxes may span several orders of magnitude, it is important to work
with normalized fluxes within the EP approximation scheme, in particular to avoid the approximate variances d to take very
heterogeneous values, ranging from zero to infinite. Therefore, we first compute a constant factor

f = max
[
max
i
|vmini |,max

i
|vmaxi |

]
(45)

and then we modify the lower and upper bounds of variability, together with the constant term of the stoichiometric equations,
as

vmax ← vmax

f
, vmin ← vmin

f
, b← b

f
. (46)

Once a fixed point of the EP equations is reached, we can recover the average value of the fluxes in the proper range of
variability, as well as the coefficients c, by multiplying, and dividing respectively, the constant factor f .
We empirically found that the scheme with a unique γ is preferable to the multiple γ-s scheme: the experimental errors often
span several orders of magnitude which is then reflected in a very heterogeneous set of γ Lagrange multipliers that, however, do
not carry significant improvements in the fitting of the variance (with respect to the single γ case). Furthermore, conversely to
the unique γ case, when multiple γ-s are inferred, the coefficients c vary a lot within the experiments rendering the aggregated
analysis more difficult to interpret.
From an algorithmic point of view, the update of the parameters of the Gaussian approximation (a, d) and of the Lagrange
multipliers (c and γ) is not performed synchronously: at each iteration of the main scheme, we update (a,d) and c while γ is
modified whenever the experimental averages are fitted. We then repeat the overall scheme up to the convergence associated
with the γ parameter, that is when the average experimental variance is fitted by the our model. We monitor the convergence of
the fixed point equations (for the normalized fluxes), at each iteration t, by computing

εtEP = max
[
max
i
εmean
i (t), max

i
εvar
i (t)

]
(47)

εtc =
1

E

∑
i

|〈vei 〉qt − v
xp
i | (48)

εtγ = | 1
E

∑
i

〈ve
2

i 〉qt − 〈vei 〉2qt −
1

E

∑
i

σxp2

i | (49)

where qt is the approximated Gaussian distribution (we are omitting here the sub-division in free and dependent fluxes) at
iteration t, and

εmean
i (t) = |〈vi〉q(i)

t
− 〈vi〉q(i)

t−1
| (50)

εvar
i (t) = |〈v2

i 〉q(i)
t
− 〈vi〉2q(i)

t

− 〈v2
i 〉q(i)

t−1
+ 〈vi〉2q(i)

t−1

| (51)

being q(i)
t the tilted distribution of the ith flux at time t. We use as convergence tolerance 10−4, 10−5 for εEP and εc, while

for εγ we use 2.5 · 10−5 for the experiments shown in [2] and 9 · 10−6 for those taken from [1]. These values are chosen to
guarantee the convergence of the algorithm in each experiment presented in the two works (we notice that in few experiments a
smaller threshold leads to divergent γ which makes the computation of the covariance matrix M unfeasible), and also to allow
for a reasonable fitting of the variances. We show in Section G a set of plots presenting the average values of the constrained
and of the noisy fluxes compared to the measured ones.

C. Projections of the coefficients along individual flux directions

The vector c of Lagrange multipliers appearing e.g. in Eq. (2) of the main test is defined in RN with N the number of fluxes.
As fluxes lie in the feasible space F , though, for the analysis one should get rid of components orthogonal to F by projecting c
onto the feasible space. To be precise, the relevant information stored in c is encoded in the vector

cproj ≡ Ôc ∈ Rdim(F) , (52)

where Ô ∈ Rdim(F)×N is an arbitrary orthonormal basis spanning F . Such an operator is obtained by first performing a Gauss-
Jordan decomposition of the stoichiometric matrix S and then by applying the Gram-Schmidt orthonormalization method. In
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Figure 10 we show the value of the scalar product between the projected coefficients, for each inferred vector of coefficient c,
and the directions of each individual flux. A value of the projection close to zero indicates that the mean of the corresponding
flux is close to the mean flux pertaining to a homogeneous sampling of F , whereas positive (resp. negative) values indicate that
the flux is upregulated (resp. downregulated) compared to the unbiased mean. The color code in Figure 10 mirrors the dilution
rate used in each experiments while the shape of the points refer to the presence/absence of acetate and the database used. Flux
names in the x-axis display different colors according to the sub-division driven by pathways.

D. Dimensionality reduction

We report here the details of the calculations associated with the Principal Component Analysis and additional results to
complete the picture shown in Fig. 4 of the main text. For each experiment a we first project the inferred Lagrange multipliers to
the feasible space F as in Eq. (52) of the previous section and we divide each element by the norm of cproj

a . Then, we compute
a vector of means m ∈ Rdim(F), averaged over the experiments, having elements

mi =
1

E

∑
a

[
cproj
a

||cproj
a ||

]
i

(53)

used to build the standardized matrix of coefficients C ∈ Rdim(F)×E of entries

Ci,a =

[
cproj
a

||cproj
a ||

]
i

−mi (54)

In a way, the columns of C collect the observations of all the components i = 1, . . . ,dim (F) of the projected coefficient cproj
i .

Once the covariance matrix of the data C has been computed, we can calculate its eigenvalues and the associated eigenvectors.
Let us sort the eigenvalues in descending order, and define a matrix Q ∈ Rdim(F)×dim(F) such that the kth column of Q
contains the eigenvector associated with kth largest eigenvalue. Let us define Q1:dim(F),1 as the first principal component (PC1)
and Q1:dim(F),2 the second principal component (PC2). The projection of the original data C onto the bidimensional space
spanned by (PC1, PC2) is reported in Figure 1a where each point here represents an experiment. One sees that experiments
organize in two clusters characterized by distinct acetate excretion profiles (note that PCA correctly separates the experiments
from [1] in two clusters). The first principal component projects the largest value on the acetate flux (ca. -0.74), confirming that
carbon overflow is a key separator of phenotypic behaviour in carbon-limited E. coli growth. On the other hand, PC2 has the
largest scalar product (ca. 0.50 in absolute value) against fluxes through reactions involved in acetate metabolism (e.g. isocitrate
dehydrogenase (icd), phosphate acetyltransferase (pta) and acetate kinase (ackA/B)) and the glyoxylate cycle (isocitrate lyase
(aceA/B)). A heatmap of the projection of the full set of eigenvectors is shown in Figure 1b.

1. Reconstruction of the coefficients

To reconstruct the original coefficients, we can use a subset of the full set of eigenvectors as suggested by Figure 4 of the main
text. If we aim at using the first k eigenvectors to reconstruct the original (normalized) projections of the a experiment we can
use

cPCA(k)
a = m +

[
CQ1:dim(F),1:kQT

1:dim(F),1:k

]
1:dim(F),a

(55)

Finally, we can re-project the approximate vector back to the fluxes space, obtaining

c̃PCA(k)
a = ÔT

(
||cproj

a ||cPCA(k)
a

)
(56)

to build an approximation of the flux probability density as

p
(
v; c̃PCA(k)

a

)
∝ ec̃

PCA(k)T

a v
1F (v) (57)

Using the Expectation Propagation scheme, we can approximate the density in Eq. (57) and get an estimate for the expected
values of the constrained fluxes that have been measured, i.e. 〈vE〉cPCA(k)

a
used in Eq. (17) of the main text.
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a

b

FIG. 1. Principal Components Analysis In this plot the show additional results of the PCA applied to the set of inferred coeffcients. In (a)
we show the projection of the 33 experiments onto the first and second principal components of the coefficients covariance matrix. The color
code mirrors both the glucose uptake for each experiment (as shown in the colorbar) and whether a point belongs to [2] (blue palette) or [1]
(red palette); the markers are assigned in agreement with the value of the experimental acetate excretion. In (b) we show the heat-map of the
projections of principal components of the inferred coefficients, i.e. the eigenvectors of the covariance matrix obtained from the normalized
and projected Lagrange multipliers c, along all the 73 fluxes of the models.

E. Accessing the most informative fluxes

Results discussed in the main text have made use of the full set of experimentally characterized fluxes in order to constrain
the feasible space F and guide the inference procedure. However, because measured fluxes mostly belong to the central carbon
pathways, they are likely to contain a significant amount of redundancy. An important question in this respect is whether
one could learn the same information about flux distributions by employing a smaller number of fluxes to constrain F , using
the values of other measured fluxes as consistency checks. Importantly, non-zero coefficients can be understood as Lagrange
multipliers associated with the most informative fluxes that are experimentally accessible. We have explored this issue by looking
for a sparser representation of the vector c of Lagrange coefficients, i.e. one that, despite having a smaller number of non-zeros
components, is still able to reproduce the mean values of all measured fluxes. This is achieved when the sparser and the original
vectors have the same projection on the polytope F .

This problem can be mathematically re-phrased as a compressed sensing problem solvable via Expectation Propagation (see
the next section for the formal definition and the approximation details). As a representative example, Figure 2a shows the
original coefficients and the compressed ones csp for one of the experiments in [2]. One sees that, of the 26 degrees of
freedom whose Lagrange multipliers are represented in blue, only 8 can be set to zero by the sparse procedure (red markers). A
comparison between the original projections and the ones accomplished by the sparse vector is shown in Figure 2b, while a scatter
plot showing the averages of all fluxes (measured and non-measured) obtained through the inference procedure against those
computed from the sparse representation is instead reported in Figure 2c. Both metrics are perfectly in agreement, suggesting
that no information is lost in compression, at least for mean values.
As a consistency check, we performed, for the data used in Figure 2a, the inference procedure from scratch by only constraining
the mean values of fluxes corresponding to non-zero coefficients in the sparse representation of c. We call the inferred coefficients
obtained by this last procedure ccheck. In Figure 2d we show that we are able to reproduce the values of the experimentally
measured fluxes that were not used to constrain F (corresponding to the rightmost 8 fluxes on the x-axis, separated by the black
dashed line). We plot here the experimental means vxp using blue squares to which we overlap the averages of the constrained
fluxes v computed according to c and ccheck using purple circles and yellow crosses, respectively. For the noisy ones we also
show ve that by construction coincide with vxp.
Remarkably, the qualitative scenario just described extends to the whole ensemble of experiments, as it turns out that 18 degrees
of freedom are generically needed to achieve a perfect reconstruction of mean values. We stress that we retrieve the same number
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a b
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FIG. 2. Compression of the coefficients (a) Original coefficients inferred within the Expectation Propagation approximation (blue thick lines
and points) associated with the 26 experimentally determined fluxes displayed in the x-axis. Using red dashed lines we plot the result of
the compression; here only 18 fluxes out of 26 have to be fixed, and their coefficients refined, to get an equivalent probability density. In
the (b) panels we show the projection of the (normalized) original and sparse coefficients into the sub-space F : they perfectly match. As a
consequence, the first moments derived from the original density q(v; c) and those computed from the distribution q(v; csp) associated with
the sparse coefficients are identical as displayed in panel (c). In panel (d) we show the performance of a synthetic experiment in which we
perform the inference from scratch, fixing 18 measured fluxes (having non-zeros coefficients in panel (a)) out of the 26. They are displayed
in the leftmost part of the x-axis, while the remaining 8 occupy the rightmost spots in the x-axis. For the fixed fluxes, the average values of
the ve (red points) perfectly overlap to the experimental averages vxp (in blue) and their constrained counterparts < v > (plotted in yellow)
lie mostly within the experimental error bars as those obtained in the original inference (purple dots). For the rightmost fluxes we plot the
averages of the constrained fluxes computed according to the original coefficients and those inferred in the synthetic experiment (yellow and
purple spots respectively): although we have not used here any information of the experimental means, we retrieve almost the same averages.
This confirms the results obtained from the compression of the original coefficients.

of necessary degrees of freedom brought in light by the Principal Component Analysis of the main text. These results underline
a somewhat unexpected picture: despite the fact that metabolic networks are relatively modular from a functional viewpoint
(leading to significant correlations between reactions belonging to the same pathway), the complexity of flux configurations
found in experiments cannot be reduced to a few reactions representative of distinct pathways. In other words, cross-talk
between pathways is an essential component of the system-level organization of metabolism.

1. Compression of the inferred coefficients: mathematical details

The original vector c is a vector that has non-zero values only in correspondence of the Lagrange multiplier associated with
the measured fluxes, more precisely we fix 25 or 26 averages, depending on the reference experiments, among the N = 73
fluxes. It offers an interpretation in terms on ‘preferential’ directions in the polytope F when projected in the proper sub-space
spanned by the ortho-normal basis; all the information is thus encoded in a dense vector cproj = Ôc. Let us assume that we
are given the projected vector which fully determine the probability density associated with it. The linear dependencies among
fluxes give us a certain freedom in the assignment of non-zeros coefficients of c that satisfy the projection constraint: being Ô a
rectangular matrix, the inverse problem of determining a vector c that satisfies these equations is under-determined and allows
for infinite solutions. Among these, we aim at determining the sparsest vector csp that has the given projection cproj on the
polytope and, concurrently, it has the least possible non-zeros components in correspondence to a sub-set a fluxes (we restrict
the analysis to the measured fluxes in E , but one can extend the procedure to all fluxes or any relevant sub-set, like internal or
irreversible fluxes).
To determine csp we solve the so-called compressed sensing problem (CS) on the original projection of the coefficients using the
Expectation Propagation approximation derived in [4]. Within a Bayesian framework we can write the probability of a sparse
vector of coefficients, given the projection, using Bayes theorem, as:

P
(
csp; cproj

)
∝ δ(Ôcsp = cproj)

∏
i

Pi (cspi ) (58)
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where δ(Ôcsp = cproj) is the likelihood function enforcing the projection constraint and Pi(c
sp
i ) is the prior probability associ-

ated with the the ith component of the sparse vector. The latter serves to stress the sparsity constraint on the chosen sub-set of
indices, in our case E , and it is equal (in our formulation) to the so-called spike-and-slab prior, or L0 regularization,

Pi (cspi ) = ρδcspi ,0 + (1− ρ)N (0, λ) i ∈ E (59)

Pi (cspi ) = δcspi ,0 i /∈ E (60)

where ρ is the fraction of zeros components among the sparse sub-vector associated with the observed fluxes E and N (0, λ)
denotes a normal density of zero mean and standard deviation equals to λ.
From the a posteriori distribution one would extract an estimator for the sparse coefficients computing their expectation values
from P

(
csp; cproj

)
〈cspi 〉P =

∫
dcspP

(
csp; cproj

)
cspi (61)

but the computation of any observable from the posterior probability is unfeasible due to the intractability of the normalization
(or partition function) of such density. To cope with the marginalization and the estimation of the first moments, we apply
the Expectation Propagation approximation to P

(
csp; cproj

)
where here each spike-and-slab prior is approximated using an

univariate Gaussian density, whose parameters are determined using the EP scheme (see [4] for all the details).
Surprisingly, even setting ρ → 1, we have found that at least 18 non-zeros components are necessary to fulfill the constraints
on the projections, for the full set of coefficients, namely inferred from both the experimental conditions in [2] and [1]. The
18 chosen fluxes vary from experiment to experiment: to quantify the possible emergence of a pattern, we compute the co-
occurrence of each pair of measured fluxes and we clusterize the empirical two-point frequencies matrix F of elements

Fi,j =
1

33

33∑
k=1

I
[
csp,ki 6= 0

]
I
[
csp,kj 6= 0

]
i ∈ E , j ∈ E . (62)

The analysis suggests that a single cluster comes up composed of glk, gnd, ex ac, udhA, ppc, pfk, aceEFlpd, maeA, pck, mdh,
fum and pyk which appear within the compressed set of fluxes in more than 90 % of the times.
We have also investigated the results of the compression when the non-zero coefficients can be assigned to all the fluxes or
to a different sub-set composed of internal or irreversible fluxes. However, also in these cases, the procedure is not able to
compress more and the least number of degrees of freedom remain unchanged or slightly increases. Overall the compression
analysis shows that the information content of the inferred coefficients cannot be encoded in few measured fluxes, confirming
the analysis performed on the basis of the Principal Components, but at least 18 degrees of freedom are required to retrieve the
average values of all the fluxes, under the chosen reference experimental conditions.

F. Fitting averages using HR-based Boltzmann machine learning

For sake of completeness and to illustrate the computational difficulties behind the inference task, we will describe here a more
straightforward and standard way to compute the optimal coefficients cj based on the so-called Boltzmann Learning scheme.

Upon considering the log-likelihood of the parameters given the empirical data, i.e.

L(c; data) =
1

K

K∑
k=1

logP (data; c) , (63)

one sees that

∂L
∂cj

= vxpj − 〈vj〉c , (64)

where

〈vj〉c =

∫
F
vj p(v; c) dv . (65)

This suggests that the optimal vector c can be found by an updating dynamics driven by the difference between the empirical
mean and the mean computed using the current vector c, i.e. via a Boltzmann learning such as

cj(τ + δτ)− cj(τ) =
[
vxpj − 〈vj〉c(τ)

]
δτ . (66)

To compute the optimal values of the coefficients cj from Eq. (66) the following procedure can be defined:
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1. initialize cj(0) = 0 for all j ∈ {1, . . . , E}

2. at each time step τ : compute 〈vj〉c(τ) from Eq. (65) by sampling the distribution p(v; c(τ)) e.g. via Hit and Run Monte
Carlo [7]; then

3. find the index j for which the difference vxpj − 〈vj〉c(τ) is largest, update its value according to Eq. (66), and iterate.

We do see that this amounts at simulating a dynamical system where the evaluation of the dynamical laws at each time-step
requires a sampling of the high-dimensional space of steady state of the given metabolic network. To provide an example, for
the E. Coli core network [8], the inference task has been performed for one experimental point and with δτ = 10−3 we do find
a plateau of the coefficients after roughly τ ∼ 107 time-steps. With our implementation of the Hit-and-Run Monte Carlo (that
includes optimization through ellipsoidal rounding) the sampling time, for one network instance, is of the order of 10ms on an
quadcore CPU running at 1.90GHz, therefore the overall machine time required for the final inference is of 2− 3h. The running
time of the EP-based scheme presented in this work, aimed at inferring the approximate distribution of fluxes (together with the
computation of the Lagrange multipliers), is overall of 5.7s for the 33 experiments.
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SUPPLEMENTARY FIGURES

G. Fitting quality

We show in Figures 3 and 4, a comparison between the experimental data, i.e. the means vxp and the standard deviations
σxp (denoted as data), and the statistics of the constrained and noisy fluxes v and ve. The plots confirm that the matching
constraints on the averages of the noisy flux, expressed in Eq. (5) are all satisfied, and show how close the expected values of
the constrained fluxes are, given the γ found within the EP approximation scheme. We also plot a set of fluxes, called vopt

given by the closest configuration of constrained fluxes to the experimental means, satisfying the mass-balance condition and
the boundaries of variability, that is

vopt = arg min
v:

Sv=b
vmin≤v≤vmax

(vxp − vE)
T (vxp − vE) (67)

By construction, these can be thought as the result of the inference procedure per γ → +∞ and therefore the average values of the
constrained fluxes v cannot be closer to the experimental means than the ‘optimized’ fluxes. To further check our approach, we
perform a Monte-Carlo Hit-and-Run (HR) sampling [7], given the set of Lagrange multipliers c, and we compute the sampling
average < v >HR for the measured fluxes (green triangles in Figure 3). The scatter plot of all the average values of the fluxes
according to EP and HR are shown in Figure 5 for all the experiments.

H. Correlation matrices

In Figure 6 we show the Pearson correlation coefficients between pairs of constrained fluxes, encoded in several N × N
matrices, associated with the 33 experimental conditions. The computation of the Pearson correlation coefficients exploits the
covariance matrices obtained at convergence of the Expectation Propagation scheme.

I. Probability densities of the non-measured fluxes

In Figure 7 we plot the EP approximation of the marginal probability densities of the non-measured fluxes in all the experi-
mental conditions. Specifically, we plot the tilted distribution associated with each constrained fluxes as in Eq. (19). The color
code mirrors the dilution rate specified in each of the 33 experiments.

J. Notation used for the biomass production rate

In Table I we show a summary of the symbols used to identify the biomass output within the manuscript.
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FIG. 3. Fitting quality. Plot of the experimental data for each of the 17 experiments in [2] (blue dots) together with the average value of the
auxiliary fluxes ve (red squares), the constrained fluxes v (purple diamonds), the optimized fluxes defined in Eq. (67) (yellow crosses) and
the Hit-and-Run estimates (green triangles). All fluxes are reported in units of mmol gdw−1 h−1 except the biomass synthetic rate which has
dimension h−1.
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FIG. 4. Fitting quality. Plot of the experimental data for each of the 16 experiments in [1] (blue dots) together with the average value of the
auxiliary fluxes ve (red squares), the constrained fluxes v (purple diamonds), the optimized fluxes defined in Eq. (67) (yellow crosses) and
the Hit-and-Run estimates (green triangles). All fluxes are reported in units of mmol gdw−1 h−1 except the biomass synthetic rate which has
dimension h−1.
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FIG. 5. Cross-check using Hit-and-Run Monte Carlo For each experiment we show the scatter plot of the mean fluxes computed according
to the Gaussian approximation provided by EP (x-axis) and the mean fluxes computed from a set of sampled configurations of the distribution
in Eq. (2) (for given Lagrange multipliers c) obtained by Monte-Carlo Hit-and-Run.
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FIG. 6. Pearson correlation coefficient. We plot here an example of the heatmap associated with the Pearson correlation coefficients of all
the pairs of fluxes. The data displayed in the plot correspond to those of the third experiment in [2].

Symbol Meaning

νxpbm

Measured value of the biomass output according to the experimentally determined fluxes and the metabolic model.
This estimate is provided by the datasets in [2] and [1].

νmax
bm

Maximum attainable value of the biomass synthetic rate given the glucose consumption rate. This can be computed
solving νmax

bm = maxv∈F νbm where the feasible space encodes the NESS constraints for νex glc = νxpglc, i.e. the
value of the glucose uptake of the model is set equal to the experimental mean.

νoptmbm

Expectation value of the biomass production rate according to the optimal model. The latter is given by

q (v;β) ∼ eβνbmI [v ∈ F ]
where β ensures that the expectation value 〈νbm〉q(v;β) is equal to a given value νbm.
Therefore 〈νbm〉q(v;β) = νoptmbm .

νinfbm

Expectation value of the biomass production rate according to the inferred model

q (v,ve; c) ∼ ec
T ve− γ

2

∑
i∈E(νi−ν

e
i )

2

I [v ∈ F ]

where the Lagrange multipliers c and γ are determined through Eqs. (5) and (6) of the main text.

Therefore νinfbm = 〈νbm〉q(v,ve;c). Being γ > 0, νinfbm ∼ νxpbm as shown in Figs. 3 and 4

TABLE I. Summary of the notation used to identified the biomass output under several conditions.
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FIG. 7. Marginal probability densities In these panels we show the approximation of the marginal probability densities revealed by
Expectation Propagation. For each flux, we overlap the distributions obtained for all the 33 experiments, whose color is associated with the
experimental growth rate. The unit of measurement of the fluxes in the x-axis is mmol gdw−1h−1.

FIG. 8. Rate distortion curve and isofield lines. In this plot we show the rate distortion curve and the scatter plot of the experimental data
in the space < vbm > /vmax

bm vs I (as in Fig. 1d of the main text) together with the ”isofield” lines associated with the first and the ninth
experiments in [2], and the tenth experiment in [1] in panels (a), (b) and (c) respectively. The cross indicates the reference population for
which we construct the isofield line, while transparent markers are used when the glucose uptake of the corresponding experiments is smaller
than that associated with the crossed point (i.e. they represent slower populations). Colored markers represent faster-growing populations
which tend to lie on the right of the isofield line suggesting that they are more constrained than the reference population.
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FIG. 9. Pathways variability. Mean variance of fluxes through biochemically defined pathways as a function of the growth rate (empirical
values) in optimal distributions (left) and in MaxEnt distributions inferred from experiments (right). Continuous lines are a guide for the eye.
In both panels, the experimental value of the acetate excretion is reported by grey markers (right vertical axis), while the vertical dashed line
in the right panel separates the growth rates of the two experimental data sets. (Optimal distributions are not influenced by this aspect.)
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