
05 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware / Müller-Cleve,
Simon F; Fra, Vittorio; Khacef, Lyes; Pequeño-Zurro, Alejandro; Klepatsch, Daniel; Forno, Evelina; Ivanovich, Diego G;
Rastogi, Shavika; Urgese, Gianvito; Zenke, Friedemann; Bartolozzi, Chiara. - In: FRONTIERS IN NEUROSCIENCE. -
ISSN 1662-4548. - 16:(2022). [10.3389/fnins.2022.951164]

Original

Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware

Publisher:

Published
DOI:10.3389/fnins.2022.951164

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2974072.5 since: 2022-12-22T14:41:50Z

FRONTIERS MEDIA SA

TYPE Original Research

PUBLISHED 11 November 2022

DOI 10.3389/fnins.2022.951164

OPEN ACCESS

EDITED BY

Thomas Nowotny,

University of Sussex, United Kingdom

REVIEWED BY

Siddharth Joshi,

University of Notre Dame,

United States

Bojian Yin,

Centrum Wiskunde & Informatica,

Netherlands

*CORRESPONDENCE

Simon F. Müller-Cleve

simon.mullercleve@iit.it

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 23 May 2022

ACCEPTED 19 October 2022

PUBLISHED 11 November 2022

CITATION

Müller-Cleve SF, Fra V, Khacef L,

Pequeño-Zurro A, Klepatsch D,

Forno E, Ivanovich DG, Rastogi S,

Urgese G, Zenke F and Bartolozzi C

(2022) Braille letter reading: A

benchmark for spatio-temporal

pattern recognition on neuromorphic

hardware. Front. Neurosci. 16:951164.

doi: 10.3389/fnins.2022.951164

COPYRIGHT

© 2022 Müller-Cleve, Fra, Khacef,

Pequeño-Zurro, Klepatsch, Forno,

Ivanovich, Rastogi, Urgese, Zenke and

Bartolozzi. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Braille letter reading: A
benchmark for spatio-temporal
pattern recognition on
neuromorphic hardware

Simon F. Müller-Cleve1*, Vittorio Fra2, Lyes Khacef3,

Alejandro Pequeño-Zurro4, Daniel Klepatsch5,6, Evelina Forno2,

Diego G. Ivanovich5,6, Shavika Rastogi7,8, Gianvito Urgese2,

Friedemann Zenke9 and Chiara Bartolozzi1

1Istituto Italiano di Tecnologia, Event-Driven Perception in Robotics, Genoa, Italy, 2Politecnico di

Torino, Electronic Design Automation (EDA) Group, Torino, Italy, 3Bio-Inspired Circuits and Systems

Lab, Zernike Institute for Advanced Materials, Groningen Cognitive Systems and Materials Center,

University of Groningen, Groningen, Netherlands, 4Laboratory of Neural Computation, Istituto

Italiano di Tecnologia, Genoa, Italy, 5Silicon Austria Labs, Johannes Kepler Universität (JKU) Linz

Institute of Technology (LIT) Silicon Austria Labs (SAL) embedded Signal Processing and Machine

Learning (eSPML) Lab, Graz, Austria, 6Johannes Kepler Universität (JKU) Linz Institute of Technology

(LIT) Silicon Austria Labs (SAL) embedded Signal Processing and Machine Learning (eSPML) Lab,

Johannes Kepler University Linz, Graz, Austria, 7International Centre for Neuromorphic Systems,

Western Sydney University, Penrith, NSW, Australia, 8Biocomputation Research Group, University of

Hertfordshire, Hatfield, United Kingdom, 9Friedrich Miescher Institute for Biomedical Research,

Basel, Switzerland

Spatio-temporal pattern recognition is a fundamental ability of the brain

which is required for numerous real-world activities. Recent deep learning

approaches have reached outstanding accuracies in such tasks, but

their implementation on conventional embedded solutions is still very

computationally and energy expensive. Tactile sensing in robotic applications is

a representative example where real-time processing and energy e�ciency are

required. Following a brain-inspired computing approach, we propose a new

benchmark for spatio-temporal tactile pattern recognition at the edge through

Braille letter reading. We recorded a new Braille letters dataset based on the

capacitive tactile sensors of the iCub robot’s fingertip. We then investigated

the importance of spatial and temporal information as well as the impact of

event-based encoding on spike-based computation. Afterward, we trained

and compared feedforward and recurrent Spiking Neural Networks (SNNs)

o	ine using Backpropagation Through Time (BPTT) with surrogate gradients,

then we deployed them on the Intel Loihi neuromorphic chip for fast and

e�cient inference. We compared our approach to standard classifiers, in

particular to the Long Short-TermMemory (LSTM) deployed on the embedded

NVIDIA Jetson GPU, in terms of classification accuracy, power, and energy

consumption together with computational delay. Our results show that the

LSTM reaches ∼97% of accuracy, outperforming the recurrent SNN by ∼17%

when using continuous frame-based data instead of event-based inputs.

However, the recurrent SNN on Loihi with event-based inputs is ∼500 times

more energy-e�cient than the LSTM on Jetson, requiring a total power of

only ∼30 mW. This work proposes a new benchmark for tactile sensing

and highlights the challenges and opportunities of event-based encoding,

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.951164
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.951164&domain=pdf&date_stamp=2022-11-11
mailto:simon.mullercleve@iit.it
https://doi.org/10.3389/fnins.2022.951164
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.951164/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

neuromorphic hardware, and spike-based computing for spatio-temporal

pattern recognition at the edge.

KEYWORDS

spatio-temporal pattern recognition, Braille reading, tactile sensing, event-based

encoding, neuromorphic hardware, spiking neural networks, benchmarking

1. Introduction

Touch, or tactile perception, is a critical component of

sensorimotor activity (Romo and Salinas, 2001). Uniquely

among the senses, in many situations deliberate action by the

subject is required to experience tactile feedback: this is known

as active touch (Prescott et al., 2011). Active use of touch is

important for blind or visually impaired subjects, as visual

perception may need to be aided or replaced by tactile and

auditory information (Bach-y-Rita, 2004). One example of active

touch is the reading of Braille letters, where fingers slide over

lines of characters that are typeset into surfaces as a set of 1-

6 embossed dots arranged in a 2×3 matrix. In Braille reading,

characters are read sequentially, unlike print reading, where

entire words or groups of words can be perceived simultaneously

by the eye. However, expert users can significantly speed up

their Braille reading as they learn to identify various lexical,

perceptual, and contextual clues (Martiniello andWittich, 2020),

achieving optimal reading speeds of at most 80–120 words per

minute (Bola et al., 2016), which is about half the average silent

reading rate for adults in English (Brysbaert, 2019).

The sequential and time-dependent nature of Braille

reading makes it an excellent benchmark for machine learning

applications involving time-varying signals since Braille text

can be represented by sequential data acquired by moving

tactile sensors. Optical classification applications for Braille have

been developed both in machine learning (Li and Yan, 2010;

Kawabe et al., 2019) and deep learning (Hsu, 2020; Shokat

et al., 2020). However, the image-based approach for Braille

recognition requires good quality Braille samples and accurate

preprocessing. Braille documents are characterized by the lack

of any contrast in color between the text and the background

andmay require specific lighting and camera settings to produce

accurate results (Li et al., 2014). On the other hand, automatic

Braille reading relying on tactile sensors requires adding tactile

sensors to robots that can slide their sensors over surfaces.

The high number of sensors necessary to obtain acceptable

performance adds a high overhead in terms of area, power

consumption, and communication latency.

A possible solution to these problems is the inherent data

encoding capabilities and sparse transmission of neuromorphic

event-driven sensing (Bartolozzi et al., 2016). Event-driven

sensors only transmit signals when a change has been

detected in their sensory space, reducing communication and

processing costs (Bartolozzi et al., 2017). The event-driven

domain (Lichtsteiner et al., 2008) features binary, time-discrete

events, avoiding the continuous polling of sensor readouts.

This is especially desirable in the domain of touch, because

tactile perception is naturally sparse from a temporal and spatial

perspective, with only local correlation, e.g., multiple local

neighbors of receptors, or sensors, are activated by the same

event. Tactile events are perceived for a limited time, as long as

the stimulus is applied, and in a localized part, or patch, of the

sensor. When no stimulus is present, the tactile system can be

considered at rest.

While other event-driven neuromorphic sensors such as

the Dynamic Vision Sensor (DVS) (Conradt et al., 2009)

and the silicon cochlea (Chan et al., 2007) have attracted

much interest from researchers, leading to specialized data

pipelines and standardized benchmarks such as the DVS gesture

recognition dataset and TIDigits (Leonard and Doddington,

1993) dataset, there have been comparatively few such

developments in the field of touch. Among the scarce number

of examples of tactile classifiers exploiting tactile neuromorphic

sensors (Rongala et al., 2015; Friedl et al., 2016), See et al.

proposed the Spiking Tactile MNIST (ST-MNIST) dataset of

handwritten digits (See et al., 2020) obtained by writing

on a neuromorphic tactile sensor array. Consequently, the

information in the spike patterns is mostly spatial, and a

feedforward Convolutional Neural Network (CNN) reaches

the best accuracy when summing up all the spikes to get a

“tactile image”. Bologna et al. proposed a neuroengineering

framework for robotic applications, including spatio-temporal

event coding, probabilistic decoding, and closed-loop motion

policy adaptation for active touch. The systemwas benchmarked

on Braille, proving effective modulation of fingertip kinematics

depending on character complexity. Classification of the signals

recorded by a fingertip sensor mounted on a robotic arm was

performed using a subset of 7 Braille characters, achieving a

recognition rate of (89 ± 5.3)% (Pinoteau et al., 2012; Bologna

et al., 2013).

In this paper, we propose a development path applicable

to neuromorphic tasks in the tactile domain as pictured in

Figures 1A–D. The proposed method, while developed and

tested on tactile output obtained from capacitive sensors, can

be generalized to a whole class of time-dependent data such

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://research.ibm.com/interactive/dvsgesture/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

FIGURE 1

The workflow is summarized in five steps. Dataset acquisition and signal encoding (A) with analysis of information content and reconstruction

loss (B). Di�erent non-spiking classifiers are identified and employed to produce references for the proposed RSNN (C), with the latter

undergoing a hyperparameter optimization (D). Finally, performances are evaluated, accounting for di�erent metrics and hardware

implementations (E).

as audio streams, inertial sensor outputs, and temperature

or voltage monitoring, to name just a few. Given the

inherently time-dependent nature of its information content,

we selected the Braille reading problem as a benchmark, for

which we designed an end-to-end event-based neuromorphic

classification procedure.We acquired a reliable dataset, applied a

widely adopted and well-known encoding technique such as the

one provided by a sigma-delta modulator, and finally performed

classification relying on a neuro-inspired approach, using

Feedforward Spiking Neural Networks (FFSNNs) and RSNNs

models, both of them implemented in software and hardware.

For the hardware implementation, we selected the NVIDIA

Jetson, a modular embedded GPU platform, and the Intel

Loihi, a dedicated neuromorphic chip, and benchmarked them

against standard classifiers in terms of classification accuracy,

average power usage, energy consumption, and computation

delay during inference.

Using a comprehensive analysis accounting for multiple

aspects such as the information loss introduced by the encoding

technique, the accuracy of the classifiers, and the power

consumption on different hardware with different models, we

demonstrate that Braille reading can be performed in a highly

energy-efficient way by using event-based data and deploying

Spiking Neural Networks (SNNs) on dedicated neuromorphic

hardware.

2. Methods

2.1. The dataset

The Omega.3 robot was used to slide a sensorized

fingertip (Jamali et al., 2015), with 12 capacitive sensors, over

3D printed Braille letters from “A” to “Z” as well as “space” at a

controlled speed and position, shown in Figures 2A,B.1

The size of the Braille letter was chosen to match the spatial

distribution of the fingertip so that the full letter can be detected

by a single sliding movement. The sliding distance (15.5 mm),

the sliding velocity (20 mm/s), and the distance to the flat

surface of the plate were held constant. The start position varied

following a Gaussian distribution to include spatial-temporal

variability between each repetition, illustrated in Figure 2C. Each

letter was recorded 200 times with a sampling frequency of

40 Hz. The capacitance value is encoded in 8-bit, leading to a

range from 255 to 0 with a minimal change of 1, with 255 being

in rest and 0 for maximum load. For convenience, the encoding

was inverted in software being 0 the resting state, and 255 the

maximum load of the sensor capacity.

1 The robot is controlled and the sensor response is stored using YARP

on a DELL XPS 15 laptop running Ubuntu 20.04 LTS.

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.forcedimension.com/products
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

FIGURE 2

The inner part of the fingertip is composed of 12 capacitance

plates shown in (A), wrapped by a three-layer fabric and slid

over the Braille letters with a constant sliding distance and

velocity (B). The start position was varied following a Gaussian

distribution (C).

2.1.1. Event-based encoding

The objective of this work is to explore the potential

of an end-to-end neuromorphic system for tactile

perception with event-based communication (sensor

level), asynchronous processing (hardware level) and

spike-based computing (algorithmic level). However, there

is to the best of our knowledge no available event-based

tactile sensor today. Therefore, we emulate the output

of such a sensor by encoding the frame-based data into

temporally sparse streams of events (i.e., spikes) using

a sigma-delta modulator (61 modulator) (de la Rosa,

2011). At threshold (ϑ) crossings, ON or OFF digital

events are generated for increase or decrease of pressure,

respectively (Bartolozzi et al., 2017), as indicated in Figure 3A.

Each original stream of frames is converted in an offline

preprocessing step from a 12-taxel time sequence to 24

binary event-based channels, emulating an event-based

tactile sensor.

The maximum re-sampling frequency is given by the

precision of the stored 64-bit float variable. Given the sensor

encoding regime and the sampling frequency, the precision of

the conversion is enough to encode the data with a minimum

change in the sensor value of ϑ = 1.02E − 11 without

losing information from the frame-based data. A threshold value

ϑ = 1 corresponds to the highest implemented precision

and no information loss. Increasing values correspond to

increasing sparsity, lower data rate, and improved efficiency at

the cost of lower accuracy and information loss, as shown in

Figure 3B.

2.2. Standard classifiers

Non-event-driven approaches such as linear classifiers [e.g.,

Support-Vector Machine (SVM)], time-series classifiers, and

Long Short-Term Memory (LSTM) were used on frame-

based signals available in the dataset as baselines for more

traditional strategies independent of neuromorphic, event-based

approach. Additionally, LSTM was used for event-based data as

a benchmark for SNNs, too.

2.2.1. Time-series classifiers for frame-based
data

We used standard time-series classifiers proven to

work with time-variant datasets: Fully Convolutional

Network (FCN) (Wang et al., 2017), Residual Neural

Network (ResNet) (Wang et al., 2017; Geng and Luo,

2019), Encoder (Serrà et al., 2018), Time-CNN (TCNN) (Zhao

et al., 2017), and Inception (Fawaz et al., 2020), available

as implementation on GitHub (Fawaz et al., 2019,

2020). Please find more detailed information in the

Supplementary material 1.1.

While these networks were specifically designed for time

series, they are still based on standard feedforward structures

(e.g., fully-connected layers, convolutional layers). Their lack

of internal memory and recurrence requires that a whole time

series is presented to the network all at once, instead of only

the data from one timestep. Consequently, during inference,

a buffer with the length of a time-series needs to be filled

to perform classification. In case of multiple overlapping time

windows, even more, buffers are required. This leads to memory

overhead and classification delay compared to networks with a

recurrent structure.

2.2.2. Long short-term memory

Given the time-dependent characteristic of the dataset,

we implemented a recurrent neural network. This type of

network, in contrast to feedforward networks, incorporates an

internal loop that allows temporal information to persist, and

therefore is the natural choice for sequential data, but suffers

from vanishing gradients for sequences characterized by long-

term dependencies. Such problem is avoided by using LSTM

architectures (Hochreiter and Schmidhuber, 1997), where the

cell state Ct holds long-term information. Additionally, LSTMs

can add or remove information from the cell state by gates.

The architecture chosen for the Braille dataset consists of

a single layer LSTM with 228 hidden nodes, followed by

a regular fully-connected layer of 228×27 output neurons

that performs the classification, giving a total number of

225,975 trainable parameters. The choice was made to have

a number of trainable parameters as close as possible to that

of the best performing RSNN, obtained through a two-step

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://github.com/hfawaz/dl-4-tsc
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

FIGURE 3

Event-based encoding and reconstruction of a sample: (A) Sensor reading sequence of a sample letter along with spikes generated using

sigma-delta modulation. The upper part represents 600 ms of a sequence of sensor readings of a single taxel during sliding. The bottom part

shows the generated events for the ON (green color) and OFF (red color) channels for increasing threshold values, leading to decreasing

numbers of events. (B) Reconstructed sequence from event-based data compared with the original sequence for a full letter sequence. Each

plot represents the reconstruction with a di�erent threshold of the same frame-based sequence. Increasing thresholds increase the

compression, but also increase the reconstruction error.

Hyperparameters Optimization (HPO) procedure as described

in the following, for a fair comparison. The method for

calculating the number of trainable parameters is reported in

Supplementary material 1.2 and Supplementary Equation 1.

2.3. Spiking neural networks for
event-based data

We designed a two-layer RSNN adopted from Cramer et al.

(2020) and Zenke and Vogels (2021) to perform classification

on the dataset encoded as an event-stream with four different

thresholds, to achieve a quantitative comparison of the different

possible strategies suitable to effectively deal with time-based

Braille reading signals. We used the current-based (CUBA)

Leaky Integrate and Firing Neuron Model (LIF) neuron model

written in continuous form as

τmem
dU

(l)
i

dt
= −(U

(l)
i − Urest)+ RI

(l)
i (1)

with Ui being the membrane potential of neuron i (hidden

state) in layer l, Urest being the resting potential, τmem the

membrane time constant, R the input resistance, and Ii being

the input current defined as

dIi

dt
=

Ii(t)

τsyn
+

∑

j

WijS
(0)
j (t)+

∑

j

VijS
(1)
j (t) (2)

with τsyn being the synapse decay time constants, Sj(l) the

spike train of the jth neuron at the lth layer, Wij being the

forward, and Vij the recurrent connection’s weights.

I
(l)
i (t) = αI

(l)
i (t − 1)+

∑

j

Wij · Sj(t) (3)

U
(l)
i (t) = (βU

(l)
i (t − 1)+ I

(l)
i (t)) · (1.0− Ureset) (4)

with β = exp(−time_bin_size
τmem

) being the voltage decay

constant, α = exp(−time_bin_size
τsyn

) the current decay constant,

and I
(l)
i the synaptic input current from neuron i in layer l

multiplied by the input resistance R = 1� for convenience and

Ureset the reset after eliciting an event.

The error is propagated throughout the entire network,

unrolled in time, using Backpropagation Through Time (BPTT).

To perform supervised learning the feedforward and recurrent

weight matricesWij and Vij change following a given loss L

Wij ←Wij − η
∂L

∂Wij
and Vij ← Vij − η

∂L

∂Vij
(5)

with the learning rate η. To use a binary step function

2(x) in the forward pass (inference), whose derivative is zero

everywhere except the zero crossing where it becomes infinite,

we use the partial derivative (the gradient) of a fast sigmoid

function σ (x)

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

TABLE 1 Description of the hyperparameters included in the search

space for the HPO procedure.

Hyperparameter Description

scale, λ Steepness of surrogate gradient

time_bin_size Time binning of the encoded input

nb_input_copies Copies of the encoded signals provided

to the input layer

tau_mem, τmem Decay time constant of the membrane

tau_ratio Ratio between the membrane and the

synapse (τsyn) decay time constants

fwd_weight_scale Scaling factor for weight initialization of

the forward connections (Wij)

weight_scale_factor Scaling factor for weight initialization of

the recurrent connections (Vij)

reg_neurons, µ1 Scaling factor for the regularization on

the number of spikes per neuron

reg_spikes, µ2 Scaling factor for the regularization on

the total number of spikes

σ (U
(l)
i) =

U
(l)
i

1+ λ|U
(l)
i |

(6)

in the backward pass (training), the surrogate gradient,

and prevent vanishing issues. Whereas, 2(x) is invariant to

multiplicative re-scaling, σ (x) needs the introduction of the scale

parameter λ being part of the hyperparameter optimization.

To compute the gradients we are using the capabilities

to over-loading the derivative of spiking non-linearity with a

differential function in custom PyTorch (Neftci et al., 2019;

Zenke and Vogels, 2021).

For the loss, we apply the cross entropy to the active readout

layer l = L. For data with Nbatch samples and Nclass classes it is

formalized as

L = −
1

Nbatch

Nbatch
∑

s=1

1(i = y2)·log

exp

(

∑T
n=1 S

(l)
i [n]

)

∑Nclass
i=1 exp

(

∑T
n=1 S

(l)
i [n]

)

(7)

whereas n stands for the time step. At last we have to define

the L1 and L2 regularization loss function.

L1 =
sl

Nbatch + N

Nbatch
∑

s=1

N
∑

i=1

max

{

0,
1

T

T
∑

n=1

S
(l)
i [n]− θl

}

(8)

representing a per neuron lower threshold spike count

regularization with strength sl and threshold θl, and

L2 =
su

Nbatch

Nbatch
∑

s=1

[

max

{

0,
1

N

N
∑

i=1

T
∑

n=1

S
(l)
i [n]− θu

}]2

(9)

being an upper threshold mean population spike count

regularization with strength su and threshold θu. Finally, the

total loss is summarized by

Ltot = L+ µ1L1 + µ2L2 (10)

with µ as a scaling factor and minimized using the Adamax

optimizer (Paszke et al., 2017).

To implement and simulate SNNs based on this model

in PyTorch, we need to account for a time binning step

for the input event stream. Although aiming to work with

asynchronous and sparse event-based data, fixed frame lengths

had to be defined to properly simulate algorithmic time steps in

the domain of clock-driven, conventional hardware like CPUs

and GPUs. Time binning was performed by subdividing the

time extracted from the signal recordings (Trec) into T chunks,

with T defined as T =
∫

(Trec/time_bin_size) and the quantity

time_bin_size introduced as an additional hyperparameter of the

HPO. Then, by iterating over the encoded signal with a stride

equal to time_bin_size, a value of 1 was assigned whenever at

least one spike was found, otherwise a 0. The winning neuron in

the output layer is the one with the highest spike count after a

trial.

2.4. Hyperparameter optimization

For each event stream produced from the original frame-

based signal by applying a specific threshold value, a tailored

RSNN was obtained by adapting the parameter optimization

procedure introduced in Fra et al. (2022). The HPO was

performed by means of the Anneal algorithm in the Neural

Network Intelligence (NNI) toolkit, using the parameters listed

in Table 1, over 600 trials. To partially mitigate the impact

of local minima (Forno et al., 2018), two evenly spaced

random reinitializations of the tuner were performed during

each experiment. An 80/20 train-test split was used and all

trials were composed of 300 training epochs with intermediate

results, for both training and test, at the end of each epoch.

Test accuracy was defined as the optimization objective of the

HPO experiments, and its highest value was extracted at the

end of each trial. The choice of selecting test accuracy as a

reference value to be optimized was taken to account for possible

overfitting.

Following the annealing-based procedure, we performed

a further exploration of a portion of the initial search space

through a grid search on the two most relevant hyperparameters

from the energy consumption perspective, namely time_bin_size

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

and nb_input_copies since they determine the number of

operations that need to be computed per inference.

As the outcome of such a two-step HPO procedure, an

optimized network for each threshold value used in the sigma-

delta encoding was obtained. All of these RSNNs were composed

of a recurrent, fully connected hidden layer containing 450 LIF

neurons and an output layer composed of 28 LIF neurons.

The number of output neurons was defined to account for an

extra class, in addition to the 27 defined by the letters, suitable

to identify, given future possible online implementations, edge

cases such as missing contact between the fingertip and the

letters. The input layer was instead part of the optimization,

with its number of input neurons defined as 2 · n_taxels ·

nb_input_copies where 2 covers the event polarity, n_taxels

was given by the 12 sensors in the robotic fingertip, and

nb_input_copies was to be optimized. A batch size of 128 and

a learning rate η = 0.0015 were adopted for all the networks.

2.5. Hardware implementation

Beyond the algorithmic evaluation, we determined key

performance metrics that are relevant to real-world deployment

by implementing the networks on different hardware platforms.

These metrics covered power usage, energy consumption,

and computational delay, which allowed us to conclude the

deployment feasibility in real-world scenarios. Considering the

platform-related factors of high integration and availability,

and our ultimate goal of deploying the algorithms in a real-

world environment on robots, we targeted the NVIDIA Jetson

Xavier NX, a commercially off-the-shelf available computing

platform equipped with a System-on-Chip (SoC) that integrates

a CPU and GPU, and the Intel Loihi, a neuromorphic processor

dedicated to accelerating SNNs.

2.5.1. NVIDIA Jetson Xavier NX

The NVIDIA Jetson is a product family of compact and

embedded computation platforms mainly targeted toward edge

AI. The Xavier NX is the most powerful model among its

compact 260-pin SO-DIMM modules. Despite being a general-

purpose platform, it is similar to common machine learning

workstations in terms of architecture and software. We used

it to run all algorithms and compare the different standard

time-series classifiers, as well as evaluate the differences between

conventional algorithms and event-based algorithms on off-

the-shelf hardware. Furthermore, the inference metrics give

an outlook on what performance can be expected during

deployment with the same hardware.

Execution time was measured by using the native

functionality offered by the Linux Operating System (OS).

Power usage was measured by utilizing the module’s onboard

INA3221 power monitor, polling the system’s main power rail

with a fixed interval of 50 ms. The power monitor also measures

a CPU/GPU and a SoC power rail. But due to the lack of public

information on what components exactly these rails supply,

and also due to a productive application requiring a full system

instead of just single core components, the main power rail was

chosen for comparison.

The general procedure for measuring the performance

metrics was performed as follows: initially, the whole dataset

was loaded into memory, followed by the loading of the model

and its trained weights. Next, a warmup of the system was

performed by letting the model predict the whole dataset in

batches of 64 for six times. Its purpose was to fill the caches and

to avoid additional library load times during the actual inference.

Afterward, the recordings of the execution time and power

values were started, which was immediately followed by the

inference. Like in the warmup, the whole dataset was predicted

six times, but with the difference that a batch size of 1 was

used to simulate how the system would behave in a real-world

scenario where single samples are predicted consecutively. For

our SNNs the number of samples during warmup and inference

was reduced to 750 each due to timing constraints. Finally, after

the inference was done, the recordings were stopped and the

following metrics were evaluated:

• Inference time (i.e., computational delay) per sample,

which is the total inference time divided by the number of

samples processed.

• Minimum, Maximum, and Average power usage over total

inference time as well as per sample.

• Total and per sample energy consumption. The total energy

is calculated by multiplying and accumulating each power

measurement with a polling interval of 50 ms. Energy per

sample is given by dividing the total energy by the number

of samples processed.

Furthermore, to get more significant results, the above

procedure was repeated three times per network to eliminate

possible outliers and also performed for each available power

mode on the Jetson, whereas the results reported are from power

mode 4.

2.5.2. Intel Loihi

Intel’s Loihi (Davies et al., 2018) is a fully digital

neuromorphic research processor. Each Loihi chip hosts 128

neuron cores, where every neural core can run up to 1,024 CUBA

LIF neurons by Time-division Multiplexing (TDM). The Loihi

neuron’s equations for the current and voltage compartments are

Ii(t) = Ii(t − 1) · (212 − δIi) · 2
−12 + 26 ·

∑

j

wij · sj(t) (11)

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SD/PlatformPowerAndPerformance/JetsonXavierNxSeriesAndJetsonAgxXavierSeries.html#software-based-power-consumption-modeling
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

Ui(t) = Ui(t − 1) · (212 − δUi) · 2−12 + Ii(t) (12)

where t is the algorithmic time step, Ii(t) and Ui(t) are the

current and voltage of neuron i, δIi and δUi are the current and

voltage decay constants, wij is the synaptic weight from neuron j

to i and sj(t) is the spike state (0 or 1) of neuron j.

Each Loihi neuron core supports arbitrary connection

topologies as long as the capacities of the in-core memories

for storing axons and synapses are not exceeded. The neuron

cores are parallel and distributed with local on-chip SRAMs

to store the network state and configurations. The neuron

cores are fully asynchronous, performing synaptic accumulation

only when there is an input event, which highly benefits

from the spatio-temporal sparsity of event-based sensors and

encoding. The algorithmic time step in the entire Loihi system

is maintained by a distributed handshaking mechanism called

barrier synchronization. In addition, each Loihi chip has 3

synchronous embedded x86 cores also taking part in the barrier

synchronization. The x86 cores run C code and are used to

monitor and interact with the SNN running on the neuron cores,

handling data IO between the on-chip asynchronous neuron

cores and off-chip devices, and optionally synchronizing the

algorithmic time steps duration (in physical time) to integrate

the chip with a sensor.

We developed a solution to deploy the trained networks

from our PyTorch implementation to Loihi (PyTorch2Loihi).

First, we export the neurons’ hyper-parameters and the trained

synaptic weights from PyTorch in an HDF5 file by taking into

account the Loihi hardware specifications and constraints as

follows:

• Current and voltage decays constants: we calculate the

Loihi decay constants δI and δU from the PyTorch time

constants τsyn and τmem, respectively, with

δ = int

(

2−12 − 2−12 · e
−time_bin_size

τ

)

(13)

• Synaptic weights and neuron threshold: Loihi supports

up to 8-bit fixed point weights. To minimize the effect

of quantization, we quantize the weights from PyTorch

training into 256 states and adjust the weight scaling factor

and threshold scaling factor to have the same overall effect

of an input spike. The weight scaling factor wscale and the

weight quantization scheme is described by

wscale = int
(

256
max |w|

)

(14)

wLoihi = quantize
(

w, step = 2
)

· wscale (15)

θLoihi = 26 · θ · wscale (16)

After the network is deployed, we run the inference

with the event-based tactile data and first quantify the

classification accuracy, then, measure the energy consumption

and computation delay. The test inference was made by injecting

the input events of all samples of the test set in a continuous flow,

where samples are separated by a blank time of 100 algorithmic

time steps where the neurons’ currents and voltages decay to

zero. The output spikes are gathered throughout the duration of

the inference, and then the classification accuracy is calculated

offline.

Loihi system boards include voltage regulators and power

telemetry which can be used to measure the total power

consumption of the Loihi chip while a model is running. The

power measurements can be combined with timing information

recorded by the on-chip x86 cores during model operation

to estimate energy consumption. NxSDK exposes a high-level

user interface for measuring power, energy, and timing when a

workload is running. We used the interface to benchmark the

performance of our SNN models on Loihi.

3. Results

3.1. Encoding analysis

To characterize the event-based datasets, we reconstructed

the temporal sequences out of the event streams and compared

the results with the original frame-based signal. Additionally,

we performed the same analysis by taking into account the

time binning step used to prepare the data for clock-driven

computation as described in Section 2.3. Results are summarized

in Table 2, where the mean number of events, the compression

ratio γ with respect to the encoded data at ϑ = 1 and the

reconstruction MSE values ε are reported both, before and after

the binning step for each threshold.

3.1.1. Signal reconstruction before time binning

From the event stream, the signal was reconstructed,

starting from zero, by increasing or decreasing, for every event,

according to the polarity ON or OFF, by an amount equal

to the threshold used in the encoding. Figure 3B shows the

reconstruction values for one sample and taxel at different

threshold values. The compression ratio γ is defined as the

number of events at ϑ = 1 divided by the number of events

at each threshold value. The reconstruction error ε is the MSE

between the original sequence and the reconstructed frame-

based sequence for each of the event-based datasets.

The analysis of the reconstructed frame-based signal

revealed that with increasing thresholds the number of events

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

TABLE 2 Characterization of event-based encoding for each of the generated datasets at di�erent threshold values.

Before time binning After time binning

Threshold (ϑ) Events Comp. ratio (γ) MSE (ε) Bin size (ms) Events Comp. ratio (γ) MSE (ε)

1 87.6 1 0 5 58.1 1.5 39.5

2 38.0 2.3 0.4 3 35.5 2.5 12.5

5 10.5 8.3 3.7 3 10.5 8.3 4.1

10 3.4 25.7 12.3 5 3.4 25.7 12.3

Compression ratio γ is defined as the number of events at perfect encoding (ϑ = 1) divided by the number of events at each higher threshold value. Values of the reconstruction error ε

are calculated per reconstructed frame by MSE. Mean events are calculated per sample. All time_bin_size, introduced to prepare the data for clock-driven computation, follow the results

reported in Section 3.4 from the two-step HPO procedure.

dramatically decreases, increasing the reconstruction error.

However, the compression ratio γ increases with a higher rate

than the reconstruction error ε, showing a sparsity gain of the

event-based dataset at the cost of information content.

3.1.2. Signal reconstruction after time binning

Running SNNs in PyTorch requires the introduction of

time bins. To quantify the impact of the time binning on the

different encoded datasets, we counted the total number of

events given in each dataset after the time binning. The total

number of events for a given encoding threshold is always higher

than the total number of events for a given lower encoding

threshold, regardless of the time binning, as shown in the top

panel of Figure 4A. The higher the encoding threshold, the lower

the impact of the time binning. For the encoding threshold

ϑ = 1, the total number of events counted in the dataset

for a time_bin_size equal to 1 ms is halved with increasing

time_bin_size. For the encoding threshold ϑ = 2, we still have a

loss of 35%, whereas for higher encoding thresholds ϑ ≥ 5 the

impact of the time binning decreases close to or below 10% and

most of the events are perceived, as shown in the bottom panel

of Figure 4A.

The same reconstruction of the frame-based signal from

the event stream as described in 3.1.1 was performed for every

possible time_bin_size, included in our HPO and grid search, of

the event stream for each threshold value. The reconstruction

error ε depends, on the one hand, as discussed above, on the

encoding threshold, and on the other hand on the introduced

time binning. Results are shown in Figure 4B with markers at

the time_bin_size selected after the HPO and grid search to run

the SNNs for each encoding threshold. The smallest reported

reconstruction error ε is 0.55 for threshold ϑ = 2 and 1 ms

time_bin_size. We see a great increase in the reconstruction

error ε with increasing time_bin_size. That increase is evenmore

drastic for threshold ϑ = 1 starting at a higher reconstruction

error ε of 4.82. The higher reconstruction error ε can be

explained by the loss of events when multiple of them fall into

a single time bin, leading to an increase in the reconstruction

error by introducing an accumulating offset, as shown in

Figure 4C. Additionally, the discriminative power of amplitudes

is lost, leading to similar amplitude for small and high changes

after the reconstruction. A further analysis unveiled, that 8.22%

of the ISIs for threshold ϑ = 1 are below 1 ms which is the

smallest time_bin_size used, whereas for ϑ = 2 only 0.45%

are below 1 ms, as summarized in Figure 4D. For all higher

thresholds (ϑ > 2) no ISIs are below 1 ms. The higher the

threshold, the higher the majority of ISIs due to the increasing

sparseness. The impact of time binning has decreasing impact,

but the error introduced by the higher encoding thresholds

is becoming more relevant. Overall, the higher thresholds are

more resilient to the impact of time_bin_size, but less able to

reflect the temporal dynamics.

3.2. Standard classifiers for frame-based
data

3.2.1. Linear classifier

The recorded dataset encodes information in spatio-

temporal patterns. Before this dataset is used for pattern

recognition, it is important to know whether only spatial

information or both spatial and temporal information in this

dataset needs to be considered for character recognition. To

investigate the significance of spatial and temporal information

for the Braille letter classification task, we applied SVM with a

linear kernel. To eliminate only the temporal information from

the data by keeping the spatial information intact, we computed

the mean of all frames with respect to time for each channel. In

this way, we got one data point for each channel which is time

independent and each channel represents the spatial location of

each sensor, referred to as “time collapsed data”. Data keeping

both, spatial and temporal information intact, is referred to as

“raw data”. We applied a one-vs.-rest multiclass classifier on the

raw and the time-collapsed data for five cross-validated splits.

We achieved (86.7 ± 0.8)% and (72.3 ± 1.0)% accuracy for raw

and time-collapsed data, respectively. To further investigate the

temporal nature of the data we iteratively increased the number

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

FIGURE 4

Spike encoding: (A) Total number of events counted in the whole dataset in dependence of the selected threshold and time_bin_size is shown

in the top panel, while the relative amount of events found in the dataset relative to time_bin_size = 1 is reported in the bottom one. Increasing

the encoding threshold reduces the number of events significantly, whereas encoding with lower thresholds is much more a�ected by

increasing time_bin_size. The amount of events lost is 50.37% for ϑ = 1, 34.25% for ϑ = 2, 13.17% for ϑ = 5, and only 2.92% for ϑ = 10. (B) MSE

values of signal reconstruction after time binning as a function of the time_bin_size for each encoding threshold. The time_bin_size resulting

from the HPO and grid search used to preprocess the event stream are highlighted by the markers. Panel (C) shows the reconstruction of the

frame-based signal from the event stream for all given thresholds after time binning with a bin size of 5 ms. (D) Number of events as a function

of the ISI with fixed time_bin_size as reported in Table 2, with the same color coding as in (A,B). The insets show the detail at ISI values equal to

the time_bin_size used in this work, highlighting the minimum temporal resolution of 1 ms with the vertical dashed line. Spikes below 1 ms in

percentage of total number of spikes: 8.22% for ϑ = 1, 0.45% for ϑ = 2, 0% for ϑ = 5, and ϑ = 10.

of frames taken into account from the first to the total number

of frames in the frame-based data, in every iteration the data has

been reduced to the first 12 principle components found by PCA

to always consider the same dimensionality of the predictors in

the classifier.

In Figure 5A, the results of this procedure are shown, with a

clear increase in the accuracy with three significant phases at 0.5

and 0.8 s before it finally saturates after 1 s at (86.7± 0.8)%. We

can identify the three phases in the sliding procedure, namely:

the first contact with the dot pattern between 0.1 and 0.5 s, the

first contact with the second row of the pattern between 0.5

and 0.8 s, and the end of the pattern after 1 s, by comparing

Figures 2C, 5A.

Similarly, for the event-based dataset, we investigated the

discrimination power of the spatial components by removing

the temporal dimension of the dataset. In this case, we built

the classifier with predictors as the summation of all the

events for each taxel and channel (ON/OFF) resulting in 24

predictors per letter in the dataset. Figure 5B shows the first

two principal components after applying PCA to the spatial

predictors displaying an overlapping in data categories. The

result of the trained classifier drops from (58.9 ± 1.2)% for

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

FIGURE 5

(A) Dependency of SVM performance in regard to the first 12 principle components extracted using PCA provided with an increasing number of

frames. An increase in the number of frames results in an increase in the performance close to saturation in 1s at (86.7 ± 0.77)%. (B)

Dimensionality reduction (PCA) with 2 components applied to the spatio-temporal sequences of the frame-based dataset. Each of the colors in

the visualization represents a category (letter) in the dataset.

the event-based data with all time bins as predictors to (47.7

± 1.5)% for the predictors that only account for the sum of

spatial information. This analysis confirms the intuition that the

temporal information of the signal is important for the character

discrimination tasks.

3.2.2. Time-series classifier and LSTM

We trained the time-series classifiers and the LSTM network

with an 80/20 train-test split for 300 epochs and averaged

the results over three runs per network. The resulting test

accuracy as well as the network’s respective number of trainable

parameters are shown in Figure 6.

ResNet, Inception and FCN performed at comparable level.

They all achieved 100% in training accuracy and reached

comparable test accuracy of (98.2 ± 0.2)%, (97.8 ± 0.2)%,

and (97.7 ± 0.3)%, respectively. Similarly, their number of

parameters turns out to be comparable too, with ResNet (516k)

and Inception (452k) close to each other and FCN (280k) slightly

smaller but in the same order of magnitude.

The Encoder architecture reached a training accuracy of

(99.8 ± 0.1)% but the drop in test accuracy was greater, resulting

in (93.9 ± 0.2)%. This deviation is an indication of overfitting

and can possibly be explained by the fact that the network’s

number of parameters is one order of magnitude higher than

the one of the former mentioned networks. This high amount

of parameters can lead to a training outcome where the network

memorizes the training data and conversely generalizes worse

than it would with fewer parameters.

LSTM is the only recurrent architecture in our selection. It

performs sequential processing from a streaming input without

buffering the data. This reduces the delay and memory footprint

which is important for embedded systems. Compared to the

previous networks, it achieved again a training accuracy of

100% and the test accuracy did not drop as significantly as for

the Encoder and resulted in (96.9 ± 0.3)%, suggesting less

overfitting.

TCNN performed worst among all selected networks and

only achieved (88.5 ± 0.8)% and (83.4 ± 1.3)% for training and

test accuracy, respectively. However, it uses a greatly reduced

number of parameters, containing only 2,673, which is two

orders of magnitude lower than ResNet, Inception, FCN and

LSTM, and even three orders of magnitude lower than the

Encoder network.

3.3. LSTM with event-based input
(eLSTM)

As a benchmark for the results provided by the optimized

RSNNs, LSTM was adopted for event-based data, using the

same architecture as described in Section 2.2.2, the same train-

test split as described in Section 3.2.2 and the same data

preprocessing as for the RSNN, meaning sigma-delta encoding

and time binning. Results are reported in Figure 6. A clear

impact of the encoding threshold on the eLSTM can be observed,

with ϑ = 1 providing the best accuracy values. Compared

to the optimized RSNNs, while similar results are found when

using ϑ = 1, significantly lower performances are achieved with

ϑ = 2 and ϑ = 5, which also show a drastically increasing

standard deviation. For ϑ = 10, results are again similar to

those reported for the RSNNs, but a higher standard deviation

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

FIGURE 6

Test accuracy and number of trainable parameters of standard classifiers after training for 300 epochs and averaging over three runs. eLSTM

refers to LSTM with event-based input.

is observed in this case as well. A similar behavior across the

different threshold values can be observed in Figure 8 as well,

where ϑ = 2 and ϑ = 5 show worse performances, in terms of

inference time, compared to ϑ = 1 and ϑ = 10. One possible

explanation is the same time_bin_size for ϑ = 1 and ϑ = 10

with 5 ms, compared to 3 ms for the other encoding thresholds.

This leads to 3/5 the number of time steps to compute, which

the LSTM seems to benefit from.

3.4. Spiking neural networks

During the two-step HPO procedure, the main objective

for the optimization was the classification accuracy, but we

also monitored the Time-to-Classify (TTC) and the power

consumption, with the latter separately reported in Section 3.5.

In the perspective of an online implementation of the proposed

RSNN, an informative figure of merit to be accounted for is the

minimum temporal length of the input needed for successful

classification. To this aim, we defined TTC as the portion of the

signal needed for successful classification with respect to the full

acquisition time of the Braille letter, which was fixed to 1.35 s,

due to the fixed sliding speed. Additionally, in order to account

for possible corner cases in the online implementation, like “no

contact” situations, we included one extra class leading to 28

classes in total.

The parameter space after the NNI optimization, as well as

after the grid search, for each threshold, shows no significant

trends. The complex interaction of different parameters leads to

a variety of local optima resulting in comparable test accuracy.

Looking only at the trials with the best classification accuracy

for different encoding thresholds, reported in Table 3, gives the

same picture. Only the forward weight scale, fwd_weight_scale,

seems to be constantly increasing with increasing thresholds.

The membrane potential time constant τmem has only slight

variations, again with no clear trend, and the tau_ratio,

describing the relation of τmem and τsyn, is constant. Seeing

similar membrane time constants indicates their dependencies

on the spatial-temporal properties of the data despite the

encoding threshold. A constant membrane-to-synapse time

constant ratio in contrast shows to be an optimal relation

between neuron and synapse dynamics for this task.

Figure 7 shows a summary of the RSNN classification

accuracy after grid search optimization, while in

Supplementary Figure 2 the hyperparameters exploration

during the first step of the HPO procedure is reported.

From all the explored combinations of time_bin_size and

nb_input_copies for all the encoding thresholds employed, the

best configuration in terms of accuracy turned out to be the one

adopting an encoding threshold of ϑ = 5, a time_bin_size of

3 ms and 4 input copies. Nevertheless, such RSNN configuration

did not provide the strongest reliability in terms of repeatability.

As shown in Figure 7B, the standard deviation of the provided

results is larger than the one observed for other configurations.

Figure 7B shows that the best configuration found for an

encoding threshold ϑ = 2 resulted in a mean accuracy as

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

TABLE 3 Optimized values of the hyperparameters, for each encoding

threshold, following grid search.

Threshold (ϑ)

1 2 5 10

scale 5 15 10 10

time_bin_size (ms) 5 3 3 5

nb_input_copies 2 8 4 2

tau_mem (ms) 60 50 70 70

tau_ratio 10 10 10 10

fwd_weight_scale 1 1 1.5 4

weight_scale_factor 1e-2 2e-2 3.5e-2 1.5e-2

reg_spikes 4e-3 1.5e-3 1e-3 1.5e-3

reg_neurons 1e-6 0 0 0

high as the one for an encoding threshold ϑ = 5 but with a

significantly reduced standard deviation: (80.9 ± 0.3)% test

accuracy compared to (80.9± 1.9)%.

Looking at the accuracy performances from this twofold

perspective, it is hence possible to identify as the best

configuration the one employing the encoding threshold ϑ = 2

with a time_bin_size of 3 ms and a number of copies equal to 8.

The overall performance of the highest threshold (ϑ = 10) is the

worst. The analysis of accuracy results provided an additional

insight also, reported in both Figures 7A,B, highlighting that

the encoding threshold and time_bin_size can have a significant

impact. Particularly, they induce a similar behavior of test

accuracy: after an initial growth leading to a maximum, a

further increase of one of them produces a deterioration of the

classification performance. In contrast to the findings regarding

the preservation of events concerning the time_bin_size for

different thresholds discussed in 3.1, the accuracy for higher

encoding thresholds decreases most for higher time_bin_size.

Comparing the network performance of the RSNN and the

FFSNN, shown in Figure 7B, we observe a constant decrease for

the FFSNN with increasing thresholds, but an almost constant

performance for the RSNN up to ϑ = 10, where it initially starts

to drop off.

Targeting an online hardware implementation, next to

classification performance, the energy efficiency needs to be

considered too. From this point of view, the encoding threshold

of 1 is the most promising candidate using a small number

of input copies and a greater time_bin_size, leading to a

significantly lower energy footprint at comparable performance.

Regardless of the hyperparameters, the TTC is equal throughout

all conditions and the whole time series is needed for the

best classification performance, similar to the findings using

the linear SVM, reported in Section 3.2.1. To validate the use

of the extra class, we also compared these results with an

implementation based on 27 classes only. Such analysis revealed

that similar results are achieved in both cases, thus showing that

the additional 28th class does not have a detrimental impact on

the classification performances.

3.5. Hardware implementation

3.5.1. NVIDIA Jetson embedded GPU

The energy consumption, average power usage, and

inference time of the standard classifiers running on the

NVIDIA Jetson2 are shown in Figure 8. We consider energy

consumption the main metric as it includes both power

usage and inference time per sample. Average power usage

gives insight into what power budget would be required to

achieve certain inference times. While energy and power

consumption are important metrics for battery-powered

applications, inference time is crucial in applications with

real-time constraints.

When comparing these results with the parameter counts in

Figure 6, some similarities can be found. ResNet, Inception, and

FCN, which are comparable in terms of accuracy and parameter

count, had nearly the same average power usage during

inference. This means that their energy consumption is directly

proportional to their inference time. In the case of Inception

and its parameter count, we expected the energy consumption

to lie between ResNet and FCN, but it exceeded both. While

parameter count is not directly related to computational

complexity, another explanation for this observation could be

that Inception uses operations that are less optimized or not

accelerated by the GPU. The similarities continue with the

Encoder, where average power usage jumped and the parameter

count increased by one order of magnitude, compared to the

former three networks. Judging only by the parameter count, we

expected energy consumption to be even higher. The difference,

especially compared to Inception, is not as great as expected,

though. Considering the higher average power usage, it had

better GPU utilization and therefore could benefit from an

overall higher acceleration. Inference time also supports this

assumption, as it was lower on the Encoder than on Inception.

Amongst all standard classifiers, the results for the LSTM

with frame-based input are the most notable. Despite being a

sequential network, which we expected to be slower compared

to the standard classifiers due to its iterative and recurrent

nature, it achieved the fastest inference time and lowest energy

consumption. But this came at the cost of the second highest

power consumption. Similar to the Encoder, this suggests that

2 Energy and timing measurements for the Jetson were obtained on

an NVIDIA Jetson Xavier NX Developer Kit running the NVIDIA JetPack

4.6.1 SDK, containing Ubuntu 18.04.6 LTS, L4T 32.7.1, TensorRT 8.2.1, and

CUDA 10.2.

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

FIGURE 7

Summary of the accuracy performances of RSNN and FFSNN resulting from the grid search exploration in the two-step HPO procedure. (A) Best

test accuracy results achieved with the RSNN for all the combinations of time_bin_size and nb_input_copies. (B) Mean and standard deviation

of the accuracy results of both the FFSNN and the RSNN with the best parameters for each encoding threshold.

FIGURE 8

Comparison of inference metrics from the standard classifiers for frame-based data in terms of energy consumption and average power usage

as measured on an NVIDIA Jetson Xavier NX. eLSTM refers to LSTM with event-based input. The label on top of each bar shows the inference

time per sample on the corresponding network.

the network can benefit from a high GPU utilization or general

acceleration of internal operations.

For the LSTMwith the event-based input, further referred to

as eLSTM, we found that the energy per sample and the inference

time reflect the number of time steps processed with a ratio of 5

to 3 which is given by the time binning applied for each encoding

threshold. Similar time_bin_size for ϑ = 1 and ϑ = 10 with

5 ms resulting in 270 time steps and for ϑ = 2 and ϑ = 5 with

3ms resulting in 450 time steps have been used. Interestingly this

ratio does not hold when compared to the frame-based signal

with 54 timesteps. The reason for that might be the nature of

the data with float numbers for the frame-based data and integer

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

FIGURE 9

Comparison of inference metrics for all spiking neural networks in terms of energy consumption and average power usage as measured on an

NVIDIA Jetson Xavier NX. The label on top of each bar shows the inference time per sample on the corresponding network.

numbers for the event stream. The power consumption for all

eLSTMs is nearly the same.

Lastly, the TCNN performed poorly when putting it

alongside the other networks. It had, on average, a similar energy

consumption but a high inference time, despite having by far the

least amount of parameters of the shown networks. In general,

it seems that this specific architecture is not very well-suited for

solving the problem at hand.

For the SNNs and RSNNs, we expected results on the

NVIDIA Jetson to be solely proportional to the parameters

time_bin_size and nb_input_copies, and whether the

feedforward or recurrent architecture was used. These three

factors mainly define the number of operations to be calculated

during inference. Conversely, we assumed that the threshold

does not affect performance as the implementation on general-

purpose computers does not take advantage of the temporal

sparsity in the data. Our measurements generally support these

assumptions and are shown in Figure 9. The average power

usage of the feedforward and recurrent architectures across

their thresholds were very close, deviating less than 0.7% for the

former, and less than 0.2% for the latter from their respective

means. This implies a constant utilization of computational

resources as well as the energy consumption being directly

proportional to the inference time for each architecture.

Thresholds ϑ = 1 and ϑ = 10 as well as thresholds ϑ = 2

and ϑ = 5 consumed roughly the same amount of energy per

inference. Table 3 shows that both threshold pairs presumably

depend on time_bin_size and nb_input_copies. The only

exception is nb_input_copies for threshold ϑ = 2 and ϑ = 5,

which is 8 and 4, respectively. This brings us to the conclusion

that nb_input_copies does not have a meaningful impact on

energy consumption and inference time in real-life scenarios,

whereas time_bin_size and the type of architecture are the main

factors for the computational load. A comparison between the

SNNs and the eLSTMs shows an increased inference time of

20×, even though both compute the same number of time steps,

indicating the lack of computational optimization for the SNNs

computation. The energy per sample is 10× higher and the

average power consumption 1.5×.

In general, when comparing the absolute numbers

of Figure 9 with the standard classifiers in Figure 8, our

implementations of the FFSNN and RSNN have a clear

disadvantage at energy consumption and inference time when

being run on a GPU accelerated device. The most efficient SNN

consumed ∼88% more energy than the least efficient standard

classifier, and the fastest spiking network took 16.8× longer

for one inference than the slowest standard classifier. These

numbers clearly show the need for dedicated neuromorphic

hardware to implement event-based algorithms.

3.5.2. Intel Loihi neuromorphic chip

The overall trend of accuracy in Loihi for the SNNs,

shown in Figure 10 follows the trend of accuracy on the

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

FIGURE 10

Comparison of the accuracy results for FFSNN and RSNN on

Loihi with the best parameters found by the two-stage HPO for

each encoding threshold.

PyTorch simulations and Jetson inference shown in Figure 7B.

Nevertheless, there is a loss in accuracy of a few percent (e.g.,

−1.58% for the RSNN with encoding threshold ϑ = 1, which

is due to the PyTorch training procedure without accounting

for the Loihi hardware constraints, in particular, the 8-bit fixed

point weights implementation. The loss varies depending on the

PyTorch weights distribution.

Then, we compared the hardware efficiency of the recurrent

and FFSNN in terms of delay (i.e., execution time), power

and energy consumption. Before discussing the results, it is

important to specify the neural cores mapping we have used

which does not affect the accuracy but does affect the hardware

efficiency. Loihi offers flexibility in how to map the network

neurons into the neural cores, constrained by the number of

cores in a chip as well as the number of input axons, synapses,

neurons, and output axons in a neural core. The goal is then

to find a good trade-off between parallelism (i.e., using more

neural cores with fewer neurons per core) and time-multiplexing

(i.e., using fewer neural cores with more neurons per core), to

balance the neural core’s power, the mesh routing power and

algorithmic time step duration to get an optimal configuration

for the application requirements. We found, that for the specific

typologies, the more cores we use the more power and energy

we consume without a significant impact on the delay. We,

therefore, used the minimum number of cores considering all

the hardware constraints which are 8 cores for all the trained

networks.

The delay, power and energy consumption of the different

deployed SNNs on Loihi3 are shown in Figure 11. For the sake of

3 Energy and timingmeasurements were obtained on Nahuku 32 board

ncl-ext-ghrd-01 with an Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00 GHz and

4GB RAM running Ubuntu 20.04.4 LTS and NxSDK v1.0.0.

simplicity, we refer to energy consumption as the main metric,

as it includes both power and delay. As expected, FFSNNs

consumes less energy than RSNNs, for the same thresholds.

This is due to the overhead of memory and computation from

the recurrent synaptic connections. FFSNNs and RSNNs follow

a similar trend for the different thresholds: networks with

thresholds ϑ = 2 and ϑ = 5 consume more energy because

they have smaller bin sizes and therefore more time bins (i.e.,

algorithmic time steps) per sample (450) compared to networks

with thresholds ϑ = 1 and ϑ = 10 (270), and they have more

input copies as shown in Table 3. Networks with thresholdϑ = 2

consume more than networks with threshold ϑ = 5, mainly

because they have more input copies (8 vs. 5). Nevertheless,

the FFSNN with threshold ϑ = 1 consumes more than the

FFSNN with threshold ϑ = 10, while the RSNN with threshold

ϑ = 1 consumes less than the RSNN with threshold ϑ = 10.

Even though in both cases the networks with threshold ϑ = 1

have more events in the input and fewer events in the hidden

layer than the networks with threshold ϑ = 10, shown in the

Supplementary Table 2, the impact of the hidden layer events

is different, because every event in the FFSNN hidden layers

gets transmitted to the 28 output neurons while every event

in the RSNNs hidden layers gets transmitted to both the 28

output neurons and the 450 hidden neurons. Therefore, the gain

obtained in the input layer for the RSNN with threshold ϑ = 10

is lost with the recurrent topology which increases the number

of synaptic operations. Finally, while the Jetson GPU is mostly

sensitive to the number of bins as shown in Figure 9, Loihi is also

sensitive to the number of input copies and the spatio-temporal

sparsity of the spikes and synaptic operations in the network.

After the comparison of the different deployed SNNs on

Loihi, taking into account the accuracy, power, energy, and

delay, we conclude that the RSNN with encoding threshold ϑ =

1 is the best option. For simplicity, we will refer to it as the RSNN

for the rest of this section.

Table 4 compares RSNN in Loihi, the RSNN on Jetson, the

LSTM and the eLSTM on Jetson. The RSNN on Loihi loses

1.58% in accuracy compared to the RSNN on Jetson, mainly

due to the quantization that was done after training. It further

loses 17% compared to the LSTM on Jetson, but only 3%

compared to the eLSTM. A specific LSTM architecture with

the same number of parameters as in the RSNN has been

used and trained for 300 epochs. However, the RSNN on Loihi

show several orders of magnitude gains in hardware efficiency.

First, compared to the RSNN on Jetson, it is 124× more

power-efficient and 172× faster, which makes it four orders

of magnitude (15,615×) more energy-efficient. It clearly shows

that SNNs are particularly inefficient when implemented on

standard GPU hardware. It should nevertheless be highlighted

that the delay or execution time of the RSNN on Jetson

still satisfies the real-time constraint imposed by the sensor

which has a sampling frequency of 40 Hz (i.e., a maximum

algorithmic time step duration of 25 ms). Even though the

Frontiers inNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

FIGURE 11

Comparison of inference metrics for all trained spiking neural networks in terms of energy consumption and average power usage as measured

on Loihi. The label on top of each bar shows the inference time per sample on the corresponding network.

TABLE 4 Results summary from RSNN on Loihi and RSNN, eLSTM and LSTM on Jetson for accuracy, total power, energy per sample, delay and

energy-delay product.

Results summary Comparison with RSNN on Loihi

Network RSNN RSNN eLSTM LSTM RSNN eLSTM LSTM

Hardware Loihi Jetson Jetson Jetson Jetson Jetson Jetson

Input Events Events Events Frames Events Events Frames

Accuracy (%) 78.32 79.90 82.31 96.92 +1.58 +3.99 +18.60

Total power (mW) 31 3,851 7,642 5,385 124× 247× 174×

Total energy per sample (µJ) 71 1,108,695 96,000 35,212 15,615× 1,352× 496×

Delay per sample (ms) 2.3 295.3 12.9 6.7 172× 5.6× 2.9×

Energy-delay product (µJ·s) 0.16 327,398 1,238 236 2,046,237× 7,738× 1,475×

The number of trainable parameter (i.e., synaptic weights) are similar between the RSNN (236,700), the LSTM (225,975), and the eLSTM (236,919). Event-based inputs are encoded with

threshold ϑ = 1. Comparisons with respect to RSNN on Loihi are evaluated as differences for the accuracy and as ratios for all the other quantities.

average execution time of the RSNN on Jetson is relatively long

(295.38 ms), it is still lower than the total duration of each

sample (1,350 ms). It is to note that this delay can increase

in the real-world setting when adding off-chip communication

with the robot. Second, compared to the LSTM on Jetson,

the RSNN on Loihi is more than 170× more power-efficient

and exhibits a 2.9× longer average execution time, which

makes it three orders of magnitude (1,475×) more energy-

efficient.

Finally, compared to the standard eLSTM classifier on the

Jetson GPU using the same event data, the neuromorphic

approach with the Loihi chip and RSNNs is about 4% less

accurate but two orders of magnitude (247×) more power-

efficient, reducing the total power from 7,642 mW to about

31mW. Furthermore, as a consequence of the reduced execution

time, from 12.9 ms down to 2.3 ms, the neuromorphic approach

introduces a gain in energy efficiency of 1,352× and a gain in

energy-delay product of 7,738×. This goes in line with recent

results of SNNs on Loihi compared to standard algorithms

and hardware, where the best performing workloads on Loihi

make use of highly recurrent networks (Davies et al., 2021).

Furthermore, we can expect an even higher gain in energy

efficiency when using the RSNN on Loihi in the real-world

environment, because it exploits the spatio-temporal sparsity of

Frontiers inNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

the event-driven encoding. Therefore, if the robot is not moving

its finger, no event is transmitted to the Loihi chip, drastically

reducing the dynamic power that represents about 20mWout of

the total 31 mW. Instead, the Jetson GPU would always process

the redundant frames coming from the sensor. Our study

shows how event-driven encoding, neuromorphic hardware,

and SNNs are put together to improve the overall efficiency

of tactile pattern recognition, emphasizing the importance of

the neuromorphic approach for embedded applications with a

continuous stream of data.

4. Conclusions

The initial analysis of the frame-based data using a linear

classifier demonstrates that the information in our dataset is

encoded in both the spatial and the temporal domains. The

results show a decrease in the accuracy of linear classifiers

when no time dimension is accounted for in both frame- and

event-based data, thus motivating the use of architectures that

are capable to learn spatio-temporal patterns from the data.

Although linear classifiers provide a high accuracy when all time

bins are taken into account as predictors, it is not the desired

approach to learning spatio-temporal patterns since they cannot

be applied online where data needs to be gathered in real-

time instead of being already available. This is in contrast with

the sequential learning approaches and spike-based algorithms

explored in this manuscript.

The data encoding analysis presents the trade-off between

information content from the original frame-based data and

the sparsity of the event stream. The original frame-based

data is inherently redundant since the information content

decreases slower than the compression ratio of events revealed

by comparing the datasets at different threshold levels. Next to

the impact of the encoding threshold, the analysis has shown

that time binning needs to be considered as an important

influencing factor. Due to the need to create vectors with

sparse event representation to run on GPUs, the smallest

time_bin_size creates the lowest boundary in which the temporal

dynamics of the event stream can be correctly represented.

If ISIs fall below the time_bin_size information content and

temporal dynamics suffer and information is lost. Based on

the implementation results, the network may not reflect the

sparsity in the input event stream at every network layer. An

optimized network for task performance showed an increase

in the number of events and quantity of energy consumption

of the total architecture although the dataset presented to the

input layer has a compression ratio bigger than 1 in terms of

events. It is true, that the number of time bins has a significant

impact on the power consumption, but comparing threshold

ϑ = 1 with ϑ = 10 as well as ϑ = 2 with ϑ = 5

for the RSNN, which have the same time_bin_size of 5 and

3 ms, respectively, the higher threshold has in both cases a

higher power consumption as highlighted in our hardware

implementation on Loihi shown in Figure 11, which can only

be explained by a higher number of spikes transmitted in

the network as reported in Supplementary Table 2. Therefore,

encoding schemes that minimize the number of events in the

input may result in higher energy consumption in the system as

a whole.

We further found that the spiking neuron current and

voltage time constants that were optimized independently for

each encoding threshold are similar because they are correlated

to the inherent temporal dynamics of the input event stream

rather than the encoding threshold or binning time window.

The HPO did not settle at a global optimum for any of

the encoding thresholds, which underlines the highly complex

interaction of the included parameters, leading to many locally

optimal solutions. Looking at the results of the follow-up grid

search reveals, that all time_bin_size greater than 2 ms lead

to a similar trend showing a slight decrease in classification

accuracies for increasing time_bin_size. Relating the moderate

decrease of accuracy with the increase in energy and power

saving makes the selection of higher time_bin_size for further

robotic implementation preferable.

Our findings regarding the implementation of the SNNs

on the NVIDIA Jetson show that it is capable of fulfilling

the constraints of real-time performance, which is defined

here as the inference time of any network is lower than the

recording time of one sample. The increase of the inference time

between non-spiking and spiking architectures is substantial,

though. It ranges from ∼ 16× (Inception vs. FFSNN with

threshold ϑ = 1) to ∼ 91× (FCN vs. RSNN with threshold

ϑ = 2). As a consequence, the energy consumption also rose

by a significant margin which ranges from ∼ 2× (Encoder

vs. FFSNN with threshold ϑ = 1) to ∼ 40× (LSTM vs.

RSNN with threshold ϑ = 2). These numbers show the clear

drawback of our implementation on conventional hardware. For

ameaningful deployment, it would either need amore optimized

implementation that is better accelerated by GPUs, or dedicated

hardware that can take advantage of the characteristics of the

spiking domain, like temporal sparsity.

We have been able to demonstrate the possibility of

efficiently performing time series classification by exclusively

using event-based encoding and asynchronous event-based

computation on neuromorphic hardware. Our deployed RSNN

can discriminate between 27 classes of Braille letters with

78.32% accuracy, using only 450 recurrently connected hidden

units and consuming a total amount of 31 mW on the Intel

Loihi neuromorphic chip. This is yet not sufficient to report

a competitive classification performance compared to standard

classifiers or other results achieved with SNNs on different tasks.

The encoding analysis revealed that toomuch information is lost

using sigma-delta encoding and that hinders the network from

further performance improvements. Nevertheless, comparing

these findings to a LSTM on the NVIDIA Jetson embedded

Frontiers inNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

GPU yields a gain in power-efficiency of 250× for the RSNN

with threshold ϑ = 2 on Loihi. On the one hand, these

results show the challenges of spike-based computing compared

to standard algorithms in terms of accuracy; on the other

hand, they highlight the opportunities of the neuromorphic

approach with event-based communication and asynchronous

processing in terms of power/energy efficiency and delay,

especially for mobile robots or highly energy-constrained fields

of applications. In addition to the neuromorphic computation

while performing the task, event-based encoding is important

in this context. Event-based systems can be considered at rest

while no significant change occurs and with that, the power

consumption during that time is extremely low. Nevertheless,

the system can react to changes immediately, due to its

asynchronous nature.

The LSTM with the frame-based data-stream outperforms

the RSNN in accuracy by 17%, whereas the eLSTM achieves

comparable performance to the RSNN, highlighting the need

for better event-based encoding techniques. For example, graded

spikes supported by Loihi 2 (Orchard et al., 2021) could reduce

the information loss by adding the magnitude of change to the

event (when it exceeds a threshold), keeping both event-based

communication and precise information. Furthermore, models

mimicking the biological skin with its wide range of neuronal

responses like the slow and fast adaptive receptors (Abraira

and Ginty, 2013) can be beneficial in terms of information

extracted from the stimuli using multiple parallel pathways.

Regarding the SNN, several mechanisms can be explored to

improve the pattern recognition performance of the RSNNs.

First, by only applying a single recurrent hidden layer, we

limited the trainable parameters in our network and with

that, its learning capabilities. Future investigations might use

multiple hidden layers to increase the spatio-temporal encoding

power. Second, at the neuron level, we used homogeneous time

constants for all neurons. Learning the time constants along with

the synaptic weights to adapt the different neurons’ temporal

dynamics has been shown to be beneficial for the classification

performance (Perez-Nieves et al., 2021). Third, recent works

suggest the need for more powerful recurrent units for spiking

neurons to bridge the gap with LSTM and other formal (i.e.,

non-spiking) recurrent neuron models (He et al., 2020; Paredes-

Vallés et al., 2021). Finally, on another note, in contrast to

this offline benchmarking methodology, an online classification

could be performed by implementing a winner-take-all network

(Chen, 2017) as the output layer or by using the recent attentive

RSNN with a decision-making circuit (Yin et al., 2022), enabling

the network’s prediction readout at each time step.

Overall, we presented a tactile spatio-temporal dataset

suitable for benchmarking event-based encoding schemes

and neuromorphic algorithms. We compared an event-

based encoding and spike-based learning algorithm with

standard machine learning approaches and implemented a

classification system into different hardware platforms showing

the advantages of the end-to-end neuromorphic approach for

tactile pattern recognition. Nevertheless, our findings are not

limited to tactile data, because spatio-temporal information

is present in all sensory modalities when processed in a

streaming fashion at the edge, and our approach can be

applied to these types of workloads. Building full neuromorphic

systems that inherently sense, process and communicate their

output in an event-based manner provide great potential

in terms of energy efficiency and scalability for embedded

and embodied sensory-motor systems that interact in real-

time with the real-world environment. Despite the energy

benefits of neuromorphic hardware, neuromorphic algorithmic

space is still being explored, therefore, not as mature as

standard Artificial Neural Network (ANN) methods. We

envision that this problem and the performance metrics

we used will serve as a benchmark to drive progress in

the field.

Data availability statement

The datasets presented in this study have been obtained

from Muller-Cleve (2022), they can also be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found below: https://zenodo.org/

record/7050094.

Author contributions

SM-C had the initial idea and recorded the dataset.

AP-Z and SM-C performed the frame-to-event conversion.

VF, EF, and DK performed the NNI implementation. VF, DK,

and AP-Z ran the optimization. VF and SM-C implemented

the performance evaluation. AP-Z, DK, SM-C, VF, and DI

investigated standard classifiers and carried out the encoding

analysis. AP-Z, SM-C, and SR investigated linear SVM and

obtained PCA plots. DK acquired GPU measurements. LK

deployed the SNNs on Loihi and acquired the measurements.

LK, GU, FZ, and CB supervised the work. All authors

contributed to the manuscript writing and approved the

submitted version.

Funding

This work has been supported by European Union’s

Horizon 2020 MSCA Programme under Grant Agreement

No. 813713 NeuTouch, the University SAL Labs

initiative of Silicon Austria Labs (SAL) and its Austrian

partner universities for applied fundamental research

for electronic based systems, the CogniGron research

center and the Ubbo Emmius Funds of the University

of Groningen.

Frontiers inNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://zenodo.org/record/7050094
https://zenodo.org/record/7050094
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

Acknowledgments

The authors would like to acknowledge the 2021 Telluride

neuromorphic workshop and all its participants for the fruitful

discussions, and Intel Corporation for access to the Loihi

neuromorphic platform. The authors would like to thank Sumit

Bam Shrestha from Intel Neuromorphic Computing Lab for

his support of the Loihi implementation and feedback on the

manuscript. The research activity herein was partially carried

out using the HPC infrastructure as well as the NVIDIA

Jetson platform of the Silicon Austria Labs (SAL), the HPC

infrastructure of the IIT, and the Peregrine HPC cluster of the

University of Groningen.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fnins.2022.951164/full#supplementary-material

References

Abraira, V. E., and Ginty, D. D. (2013). The sensory neurons of touch. Neuron
79, 618–639. doi: 10.1016/j.neuron.2013.07.051

Bach-y-Rita, P. (2004). Tactile sensory substitution studies. Ann. N. Y. Acad. Sci.
1013, 83–91. doi: 10.1196/annals.1305.006

Bartolozzi, C., Natale, L., Nori, F., and Metta, G. (2016). Robots with a sense of
touch. Nat. Mater. 15, 921–925. doi: 10.1038/nmat4731

Bartolozzi, C., Ros, P. M., Diotalevi, F., Jamali, N., Natale, L., Crepaldi, M., et al.
(2017). “Event-driven encoding of off-the-shelf tactile sensors for compression and
latency optimisation for robotic skin,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (Vancouver, BC: IEEE), 166–173.
doi: 10.1109/IROS.2017.8202153

Bola, L., Siuda-Krzywicka, K., Paplińska,M., Sumera, E., Hańczur, P., and Szwed,
M. (2016). Braille in the sighted: teaching tactile reading to sighted adults. PLoS
ONE 11, e0155394. doi: 10.1371/journal.pone.0155394

Bologna, L., Pinoteau, J., Passot, J., Garrido, J., Vogel, J., Vidal, E. R., et al. (2013).
A closed-loop neurobotic system for fine touch sensing. J. Neural Eng. 10, 046019.
doi: 10.1088/1741-2560/10/4/046019

Brysbaert, M. (2019). How many words do we read per minute? A
review and meta-analysis of reading rate. J. Memory Lang. 109, 104047.
doi: 10.1016/j.jml.2019.104047

Chan, V., Liu, S.-C., and van Schaik, A. (2007). AER ear: a matched silicon
cochlea pair with address event representation interface. IEEE Trans. Circ. Syst.
I Regular Pap. 54, 48–59. doi: 10.1109/TCSI.2006.887979

Chen, Y. (2017). Mechanisms of winner-take-all and group selection in neuronal
spiking networks. Front. Comput. Neurosci. 11, 20. doi: 10.3389/fncom.2017.00020

Conradt, J., Berner, R., Cook, M., and Delbruck, T. (2009). “An embedded
AER dynamic vision sensor for low-latency pole balancing,” in 2009 IEEE 12th
International Conference on Computer VisionWorkshops, ICCVWorkshops (Kyoto:
IEEE), 780–785. doi: 10.1109/ICCVW.2009.5457625

Cramer, B., Stradmann, Y., Schemmel, J., and Zenke, F. (2020). The Heidelberg
spiking data sets for the systematic evaluation of spiking neural networks. IEEE
Trans. Neural Netw. Learn. Syst. 33, 2744–2757. doi: 10.1109/TNNLS.2020.3044364

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F., Joshi, P.,
et al. (2021). Advancing neuromorphic computing with Loihi: a survey of results
and outlook. Proc. IEEE 109, 911–934. doi: 10.1109/JPROC.2021.3067593

de la Rosa, J. M. (2011). Sigma-delta modulators: tutorial overview, design
guide, and state-of-the-art survey. IEEE Trans. Circ. Syst. I Regular Pap. 58, 1–21.
doi: 10.1109/TCSI.2010.2097652

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. (2019).
Deep learning for time series classification: a review. Data Mining Knowledge
Discov. 33, 917–963. doi: 10.1007/s10618-019-00619-1

Fawaz, H. I., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D. F., Weber, J., et al.
(2020). Inceptiontime: Finding alexnet for time series classification. Data Mining
Knowledge Discov. 34, 162–169. doi: 10.1007/s10618-020-00710-y

Forno, E., Acquaviva, A., Kobayashi, Y., Macii, E., and Urgese, G. (2018). “A
parallel hardware architecture for quantum annealing algorithm acceleration,” in
2018 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC) (Verona: IEEE), 31–36. doi: 10.1109/VLSI-SoC.2018.8644777

Fra, V., Forno, E., Pignari, R., Stewart, T. C., Macii, E., and Urgese, G.
(2022). Human activity recognition: suitability of a neuromorphic approach
for on-edge AIoT applications. Neuromorphic Comput. Eng. 2, 014006.
doi: 10.1088/2634-4386/ac4c38

Friedl, K. E., Voelker, A. R., Peer, A., and Eliasmith, C. (2016). Human-
inspired neurorobotic system for classifying surface textures by touch. IEEE Robot.
Automat. Lett. 1, 516–523. doi: 10.1109/LRA.2016.2517213

Geng, Y., and Luo, X. (2019). Cost-sensitive convolution based neural
networks for imbalanced time-series classification. Intell. Data Anal. 23:357–70.
doi: 10.3233/IDA-183831

He, W., Wu, Y., Deng, L., Li, G., Wang, H., Tian, Y., et al. (2020). Comparing
snns and rnns on neuromorphic vision datasets: similarities and differences.Neural
Netw. 132, 108–120. doi: 10.1016/j.neunet.2020.08.001

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Hsu, B.-M. (2020). Braille recognition for reducing asymmetric communication
between the blind and non-blind. Symmetry 12, 1069. doi: 10.3390/sym12071069

Jamali, N., Maggiali, M., Giovanniniand, F., Metta, G., and Natale, L.
(2015). “A new design of a fingertip for the ICUB hand,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Hamburg).
doi: 10.1109/IROS.2015.7353747

Kawabe, H., Seto, S., Nambo, H., and Shimomura, Y. (2019). “Experimental
study on scanning of degraded braille books for recognition of dots by machine
learning,” in International Conference on Management Science and Engineering
Management (Macau: Springer), 322–334. doi: 10.1007/978-3-030-21248-3_24

Frontiers inNeuroscience 20 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://www.frontiersin.org/articles/10.3389/fnins.2022.951164/full#supplementary-material
https://doi.org/10.1016/j.neuron.2013.07.051
https://doi.org/10.1196/annals.1305.006
https://doi.org/10.1038/nmat4731
https://doi.org/10.1109/IROS.2017.8202153
https://doi.org/10.1371/journal.pone.0155394
https://doi.org/10.1088/1741-2560/10/4/046019
https://doi.org/10.1016/j.jml.2019.104047
https://doi.org/10.1109/TCSI.2006.887979
https://doi.org/10.3389/fncom.2017.00020
https://doi.org/10.1109/ICCVW.2009.5457625
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/TCSI.2010.2097652
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.1109/VLSI-SoC.2018.8644777
https://doi.org/10.1088/2634-4386/ac4c38
https://doi.org/10.1109/LRA.2016.2517213
https://doi.org/10.3233/IDA-183831
https://doi.org/10.1016/j.neunet.2020.08.001
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/sym12071069
https://doi.org/10.1109/IROS.2015.7353747
https://doi.org/10.1007/978-3-030-21248-3_24
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Müller-Cleve et al. 10.3389/fnins.2022.951164

Leonard, R. G., and Doddington, G. (1993). Tidigits Speech Corpus. Philadelphia,
PA: Texas Instruments, Inc.

Li, J., and Yan, X. (2010). “Optical braille character recognition with
support-vector machine classifier,” in 2010 International Conference on Computer
Application and System Modeling (ICCASM 2010) (Taiyuan: IEEE), 12–219.

Li, T., Zeng, X., and Xu, S. (2014). “A deep learning method for braille
recognition,” in 2014 International Conference on Computational Intelligence
and Communication Networks (NW Washington, DC: IEEE), 1092–1095.
doi: 10.1109/CICN.2014.229

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128×128 120 db 15 µs
latency asynchronous temporal contrast vision sensor. IEEE J Solid State Circ. 43,
566–576. doi: 10.1109/JSSC.2007.914337

Martiniello, N., and Wittich, W. (2020). The association between tactile, motor
and cognitive capacities and braille reading performance: a scoping review of
primary evidence to advance research on braille and aging. Disabil. Rehabil. 44,
2515–2536. doi: 10.1080/09638288.2020.1839972

Muller-Cleve, S. F. (2022). Tactile Braille Letters Dataset. Genoa: Distributed by
Zenodo.

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient
learning in spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Mag. 36. 51–63.
doi: 10.1109/MSP.2019.2931595

Orchard, G., Frady, E. P., Rubin, D. B. D., Sanborn, S., Shrestha, S. B., Sommer,
F. T., et al. (2021). Efficient neuromorphic signal processing with Loihi 2. arXiv
preprint arXiv:2111.03746 doi: 10.1109/SiPS52927.2021.00053

Paredes-Vallés, F., Hagenaars, J. J., and de Croon, G. C. (2021). “Self-supervised
learning of event-based optical flow with spiking neural networks,” in NeurIPS.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).
“Automatic differentiation in Pytorch,” in NIPS Autodiff Workshop (Long Beach,
CA), 1–4.

Perez-Nieves, N., Leung, V., Dragotti, P., and Goodman, D. (2021).
Neural heterogeneity promotes robust learning. Nat. Commun. 12, 5791.
doi: 10.1038/s41467-021-26022-3

Pinoteau, J., Bologna, L. L., Garrido, J. A., and Arleo, A. (2012). “A closed-
loop neurorobotic system for investigating braille-reading finger kinematics,” in

International Conference on Human Haptic Sensing and Touch Enabled Computer
Applications (Tampere: Springer), 407–418. doi: 10.1007/978-3-642-31401-8_37

Prescott, T. J., Diamond, M. E., and Wing, A. M. (2011). Active touch sensing.
Philos. Trans. R. Soc. B Biol. Sci. 366, 2989–2995. doi: 10.1098/rstb.2011.0167

Romo, R., and Salinas, E. (2001). Touch and go: decision-making
mechanisms in somatosensation. Annu. Rev. Neurosci. 24, 107–137.
doi: 10.1146/annurev.neuro.24.1.107

Rongala, U. B., Mazzoni, A., and Oddo, C. M. (2015). Neuromorphic artificial
touch for categorization of naturalistic textures. IEEE Trans. Neural Netw. Learn.
Syst. 28, 819–829. doi: 10.1109/TNNLS.2015.2472477

See, H., Lim, B., Li, S., Yao, H., Cheng, W., Soh, H., et al. (2020). ST-MNIST -
the spiking tactile MNIST neuromorphic dataset. arXiv preprint arXiv:2005.04319.
doi: 10.25540/AAC6-57JV

Serrá, J., Pascual, S., and Karatzoglou, A. (2018). Towards a universal
neural network encoder for time series. arXiv preprint arXiv:1805.03908.
doi: 10.48550/arXiv.1805.03908

Shokat, S., Riaz, R., Rizvi, S. S., Abbasi, A. M., Abbasi, A. A., and Kwon, S. J.
(2020). Deep learning scheme for character prediction with position-free touch
screen-based braille input method. Hum. Centric Comput. Inform. Sci. 10, 1–24.
doi: 10.1186/s13673-020-00246-6

Wang, Z., Yan, W., and Oates, T. (2017). “Time series classification from
scratch with deep neural networks: a strong baseline,” in 2017 International
Joint Conference on Neural Networks (IJCNN) (Anchorage, AK), 1578–1585.
doi: 10.1109/IJCNN.2017.7966039

Yin, B., Guo, Q., Corradi, F., and Bohte, S. (2022). “Attentive decision-making
and dynamic resetting of continual running SRNNs for end-to-end streaming
keyword spotting,” in Proceedings of the International Conference on Neuromorphic
Systems 2022, ICONS ’22 (New York, NY: Association for Computing Machinery).
doi: 10.1145/3546790.3546795

Zenke, F., and Vogels, T. P. (2021). The remarkable robustness of surrogate
gradient learning for instilling complex function in spiking neural networks.
Neural Comput. 33, 899–925. doi: 10.1162/neco_a_01367

Zhao, B., Lu, H., Chen, S., Liu, J., and Wu, D. (2017). Convolutional
neural networks for time series classification. J. Syst. Eng. Electron. 28, 162–169.
doi: 10.21629/JSEE.2017.01.18

Frontiers inNeuroscience 21 frontiersin.org

https://doi.org/10.3389/fnins.2022.951164
https://doi.org/10.1109/CICN.2014.229
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1080/09638288.2020.1839972
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/SiPS52927.2021.00053
https://doi.org/10.1038/s41467-021-26022-3
https://doi.org/10.1007/978-3-642-31401-8_37
https://doi.org/10.1098/rstb.2011.0167
https://doi.org/10.1146/annurev.neuro.24.1.107
https://doi.org/10.1109/TNNLS.2015.2472477
https://doi.org/10.25540/AAC6-57JV
https://doi.org/10.48550/arXiv.1805.03908
https://doi.org/10.1186/s13673-020-00246-6
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1145/3546790.3546795
https://doi.org/10.1162/neco_a_01367
https://doi.org/10.21629/JSEE.2017.01.18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware
	1. Introduction
	2. Methods
	2.1. The dataset
	2.1.1. Event-based encoding

	2.2. Standard classifiers
	2.2.1. Time-series classifiers for frame-based data
	2.2.2. Long short-term memory

	2.3. Spiking neural networks for event-based data
	2.4. Hyperparameter optimization
	2.5. Hardware implementation
	2.5.1. NVIDIA Jetson Xavier NX
	2.5.2. Intel Loihi

	3. Results
	3.1. Encoding analysis
	3.1.1. Signal reconstruction before time binning
	3.1.2. Signal reconstruction after time binning

	3.2. Standard classifiers for frame-based data
	3.2.1. Linear classifier
	3.2.2. Time-series classifier and LSTM

	3.3. LSTM with event-based input (eLSTM)
	3.4. Spiking neural networks
	3.5. Hardware implementation
	3.5.1. NVIDIA Jetson embedded GPU
	3.5.2. Intel Loihi neuromorphic chip

	4. Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

