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The same system can exhibit a completely different dynamical behavior when it evolves in equilibrium
conditions or when it is driven out-of-equilibrium by, e.g., connecting some of its components to heat baths
kept at different temperatures. Here we concentrate on an analytically solvable and experimentally relevant
model of such a system—the so-called Brownian gyrator—a two-dimensional nanomachine that performs a
systematic, on average, rotation around the origin under nonequilibrium conditions, while no net rotation takes
place under equilibrium ones. On this example, we discuss a question whether it is possible to distinguish
between two types of a behavior judging not upon the statistical properties of the trajectories of components
but rather upon their respective spectral densities. The latter are widely used to characterize diverse dynamical
systems and are routinely calculated from the data using standard built-in packages. From such a perspective,
we inquire whether the power spectral densities possess some “fingerprint” properties specific to the behavior in
nonequilibrium. We show that indeed one can conclusively distinguish between equilibrium and nonequilibrium
dynamics by analyzing the cross-correlations between the spectral densities of both components in the short
frequency limit, or from the spectral densities of both components evaluated at zero frequency. Our analytical
predictions, corroborated by experimental and numerical results, open a new direction for the analysis of a
nonequilibrium dynamics.

DOI: 10.1103/PhysRevE.106.014137

I. INTRODUCTION

Nonequilibrium phenomena and their time-dependent and
steady states have been leading research topics in recent
decades. Numerous facets of such phenomena have been scru-
tinized by experimental, numerical, and theoretical analyses.
Seminal results have been obtained, as reviewed in a number
of papers (see, e.g., Refs. [1–10]). Main objects of investiga-
tion were the fluctuation relations, derived for deterministic
as well as for stochastic processes, for both transient and
steady states, in a variety of guises, that have received numer-
ical and experimental confirmations [8]. These results have
led, e.g., to the development of a linear response theory for
nonequilibrium systems [11,12], as well as to the analysis of
the behavior of different nonequilibrium systems beyond the
linear response regime [13–21]. The first applications have
been in biophysical systems and in nanodevices and, more
recently, for colloidal particles captured in an optical trap
[22–24]. Experimental applications to macroscopic systems

*gleb.oshanin@sorbonne-universite.fr

are less developed but nonetheless there exist few examples
for which such an analysis was successful [25,26].

Concurrently, a long-standing question is whether it is pos-
sible to extract some reliable information about a complex
system operating at nonequilibrium conditions directly from
experimentally observed quantities. Various approaches have
been developed to detect a violation of the detailed balance,
which is itself indicative of nonequilibrium dynamics (see,
e.g., Ref. [27]), or to determine the rate of entropy production
(see, e.g., Refs. [28–30]), which provides an information of
how far the system is from equilibrium. Apart from that,
more sophisticated approaches have been proposed to quan-
tify, in particular settings, the average phase-space velocity
field [31], the thermodynamic force field [32], or the patterns
of microscopic forces [33]. A review of the activities in these
directions can be found in recent Ref. [34], which also em-
ployed the thermodynamic uncertainty relation to quantify
the thermodynamic force field as well as the rate of entropy
production from short-time trajectory data.

In this paper we address the question whether one can
distinguish between dynamics under equilibrium or nonequi-
librium conditions from a completely different perspective.
Namely, we inquire here if it is possible to find an unequivocal
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criterion discriminating between these two situations judging
not upon the statistical properties of the trajectories of the
system’s degrees of freedom, but rather upon their respective
spectral densities. To our knowledge, this question has not
been addressed before. We note that, in general, an analysis
based on the ensemble-averaged power spectral densities is
rather standard and there exist built-in packages that auto-
matically create the latter from the experimentally recorded
sets of data. Such an analysis has been proven to provide
a deep insight into the dynamical behavior and has been
successfully applied across several disciplines, from quantum
physics to cosmology, and from crystallography to neuro-
science, and to speech recognition (see, e.g., Ref. [35] and
references therein). This kind of approach has been also used
for the analysis of climate data [36], musical recordings [37],
blinking quantum dots [38,39], as well as for the trajectories
of anomalous diffusion [40–49] or also some nonequilibrium
systems [28,50,51]. Here, however, we go beyond the standard
definitions focusing on power spectral densities of individual
trajectories of the components, which are random variables,
parameterized by the observation time t and frequency ω,
aiming to determine their joint bivariate and marginal proba-
bility density functions and cross-correlation. One interesting
consequence of our analysis is that these quantities allow us
to know whether the system evolves under nonequilibrium
conditions or not.

Here, we focus on the so-called Brownian gyrator mod-
ell [52,53], which represents a minimal two-dimensional
nanomachine which on average experiences persistent ro-
tations, when kept in nonequilibrium conditions, while no
rotation takes place when the system evolves under equi-
librium conditions. This model is sufficiently simple to be
analytically solved and to obtain all the properties of interest
in an explicit form, showing at the same time a nontrivial be-
havior. Therefore, our investigation provides some insight on
the behavior in more complex situations, not directly included
in our analysis. In general, for such complex situations only a
numerical analysis is possible, not only of the power spectral
densities considered here but also of other properties, such as
work done by forces, entropy production, etc. Moreover, this
model can be realized experimentally, allowing our analytical
predictions and concepts to be tested against experimental
data. To this end, we focus here on a particular version of
the Brownian gyrator model as experimentally investigated in
Refs. [54,55] (see Fig. 1). This model consists of two elec-
trical resistances kept at different temperatures and coupled
only by the electrical thermal fluctuations, i.e., the Nyquist
noise, which generates a heat flux between the two heat baths.
The statistical analysis of the power spectral density of in-
dividual realizations of the measured noisy voltages allows
us to fully discriminate between equilibrium dynamics and
the nonequilibrium one. We also remark that our analysis
can be easily adapted to other experimental realizations of
the Brownian gyrator model, such as, e.g., a single colloidal
particles suspended in an aqueous solution and confined by
potentials generated by optical tweezers [56], by substituting
the corresponding values of the parameters in the evolution
equations.

The paper is organized as follows: In Sec. II, we define
our model and notations in the context of the experimental

FIG. 1. A sketch of the circuit in Refs. [54,55]. The two re-
sistances R1 and R2 are kept in separate screened boxes at the
temperatures T1 and T2, respectively, and are coupled only by the
capacitance C. The signal consists of the voltages V1 and V2, which
are measured via the amplifiers A1 and A2, respectively. The noise
sources ηi and the capacitances Ci, i = 1, 2, of the two circuits are
also sketched. The corresponding mathematical model is defined in
Eq. (1).

realization of the Brownian gyrator in Refs. [8,54,55]. We also
summarize the main results of our analysis. In Sec. III, we de-
fine the observables that allow us to discriminate equilibrium
from nonequilibrium. In Sec. IV we evaluate the exact expres-
sions for the bivariate moment-generating and for the bivariate
probability density functions of single-trajectory power spec-
tral densities. In Sec. V we summarize our results and discuss
their physical significance. The details of the calculations are
presented in the Appendices.

II. THE BROWNIAN GYRATOR

A. The experimental set-up

The experimental setup of Refs. [54,55] is sketched in
Fig. 1. It is made of two resistances R1 and R2, which are
kept at different temperature T1 and T2, respectively. These
temperatures are controlled by thermal baths and T2 is kept
fixed at 296 K, whereas T1 can be set at any value between
296 K and 88 K, using the stratified vapor above a liquid
nitrogen bath. In the figure, the two resistances have been
drawn with their associated thermal noise generators η1 and
η2, whose power spectral densities are given by the Nyquist
formula |η̃i|2 = 2kBTi Ri, with i = 1, 2. The coupling capaci-
tance C controls the electrical power exchanged between the
resistances and as a consequence the energy exchanged be-
tween the two baths. No other coupling exists between the two
resistances which are inside two separated screened boxes.
The quantities C1 and C2 are the capacitances of the circuits
and the cables. Two extremely low noise amplifiers A1 and
A2 [45] measure the voltage V1 and V2 across the resistances
R1 and R2, respectively. All the relevant quantities considered
in this paper can be derived by the measurements of V1 and
V2, as discussed below. Mathematically, such a system is de-
scribed by a pair of coupled Ornstein-Uhlenbeck processes at
respective temperatures T1 and T2. When T1 �= T2 the system
evolves in nonequilibrium conditions and eventually reaches
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FIG. 2. The Pearson coefficient ρω in Eq. (17) (solid curves) as
a function of the frequency f = ω/2π . The noisy curves present ρω

evaluated from the experimental data corresponding to the follow-
ing values of the system parameters: C = 100 pF, C1 = 680 pF, and
C2 = 430 pF, and R1 = R2 = 10 M�. For nonequilibrium dynamics
we have T1 = 88 K and T2 = 296 K, while for equilibrium dynamics
the system was maintained at equal temperatures T1 = T2 = 296 K.
Solid line: theoretical prediction, Eq. (17). Symbols: numerical sim-
ulations, average over 300 000 histories. Dotted lines: experiment,
resolution 1 Hz. Black dashed: frequency dependence for small f .

a nonequilibrium steady state. If T1 = T2, the system reaches
equilibrium.

B. Main analytical and experimental results

Before going into all the mathematical analyses we want
first to show that it is indeed possible to discriminate the
equilibrium (T1 = T2) from nonequilibrium (T1 �= T2) dynam-
ics from the measurement of realization-dependent spectral
densities of the components of individual trajectories. To do
that we analyze the individual realizations of the measured
voltages V1 and V2, as functions of the time τ within the
observation interval (0, t ), and evaluate the corresponding
power spectral densities S1(ω, t ) and S2(ω, t ), with ω = 2π f .
The first possibility of discriminating between in and out
of equilibrium is provided by the cross-correlations of the
realization-dependent spectral densities of both components
(a quantity not usually considered), which permits to deter-
mine the Pearson correlation coefficient ρω [see the definition
in Eq. (17) in the text]. As evidenced in Fig. 2, the latter
exhibits a strikingly different behavior at small frequencies
in equilibrium and in nonequilibrium situations; namely, in
equilibrium ρω ∼ ω4, while in nonequilibrium we have a
slower power-law dependence ρω ∼ ω2. The second possi-
bility is provided by the characteristic parameter χ , which
is a random variable defined as a suitably rescaled differ-
ence of the single-trajectory power spectral densities of the
components evaluated at zero frequency [for the precise defi-
nition see Eqs. (14) and (15)]. We show that, on average, χ

is identically equal to zero in equilibrium, and conversely,
has a nonzero value in nonequilibrium. The full probability
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FIG. 3. Probability density function [see Eq. (40)] of the random
variable χ [see Eqs. (14) and (15) for the definition] for nonequi-
librium (a) and equilibrium (b) situations. Theoretical prediction
(40) (solid thick line), thin line (experiment). Circuit parameters and
values of the temperatures for equilibrium and nonequilibrium cases
are the same as in Fig. 2.

density function of this parameter is presented in Fig. 3 and
it shows a strong asymmetry of the tails in the nonequilib-
rium state. This asymmetry disappears in equilibrium. Besides
these two main results depicted in Figs. 2 and 3, we also
determine the explicit expressions of the full bivariate and
univariate probability density functions of single-trajectory
realization-dependent spectra, which lead to an interesting
characterizations of the spectral densities of individual tra-
jectories. We will show in particular that for an infinite
observation time a single-trajectory spectral density at a given
frequency is given by the first moment of this random function
multiplied by a dimensionless random number whose distri-
bution is frequency-independent and is explicitly evaluated.
This extends to localized Ornstein-Uhlenbeck-type processes,
such that the mean-squared value of the random variable
under study approaches a constant value as time tends to
infinity, the earlier results for random processes for which
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such mean-squared value diverges with time [41–44]. In the
next sections we will describe how these theoretical results
and those plotted in Figs. 2 and 3 have been obtained.

C. The model

In the circuit of Fig. 1, the total charges qi(τ ) that pass
through the resistance Ri, i = 1, 2, in a time interval of dura-
tion t , satisfy the Langevin equations

R1 q̇1 = −C2

X
q1 + C

X
(q2 − q1) + η1,

R2 q̇2 = −C1

X
q2 + C

X
(q1 − q2) + η2, (1)

with the initial conditions q1(0) = q2(0) = 0. In Eqs. (1) we
have defined X = CC1 + CC2 + C1C2, while the noises ηi

have zero mean and covariance functions defined by

ηi(t )η j (t ′) = 2kBTjR j δi, j δ(t − t ′), i, j = 1, 2, (2)

where kB is the Boltzmann constant, and the overbar, here and
henceforth, denotes the average over the realizations of noises.

This model allows for different physical interpretations. In-
deed, q = (q1, q2) can be regarded as the position of a particle
undergoing Langevin dynamics on a plane, in the presence
of a parabolic potential and of Gaussian noises with different
amplitudes along the q1 and q2 directions. Such a system has
been first analyzed in Ref. [52]. It was later observed [53] that
it represents a minimal model of a heat machine: whenever
T1 �= T2, a systematic torque is generated, and the particle acts
as a “Brownian” gyrator, that experiences persistent (on av-
erage) rotations around the origin, whose direction is defined
by the sign of the difference T1 − T2 of the temperatures. For
T1 = T2, the thermodynamic equilibrium correctly does not
allow any net rotations.

This observation motivated extensive investigations of the
BG model, see, e.g., Refs. [54–67]. In particular, by consid-
ering the response of this BG to external nonrandom forces it
was possible to establish a nontrivial fluctuation theorem and
to provide explicit expressions for the effective temperatures
[64,65]. These expressions were also recently re-examined
from a different perspective in Ref. [66]. We also remark that
this latter setting, with constant forces applied on the BG,
is mathematically equivalent to the one-dimensional bead-
spring model studied via Brownian-dynamics simulations in
Ref. [68] and analytically in Refs. [69,70]. A generalization of
the BG model for a system of two coupled noisy Kuramoto os-
cillators, i.e., oscillators coupled by a periodic cosine potential
instead of a harmonic spring, has been discussed in Ref. [71].

The experiments in Refs. [54,55] performed measure-
ments of the voltages V1 = V1(t ) and V2 = V2(t ). The spectral
densities of individual realizations of V1 and V2, for real
valued processes, are formally defined by [41,42] (see also
Refs. [43,44]):

S1(ω, t ) = 1

t

∫ t

0
dτ1

∫ t

0
dτ2 cos [ω(τ1 − τ2)]V1(τ1)V1(τ2),

S2(ω, t ) = 1

t

∫ t

0
dτ1

∫ t

0
dτ2 cos [ω(τ1 − τ2)]V2(τ1)V2(τ2),

(3)

where the observation time t is experimentally large, and
mathematically intended to grow without bounds. Note that
S1(ω, t ) and S2(ω, t ) are (coupled) random functionals of a
given realization of the noises η1 and η2, parametrized by
the frequency ω (with physical dimensions rad/s) and by the
duration t .

In this work, we consider two questions. First, we ask
whether the statistical properties of S1 and S2 can discrim-
inate between equilibrium and nonequilibrium dynamics in
our system. In other words, we would like to check whether
the spectral properties of the processes V1 and V2 for T1 = T2

differ from those for T1 �= T2. We find that, in fact, S1 and S2

allow to unequivocally distinguish equilibrium from nonequi-
librium. Both functionals are very simple and can be evaluated
in numerical simulations or experiments, provided a good
enough statistics can be gathered. Second, aiming at charac-
terizing the statistical properties of the random functionals S1

and S2, we evaluate exactly their bivariate moment-generating
function, defined by


(λ1, λ2) = exp (−λ1S1 − λ2S2), (4)

where λ1, λ2 � 0. Given 
, we obtain the exact expression
of the bivariate probability density function P(S1, S2) by an
inverse Laplace transformation. As a consequence, we are
able to determine all moments and the cross-moments of
S1 and S2 and to draw some interesting conclusions about
the sample-to-sample scatter of these random functions. We
emphasize that standard approaches focus exclusively on the
first moments of S1 and S2, i.e., on the usual textbook power
spectral densities. Hence, our analysis goes far beyond such a
standard approach.

We obtain explicit expressions of the voltages V1(t ) and
V2(t ) as functions of the noises η1(t ) and η2(t ). We have
indeed the following relations between the voltages Vi(t ) and
the charges qi(t ) [see Appendix A, Eqs. (A9)]:

V1 = C + C2

X
q1 − C

X
q2, V2 = C

X
q1 − C + C1

X
q2. (5)

Solving Eqs. (1) by standard means, cf. Appendix A, we find
that for a given realization of the noises the voltages V1 and V2

at time t are given by

V1(t ) = C + C2

R1X

∫ t

0
ds Q(a1, t − s)η1(s)

− C

R2X

∫ t

0
ds Q(v, t − s)η2(s),

V2(t ) = C

R1X

∫ t

0
ds Q(v, t − s)η1(s)

− C + C1

R2X

∫ τ

0
ds Q(a2, t − s)η2(s).

(6)

Here the kernel Q is given by

Q(a, s) = exp(−vs)
[
cosh (bs) − a

b
sinh (bs)

]
, (7)
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while the parameters v, b, a1, and a2 obey

v = R1(C + C1) + R2(C + C2)

2R1R2X
,

b =
√

v2 − 1

R1R2X
,

a1 = R2(C + C2)2 − R1(X − C2)

2(C + C2)R1R2X
,

a2 = R1(C + C1)2 − R2(X − C2)

2(C + C1)R1R2X
. (8)

In the following we take advantage of these explicit expres-
sions to answer the two questions raised above.

III. IN OR OUT OF EQUILIBRIUM? MEAN AND
CORRELATION OF SINGLE-TRAJECTORY SPECTRAL

DENSITIES

In this section, we consider the first moments of Si(ω, t ),
i = 1, 2, in the limit t → ∞, i.e., the standard power spectral
densities μi(ω) of the measured voltages V1 and V2. We define
therefore, for i = 1, 2,

Si(ω) = lim
t→∞ Si(ω, t ), (9)

μi(ω) = Si(ω). (10)

We show below that the knowledge of the exact expressions of
these moments is important for two reasons: on the one hand,
the higher-order moments of the Si(ω) can all be expressed in
terms of the μi(ω); on the other hand, the single-trajectory
spectral densities take the form Si(ω) = ri μi(ω), i = 1, 2,
in the limit of an infinitely long observation time, where
the ris are random, exponentially distributed dimensionless
amplitudes. Hence, the entire ω-dependence, as well as the
dependence on the temperatures and the material parameters
is fully encoded in the first moments. We show that it is possi-
ble to introduce an observable related to the first moments that
helps in discriminating equilibrium from nonequilibrium. We
also discuss the Pearson coefficient of the spectral densities
S1(ω) and S2(ω) and show that it also allows to distinguish
equilibrium from nonequilibrium.

A. Explicit expressions of the first moments of the Si(ω)

We derive in Appendix B the following explicit expressions
of the first moments of S1(ω, t ) and S2(ω, t ) in the limit t →
∞ [see Eq. (10)]:

μ1(ω) = 4kB

X 2[b4 + 2b2(ω2 − v2) + (ω2 + v2)2]

×
({

(C + C2)2[ω2 + (v − a1)2]

R1
+ C2ω2

R2

}
T1

+ C2ω2

R2
(T2 − T1)

)
,

μ2(ω) = 4kB

X 2[b4 + 2b2(ω2 − v2) + (ω2 + v2)2]

×
({

(C + C1)2[ω2 + (v − a2)2]

R2
+ C2ω2

R1

}
T2

+ C2ω2

R1
(T1 − T2)

)
. (11)

Equations (11) have been previously obtained in Refs. [54,55],
by applying the fluctuation-dissipation theorem directly to the
circuit defined by Eqs. (1). For finite values of t there are
corrections of order 1/t . Therefore, numerical or experimen-
tal tests require going to sufficiently long times. However,
the experimentally relevant values of the system parame-
ters imply very small characteristic relaxation times, and the
time-dependent corrections, which we evaluate explicitly in
Appendix C, become negligibly small already at times of the
order of seconds. Hence, the asymptotic forms in Eqs. (11)
can be readily accessed experimentally.

In Fig. 4 we plot the ensemble-averaged spectral density
μ2(ω) as a function of ω, together with five realizations of
the random function S2(ω) evaluated for five individual real-
izations of the experiment [54,55]. (The behavior of μ1(ω)
is similar.) We observe that the random functions S2 follow
rather closely the average curve μ2(ω) for ω > 0. In the
vicinity of ω = 0 the scatter is more significant. We discuss
in Sec. IV the reasons of this behavior. Importantly, since the
random functions S2(ω) lie close to their ensemble-averaged
value μ2(ω), it appears that a modest statistics already al-
lows to evaluate μ2(ω) reliably well from experimental
data.

B. Discriminating equilibrium from nonequilibrium

In their leading order in the large ω regime μ1(ω) and
μ2(ω) decrease like ω−2:

μ1(ω) = 4kB

X 2 ω2

[
(C + C2)2

R1
T1 + C2

R2
T2

]
+ O

(
1

ω4

)
,

μ2(ω) = 4kB

X 2 ω2

[
C2

R1
T1 + (C + C1)2

R2
T2

]
+ O

(
1

ω4

)
. (12)

This means that the short-time dynamics, corresponding to
large ω, is Brownian. The noise amplitudes of this dynamics
depend on all material parameters and on both temperatures,
but in cases with T1 �= T2 they do not sensibly differ from
cases with T1 = T2. However, their maximum values, corre-
sponding to the zero frequency limit (hence, to the long time
behavior), take the very simple form:

μi(0) = lim
t→∞

1

t

[∫ t

0
dτVi(τ )

]2

= 4kBRiTi, i = 1, 2.

(13)
From a mathematical point of view, μ1(0) and μ2(0) are

the t → ∞ limit of the averaged squared areas under the
random curves V1 and V2, respectively, divided by the ob-
servation time t . One also observes that x1 = ∫ t

0 dτV1(τ ) and
x2 = ∫ t

0 dτV2(τ ) can be thought of as instantaneous positions
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FIG. 4. Ensemble-averaged power-spectral density μ2(ω) (thick
solid curve), Eqs. (11), as a function of the frequency f = ω/2π , to-
gether with realization-dependent random function S2(ω) (thin noisy
curves) for five randomly chosen realizations of voltages recorded
in experiments in Refs. [54,55]. (a) Out-of-equilibrium dynamics
with T1 = 88 K and T2 = 296 K. (b) Equilibrium dynamics with
T1 = T2 = 296 K. Material parameters are as defined in the caption
to Fig. 2.

of two particles which perform diffusive motion with the
“diffusion coefficients” 2kBR1T1 and 2kBR2T2, respectively.
These “diffusion coefficients” depend only on the temperature
and on the resistance of the component under consideration.
In particular, they neither depend on the temperature nor on
the resistance of the second component, nor on other material

parameters. A priori, this compensation of dependencies in
the asymptotic large-t limit is rather unexpected. However, we
show in Appendix C that the covariance function of S1 and S2

vanishes at ω = 0, so that the evolution of the area under one
of the components indeed decouples at long times from the
evolution of the second component.

Therefore, if the precise values of the parameters of the
circuit are known, then we can estimate the temperatures T1

and T2 from the experimental data by means of Eqs. (11) and
(13), if a sufficiently large statistics is available. However,
a better candidate for such an analysis is provided by the
spectral density evaluated at ω = 0, since it only requires
knowledge of the resistances R1 and R2, and does not ne-
cessitate the knowledge of the values of the capacitances. We
define therefore the random variable χt by

χt = 1

kB

[
S1(ω = 0, t )

R1
− S2(ω = 0, t )

R2

]
, (14)

whose average for large values of t is given by

χ = 1

kB

[
μ1(0)

R1
− μ2(0)

R2

]
= 4(T1 − T2). (15)

This average, which has the dimensions of temperature and
does not depend on the material parameters R1 and R2, allows
to discriminate equilibrium from nonequilibrium, since it van-
ishes if and only if T1 = T2. The finite time expression (14),
depends on R1 and R2, but for R1 = R2 the exact value of the
resistance becomes equally irrelevant to discriminate between
equilibrium and nonequilibrium situations. This is the case,
for instance, in the experimental realization of a Brownian
gyrator model made by a single colloidal particle subject to
an elliptical confining potential [56]. In this case R1 = R2 =
R, where R is the isotropic Stokes coefficient, which is the
same for both components. In the completely symmetric case,
where not only R1 = R2 but also C1 = C2 = C, one can ex-
plicitly evaluate the full dependence of χ on the observation
time t [see Eq. (C25)]. In other kinds of experiments, and in
particular in those of Refs. [54,55], this is not the case.

C. Pearson coefficient of the spectral densities

We now turn our attention to the Pearson correlation co-
efficient of the single-trajectory spectral densities S1 and S2,
defined by

ρω = lim
t→∞

[S1(ω) − μ1(ω)][S2(ω) − μ2(ω)]√[
S1(ω)2 − μ2

1(ω)
][

S2(ω)2 − μ2
2(ω)

] , (16)

where the numerator is the covariance of the random func-
tionals S1(ω) and S2(ω), while the denominator is the product
of their standard deviations. To our knowledge, this quantity
has not been previously considered in the present context. As
shown in Appendix C, ρω is given by

ρω = R1R2C2ω2{(T1 − T2)2 + ω2[(C + C2)R2T1 + (C + C1)R1T2]2}
{T1 + R2ω2[(C + C2)2R2T1 + C2R1T2]}{T2 + R1ω2[(C + C1)2R1T2 + C2R2T1]} . (17)
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Clearly, ρω is positive and bounded from above by unity,
and vanishes only for ω = 0, further confirming that the
squared areas under the random curves V1 and V2 become
statistically independent in the t → ∞ limit. The dependence
of ρω=0 on the observation time t is analyzed in Appendix C,
where it is shown that at large times ρω=0 = O(1/t2) [see
Eq. (C27)]. For fixed ω > 0 and t → ∞, the Pearson coef-
ficient defined by Eq. (17) attains its maximal value ρω = 1
when either (1) one temperature is finite and the other is
infinitely large or (2) one temperature is finite and the other
vanishes. The second is a very peculiar case, in which the
dynamics of the “passive” zero temperature component is
essentially enslaved to the nonzero temperature “active” com-
ponent (see Ref. [64] for more details). A direct consequence
of points (1) and (2) is that ρω is a nonmonotonic function
of the temperatures. Indeed, suppose that one keeps T2 fixed
and varies T1, as in the experiments in Refs. [54,55]: one then
has ρω = 1 both for T1 = 0 and ρω = 1 for T1 → ∞, which
implies that there exists a temperature T ∗

1 at which the corre-
lations between the spectral densities of both components are
minimal. This value of the temperature can be readily found
from Eq. (17):

T ∗
1 =

[
1 + (C + C1)2R2

1ω
2

1 + (C + C2)2R2
2ω

2

]1/2

T2. (18)

Somewhat counterintuitively, T ∗
1 �= T2, i.e., the smallest cor-

relation appears in the nonequilibrium case.
Consider next the limiting behavior of ρω. In the large-ω

limit, one has

ρ∞ = lim
ω→∞ ρω = C2[(C + C2)R2T1 + (C + C1)R1T2]2

× [(C + C1)2R1T2 + C2R2T1]−1

× [(C + C2)2R2T1 + C2R1T2]−1, (19)

which becomes temperature independent if T1 = T2. However,
it is rather difficult to access the large-ω regime in practice,
because dealing with finite data sets, S1 and S2 appear as
periodic functions of ω, and some care has to be taken in
fitting the data [41,42]. In contrast, the small-ω regime is
relatively easier to access. In this limit, and for T1 and T2 both
bounded away from zero, we have

ρω = C2R1R2
(T1 − T2)2

T1T2
ω2 + A(T1, T2)ω4 + O(ω6), (20)

where A(T1, T2) depends on the temperatures and on the ma-
terial parameters. Then, in the small ω regime, ρω ∼ ω4 for
T1 = T2, while ρω ∼ ω2 for T1 �= T2.

This allows us, in fact, to distinguish equilibrium from
nonequilibrium dynamics by concentrating on the small-ω
asymptotic behavior of the Pearson correlation coefficient
of the spectral densities of two components, without any
knowledge of material parameters—the dependence on the
frequency is strikingly different in equilibrium and in
nonequilibrium. In Fig. 2 we present a comparison of our
theoretical prediction in Eq. (17) with experimental data and
numerical simulations, which shows that such an analysis is
indeed possible. We remark, however, that evaluating ρω re-
quires a much larger statistical sample than the analysis of the

ensemble-averaged power spectral densities, since it involves
the fluctuations around the mean.

IV. MOMENT-GENERATING AND PROBABILITY
DENSITY FUNCTIONS OF SINGLE-TRAJECTORY

SPECTRAL DENSITIES

We now focus on the statistical properties of spectral den-
sities of individual realizations of V1 and V2. To this end,
we evaluate exactly the bivariate moment-generating function

(λ1, λ2), defined in Eq. (4), and we then evaluate the joint
bivariate probability density function of the spectral densities
of both components by inverting the Laplace transform. Since
the limits t → ∞ and ω → 0 do not commute, in accord with
previous findings made for unbounded Gaussian processes
[41–44], we consider separately the behavior at t = ∞ for
arbitrary ω > 0, and the one at ω = 0 for arbitrary t . The
results obtained for the latter case allow us to evaluate the
full probability density function of the observable χ defined
in Eq. (14). Below we merely list our main results. More
discussions and the (rather lengthy) calculations are presented
in Appendix C.

A. The limit t → ∞ for ω > 0

In the t → ∞ limit, the moment-generating function 
 has
the expression


(λ1, λ2) = {[1 + μ1(ω)λ1][1 + μ2(ω)λ2]

− ρωμ1(ω)μ2(ω)λ1λ2}−1, (21)

where μ1(ω) and μ2(ω) are defined in Eq. (11), while the
Pearson coefficient ρω is defined by Eq. (17). Differentiat-
ing 
 with respect to to λ1 and λ2 yields the moments and
cross-moments of the spectral densities, while their proba-
bility density function is obtained from the inverse Laplace
transform of 
.

1. Bivariate probability density function

Performing the inverse Laplace transform of the moment-
generating function 
, we obtain the bivariate probability
density function P(S1 = s1, S2 = s2) = P(s1, s2):

P(s1, s2) = 1

N
exp

[
− s1

(1 − ρω )μ1(ω)
− s2

(1 − ρω )μ2(ω)

]

× I0

[
2

1 − ρω

√
ρωs1s2

μ1(ω)μ2(ω)

]
, (22)

where N = μ1(ω)μ2(ω)(1 − ρω ) is a normalizing factor and
I0 is the modified Bessel function of the first kind. When one
of the temperatures vanishes, say T1 → 0 while T2 > 0, ρω

tends to 1, and the Bessel function in Eq. (22) approaches the
Dirac δ function δ(s1 − s2).

If we fix s2 and vary s1, then we realize that there are two
different regimes for P(s1, s2), depending on the value of s2.
For s2 < sth

2 (ω), where the threshold sth
2 (ω) is given by

sth
2 (ω) = μ1(ω)(1 − ρω )

ρω

, (23)

P(s1, s2) is a monotonically decreasing function of s1, with a
maximum at s1 = 0. Otherwise, for s2 > sth

2 (ω), P(s1, s2) has
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a maximum at a value s∗
1 > 0, meaning that there exists a most

probable value of the spectral density of the first component.
Note that the threshold sth

2 (ω) depends on the frequency, and
therefore that for sufficiently low frequencies the probability
density function can be nonmonotonic as a function of s1,
while becoming monotonic for higher frequencies.

The moments and the cross-moments of any, not necessar-
ily integer, orders n and m can be explicitly evaluated from
Eq. (22). Multiplying Eq. (22) by sn

1sm
2 and integrating, we

obtain

Sn
1Sm

2 = �(n + 1)�(m + 1)μn
1(ω)μm

2 (ω)(1 − ρω )n+m+1

×2 F1(n + 1, m + 1, 1; ρω ), (24)

where 2F1 is the Gauss hypergeometric function.

2. Univariate probability density function

The univariate moment-generating function of, say, S1 is
obtained from Eq. (21) by simply setting λ2 to 0, which yields


(λ1) = 1

1 + μ1(ω)λ1
. (25)

This expression corresponds to a simple exponential distribu-
tion for S1:

P(s1) = 1

μ1(ω)
exp

[
− s1

μ1(ω)

]
, (26)

with a maximum at s1 = 0.
In Fig. 5 we present the comparison of our predictions

in Eqs. (26) and (35) against the experimental data, which
shows that our theoretical results are fully corroborated by
the experimental data. Further, the moments of S1 of any real
order k > 0 can be obtained from Eq. (26) and have a very
simple form:

Sk
1 = �(k + 1)μk

1(ω). (27)

In turn, the typical value Styp
1 , defined by [72,73]

Styp
1 = exp(ln S1), (28)

is given by

Styp
1 = μ1(ω) e−γE , (29)

where γE ≈ 0.577 is the Euler γ constant.
Let us make some further comments on Eqs. (26)–(28):
(1) Equations (26)–(28) show that the entire dependence of

the power spectral density S1 on ω, (and similarly, of S2 on ω),
for a given realization of noises, is encoded in the ensemble-
averaged value μ1(ω) [or μ2(ω)]. This implies that Eq. (26)
can be rewritten as an equality in distribution:

S1

μ1(ω)
d= r, (30)

where r, for each frequency ω, is a random dimension-
less variable with a universal distribution P(r) = exp(−r).
As shown in Ref. [74], variables corresponding to differ-
ent frequencies are independent. Therefore, the form of the
ensemble-averaged power spectrum density can in principle
be inferred from a single, albeit long, realization of V1, without
any reference to ensemble averaging. See Refs. [41–44] for
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FIG. 5. The univariate probability density functions in Eqs. (26)
and (35). (a) Distribution of single trajectory spectra out of equi-
librium for ω = 0 ( f = 0). Theoretical prediction in Eq. (35) (thick
solid curve) vs experiment (same parameters as in Ref. [55] and in
the caption to Fig. 2). S1 (light red curve): component x, S2 (dark red
curve). (b) Distributions of single trajectory spectra at equilibrium.
Theoretical predictions (dash-dotted curve) in Eq. (26) (upper curves,
f = 1 Hz) and in Eq. (35) (lower solid curves, f = 0) vs experiment
in Ref. [55] (same parameters). S1 (gray curves): component x, S2

(light blue curves): component y. Note that a slight change of the
value of the frequency ( f = 1 Hz vs f = 0) results in a drastic
change of the shape of the probability density function, in accord
with our theoretical predictions.

a more ample discussion of this point in case of unbounded
Gaussian processes.

(2) The probability density function in Eq. (26) is effec-
tively broad (see Appendix D for more details). Indeed, the
standard deviation σ1(ω) of the single-trajectory power spec-
tral density S1 is equal to its mean μ1(ω),

σ1(ω) = μ1(ω), ω > 0. (31)

In other words, the coefficient of variation cv(ω) =
σ1(ω)/μ1(ω) of the distribution in Eq. (26) is exactly equal
to unity.
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(3) Interestingly enough, Styp
1 in Eq. (28) depends on ω

exactly as its ensemble-averaged counterpart does, but has a
smaller amplitude. This suggests that the ensemble-averaged
property μ1(ω) is supported by some atypical realizations
of V1.

B. The limit ω = 0 for arbitrary t

As shown in Appendix C, the joint moment-generating
function 
(λ1, λ2) for ω = 0 and arbitrary t is given by (see
Appendix C for the details of the derivation)


(λ1, λ2) = {[1 + 2 �1(t ) λ1][1 + 2 �2(t ) λ2]

− 4ρ0 λ1 λ2 �1(t ) �2(t )}−1/2, (32)

where �1(t ) = S1(ω = 0, t ) and �2(t ) = S2(ω = 0, t ) are the
ensemble-averaged spectral densities of V1 and V2 calculated
at zero frequency, i.e., the averaged squared areas below V1

and V2 divided by t , while ρ0 is the t-dependent, ω = 0 Pear-
son coefficient [see Eq. (C20)]. The functions �1(t ) and �2(t )
are monotonically increasing functions of t , which approach
for t → ∞ their asymptotic values 4kBR1T1 and 4kBR2T2,
respectively, while ρ0 → 0 in this limit. For arbitrary t , the
exact expressions for �1(t ), �1(t ) and ρ0 are rather lengthy
and we do not present their explicit forms. In Appendix C
we show that they approach their limiting values as �i(t ) =
4kBRiTi + O(1/t ), i = 1, 2, while ρ0 = O(1/t2).

1. Bivariate probability density function

The expression in Eq. (32) is functionally different from
the result in Eq. (21), corresponding to the limit t → ∞. We
can therefore expect that the bivariate and univariate proba-
bility density functions will be different from the expressions
appearing in Eqs. (22) and (26). Expanding the expression
(32) in powers of the Pearson coefficient ρ0, inverting the
Laplace transform and summing the resulting series, we ob-
tain

P(s1, s2) = 1

2π
√

(1 − ρ0)�1(t )�2(t )s1s2

× cosh

[ √
ρ0

1 − ρ0

√
s1

�1(t )

s2

�2(t )

]

× exp

[
− s1

2(1 − ρ0)�1(t )
− s2

2(1 − ρ0)�2(t )

]
.

(33)

This is the desired bivariate distribution of the squared areas
under the random curves V1 and V2, divided by the arbitrary
observation time t , which indeed has a different form from
that given in Eq. (22). In the limit t → ∞ the Pearson coeffi-
cient ρ0 vanishes, so that the cosh factor in Eq. (33) becomes
equal to 1. As a consequence, the probability density function
factorizes into the product of two exponentials. Moreover, the
bivariate distribution of the integrated voltages themselves can
be derived from Eq. (33) by a simple change of variables.
In the limit t → ∞ it becomes a product of two statistically
independent Gaussian functions. Last, we remark that some
qualitative features of the distribution in Eq. (33) resemble
those of the one in Eq. (22). Indeed, it is a nonmonotonic

function of s1 when s2 exceeds some time-dependent thresh-
old value, and it is a monotonically decreasing function of s1,
otherwise.

2. Univariate probability density function

The univariate distribution of a single component, e.g., V1,
is obtained by setting λ2 = 0 in Eq. (32). Thus, the moment
generating function of S1(ω = 0, t ) is given by


(λ1) = 1√
1 + 2 �1(t ) λ1

, (34)

and therefore the univariate probability density function is
given by

P(S1(ω = 0, t ) = s1) = 1√
2π�1(t )s1

exp

[
− s1

2�1(t )

]
.

(35)

The probability density function in Eq. (32) is shifted to the
left, favoring very small values of s1, as compared to the one
in Eq. (26). Indeed, P[S1(ω = 0, t ) = s1] diverges when s1 →
0 [while the probability density function in Eq. (26) remains
finite in this limit], and its right tail decreases somewhat faster
due to an additional factor 1/

√
s1.

From Eq. (35) we obtain the moments of order k (not
necessarily integer), for k > −1/2:

Sk
1 (ω = 0, t ) = 2k�(k + 1/2)√

π
[�1(t )]k. (36)

From the latter equation we obtain the typical value of S1(ω =
0, t ):

Styp
1 (ω = 0, t ) = exp[ln S1(ω = 0, t )] = 1

2 e−γE �1(t ), (37)

where γE is the Euler γ constant. Equations (35)–(37) allow
us to draw the following conclusions:

(1) Similarly to the case t → ∞ and ω > 0, the entire
dependence of the power spectral density S1(ω = 0, t ) on
t [and similarly, of S2(ω = 0, t ) on t], for a given realiza-
tion of noises, is encoded in the ensemble-averaged value
�1(t ) = S1(ω = 0, t ) [or �2(t ) = S2(ω = 0, t )]. This implies
that Eq. (35) can be rewritten as an equality in distribution:

S1(ω = 0, t )

�1(t )
d= r, (38)

where r is a random dimensionless variable with a universal
distribution P(r) = exp(−r/2)/

√
2πr. Therefore, the form of

�1(t ) can also be inferred from a single realization of V1,
without resorting to ensemble averaging.

(2) The probability density function in Eq. (35) is effec-
tively broader than the one in Eq. (26). Indeed, one finds that
the standard deviation is given by

σ1(ω = 0, t ) =
√

2 �1(t ). (39)

Therefore, the fluctuations around the mean value are larger
than the mean, so that the coefficient of variation cv(t ) =
σ1(ω = 0, t )/�1(t ) of the distribution in Eq. (35) is exactly
equal to

√
2. This explains, in fact, why we do observe a

bigger scatter of the data in the vicinity of ω = 0 in Fig. 4,
than for ω > 0.
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(3) Styp
1 (ω = 0, t ) in Eq. (37) depends on t exactly as

its ensemble-averaged counterpart does, and has a smaller
amplitude [compare with Eq. (28)]. This suggests again that
the ensemble-averaged property �1(t ) = S1(ω = 0, t ) is sup-
ported by some atypical realizations of V1.

C. Probability distribution of χt [Eq. (14)]

We now dwell on the observable χt defined in Eq. (14) for
given trajectories V1(τ ) and V2(τ ). This quantity is a random
variable with the dimensions of temperature. Its first moment
is equal to χ t , given in Eq. (C24) in the Appendix C [hence,
in the limit t → ∞, to χ in Eq. (15)]. In what follows, we
evaluate its probability distribution function P(χt ), which en-
codes all the information how χt varies from one realization
of noises to another.

Such a probability density function can be calculated in
a standard way by introducing first the moment-generating
function, and then performing a corresponding inverse Fourier
transform (see Appendix C for the details of derivations). In
doing so, we find that in the limit t → ∞, the limiting form
of P(χt ) is given explicitly by

P(χt ) = 1

8π
√

T1T2
exp

(
T1 − T2

16T1T2
χt

)
K0

(
T1 + T2

16T1T2
|χt |

)
,

(40)
where K0(x) is the modified Bessel function of the second
kind. The distribution P(χt ) for an arbitrary t is reported in
Appendix C.

Note that the expression (40) is sharply peaked at χt =
0 (see also Fig. 3). In fact, P(χt ) diverges logarithmically
when χt → 0. This implies that typically (i.e., for most of
realizations of the noises) one will observe small values of
the parameter χt , and therefore of its average, regardless of
whether the dynamics proceeds in equilibrium or in nonequi-
librium. Hence, the average of the random variable χt does
not permit us by itself to distinguish between equilibrium
and nonequilibrium dynamics. However, from the comparison
of the result in Eq. (40) against the experimental data, we
see that its distribution can be obtained with comparatively
small statistics. Now, the shape of P(χt ) allows us to discrim-
inate between equilibrium and nonequilibrium. Indeed, P(χt )
is symmetric around the origin and narrow in equilibrium,
whereas it is asymmetric and substantially broader out of
equilibrium.

We now consider the tails of the distribution in Eq. (40). In
the limit t → ∞, we have for large positive values of χt

P(χt ) 
 1√
8π (T1 + T2)χt

exp

(
− χt

8T1

)
, (41)

while for χt → −∞ we obtain

P(χt ) 
 1√
8π (T1 + T2)|χt |

exp

(
χt

8T2

)
, (42)

So, the decay is a bit faster than exponential (due to an addi-
tional power law) and remarkably, the right tail (large positive
values of χt ) is entirely controlled by T1, while the left (large
negative values of χt ) one is entirely controlled by T2.

V. CONCLUDING REMARKS

In this paper we have considered a Brownian gyrator
model, described by two coupled oscillators, connected to two
thermal reservoirs kept at different temperatures, T1 and T2.
Models of this kind are commonly used to describe nonequi-
librium and fluctuating mesoscopic devices, as well as are of
interest in current nano- and biotechnologies. One important
question we have addressed here is whether one can conclu-
sively distinguish between the evolution in nonequilibrium
conditions (T1 �= T2), when the system performs rotations
around the origin, and in equilibrium ones (T1 = T2) when no
such a rotation takes place, considering not the trajectories
of the system, but rather their spectral densities. We have
provided two relatively simple criteria to ascertain whether
the system evolves under equilibrium or nonequilibrium con-
ditions.

First, Eqs. (13) show that the maxima of the power spectral
densities of the voltages at zero frequency, μ1(0) and μ2(0)
depend linearly on the resistances Ri and on the temperature of
the respective baths Ti, i = 1, 2. Therefore, knowledge of the
resistances and measurements of the power spectra will reveal
whether the system is or is not in equilibrium. Moreover,
whenever R1 = R2, their value does not need to be known:
μ1(0) = μ2(0) means equilibrium state, while μ1(0) �= μ2(0)
means nonequilibrium state, where the spectral densities are
computed along a single realization of the process.

Second, we have shown that in the small ω regime, the
Pearson coefficient for the power spectral densities con-
structed from a single realization of the process scales
differently with the frequency ω in equilibrium and in
nonequilibrium conditions. Indeed, ρω ∼ ω4 for T1 = T2,
while ρω ∼ ω2 for the T1 �= T2, cf. Eq. (20). For such a cri-
terion no knowledge of the material parameters is required.

These expressions can in principle be tested experimentally
in systems such as those reported in Refs [54,55], and more re-
cently in Ref. [67]. The last paper, in particular, illustrates the
realization of a Maxwell demon that reverses the direction of
heat flux between two electric circuits kept at different temper-
atures and coupled by the thermal noise. Therefore applying
the tests here proposed to such a system is quite intriguing,
due to the peculiar behavior of this device. In general, our
approach based on the spectral properties of individual trajec-
tories of systems evolving in and out of equilibrium opens new
perspectives for the analysis of nonequilibrium phenomena.
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APPENDIX A: SOLUTION OF EQS. (1)

Let q̃i and η̃i denote the Laplace-transformed charges and
noises,

q̃i = L[qi] =
∫ ∞

0
dτ exp(−λτ ) qi, (A1)
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and

η̃i = L[ηi] =
∫ ∞

0
dτ exp(−λτ ) ηi, (A2)

respectively. Then, the Laplace-transformed system of Eqs. (1) reads

λR1 q̃1 = −C2

X
q̃1 + C

X
(q̃2 − q̃1) + η̃1, λR2 q̃2 = −C1

X
q̃2 + C

X
(q̃1 − q̃2) + η̃2, (A3)

and its Laplace-transformed solution is given by

q̃1 = (C1 + C + λR2X )η̃1 + Cη̃2

1 + [R1(C + C1) + R2(C + C2)]λ + R1R2Xλ2
,

q̃2 = Cη̃1 + (C2 + C + λR1X )η̃2

1 + [R1(C + C1) + R2(C + C2)]λ + R1R2Xλ2
. (A4)

Further, the inverse Laplace transforms L−1 of the rational functions entering Eqs. (A4) are given by

L−1
{

1

1 + [R1(C + C1) + R2(C + C2)]λ + R1R2Xλ2

}
= exp (−vτ )

R1R2Xb
sinh (bτ ),

L−1
{

λ

1 + [R1(C + C1) + R2(C + C2)]λ + R1R2Xλ2

}
= exp (−vτ )

R1R2X

[
cosh (bτ ) − v

b
sinh (bτ )

]
, (A5)

where v and b are parameters defined by Eqs. (8) in the main text. Consequently, the charges for a given realization of noises in
the time-domain obey

q1 = 1

R1

∫ τ

0
ds Q(a, τ − s)η1(s) +

∫ τ

0
ds P(τ − s)η2(s),

q2 =
∫ τ

0
ds P(τ − s)η1(s) + 1

R2

∫ τ

0
ds Q(−a, τ − s)η2(s), (A6)

where Q is defined by Eq. (7), the parameter a is given by

a = R2(C + C2) − R1(C + C1)

2R1R2X
, (A7)

and the function P(τ ) obeys

P(τ ) = C

R1R2Xb
exp (−vτ ) sinh (bτ ). (A8)

In turn, the charges and the measured voltages are related by [54,55]

q1 = C(V1 − V2) + C1V1, q2 = C(V1 − V2) − C2V2, (A9)

which, solved for V1 and V2, lead to Eqs. (5). Substituting Eqs. (A6) into Eqs. (5), we eventually obtain Eqs. (A4).

APPENDIX B: TWO-TIME CORRELATION FUNCTIONS OF THE VOLTAGES AND THE FIRST MOMENT
OF SPECTRAL DENSITIES

The two-time correlation functions Vi(τ1)Vi(τ2), i = 1, 2, are evidently symmetric functions of the time variables τ1 and τ2,
thus it suffices to consider a time-ordered case only. Taking, for instance, τ1 � τ2 � 0, we get

V1(τ1)V1(τ2) = 2kBT1(C + C2)2

R1X 2
h(a1) + 2kBT2C2

R2X 2
g, (B1)

and

V2(τ1)V2(τ2) = 2kBT1C2

R1X 2
g + 2kBT2(C + C1)2

R2X 2
h(a2), (B2)

where

h(a) = 1

4vb2(v2 − b2)
e−v(τ1+τ2 )[{b2v2(2e2vτ2 − 1) + a2[b2(e2vτ2 − 1) + v2] − b4(e2vτ2 − 1) − 2avb2 e2vτ2} cosh(b(τ1 − τ2))

+ v([2ab2 − v(a2 + b2)] cosh[b(τ1 + τ2)] + b(a2 + b2 − 2av){e2vτ2 sinh[b(τ1 − τ2)] − sinh[b(τ1 + τ2)]})], (B3)
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and

g = 1

4vb2
e−v(τ1+τ2 )([b2(e2vτ2 − 1) + v2] cosh[b(τ1 − τ2)] − v{v cosh[b(τ1 + τ2)]

+ b e2vτ2 sinh[b(τ1 − τ2)] − b sinh[b(τ1 + τ2)]}). (B4)

The dependence of both h(a) and g not only on the difference τ1 − τ2 but also on the sum τ1 + τ2, indicates that the initial
condition V1(τ = 0) = V2(τ = 0) = 0 needs to evolve in time, to approach a stationary state. In fact, the τ1 → ∞ limit, with
fixed τ2, makes the two voltages decouple, and both h(a) and g vanish. However, recalling that v > b, cf. Eq. (8), taking τ1 =
τ2 = τ , and letting τ grow without bounds one obtains:

lim
τ→∞ h(a) = 1

4v
+ (v − a)2

4v(v2 − b2)
, lim

τ→∞ g = 1

4v
,

Consequently, in this limit the variances of the measured voltages converge as follows:

lim
τ→∞ Var[V1(τ )] = lim

τ→∞V1(τ )V1(τ ) = (C + C2)2

2R1X 2v

[
1 + (v − a1)2

v2 − b2

]
kBT1 + C2

2R2X 2v
kBT2,

lim
τ→∞ Var[V2(τ )] = lim

τ→∞V2(τ )V2(τ ) = C2

2R1X 2v
kBT1 + (C + C1)2

2R2X 2v

[
1 + (v − a2)2

v2 − b2

]
kBT2. (B5)

These variances saturate at finite values, when time grows, consistently with the fact that we have two coupled Ornstein-
Uhlenbeck processes, cf. Eqs. (1). Explicit forms of their limiting values, in terms of the physical parameters can be found
by merely substituting the definitions of v, b, a1, and a2 introduced in Eq. (8).

Concerning the cross-correlation function of the voltages, with τ1 � τ2 � 0, we get

V1(τ1)V2(τ2) = kBT1C(C + C2)

2R1X 2b2v
exp[−v(τ1 + τ2)]{[b2(e2vτ2 − 1) + va1] cosh[b(τ1 − τ2)] − a1v cosh[b(τ1 + τ2)]

− b[a1(e2vτ2 − 1) + v] sinh[b(τ1 − τ2)] + bv sinh[b(τ1 + τ2)}) + kBT2C(C + C1)

2R2X 2b2v
exp[−v(τ1 + τ2)]

× {[b2(e2vτ2 − 1) + va2] cosh[b(τ1 − τ2)] − a2v cosh[b(τ1 + τ2)] + b[a2(e2vτ2 − 1)

+ v(1 − 2e2vτ1 )] sinh[b(τ1 − τ2)] + bv sinh[b(τ1 + τ2)]}, (B6)

which vanishes when τ1 = τ2 = 0, and also when τ1 → ∞ with fixed τ2, which signifies that correlations between V1 and V2

decouple in this limit. Next, for τ1 = τ2 = τ and τ → ∞, the expression (B6) attains a constant value

lim
τ→∞V1(τ )V2(τ ) = C(C + C2)

2R1X 2v
kBT1 + C(C + C1)

2R2X 2v
kBT2. (B7)

Note now that the limiting values of the variances of the measured voltages are monotonically increasing functions of the
temperatures T1 and T2, as they should, and so is the limiting value of the cross-correlations, Eqs. (B7). Moreover, expressions
(B5) and (B7) do not undergo any qualitative change with respect to the nonequilibrium case, when T1 turns equal to T2. Further,
the timescales that characterize the relaxation to the stationary state on the material parameters v and b only, and are independent
of the temperatures. In conclusion, because we deal here with Gaussian stochastic processes, which are fully defined by the first
two moments, it seems unlikely that a useful criterion for distinguishing nonequilibrium and equilibrium behaviors be based
solely on the correlation functions of voltages.

Equations (B1)–(B4) straightforwardly lead to the expression of the power spectral densities of the processes V1(τ ) and V2(τ ),
which are first moments of the random variables S1 and S2, Eqs. (C1), in the limit of long observation time t . Let us then consider
the following quantities:

hω(a) = lim
t→∞

1

t

∫ t

0
dτ1

∫ t

0
dτ2 cos [ω(τ1 − τ2)]h(a) = 2 lim

t→∞
1

t

∫ t

0
dτ1

∫ τ1

0
dτ2 cos [ω(τ1 − τ2)]h(a),

gω = lim
t→∞

1

t

∫ t

0
dτ1

∫ t

0
dτ2 cos [ω(τ1 − τ2)]g = 2 lim

t→∞
1

t

∫ t

0
dτ1

∫ τ1

0
dτ2 cos [ω(τ1 − τ2)]g. (B8)

Substituting Eqs. (B3) and (B4) in Eq. (B8), integrating over the time variables, and taking the t → ∞ limit, yields

hω(a) = 2(ω2 + (v − a)2)

b4 + 2b2(ω2 − v2) + (ω2 + v2)2 , gω = 2ω2

b4 + 2b2(ω2 − v2) + (ω2 + v2)2 , (B9)

which together with Eqs. (B1) and (B2) leads to Eqs. (11).
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APPENDIX C: BIVARIATE MOMENT-GENERATING AND PROBABILITY DENSITY FUNCTIONS
OF SINGLE-TRAJECTORY SPECTRAL DENSITIES

Let us rewrite the definitions of the single-realization spectral densities, Eq. (C1), in the following form:

S1 = 1

t

[∫ t

0
dτ cos (ωτ )V1(τ )

]2

+ 1

t

[∫ t

0
dτ sin (ωτ )V1(τ )

]2

,

S2 = 1

t

[∫ t

0
dτ cos (ωτ )V2(τ )

]2

+ 1

t

[∫ t

0
dτ sin (ωτ )V2(τ )

]2

. (C1)

Then, using the integral identity

e−B2/4A =
√

A

π

∫ ∞

−∞
dz e−Az2+iBz, (C2)

the bivariate moment-generating function, Eq. (4), can be written as a fourfold integral:


(λ1, λ2) = 1

(4π )2λ1λ2

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ∞

−∞
dz3

∫ ∞

−∞
dz4 exp

(
− z2

1 + z2
2

4λ1
− z2

3 + z2
4

4λ2

)
R(z), (C3)

in which the function R(z) is given by

R(z) = exp

[
i√
t

∫ t

0
dτ

∫ τ

0
ds Fω(τ, s)η1(s)

]
exp

[
− i√

t

∫ t

0
dτ

∫ τ

0
ds Gω(τ, s)η2(s)

]

= exp

[
−2kBT1R1

t

∫ t

0
dτ1

∫ t

0
dτ2

∫ min(τ1,τ2 )

0
ds Fω(τ1, s) Fω(τ2, s)

]

× exp

[
−2kBT2R2

t

∫ t

0
dτ1

∫ t

0
dτ2

∫ min(τ1,τ2 )

0
ds Gω(τ1, s) Gω(τ2, s)

]
, (C4)

where the bar in the first line stands for averaging over the Gaussian white-noise η1, the bar in the second line denotes averaging
over η2, which is statistically independent of η1, while the functions Fω(τ, s) and Gω(τ, s) are expressed by:

Fω(τ, s) = C + C2

R1X
[z1 cos(ωτ ) + z2 sin(ωτ )]Q(a1, τ − s) + C

R1X
[z3 cos(ωτ ) + z4 sin(ωτ )]Q(v, τ − s),

Gω(τ, s) = C

R2X
[z1 cos(ωτ ) + z2 sin(ωτ )]Q(v, τ − s) + C + C1

R2X
[z3 cos(ωτ ) + z4 sin(ωτ )]Q(a2, τ − s), (C5)

where Q(a1, τ − s), Q(v, τ − s) and Q(a2, τ − s) are defined in the main text in Eq. (7) (with a replaced by a1, v, and a2,
respectively).

Introducing the Heaviside θ -function, defined by θ (τ ) = 1 for τ � 0, and θ (τ ) = 0 for τ < 0, we can write

∫ t

0
dτ1

∫ t

0
dτ2

∫ min(τ1,τ2 )

0
ds Fω(τ1, s) Fω(τ2, s) =

∫ t

0
dτ1

∫ t

0
dτ2

∫ t

0
ds Fω(τ1, s) Fω(τ2, s) θ (τ2 − s) θ (τ1 − s)

=
∫ t

0
ds

[∫ t

s
dτ Fω(τ, s)

]2

, (C6)

and ∫ t

0
dτ1

∫ t

0
dτ2

∫ min(τ1,τ2 )

0
ds Gω(τ1, s) Gω(τ2, s) =

∫ t

0
dτ1

∫ t

0
dτ2

∫ t

0
ds Gω(τ1, s) Gω(τ2, s) θ (τ2 − s) θ (τ1 − s)

=
∫ t

0
ds

[∫ t

s
dτ Gω(τ, s)

]2

. (C7)

The above expressions are fairly general and our subsequent analysis focuses on two particular limits: A standard text-book limit
of an infinitely large observation time t , and the limit ω ≡ 0 and arbitrary t .
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1. Limit t → ∞ and ω > 0.

In the limit t → ∞, rather cumbersome calculations eventually lead to the following expressions:

lim
t→∞

1

t

∫ t

0
ds

[∫ t

s
dτ Fω(τ, s)

]2

= (C + C2)2[ω2 + (v − a1)2]

2R2
1X 2[b4 + 2b2(ω2 − v2) + (ω2 + v2)2]

(
z2

1 + z2
2

)

+ C2ω2

2R2
1X 2[b4 + 2b2(ω2 − v2) + (ω2 + v2)2]

(
z2

3 + z2
4

)

+ C(C + C2) ω [ω(z1z3 + z2z4) + (v − a1)(z2z3 − z1z4)]

R2
1X 2[b4 + 2b2(ω2 − v2) + (ω2 + v2)2]

,

lim
t→∞

1

t

∫ t

0
ds

[ ∫ t

s
dτ Gω(τ, s)

]2

= C2ω2

2R2
2X 2[b4 + 2b2(ω2 − v2) + (ω2 + v2)2]

(
z2

1 + z2
2

)

+ (C + C1)2[ω2 + (v − a2)2]

2R2
2X 2[b4 + 2b2(ω2 − v2) + (ω2 + v2)2]

(
z2

3 + z2
4

)

+ C(C + C1)ω[ω(z1z3 + z2z4) − (v − a2)(z2z3 − z1z4)]

R2
2X 2[b4 + 2b2(ω2 − v2) + (ω2 + v2)2]

. (C8)

Note that the leading subdominant time-dependent terms in the integrals in Eqs. (C6) and (C7) are of order of O(1/t ), with
amplitudes containing sin(ωt ) and cos(ωt ), while the remaining terms decay exponentially fast: exp[−2(v − b)t].

Recalling next the explicit expressions for the first moments of random variables S1 and S2, Eqs. (11), we find that the function
R(z) in Eq. (C4) attains the following form:

R(z) = exp

[
−μ1(ω)

4

(
z2

1 + z2
2

) − μ2(ω)

4

(
z2

3 + z2
4

) − A(z1z3 + z2z4) − B(z2z3 − z1z4)

]
, (C9)

with

A = 2kBCω2

X 2[b4 + 2b2(ω2 − v2) + (ω2 + v2)2]

[
(C + C2)

R1
T1 + (C + C1)

R2
T2

]
, (C10)

and

B = 2kBCω

X 2[b4 + 2b2(ω2 − v2) + (ω2 + v2)2]

[
(C + C2)(v − a1)

R1
T1 − (C + C1)(v − a2)

R2
T2

]
. (C11)

Then, using Eqs. (C9) and (C3), and performing the integrations, we get our expression in Eq. (21) with

ρω = 4(A2 + B2)

μ1(ω)μ2(ω)
. (C12)

To prove that ρω is indeed the Pearson’s correlation coefficient in Eq. (16), we first differentiate the expression in Eq. (21) with
respect to λ1 and λ2, to get [

d2

dλ1dλ2

(λ1, λ2)

]∣∣∣∣
λ1,2=0

= S1S2 = μ1(ω)μ2(ω)(1 + ρω ), (C13)

from which it follows that

ρω = S1S2 − μ1(ω)μ2(ω)

μ1(ω)μ2(ω)
= [S1 − μ1(ω)][S2 − μ2(ω)]

μ1(ω)μ2(ω)
. (C14)

The proof is completed by merely considering that√
S2

1 − μ2
1(ω) = μ1(ω),

√
S2

2 − μ2
2(ω) = μ2(ω), (C15)

for the model under investigation, i.e., as we have already remarked in the main text, in the limit t → ∞ the standard deviations
of the single-trajectory power spectral densities are exactly equal to the corresponding mean values.

Last, we invert the expression in Eq. (21) with respect to λ1 and λ2, which is conveniently done by first expanding it into the
Taylor series in powers of ρω. In doing so, we obtain a series with coefficients that are factorized with respect to the Laplace
parameters. Inversion is then straightforward and yields

P(S1 = s1, S2 = s2) =
exp

[− s1
μ1(ω) − s2

μ2(ω)

]
μ1(ω)μ2(ω)

∞∑
k=0

ρk
ωLk

[
s1

μ1(ω)

]
Lk

[
s2

μ2(ω)

]
, (C16)

where Lk are the Laguerre polynomials. Summing the series, we arrive at Eq. (22).
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2. Areas under random curves for arbitrary t

We turn next to the particular case ω = 0, i.e., we focus on the statistical properties of integrated voltages V1 and V2. There
are two reasons for such an analysis. First, we realized that in the limit t → ∞ the squared areas under random curves V1 and
V2 statistically decouple from each other because the Pearson’s coefficient vanishes when ω = 0, which makes these properties
important for distinguishing equilibrium and nonequilibrium dynamics. The t → ∞ limit, however, should be taken with caution,
since no experiment nor numerical simulations last an infinite time. Therefore, one needs to know the rate at which corrections
to the limiting behavior vanish.

The second reason is a bit more subtle. It is known that (see Refs. [41–44]) for any one-dimensional Gaussian process
Xt its moment-generating function, and hence, the ensuing probability density of a single-trajectory power-spectral density is
entirely defined by the first two moments—the mean and the variance, likewise the parental process Xt itself. In general, for
finite ω and t , bounded away from zero and infinity, the moment-generating function and the probability density function of a
(single-component) single-trajectory power spectral density of a Gaussian process are given by


(λ1) = 1√
1 + 2S1λ1 + (2 − cv2)S1

2
λ2

1

, (C17)

P(S1 = s1) = 1√
2 − cv2 S1

exp

(
− 1

2 − cv2

s1

S1

)
I0

(√
cv2 − 1

2 − cv2

s1

S1

)
, (C18)

where cv = σ1(ω, t )/S1 is the coefficient of variation, which obeys 1 � cv2 � 2. The probability density function in Eq. (C18),
the so-called Bessel function distribution, attains, for a subdiffusive Gaussian processes Xt , a simpler form in the limit when
either t or ω tend to infinity, as in Eq. (26), since cv approaches unity in this limit. In this regard, Eq. (26) is completely in
line with the general results of Refs. [41,42]. However, when the limit t → ∞ is taken first, a subsequent passage to the limit
ω → 0 yields a spurious behavior. The point is that the first moment of S1 and the standard deviation σ1 from the mean value are
functions of both ω and t , where the observation time enters as a product ωt [41–44]. Therefore, taking the limit t → ∞ first we
naturally get only a part of the actual dependence on ω and, as a consequence, an incorrect limiting behavior. As a matter fact,
for ω = 0 and finite t , the coefficient of variation obeys cv = √

2, so that the Bessel function distribution reduces to a simpler
form, but its functional form is different from that in Eq. (26). This prompts us to focus on the limit ω = 0 at finite t for the
model under study involving two coupled components V1 and V2.

Our starting point is the general expression in our Eq. (C3). Setting ω = 0 in Eqs. (C5) we have that the latter attain the form

F0(τ, s) = C + C2

R1X
z1Q(a1, τ − s) + C

R1X
z3Q(v, τ − s),

G0(τ, s) = C

R2X
z1Q(v, τ − s) + C + C1

R2X
z3Q(a2, τ − s), (C19)

which no longer depend on z2 and z4. Inserting these expressions into Eq. (C3) and integrating, we find our Eq. (32) presented
in main text, where �1(t ) = S1(ω = 0, t ) and �2(t ) = S2(ω = 0, t ) are averaged spectral densities of V1 and V2 calculated at
zero frequency, i.e., are the averaged squared areas below V1 and V2 divided by t , while ρ0 corresponds to the ω = 0 Pearson
coefficient

ρ0 = [S1(ω = 0, t ) − �1(t )][S2(ω = 0, t ) − �2(t )]√[
S2

1 (ω = 0, t ) − �1(t )2
][

S2
2 (ω = 0, t ) − �2(t )2

] . (C20)

For arbitrary t , the exact expressions for �1(t ), �2(t ), and ρ0 have quite a complicated form which we do not present here.
Overall, �1(t ) and �2(t ) are monotonically increasing functions of t [see solid curves in Figs. 6(a) and 6(b)], which are
characterized by an initial power-law growth stage and ultimately, by a relaxation toward their asymptotic values. For small
values of t we have the parabolic growth laws of the form:

�1(t ) = 4kB[C2(R2T1 + R1T2) + C2(2C + C2)R2T1]

3R1R2X 2
t2 + O(t4),

�2(t ) = 4kB[C2(R2T1 + R1T2) + C1(2C + C1)R1T2]

3R1R2X 2
t2 + O(t4), (C21)

i.e., �1(t ) and �2(t ) vanish at t = 0, as they should. The symbol O(t4) means that the omitted terms grow with t in proportion
to the fourth power of the observations time.

Comparing the analytical predictions in Eqs. (C21) with the full curves depicted in Fig. 6, we infer that the latter asymptotic
forms are valid only for very short observation times—when t is some fraction of a second. In turn, in the large-t limit, we get

�1(t ) = 4R1kBT1 + α1kBT1 + α2kBT2

t
+ O(e−t/τr ), �2(t ) = 4R2kBT2 + β1kBT1 + β2kBT2

t
+ O(e−t/τr ), (C22)
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FIG. 6. The case ω = 0 with arbitrary t . (a) S1 = �1(t ) (V2s) versus the observation time t (s). Solid (blue) curve represents the full
exact expression; green dashed curve depicts the asymptotic form in the first line in Eqs. (C21), while the red dotted curve depicts the large-t
asymptotic curve in the first line in Eqs. (C22), in which we omit the exponential in t relaxation terms. The horizontal (black) dashed line
indicates the asymptotic value S1 = S1(ω = 0, t = ∞) = 4R1kBT1. (b) S2 = �2(t ) versus the observation time t . Solid (blue) curve represents
the full exact expression; green dashed curve depicts the asymptotic form in the second line in Eqs. (C21), while the red dotted curve depicts
the large-t asymptotic curve in the second line in Eqs. (C22), in which we omit the exponential in t relaxation terms. The horizontal (black)
dashed line indicates the asymptotic value S2 = S2(ω = 0, t = ∞) = 4R2kBT2. (c) The Pearson coefficient ρ0 as a function of t . Solid (blue)
curve presents the full exact expression, while the dotted (red) curve indicates the asymptotic form in Eq. (20). The system parameters are as
in Fig. 4.

where the symbol O[exp(−t/τr )] signifies that the omitted terms decay exponentially with time with τr being some computable
constant, and

α1 = −2R2
1{3(C + C1)2R1 + [4C2 + 3C1C2 + 3C(C1 + C2)]R2}

[(C + C1)R1 + (C + C2)R2]
,

α2 = 2R2R2
1C2

[(C + C1)R1 + (C + C2)R2]
,

β1 = 2R1R2
2C2

[(C + C1)R1 + (C + C2)R2]
,

β2 = −2R2
2{3(C + C2)2R2 + [4C2 + 3C1C2 + 3C(C1 + C2)]R1}

[(C + C1)R1 + (C + C2)R2]
. (C23)

It follows from Fig. 6 that for the choice of the system’s parameter as indicated in the caption, the asymptotic forms in Eqs. (C22)
become very accurate already for times t of order 10−2 sec. We note next that in the general case when C1 �= C2 and R1 �= R2,
the observable

χ t = �1(t )

kBR1
− �2(t )

kBR2
∼ O

(
1

t

)
, (C24)

and thus vanishes only in the limit t → ∞. This substantiates our remark in the text after Eq. (15) that some care has to be
exercised with the analysis of the limiting behavior and the observation time t has to be taken sufficiently large (of order of
a second, as follows from Fig. 6). In the symmetric case with R1 = R2 = R and C1 = C2 = C̃, the parameter χt is given for
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any t by

χ t =U4(T1 − T2)

(
1 − (4C2 + 6CC̃ + 3C̃2)

2(C + C̃)

R

t
− C̃(2C + C̃)R

2(C + C̃)t
exp

[
− 2(C + C̃)t

C̃(2C + C̃)R

]

+ 2R

t
exp

[
− (C + C̃)t

C̃(2C + C̃)R

]{
(C + C̃) cosh

[
Ct

C̃(2C + C̃)R

]
+ C sinh

[
Ct

C̃(2C + C̃)R

]})
. (C25)

In this case, χ t is proportional to the difference of the temperatures of the components and thus is exactly equal to zero at any t
in equilibrium, i.e., for T1 = T2, while in the nonequilibrium it approaches a nonzero value.

Last, we note that the Pearson coefficient is a constant at t = 0,

ρ0 = C2[(C + C2)R2T1 + (C + C1)R1T2]2

[(C + C2)2R2T1 + C2R1T2][(C + C1)2R1T2 + C2R2T1]
+ O(t2), (C26)

while its large-t behavior is given by (for both T1 and T2 bounded away from zero)

ρ0 = R1R2C2{[(C + C1)R1 + 2(C + C2)R2]T1 + [(C + C2)R2 + 2(C + C1)R1]T2}2

4T1T2[(C + C1)R1 + (C + C2)R2]2

1

t2
+ O

(
1

t4

)
. (C27)

The large-t asymptotic form and the full exact expression for ρ0 are presented in Fig. 6(c). We observe that for the case at hand
the asymptotic form agrees well with the full expression for t ≈ 4 × 10−2 s.

We turn finally to the analysis of the exact form of the bivariate probability density function of the spectral densities in case
ω = 0. Verifying that |ρ0| � 1 for any t , we are entitled to formally expand the expression in Eq. (32) in powers of ρ0, which
yields the following factorized (with respect to λ1 and λ2) series


(λ1, λ2) = 1√
π

∞∑
n=0

�(n + 1/2)

n!
ρn

0
[2�1(t )λ1]n

[1 + 2�1(t )λ1]n+1/2

[2�2(t )λ2]n

[1 + 2�2(t )λ2]n+1/2 . (C28)

Inverting the latter expression we obtain

P[S1(ω = 0, t ) = s1, S2(ω = 0, t ) = s2] = 1

2
√

π �1(t ) �2(t ) s1s2
exp

[
− s1

2�1(t )
− s2

2�2(t )

]

×
∞∑

n=0

n!

�(n + 1/2)
L(−1/2)

n

[
s1

2�1(t )

]
L(−1/2)

n

[
s2

2�2(t )

]
ρn

0 . (C29)

This sum is well known and can be performed exactly, which yields our result in Eq. (33).

3. Probability density of χt , defined in Eq. (14)

Here we seek the probability density function P(χt ) of the observable χt , defined in Eq. (14). To this end, we first define its
moment-generating function:


χ (w) = exp (iwχt ) = exp

{
iw

[
S1(ω = 0, t )

kBR1
− S2(ω = 0, t )

kBR2

]}
. (C30)

The averaging in Eq. (C30) is most conveniently performed using the factorized series representation of the bivariate probability
density function P[S1(ω = 0, t ), S2(ω = 0, t )], Eq. (C29). Performing some rather straightforward calculations, we find


χ (w) =
{

1 − 2i

[
�1(t )

kBR1
− �2(t )

kBR2

]
w + 4(1 − ρ0)

k2
B

�1(t )

R1

�2(t )

R2
w2

}−1/2

. (C31)

Differentiating the expression (C31) once and twice, and setting w = 0, we thus find that the mean obeys Eq. (C24), while the
variance of the random variable χt is given by

Var(χt ) = χ2
t − χt

2 = 2χ2
t + χ̃2, χ̃2 = 4(1 − ρ0)

k2
B

�1(t )

R1

�2(t )

R2
. (C32)

In turn, the probability density function P(χt ) can be evaluated directly from Eq. (C31) to give

P(χt ) = 1

2π

∫ ∞

−∞

χ (w) exp (−iwχt )dw = 1

πχ̃
exp

(
χ t

χ̃2
χt

)
K0

⎛
⎝
√

χ̃2 + χ2
t

χ̃2
|χt |

⎞
⎠, (C33)

where K0(x) is the modified Bessel function of the second kind. In the limit t → ∞ the expression simplifies to give our Eq. (40).

014137-17



SARA CERASOLI et al. PHYSICAL REVIEW E 106, 014137 (2022)

APPENDIX D: EFFECTIVE BROADNESS
OF DISTRIBUTIONS

Last, we explain why we do call the probability density
functions in Eqs. (26) and (35) effective broad and how this
term is to be interpreted in our case. Indeed, in standard
nomenclature the term “broad” is usually reserved for the
distributions with fat power-law tails which are integrable but
do not possess moments starting from some order. In our
case, both distributions do possess moments of an arbitrary
positive order and we quantify their effective broadness using
a description based on the following argument.

Suppose that we have performed two independent experi-
ments at fixed physical parameters in which we recorded two
realizations of V1, and respectively evaluated two copies of
the single-component power spectral density—S(1)

1 (ω, t ) and
S(2)

1 (ω, t ). Then, we define a random variable

W = S(1)
1 (ω, t )

S(1)
1 (ω, t ) + S(2)

1 (ω, t )
, (D1)

which shows us what is the relative contribution of S(1)
1 (ω, t )

into the sum of spectral densities of two realizations of the
voltages. Intuitively, one may expect that the distribution
P(W ) of this random variable is peaked at W = 1/2, meaning
that most probably S(1)

1 (ω, t ) and S(2)
1 (ω, t ) have the same

magnitude. Following Refs. [75,76], which put forth the con-
cept of such a random variable in Eq. (D1) within the context
of first-passage time distributions in bounded domains, we
call as effectively “narrow” the distributions which are indeed
peaked at W = 1/2, and as effectively “broad”—the ones for
which it is not the case.

Formally,

P(W ) = δ

[
W − S(1)

1 (ω, t )

S(1)
1 (ω, t ) + S(2)

1 (ω, t )

]
. (D2)

Some straightforward calculations (see Refs. [75,76]) give the
following exact expression for P(W ):

P(W ) = 1

(1 − W )2

∫ ∞

0
s1ds1P(s1)P

( W

1 − W
s1

)
, (D3)

where P(s1) is the probability density function of the random
variable S.

For P(s1) in Eq. (35) (i.e., for the probability density func-
tion of the squared area under V1 divided by t), we get

P(W ) = 1

π
√

W (1 − W )
. (D4)

Surprisingly enough, this is the probability density function of
the celebrate arcsine law—it diverges when W → 0 and when
W → 1 and has a minimum at W = 1/2 meaning that an event
when S(1)

1 (ω, t ) = S(2)
1 (ω, t ) is the least probable event and

that most likely these random variables have disproportionally
different values: either S(1)

1 (ω, t ) � S(2)
1 (ω, t ) or S(1)

1 (ω, t ) 
S(2)

1 (ω, t ).
For P(s1) in Eq. (26) [i.e., for S1(ω, t = ∞)] we find

P(W ) ≡ 1, (D5)

implying that W is uniformly distributed over its support, so
that any relation between S(1)

1 (ω, t ) and S(2)
1 (ω, t ) is equally

probable.

[1] D. Ruelle, Smooth dynamics and new theoretical ideas in
nonequilibrium statistical mechanics, J. Stat. Phys. 95, 393
(1999).

[2] D. J. Evans and D. J. Searles, The fluctuation theorem, Adv.
Phys. 51, 1529 (2002).

[3] L. Rondoni and C. Mejía-Monasterio, Fluctuations in nonequi-
librium statistical mechanics: models, mathematical theory,
physical mechanisms, Nonlinearity 20, R1 (2007).

[4] U Marconi, Bettolo Marconi, A. Puglisi, L. Rondoni, and A.
Vulpiani, Fluctuation-dissipation: Response theory in statistical
physics, Phys. Rep. 461, 111 (2008).

[5] K. Sekimoto, Stochastic Energetics (Springer-Verlag, Berlin,
2010).

[6] U. Seifert, Stochastic thermodynamics, fluctuation theorems,
and molecular machines, Rep. Prog. Phys. 75, 126001
(2012).

[7] G. Gallavotti, Nonequilibrium and Irreversibility (Springer,
Berlin, 2014).

[8] S. Ciliberto, Experiments in Stochastic Thermodynamics: Short
History and Perspective, Phys. Rev. X 7, 021051 (2017).

[9] A. Puglisi, A. Sarracino, and A. Vulpiani, Temperature in and
out of equilibrium: A review of concepts, tools and attempts,
Phys. Rep. 709-710, 1 (2017).

[10] L. Peliti and S. Pigolotti, Stochastic Thermodynamics: An Intro-
duction (Princeton University Press, Princeton, NJ, 2021).

[11] D. Ruelle, A review of linear response theory for general differ-
entiable dynamical systems, Nonlinearity 22, 855 (2009).

[12] M. Colangeli, L. Rondoni, and A. Vulpiani, Fluctuation-
dissipation relation for chaotic non-Hamiltonian systems, J.
Stat. Mech. (2012) L04002.

[13] D. J. Evans, D. J. Searles, and S. R. Williams, On the fluctuation
theorem for the dissipation function and its connection with
response theory, J. Chem. Phys. 128, 014504 (2008).

[14] D. J. Evans, S. R. Williams, D. J. Searles, and L. Rondoni, On
typicality in nonequilibrium steady states, J. Stat. Phys. 164,
842 (2016).

[15] R. K. P. Zia, E. L. Praestgaard, and O. G. Mouritsen, Getting
more from pushing less: Negative specific heat and conduc-
tivity in nonequilibrium steady states, Am. J. Phys. 70, 384
(2002).

[16] M. Baiesi, C. Maes, and B. Wynants, Fluctuations and Response
of Nonequilibrium States, Phys. Rev. Lett. 103, 010602 (2009).

[17] P. Baerts, U. Basu, C. Maes, and S. Safaverdi, Frenetic origin of
negative differential response, Phys. Rev. E 88, 052109 (2013).

[18] M. Baiesi, A. L. Stella, and C. Vanderzande, Role of trapping
and crowding as sources of negative differential mobility, Phys.
Rev. E 92, 042121 (2015).

[19] J. Cividini, D. Mukamel, and H. A. Posch, Driven tracer with
absolute negative mobility, J. Phys. A: Math. Theor. 51, 085001
(2018).

014137-18



SPECTRAL FINGERPRINTS OF NONEQUILIBRIUM … PHYSICAL REVIEW E 106, 014137 (2022)

[20] O. Bénichou, P. Illien, G. Oshanin, A. Sarracino, and R.
Voituriez, Tracer diffusion in crowded narrow channels, J.
Phys.: Condens. Matter 30, 443001 (2018); Microscopic
Theory for Negative Differential Mobility in Crowded En-
vironments, Phys. Rev. Lett. 113, 268002 (2014); Nonlinear
response and emerging nonequilibrium microstructures for bi-
ased diffusion in confined crowded environments, Phys. Rev.
E 93, 032128 (2016); P. Illien, O. Bénichou, G. Oshanin, A.
Sarracino, and R. Voituriez, Nonequilibrium Fluctuations and
Enhanced Diffusion of a Driven Particle in a Dense Environ-
ment, Phys. Rev. Lett. 120, 200606 (2018).

[21] A. Sarracino and A. Vulpiani, On the fluctuation-dissipation re-
lation in nonequilibrium and non-Hamiltonian systems, Chaos
29, 083132 (2019).

[22] G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and D. J.
Evans, Experimental Demonstration of Violations of the Sec-
ond Law of Thermodynamics for Small Systems and Short
Timescales, Phys. Rev. Lett. 89, 050601 (2002).

[23] J. R. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite,
and K. Gawedzki, Experimental Verification of a Modified
Fluctuation-Dissipation Relation for a Micron-Sized Particle in
a Nonequilibrium Steady State, Phys. Rev. Lett. 103, 040601
(2009).

[24] C. Bustamante, J. Liphardt, and F. Ritort, The nonequilib-
rium thermodynamics of small systems, Phys. Today 58(7), 43
(2005).

[25] M. Bonaldi, L. Conti, P. De Gregorio, L. Rondoni, G. Vedovato,
A. Vinante, M. Bignotto, M. Cerdonio, P. Falferi, N. Liguori,
S. Longo, R. Mezzena, A. Ortolan, G. A. Prodi, F. Salemi, L.
Taffarello, S. Vitale, and J. P. Zendri, Nonequilibrium Steady-
State Fluctuations in Actively Cooled Resonators, Phys. Rev.
Lett. 103, 010601 (2009).

[26] L. Conti, P. De Gregorio, G. Karapetyan, C. Lazzaro, M.
Pegoraro, M. Bonaldi, and L. Rondoni, Effects of breaking vi-
brational energy equipartition on measurements of temperature
in macroscopic oscillators subject to heat flux, J. Stat. Mech.
(2013) P12003.

[27] J. P. Gonzalez, J. C. Neu, and S. W. Teitsworth, Experimental
metrics for detection of detailed balance violation, Phys. Rev. E
99, 022143 (2019).

[28] T. Harada and S.-I. Sasa, Equality Connecting Energy Dissi-
pation with a Violation of the Fluctuation-Response Relation,
Phys. Rev. Lett. 95, 130602 (2005).

[29] B. Lander, J. Mehl, V. Blickle, C. Bechinger, and U. Seifert,
Noninvasive measurement of dissipation in colloidal systems,
Phys. Rev. E 86, 030401(R) (2012).

[30] E. Roldán and J. M. R. Parrondo, Estimating Dissipation from
Single Stationary Trajectories, Phys. Rev. Lett. 105, 150607
(2010).

[31] A. Frishman and P. Ronceray, Learning Force Fields
from Stochastic Trajectories, Phys. Rev. X 10, 021009
(2020).

[32] C. Van den Broeck and M. Esposito, Three faces of the second
law: II. Fokker-Planck Formulation, Phys. Rev. E 82, 011144
(2010).

[33] L. Pérez Garcia, J. Donlucas Pérez, G. Volpe, A. V. Arzola,
and G. Volpe, High-performance reconstruction of microscopic
force fields from Brownian trajectories, Nat. Commun. 9, 5166
(2018).

[34] S. K. Manikandan, S. Ghosh, A. Kundu, B. Das, V. Agraval, D.

Mitra, A. Banerjee, and S. Krishnamurthy, Quantitative analysis
of nonequilibrium systems from short-time experimental data,
Commun. Phys. 4, 258 (2021).

[35] P. M. Riechers and J. P. Crutchfield, Fraudulent white noise:
Flat power spectra belie arbitrarily complex processes, Phys.
Rev. Research 3, 013170 (2021).

[36] R. O. Weber and P. Talkner, Spectra and correlations of cli-
mate data from days to decades, J. Geophys. Res. 106, 20131
(2001).

[37] R. Voss and J. Clarke, 1/ f noise in music and speech, Nature
(London) 258, 317 (1975); H. Hennig, R. Fleischmann, A.
Fredebohm, Y. Hagmayer, J. Nagler, A. Witt, F. J. Theis, and
T. Geisel, The nature and perception of fluctuations in human
musical rhythms, PLoS ONE 6, e26457 (2011).

[38] M. Niemann, H. Kantz, and E. Barkai, Fluctuations of 1/ f
Noise and the Low-Frequency Cutoff Paradox, Phys. Rev. Lett.
110, 140603 (2013).

[39] S. Sadegh, E. Barkai, and D. Krapf, 1/ f noise for intermittent
quantum dots exhibits nonstationarity and critical exponents,
New J. Phys. 16, 113054 (2014).

[40] J. N. Pedersen, L. Li, C. Gradinaru, R. H. Austin, E. C. Cox, and
H. Flyvbjerg, How to connect time-lapse recorded trajectories
of motile microorganisms with dynamical models in continuous
time, Phys. Rev. E 94, 062401 (2016).

[41] D. Krapf, E. Marinari, R. Metzler, G. Oshanin, X. Xu, and A.
Squarcini, Power spectral density of a single Brownian trajec-
tory: What one can and cannot learn from it, New J. Phys. 20,
023029 (2018).

[42] D. Krapf, N. Lukat, E. Marinari, R. Metzler, G. Oshanin, C.
Selhuber-Unkel, A. Squarcini, L. Stadler, M. Weiss, and X. Xu,
Spectral Content of a Single Non-Brownian Trajectory, Phys.
Rev. X 9, 011019 (2019).

[43] V. Sposini, R. Metzler, and G. Oshanin, Single-trajectory spec-
tral analysis of scaled Brownian motion, New J. Phys. 21,
073043 (2019).

[44] V. Sposini, D. S. Grebenkov, R. Metzler, G. Oshanin, and F.
Seno, Universal spectral features of different classes of random-
diffusivity processes, New J. Phys. 22, 063056 (2020).

[45] G. Cannatá, G. Scandurra, and C. Ciofin, An ultralow noise
preamplifier or low frequency noise measurements, Rev. Sci.
Instrum. 80, 114702 (2009).

[46] D. S. Dean, A. Iorio, E. Marinari, and G. Oshanin, Sample-to-
sample fluctuations of power spectrum of a random motion in a
periodic Sinai model, Phys. Rev. E 94, 032131 (2016).

[47] A. Squarcini, E. Marinari, and G. Oshanin, Passive advection
of fractional Brownian motion by random layered flows, New
J. Phys. 22, 053052 (2020).

[48] A. Squarcini, A. Solon, and G. Oshanin, Spectral density of
individual trajectories of an active Brownian particle, New J.
Phys. 24, 013018 (2022).

[49] A. Squarcini, E. Marinari, G. Oshanin, L. Peliti, and L.
Rondoni, Noise-to-signal ratio of single-trajectory spectral den-
sities in centered Gaussian processes, arXiv:2205.12055.

[50] S. Toyabe, H.-R. Jiang, T. Nakamura, Y. Murayama, and M.
Sano, Experimental test of a new equality: Measuring heat
dissipation in an optically driven colloidal system, Phys. Rev.
E 75, 011122 (2007).

[51] E. Fodor, W. W. Ahmed, M. Almonacid, M. Bussonnier, N. S.
Gov, M.-H. Verlhac, T. Betz, P. Visco, and F. van Wijland,

014137-19



SARA CERASOLI et al. PHYSICAL REVIEW E 106, 014137 (2022)

Nonequilibrium dissipation in living oocytes, Europhys. Lett.
116, 30008 (2016).

[52] R. Exartier and L. Peliti, A simple system with two tempera-
tures, Phys. Lett. A 261, 94 (1999).

[53] R. Filliger and P. Reimann, Brownian Gyrator: A Minimal Heat
Engine on the Nanoscale, Phys. Rev. Lett. 99, 230602 (2007).

[54] S. Ciliberto, A. Imparato, A. Naert, and M. Tanase, Heat Flux
and Entropy Produced by Thermal Fluctuations, Phys. Rev.
Lett. 110, 180601 (2013).

[55] S. Ciliberto, A. Imparato, A. Naert, and M. Tanase, Statistical
properties of the energy exchanged between two heat baths
coupled by thermal fluctuations, J. Stat. Mech. (2013) P12014.

[56] A. Argun, J. Soni, L. Dabelow, S. Bo, G. Pesce, R. Eichhorn,
and G. Volpe, Experimental realization of a minimal micro-
scopic heat engine, Phys. Rev. E 96, 052106 (2017).

[57] A. Crisanti, A. Puglisi, and D. Villamaina, Nonequilibrium and
information: The role of cross correlations, Phys. Rev. E 85,
061127 (2012).

[58] V. Dotsenko, A. Maciolek, O. Vasilyev, and G. Oshanin, Two-
temperature Langevin dynamics in a parabolic potential, Phys.
Rev. E 87, 062130 (2013).

[59] A. Y. Grosberg and J.-F. Joanny, Nonequilibrium statistical
mechanics of mixtures of particles in contact with different
thermostats, Phys. Rev. E 92, 032118 (2015).

[60] V. Mancois, B. Marcos, P. Viot, and D. Wilkowski, Two-
temperature Brownian dynamics of a particle in a confining
potential, Phys. Rev. E 97, 052121 (2018).

[61] H. C. Fogedby and A. Imparato, Autonomous quantum rotator,
Europhys. Lett. 122, 10006 (2018)

[62] Y. Bae, S. Lee, J. Kim, and H. Jeong, Inertial effects on the
Brownian gyrator, Phys. Rev. E 103, 032148 (2021).

[63] S. Lahiri, P. Nghe, S. J. Tans, M. L. Rosinberg, and D. Lacoste,
Information-theoretic analysis of the directional influence be-
tween cellular processes, PLoS ONE 12, e0187431 (2017).

[64] S. Cerasoli, V. Dotsenko, G. Oshanin, and L. Rondoni, Asym-
metry relations and effective temperatures for biased Brownian
gyrators, Phys. Rev. E 98, 042149 (2018).

[65] S. Cerasoli, V. Dotsenko, G. Oshanin, and L. Rondoni, Time-

dependence of the effective temperatures of a two-dimensional
Brownian gyrator with cold and hot components, J. Phys. A:
Math. Theor. 54, 105002 (2021).

[66] N. Tyagi and B. J. Cherayil, Thermodynamic asymmetries in
dual-temperature Brownian dynamics, J. Stat. Mech. (2020)
113204.

[67] S. Ciliberto, Autonomous out-of-equilibrium Maxwell’s demon
for controlling the energy fluxes produced by thermal fluctua-
tions, Phys. Rev. E 102, 050103(R) (2020).

[68] C. Battle, C. P. Broedersz, N. Fakhri, V. F. Geyer, J. Howard,
C. F. Schmidt, and F. C. MacKintosh, Broken detailed balance
at mesoscopic scales in active biological systems, Science 352,
604 (2016).

[69] J. Li, J. M. Horowitz, T. R. Gingrich, and N. Fakhri, Quantifying
dissipation using fluctuating currents, Nat. Commun. 10, 1666
(2019).

[70] I. Sou, Y. Hosaka, K. Yasuda, and S. Komura, Non-equilibrium
probability flux of a thermally driven micromachine, Phys. Rev.
E 100, 022607 (2019).

[71] V. Dotsenko, A. Maciolek, G. Oshanin, O. Vasilyev, and
S. Dietrich, Current-mediated synchronization of a pair of
beating nonidentical flagella, New J. Phys. 21, 033036
(2019).

[72] M. R. Evans and S. N. Majumdar, Diffusion with Stochastic
Resetting, Phys. Rev. Lett. 106, 160601 (2011).

[73] S. N. Majumdar and G. Oshanin, Spectral content of fractional
Brownian motion with stochastic reset, J. Phys. A: Math. Theor.
51, 435001 (2018).

[74] A. Squarcini, E. Marinari, G. Oshanin, L. Peliti, and L.
Rondoni, Frequency-frequency correlations of single-trajectory
spectral densities of Gaussian processes, arXiv:2205.11893.

[75] C. Mejía-Monasterio, G. Oshanin, and G. Schehr, First passages
for a search by a swarm of independent random searchers, J.
Stat. Mech.: Theor. Exp. (2011) P06022.

[76] T. G. Mattos, C. Mejía-Monasterio, R. Metzler, and G.
Oshanin, First passages in bounded domains: When is the
mean first passage time meaningful? Phys. Rev. E 86, 031143
(2012).

014137-20


