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Abstract: The Jarzynski equality (JE) was originally derived under the deterministic Hamiltonian
formalism, and later, it was demonstrated that stochastic Langevin dynamics also lead to the JE.
However, the JE has been verified mainly in small, low-dimensional systems described by Langevin
dynamics. Although the two theoretical derivations apparently lead to the same expression, we
illustrate that they describe fundamentally different experimental conditions. While the Hamiltonian
framework assumes that the thermal bath producing the initial canonical equilibrium switches off
for the duration of the work process, the Langevin bath effectively acts on the system. Moreover,
the former considers an environment with which the system may interact, whereas the latter does
not. In this study, we investigate the effect of the bath on the measurable quantity of the JE through
molecular dynamics simulations of crystal nanoindentation employing deterministic and stochastic
thermostats. Our analysis shows that the distributions of the kinetic energy and the mechanical work
produced during the indentation processes are affected by the interaction between the system and
the thermostat baths. As a result, the type of thermostatting has also a clear effect on the left-hand
side of the JE, which enables the estimation of the free-energy difference characterizing the process.

Keywords: ensembles; stochastic thermodynamics; work; free energy; mesoscopic systems; absolute
irreversibility; non-equilibrium

1. Introduction

The Jarzynski equality (JE) is meant to link the statistics of non-equilibrium works to
an equilibrium property: the free-energy difference between two equilibrium states of a
given physical system [1]. In this sense, the JE complements the fluctuation–dissipation
relationships that obtain non-equilibrium properties from equilibrium experiments. The
present literature is vast and substantially includes diverse investigations on the validity of
the JE. Most authors report verifications of the theory or provide reasons in support of the
validity of the JE; such as those discussing optimal protocols for stochastic systems; see, e.g.,
Refs. [2–5]. However, investigations considering a reduced number of work measurements
find violations of the JE or express some concern in connection with the Hamiltonian
derivation; see, e.g., Refs. [6–9]. In particular, the study of a variable volume system [9]
shows that the Hamiltonian of the JE is not universal. Moreover, Ref. [10] demonstrates
that the JE is violated even in small systems complying with the Jarzynski theory due to
the emergence of process-dependent irreversibilities at the nano-scale.

In this study, we investigate the effect of deterministic and stochastic thermostats
on the measurable (or computable) quantity that appears in the JE. We consider that this
assessment is required because there are two fundamentally different derivations of the JE
that apparently lead to the same work-fluctuation expression, when in fact they refer to
different types of experimental conditions and, hence, to distinct free-energy quantities. To
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appreciate these differences, which mainly concern the role of thermostatting, we outline
in the following the two derivations of the JE.

1.1. The Hamiltonian Derivation of the JE

The Hamiltonian derivation of the JE concerns an N-particle system (S), with coor-
dinates and momenta expressed by x = (qS, pS), where the collection of coordinates are
qS = (q1, . . . , qN) and that of momenta is pS = (p1, . . . , pN), that may interact with an envi-
ronment (E) made of M particles, with coordinates and momenta expressed by y = (qE, pE),
where qE = (qN+1, . . . , qN+M) and pE = (pN+1, . . . , pN+M). We denote byM the phase
space of S+E, which is the set of points Γ = (x, y) of all coordinates and momenta of the
object constituted by S and E together. The Hamiltonian of S+E is assumed to take the form

H(Γ; λ) = HS(x; λ) + HE(y) + hint(x, y) , (1)

where λ is a time-dependent parameter controlled by an external agent, HS is the energy of
S, HE is that of E, and hint is the interaction energy of S with E. Initially, λ(0) = α, and S+E
is in equilibrium with a thermal bath (B) at temperature T; hence, the statistics of its phases
Γ are given by the canonical ensemble

fα(Γ) =
e−βH(Γ;α)

QS+E(α)
, (2)

where
QS+E(λ) =

∫
e−βH(Γ;λ)dΓ , (3)

and β = (kBT)−1 characterizes the thermal bath.
At time t = 0, the S+E is disconnected from B, and the external agent acts on λ

for a time τ, which varies from its initial value α to its final value λ(τ) = ω. This fully
deterministic process is repeated many times, with identical λ(t), but each time starting
from a different initial condition Γ0 = (x0, y0) and different energyH(Γ0; α) dictated by the
initial canonical distribution fα. The fact that S+E and B do not exchange energy during
the process may be justified by assuming that only a negligible amount of energy can
be exchanged in the typically short process time τ. Then, the derivation of the JE—that
proceeds through exact analytical calculations—suggests that the work distributions of
practically any process taking λ from the given initial value α to the final value ω, during
any process time τ > 0, can be used to compute the free-energy difference between the
canonical state at temperature T with Hamiltonian H(Γ; λ(0) = α) and the canonical
state at temperature T with Hamiltonian H(Γ; λ(τ) = ω). The calculations [1] can be
summarized as follows.

Letting St
λ : M → M denote the phase space evolution operator so that Γ ∈ M

evolves into St
λΓ ∈ M at time t and letting xt be the coordinates and momenta of S at time

t, the quantity

WJ
[
St

λΓ; 0 ≤ t ≤ τ
]
=
∫ τ

0
dt λ̇(t)

∂HS

∂λ
(xs; λ(t)) (4)

is introduced and called work [1]. Indeed, when λ represents a position in space and the
derivative of HS with respect to λ represents a force, WJ corresponds to a mechanical work.
Following Ref. [1], one obtains that

WJ
[
St

λΓ; 0 ≤ t ≤ τ
]
= H(Sτ

λΓ; ω)−H(Γ; α) (5)

and〈
e−βWJ

〉
α
=

1
QS+E(α)

∫
e−βWJ(Γ)e−βH(Γ;α) dΓ =

QS+E(ω)

QS+E(α)
= e−β

[
FS+E(ω)−FS+E(α)

]
, (6)
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where ∆FS+E = [FS+E(ω)− FS+E(α)] is the difference of the free energies of S+E in the
canonical equilibrium at temperature T with parameters ω and α, respectively. To obtain
the free-energy difference essentially related to S, the following quantity is introduced

H∗S (x; λ) = HS(x; λ)− 1
β

ln

∫
dye−β[HE(y)+hint(x,y)]∫

dye−βHE(y)
, (7)

which was proposed by Kirkwood [11] to treat subsystems of macroscopic dense fluids
in thermodynamic equilibrium. The quantity H∗S (x; λ) is the energy of S plus an average
contribution coming from the interaction of S with E. Then, the system whose Hamiltonian
is H∗S , S∗ say, can be associated to the canonical ensemble

p∗S(x; λ) =
e−βH∗S (x;λ)

Q∗S(λ)
; Q∗S(λ) =

∫
dx e−βH∗S (x;λ) (8)

and to the free energy
F∗S (λ) = −β−1 lnQ∗S(λ) , (9)

i.e., the free energy of a hypothetical system with Hamiltonian H∗S . This quantity is then
linked to the solvated free energy of “S in E” [12].

It is found that

∆F∗α→ω ≡
[
F∗S (ω)− F∗S (α)

]
=
[
FS+E(ω)− FS+E(α)

]
, (10)

which readily leads to the JE 〈
e−βWJ

〉
α
= e−β∆F∗α→ω , (11)

where 〈·〉α is the canonical average with respect to the initial ensemble fα of S+E. As noted
in Ref. [12], transformations of the free energy of a system strongly interacting with another
one are not particularly interesting; hence, some kind of solvated free energy is preferred.

There are two aspects of this theory that seem to remain unscrutinized in the present
literature. First, the energy exchange between S+E and B may be small, but so is the
free-energy variation computed by means of the JE. Moreover, E can be absent in the
Hamiltonian derivation or, equivalently, hint may vanish. This is the case of the Langevin
derivation, outlined in the following section. However, there is a second major difference
between the two derivations: B acts on S during the Langevin process, whereas in the
Hamiltonian derivation B is not considered.

1.2. The Langevin Derivation of the JE

The JE can also be derived under a stochastic framework [13], particularly using the
Langevin equation [2,4]

dXt = F(Xt, λ(t))dt +

√
2
β

dWt , F(x, λ(t)) = −∂xU(x, λ(t)) , (12)

where Xt is the vector of position coordinates of S, U is a time-dependent potential with
t ∈ [0, τ], andWt is a Wiener process. Then,

wt =
∫ τ

0
∂λU(Xt, λ(t))λ̇(t) dt (13)

is a quantity related to the variations of the system’s energy produced by changes in λ.
In the particular case in which λ represents a position in space, wt becomes a mechanical
work. Additionally, when λ defines the position of the external agent exerting a force F
on the system, wt describes the work carried out by the force (−F) acting on the agent.



Entropy 2022, 24, 1309 4 of 14

Because there is no environment, the relevant free energy is that of S alone, which can be
called intrinsic free energy. At a given λ, this is defined by

G(λ) = − 1
β

log Z(λ) , (14)

where
Z(λ) =

∫
Ω

e−βU(x,λ) dx , (15)

and Ω is the set of coordinates x. The quantity G(λ) is intrinsic in the sense that it solely
refers to the properties of the system S. Thus, this framework is analogous to that adopted
in the deterministic Hamiltonian derivation assuming weak coupling (hint ≈ 0). However,
unlike the Hamiltonian derivation, the stochastic Langevin formulation allows S to interact
with B assuming that the kinetic energy plays no explicit role in the work statistics.

To obtain the JE, one can start from the joint random variable (Xt, wt) and its probabil-
ity density pt(x, a), where a ∈ R. Then, the quantity of interest

p̃t(x) =
∫ ∞

−∞
da e−a pt(x, a) (16)

with initial condition

p̃0(x) =
e−βU(x,λ(0))

Z(λ(0))
(17)

obeys

p̃t(x) =
1

Z(λ(0))
exp[−βU(x, λ(t))] . (18)

Because the average of the exponential of −wt with respect to the initial distribution is
expressed through

E0
(
e−wτ

)
=
∫

Ω
dx
∫ ∞

−∞
da e−a pτ(x, a) =

∫
Ω

dx p̃τ(x) , (19)

by taking λ(0) = α and λ(τ) = ω, the JE is readily obtained

E0
(
e−wτ

)
=

Z(ω)

Z(α)
= exp{−β[G(ω)− G(α)]}. (20)

Analogous to the Hamiltonian formulation, the JE is here derived irrespective of
the form of λ(t), as long as λ(0) = α and λ(τ) = ω, for any process time τ. Note that
Equation (20) is the JE for the intrinsic—not the solvated—free-energy difference of S. Thus,
when E is absent (in the Hamiltonian formulation), both derivations refer to the same
intrinsic quantity.

1.3. Comparison between the Two Derivations

The above summaries show that the Hamiltonian and Langevin theoretical derivations
refer to two different classes of experiments. The former refers to systems that do not
interact with a heat bath for the duration of the work process, whereas the latter to systems
that do interact with a thermal bath. The described experiments differ also in assuming
the presence or the absence of a third object, called environment (here, denoted as E). The
conditions in which E acts on S can be related to protein stretching experiments [14], where
S can be represented by the protein, E by the water in which the protein is immersed, and B
can be the air of the laboratory in which the water pool is situated. The Langevin setting
may also involve an environment E. However, the interaction of E with S is reduced due
to the viscosity damping applied to S and not to an effective interaction energy (hint from
Equation (1)). This is the case of the harmonic oscillators reviewed—along with other
experimental settings—in Ref. [15].



Entropy 2022, 24, 1309 5 of 14

In both derivations, the result is process independent. The protocol independence
is less obvious under the Hamiltonian framework, where rapid transformations may not
allow an efficient exchange of energy between S and B, and the number of particles as well
as space and time scales strongly influence the system’s response to external perturbations.

We consider that the role of system–bath coupling in the work statistics—which is the
measurable quantity in the JE—requires further evaluation. Assuming a condition in which
E is absent, both Hamiltonian and Langevin derivations of the JE lead to the intrinsic free-
energy variation and follow the same expression. The fact that nonequilibrium processes
typically last only a short time supports that the exchanged energy may be negligible.
However, this is a delicate assumption in at least two regards: (1) the values of the free-
energy difference are usually small as well, and (2) the process independence convoked by
both approaches allows the process time to be long.

To investigate such questions, we consider the molecular dynamics model of crystal
nanoindentation described in Ref. [10] using Nosé–Hoover and Langevin thermostats. Our
analysis shows that the the coupling between S and B has a clear effect on the resulting
distributions of the kinetic energy and the mechanical work. Consequently, the left-hand
side of the JE is affected. Interestingly, the work statistics obtained in indentations protocols
that produce fully reversible elastic deformations in the crystal lead to different distributions
as a function of the thermostat.

2. Computational Methods
2.1. Molecular Dynamics Setup: Crystal Nanoindentation

We carry out an extensive number of molecular dynamics (MD) simulations to investi-
gate the properties of a minute (001)-oriented Ta crystal indented by a spherical nanoscopic
tip. To run the simulations, we employ the open-source LAMMPS code [16]. The inter-
atomic force field is modeled by means of the embedded-atom method potential developed
by Ravelo et al. [17].

The Ta crystal has a cuboid shape of size 10.8× 10.8× 6 nm3 and contains 40,293
particles. In the MD domain, the crystal’s particles are sorted into two groups: the
particles contained in the two lowermost atomic planes of the crystal create an effec-
tive floor that prevents the downward displacement of the crystal during indentation
as their motion is restricted. The remaining particles constitute the hereafter called
particle system, which includes a total number of N = 39,204 particles whose positions,
q ≡ {q1; q2; . . . ; qN}, and velocities, v ≡ {v1; v2; . . . ; vN}, are, respectively, denoted by
qi = (xi, yi, zi) and vi = (vix, viy, viz) for i = 1, 2, . . . , N. The system’s particles are free to
move and interact with each other according to the prescribed ensemble properties and the
interatomic potential. Periodic boundaries are applied to the lateral sides of the crystal.

The indenter is modeled by a spherical-shaped repulsive potential,

Φ(q, qc) =
N

∑
i=1

ϕ(q, qc) ; ϕ(qi, qc) =

{
−k δ3

i /3 δi ≤ 0
0 δi > 0 ,

(21)

of radius R = 3 nm and center C with coordinates qc = (xc, yc, zc), where k is the indenter
stiffness and δi = [(xi − xc)2 + (yi − yc)2 + (zi − zc)2]0.5− R. Note that the indenter acts on
particle i when δi ≤ 0. Then, the repulsive force exerted on particle i, Fi = −(∂ϕ/∂qi), takes

(
Fix, Fiy, Fiz

)
=

{
kδ2

i (xi − xc, yi − yc, zi − zc)/(δi + R) δi ≤ 0
0 δi > 0 .

(22)

Here, k is set to 100 eV/Å3. Notice in Equation (22) that the direction of the repulsive force
from the indenter is dictated by the (qi − qc) vector.

Figure 1a depicts the computational domain in our MD simulations, which contains
the Ta crystal and the repulsive indenter. This computational approach has been largely em-
ployed in MD studies of indentation in metallic bodies (cf. Ref. [18] and references therein).
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Figure 1. Simulation setup. (a) Schematic representation of the indentation process. The compu-
tational domain contains the particle system of size 3.6R× 3.6R× 2R and the repulsive spherical
indenter of radius R modeled by Equation (21). The vertical coordinate of the indenter center, zc,
is plotted in (b) as a function of the process time τ. (c) The evolution of the normalized effective
penetration, (h′/R)max where h′ = h− ∆, as a function of t for both elastic and plastic cases with
vind = 10 m/s.

We create an initial state in which the particles occupy the lattice positions of the Ta
crystal and the velocities are taken from a normal distribution with 0 mean and a standard
deviation scaled to produce a temperature T = 300 K. To generate an equilibrium canonical
distribution at T, we run a preliminary 20 ps thermalization during which the particles
follow NVT conditions with the Nosé–Hoover (NH) thermostat [19] controlling the system’s
temperature at T = 300 K. Thus, the positions and velocities of the particles at t = 0 (i.e.,
prior to indentation) are sampled from the canonical distribution produced during the NVT
thermalization run.

The indentation run consists of a closed loading/unloading loop where the indenter
moves vertically with constant velocity, vind = 10 m/s. The motion of the vertical coordinate
of the indenter center, zc, is described through

zc(t) = z0 − h(t) , h(t) =
{

vind t t ∈ [0, τ/2)
vind (τ − t) t ∈ [τ/2, τ] ,

(23)

where h(t) maps the penetration of the indenter during τ. Note that the maximum pen-
etration, hmax, is attained at t = τ/2, where zc(t = τ/2) = z0 − hmax and τ = 2hmax/vind;
see Figure 1b. We conveniently define z0 such that the indenter tip and the top surface of
the crystal are separated by a small vertical distance ∆ = 0.5 Å, so that the constituting
particles are guaranteed to lie outside of the radius of action of Φ at t = 0 and t = τ; see
Figure 1a. This also allows the particles to arrange initially into an unperturbed Ta bcc
crystalline configuration during the thermalization run. The applied indentation load, P, is
then defined as the sum of the vertical, repulsive force contribution, P = −∑N

i=1 Fiz, coming
from the particles that satisfy δi ≤ 0; see Equation (22). The computational timestep, dt, is
set to 2 fs in all of the MD simulations.

In our indentation setting, the particles of the crystal constitute the system of interest
S, the indenter—whose time dependent potential energy appears in the Hamiltonian of S—
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represents the external agent, and no environment is included, so hint = 0. The Hamiltonian
of S is then given by

H(q, p, qc) = K(p) + V(q) + Φ(q, qc) , (24)

where q is the vector of position coordinates; p = mv is the vector of momenta of all
particles, with m being the mass of a Ta atom and v being the set of their velocities; K(p)
is the kinetic energy of the system (Section 2.2.2); and V(q) is the potential energy of the
interatomic interactions. Note that, here, the time-dependent parameter of the Jarzynski
theory is λ(t) = qc(t), i.e., the moving center of the indenter potential Equation (21).

To evaluate the effect of the coupling between the system and the bath on the mechani-
cal and kinetic response of the system to the indentation processes, we adopt the following
computational approaches.

(1) We perform MD indentation simulations using the (deterministic) NH thermostat
with 3 NH chains [19] to implement a condition of constant number of particles N,
volume V, and temperature (that represents the thermal bath at T = 300 K). To tune
the coupling of the particles with the NH bath, we vary the NH thermostat parameter
ωp that accounts for the frequency at which the particles are thermostatted; see the
discussion given in Supplementary Section S1. With ωp = 100 dt, the energy exchange
between the system and the NH bath is sensibly strong despite the short time of our
indentation processes; see Supplementary Figure S1.

(2) For ωp = 100,000 dt, the sluggishness of the heat flow between the system’s particles
and the NH bath describes similar conditions to those considered in the Jarzynski
theory, which neglects the system–bath coupling.

(3) By removing the thermostat—i.e., the ωp = ∞ limit—we obtain an adiabatic evolu-
tion of the system with unthermostatted particles. These conditions emulate those
considered in the Hamiltonian derivation of the JE.

(4) Lastly, we use a stochastic Langevin thermostat at T = 300 K, which acts on the system
via a random force [20]. We impose a damping coefficient of γL = 1 ps−1 that allows
an efficient energy exchange between the system and the Langevin bath. For further
details, see Supplementary Section S2. This approach reproduces the scheme adopted
in the Langevin derivation of the JE.

2.2. Computation of Thermodynamic and Mechanical Properties

Classical MD provides a window into the microscopic dynamical behavior of the con-
stituent particles of the system. Thus, MD simulations—unlike experiments—give access to
all the necessary dynamical ingredients of particle systems, which enables the computation
of equilibrium macroscopic properties by sampling from a statistical mechanical ensemble.

In this investigation, special attention is given to two specific quantities measured dur-
ing the indentation runs (during which Φ effectively acts on the system): (i) the mechanical
work exerted to the indenter by the particles and (ii) the total kinetic energy of the system’s
particles. In the following, we explain the post-simulation and on-the-fly algorithms that
we employ to access to these quantities.

2.2.1. The Mechanical Work

The elementary mechanical work carried out on the indenter by the system,

dWS =
N

∑
i=1

(−Fiz)dzc = −
N

∑
i=1

k δ2
i η(δi)

δi + R
(zi − zc)dzc , (25)

involves the infinitesimal displacements of the indenter, dqc = (0, 0, dzc) and the opposite
vertical forces, −Fiz, where η is the step function, so η(δi) = 1 for δi ≤ 0 and η(δi) = 0
for δi > 0. (As discussed in Ref. [10], the elementary mechanical work carried out by the
indenter on the system, dWI = ∑N

i=1 Fi · dqi, differs not only in the sign from Equation (25)
but also substantially. Thus, an external operator cannot obtain the work carried out on
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the system WI from external measurements of dWS, particularly in small systems made
of classical particles). Note that the negative sign in Equation (25) comes from the force
that particle i exerts on the indenter as derived from the action–reaction principle. Because
−Fiz ≥ 0, the term dzc dictates the sign of dWS. Additionally, note that dzc = −vinddt
during the loading stage and dzc = +vinddt during unloading; see Equation (23).

We use an in-house post-simulation code to obtain dWS(q, qc; t) by means of Equation (25).
This equation is evaluated under evenly spaced infinitesimal time intervals of δt = 0.05 ps
that corresponds to a net (infinitesimal) variation in the vertical indenter motion of 5 pm
(=0.05 Å). Finally, the total mechanical work WS carried out during a time interval from
t = 0 to t = τ is calculated as the sum of the computed elementary works from Equation (25),

WS(τ) = dWS,1 + dWS,2 + · · ·+ dWS,l , (26)

where l = τ/δt. In our MD indentation setup, WS(τ) = −WJ(τ) [10].

2.2.2. The Total Kinetic Energy

We also obtain on-the-fly values of the total kinetic energy of the particle system,

Ktot =
N

∑
i=1

Ki =
1
2

N

∑
i=1

m v2
i =

1
2

N

∑
i=1

m (v2
ix + v2

iy + v2
iz) , (27)

where Ki is the instantaneous, translational kinetic energy of particle i.
To investigate the effect of the system–bath coupling on the system’s thermodynamic

properties during indentation, we assess the kinetic fluctuations of the system in terms of
the statistical behavior of the quantity Ktot. In our indentation simulations, Ktot is evaluated
every 0.05 ps (=25 dt). Since we perform swift nonequilibrium processes and our MD
simulations refer to a relatively small number of particles (N = O(104)), the consequences
of the thermodynamic limit can be observed. In particular, note that Ktot might not coincide
with 3NkBT/2, where T is the bath’s temperature. When Ktot is averaged over the ensemble
of initial conditions, we refer to this quantity as 〈Ktot〉.

3. Results and Discussion

In this study, we present a statistical analysis of the work and the kinetic energy
obtained during MD indentations performed in absence as well as in presence of thermal
baths modeled by NH and Langevin thermostats. Attention is also given to the effect of the
thermostat coupling on the left-hand side of the JE (Equation (11)), which is the measurable
quantity in the Jarzynski theory. To this end, we consider two distinct indentation protocols
that lead to different perturbations of the system. The load/unload indentation protocols
are characterized in terms of maximum indenter penetration, hmax, attained at t = τ/2.
The dynamics of the particle system are defined according to the four distinct sampling
methods described in Section 2.1. This gives us eight different indentation simulations.
Each protocol is repeated over a large number of realizations (n = 1000). The individual
realizations of the process corresponds to a different initial condition (at t = 0) drawn from
the canonical distribution (2), produced during the NVT thermalization run during which
the indenter potential Φ from Equation (24) is effectively 0; see Section 2.1.

3.1. Indentations with Elastic Deformations

The load/unload indentations with fixed maximum penetration hmax = 0.1R + ∆ = 3.5 Å
characterize the herein called elastic protocol; see Figure 1c. Our MD indentations with
hmax = 3.5 Å result in perturbations of the crystal that lead to elastic contacts between the
indenter and the crystal’s surface (Supplementary Figure S3), where the resulting P− h
curves shown in Figure 2a follow a good agreement with the continuum elastic behaviour
predicted by the Hertzian contact theory [21]. In this context, Figure 2a,b show that the
unload stage approximately traces back the mechanical load path followed during loading,
which suggests that the process is fully reversible. Additionally, notice that the load–unload
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curves are unaffected by the presence or absence of a thermostat. Interestingly, although the
adiabatic and weakly thermostatted indentation are sampled from fundamentally different
statistical ensembles, the corresponding P and Ktot evolutions are practically identical;
see the inset in Figure 2c. To confirm reversibility, Figure 2c further shows that the total
kinetic energy of the particle system fluctuates around a constant Ktot value irrespective of
the thermostat coupling, even under unthermostatting conditions where there is strictly
no coupling.

Figure 2. Single realizations of the elastic protocol (hmax = 3.5 Å) with four different system–bath
thermostat couplings. The Hamiltonian of the particle system prior to indentation, H(q, p, qc(0)),
is identical in each realization. (a,b): P − h and P − t/τ curves, respectively. In (a), the overlap
of the load and unload paths manifests reversibility in the elastic protocols. The gray line in (a)
represents the elastic fit anticipated by the Hertzian contact theory, where P∼(h′)3/2. (c) Ktot time
evolution. The dashed horizontal line in (c) marks the kinetic temperature, K′tot = (3NkBT)/2,
expected with T = 300 K and N = 39, 204 atoms. The inset to (c) shows the corresponding Ktot

distributions characterized by the first three central moments (see the table), where µ is the mean (in
eV), σ2 is the variance (in eV2), and γ is the skewness of the Ktot data.

Reversibility in the indenter-induced elastic perturbation is also evident in the work
evolutions shown in Figure 3a,b. Along the time interval [0, τ], WS(t) gradually decreases
from 0 to its minimum value at t = τ/2, and then, WS(t) increases during unloading,
approximately matching the loading WS− h path; see Figure 3b. Note that the discontinuity
in Figure 3a stems from the fact that the indenter’s motion is inverted at t = τ/2 whereas
the forces exerted by the indenter at t = (τ/2)− and at t = (τ/2)+ remain identical.

Figure 3c shows the WS histograms from n = 1000 realizations of the indentations
with hmax = 3.5 Å, which reveals fundamental details regarding the work fluctuations as
a function of the thermostat coupling. We find that all WS distributions nearly adhere to
normal distributions with values of skewness, γ, close to 0. In addition, the indentations
with varying NH thermostat parameter ωp (namely with ωp = 100 dt and ωp = 100,000 dt)
produce similar WS distributions with µ ≈ −0.44 eV and σ2 ≈ 0.016 eV2. However, the
WS data from the indentations with Langevin-thermostatted particles substantially differ
from the other indentations, where the resulting WS distribution becomes considerably
wider (with σ2 = 0.116 eV2) and shifts toward more negative values (with an average value
of µ ≈ −2.4 eV). We attribute this to the damping induced by the Langevin thermostat,
which hinders the (elastic) recovery to the initial state. This is evidenced in the WS − t/τ
evolutions drawn in Figure 3b, which capture the gradual divergence of the WS values as
t→ τ with Langevin-thermostatted particles as compared with that with NH-thermostatted
particles (with ωp = 100 dt). (Note that the difference between these WS(t = τ) values exists
because it exceeds the statistical deviation of the WS data from the indentations with NH-
thermostatted particles. Additionally, note that a return to the initial state would require
quasi-static transformations during which an efficient exchange of energy between the S
and E occurs and WS(τ) = 0; see Ref. [10]. Clearly, these conditions are easier to obtain
with Langevin baths as they tend to exchange energy with the system more efficiently than
the NH thermostats that we employ).
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In light of these results, we also find that the values of the measurable quantity in the
JE,
〈
e−βWJ

〉
, are affected by the thermostatting coupling; cf. the table in Figure 3c.

The plots of Figure 3d show the Ktot histograms as a function of the thermostat
coupling. We also find that these indentations produce normal Ktot distributions with
values of the skewness, γ, close to 0. The probability density function (PDF) describing
such normally distributed Ktot datasets can then be approximated by the general form of the
Gaussian function, g(Ktot, µ, σ) = (σ

√
2π)−1 exp[−(Ktot − µ2)/2σ2]; see the normalized

histogram in Figure 3e. Contrarily to the WS distributions, the Ktot histograms render
similar values of the average (µ ≈ 1520 eV) and the variance (σ2 ≈ 30–40 eV2) regardless of
the imposed thermostat coupling. Nonetheless, the indentation processes performed with
a weak NH thermostat (ωp = 100,000 dt) and with unthermostatted particles statistically
produce distributions marginally shifted toward larger Ktot values as compared with those
with thermostatted particles; cf. Figure 3d.

Figure 3. Work and kinetic energy fluctuations as a function of the thermostat coupling during the
elastic protocol. (a,b): Evolution of dWS and WS in terms of t/τ. The plots feature single realizations
using NH-thermostatted (ωp = 100 dt) particles in (a) and NH- and Langevin-thermostatted particles
in (b). (c) WS histograms from 1000 realizations. WS stands for WS(t = τ) obtained by means of
Equation (26). (d) Ktot histograms from 1000 realizations. The Gaussian approximation of the Ktot

PDF—which describes near equilibrium processes—from the indentations with NH-thermostatted
(ωp = 100 dt) particles is given in (e).

3.2. Indentations with Plastic Deformations

With deeper indenter penetrations than those produced by the elastic protocol, the
mechanical response changes drastically. In contrast to the reversible elastic deformations
discussed in the previous section, indentations with hmax > 4.5 Å induce in the crystal
non-reversible plastic deformations that persist over time. In general terms, crystal plastic-
ity allows metals to sustain deformations beyond the elastic limit through the formation
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of non-reversible crystalline distortions. In the case of indented metallic crystals, plas-
ticity manifests through the generation of crystalline defects under the indenter tip; see
Supplementary Figure S4 and also Ref. [18]).

The indentations concerning a load/unload process with a maximum value of the
indenter penetration of hmax = 0.3R + ∆ = 9.5 Å characterize the herein called plastic
protocol; see Figure 1c. In these indentations, the transition to a plastic stage is attained at
penetrations of h ≈ hmax/2. Hence, the imposed hmax is well within the penetration range
in which plastic features can be readily observed in the P− h curves.

The P-h curves from Figure 4a are characterized by an early elastic response followed
by a marked load drop at the inception of plasticity. (Similar drops are observed in DNA
pulling experiments [14]). With increasing penetration, further load drops result from
the activation of additional plastic processes in the crystal. The P − h evolution then
diverges from the elastic fit, thus manifesting the emergence of irreversibility in the system.
Note that, unlike in the elastic protocol, the onset of plasticity leads to a marked increase
in the instantaneous kinetic energy in the indentations with weakly NH-thermostatted
(ωp = 100,000 dt) and unthermostatted particles; see Figure 4c. During unloading, the
force vanishes at effective penetration values greater than 0 (or hf > ∆ in Figure 4a). In
this regard, steep unloading curves are a fundamental manifestation of the formation of
a plastic imprint during the indentation process, which remains in the particle system
upon removal of the indenter tip from the crystal’s surface. (For further details of such
indentation responses in metals using nanometer-sized indenter tips, see Refs. [18,22]).

Irreversibility also becomes manifest in the WS time evolution obtained during the
plastic protocol, where the load stage produces a greater absolute value of WS than during
unloading (notice that WS takes a negative value over the [0, τ/2) time interval and a
positive value over [τ/2, τ]); see Figure 5a,b. As a result, indentations with hmax = 9.5 Å
systematically lead to negative WS; see Figure 5c. Interestingly, our analysis indicates that
the WS histograms exhibit relatively similar moments irrespective of the thermostat cou-
pling, with an expected WS value of≈ −370 eV and a variance of σ2 ≈ 3000 eV2. Somewhat
unexpectedly, the WS distribution from the indentations with Langevin-thermostatted par-
ticles slightly differs from the deterministic approaches, as it only exhibits some left-hand
skewness (γ ≈ 0.4). Our results from the plastic protocol indicate that the the left-hand side
of the JE is uncomputable as

〈
e−βWJ

〉
→ 0; see the table in Figure 5c).

The resulting thermal fluctuations obtained in the plastic protocol are assessed through
the Ktot and 〈Ktot〉 distributions shown in Figure 5d,e, respectively. Upon the occurrence
of plastic deformations in the crystal, the 〈Ktot〉 distributions from the indentations with
strong system–bath coupling substantially differ in terms of the employed thermostat.
Moreover, the indentations with a strong coupling show that the simulations using the
Langevin thermostat lead not only to a wider normally distributed 〈Ktot〉 histogram than
that obtained with the NH thermostat (with σ2 = 0.223 eV2 and 0.045 eV2, respectively)
but also to statistically larger values of 〈Ktot〉; see Figure 5d. This essentially highlights the
differences in performance of stochastic vs. deterministic thermostats. On the other hand,
the indentations with the system weakly coupled to the thermal bath produce Ktot bimodal
distributions as a result of the thermal fluctuations obtained before and after the onset of
plasticity in the crystal. In addition, when thermostatting is effectively inoperative in the
plastic protocol, the thermal fluctuations during indentation become markedly wild, and
thus, the 〈Ktot〉 distributions shift toward larger values and become much wider, with a
variance of σ2 ≈ 120 eV2 as compared with the indentations with thermostatted particles
(σ2 < 1 eV2); see Figure 5e.
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Figure 4. Single realizations of the plastic protocol (hmax = 9.5 Å) with the four different thermostat
couplings. The Hamiltonian of the particle system prior to indentation,H(q, p, qc(0)), is identical in
each realization. (a,b): P− h and P− t/τ curves, respectively. The process exhibits the emergence
of irreversibility due to the indenter-induced plastic deformations in the crystal evidenced by the
utterly mismatched load and unload paths. The gray line in panel (a) represents the elastic fit given
by the Hertzian contact theory, where P∼(h′)3/2. Note in (a) that departure from the elastic behavior
(highlighted with a red circle) manifests the inception of plasticity. (c) Ktot − t/τ evolution during
the indentations with hmax = 9.5 Å. The dashed horizontal line in (c) marks macroscopic kinetic
temperature, K′tot = (3NkBT)/2, expected with T = 300 K and N = 39,204 atoms.

Figure 5. Work and kinetic energy fluctuations as a function of the thermostat coupling during the
plastic protocol. (a,b): Evolution of dWS and WS in terms of t/τ. The plots concern a single real-
ization using NH-thermostatted particles. (c): WS histograms from 1000 realizations. WS stands for
WS(t = τ) obtained by means of Equation (26). (d,e): Ktot and 〈Ktot〉 histograms from 1000 real-
izations. The quantity 〈Ktot〉 corresponds to the averaged value of Ktot over τ obtained for each
individual realization.
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4. Conclusions

In this work, we study the effect that different deterministic and stochastic thermostats
have on the mechanical and thermal properties of an indented Ta crystal. We perform MD
simulations with unthermostatted and NH- and Langevin-thermostatted particles. The
NH thermostats are characterized by the parameter ωp. With ωp = 100 dt, the NH bath
effectively acts on the system while the NH thermostat with ωp = 100,000 dt allows only a
limited exchange of energy between the system and the bath.

We present a systematic analysis of the work and kinetic fluctuations obtained in two
distinct indentation protocols that produce reversible elastic and non-reversible plastic
deformations in the crystal. Our main observations are summarized as follows:

1. In our indentation simulations, the system–bath coupling prescribed by the ther-
mostats has a clear effect on the resulting work fluctuations. This is crucial when
it comes to obtaining appropriate work statistics that enable free-energy difference
calculations by means of the JE and related expressions.

2. In the MD indentations with unthermostatted and NH-thermostatted (with ωp = 100,000 dt)
particles, the instantaneous kinetic energy of the system exhibits wild fluctuations
when non-reversible plastic deformations are induced in the crystal.

3. The absence or presence of a stochastic thermostat in the dynamics of the particle
system respectively represent the cases considered by the Hamiltonian and Langevin
derivations of the JE. We find that the differences between the two approaches are
substantial and bring about non-negligible effects in the calculation of the left-hand
side of the JE. Such differences are clearly observable in the work distributions obtained
under the fully reversible elastic protocol.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/e24091309/s1, Figure S1: Effect of the NH thermostat frequency ωp on the indentation load
and kinetic energy fluctuations during the plastic protocol with hmax = 9.5 Å, Figure S2: The effect of
the damping factor γL on the load-penetration curves and on the time evolution of the kinetic energy
of the system, Figure S3: Atomistic snapshots captured during the elastic protocol (hmax = 3.5 Å) with
NH-thermostatted particles (ωp = 100 dt), Figure S4: Atomistic snapshots captured during the elastic
protocol (hmax = 9.5 Å) with NH-thermostatted particles (ωp = 100 dt) [23–31].
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22. Varillas, J.; Očenášek, J.; Torner, J.; Alcalá, J. Unraveling deformation mechanisms around FCC and BCC nanocontacts through slip

trace and pileup topography analyses. Acta Mater. 2017, 125, 431–441. [CrossRef]
23. Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [CrossRef] [PubMed]
24. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [CrossRef]
25. Shinoda, W.; Shiga, M.; Mikami, M. Rapid estimation of elastic constants by molecular dynamics simulation under constant stress.

Phys. Rev. B 2004, 69, 134103. [CrossRef]
26. Plimpton, S.; Thomson, A.; Crozier, P.; Kohlmeyer, A. LAMMPS Massive-Parallel Atomistic Simulator Manual. 2022. Available

online: https://lammps.sandia.gov/doc/Manual.html (accessed on 3 July 2022).
27. Cai, W.; Li, J.; Yip, S. 1.09-Molecular Dynamics. In Comprehensive Nuclear Materials; Konings, R.J.M., Ed.; Elsevier: Oxford, UK, 2012;

pp. 249–265.
28. Schneider, T.; Stoll, E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions.

Phys. Rev. B 1978, 17, 1302–1322. [CrossRef]
29. Evans, D.J.; Morris, G. Statistical Mechanics of Nonequilibrium Liquids, 1st ed.; ANU E Press: Canberra, Australia, 2007.
30. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO the Open Visualization Tool. Model. Simul. Mater.

Sci. Eng. 2010, 18, 015012. [CrossRef]
31. Honeycutt, J.D.; Andersen, H.C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem.

1987, 91, 4950–4963. [CrossRef]

http://doi.org/10.1088/1742-5468/2004/09/P09005
http://dx.doi.org/10.1103/PhysRevLett.98.108301
http://www.ncbi.nlm.nih.gov/pubmed/17358574
http://dx.doi.org/10.1063/1.2948948
http://www.ncbi.nlm.nih.gov/pubmed/18624523
http://dx.doi.org/10.1103/PhysRevLett.106.250601
http://dx.doi.org/10.1103/PhysRevE.85.020103
http://dx.doi.org/10.1088/0031-8949/89/04/048002
http://dx.doi.org/10.1103/PhysRevLett.100.020601
http://dx.doi.org/10.1103/PhysRevE.94.022143
http://dx.doi.org/10.1002/aic.17082
http://dx.doi.org/10.1063/5.0071001
http://dx.doi.org/10.1063/1.1749657
http://dx.doi.org/10.1103/PhysRevX.7.011008
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://www.ncbi.nlm.nih.gov/pubmed/23168354
http://dx.doi.org/10.1103/PhysRevE.98.032146
http://dx.doi.org/10.1103/PhysRevX.7.021051
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1103/PhysRevB.88.134101
http://dx.doi.org/10.1016/j.actamat.2021.117122
http://dx.doi.org/10.1080/00268979600100761
http://dx.doi.org/10.1016/j.actamat.2016.11.067
http://dx.doi.org/10.1103/PhysRevA.31.1695
http://www.ncbi.nlm.nih.gov/pubmed/9895674
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1103/PhysRevB.69.134103
https://lammps.sandia.gov/doc/Manual.html
http://dx.doi.org/10.1103/PhysRevB.17.1302
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1021/j100303a014


1 

Supplementary information to the manuscript “Work 

and Thermal Fluctuations in Crystal Indentation under 

Deterministic and Stochastic Thermostats: The Role of 

System-Bath Coupling” 

Javier Varillas1 and Lamberto Rondoni2,3

1 Institute of Thermomechanics, Czech Academy of Sciences, 18200 Prague, Czechia

2 Dipartimento di Scienze Matematiche, Politecnico di Torino, 10125 Turin, Italy; 

lamberto.rondoni@polito.it

3 INFN, Sezione di Torino, Via P. Giuria 1, 10125 Turin, Italy



2 
 

S1. The Nosé-Hoover thermostat 
 

𝑁𝑉𝑇 dynamics employ the Nosé-Hoover (NH) chains [1, 2] that introduce k additional degrees of 

freedom 𝜉𝑘 in the 6𝑁-dimensional phase space, thus mimicking the heat transfer from a (large) reservoir, 

or thermal bath, with temperature 𝑇ext.  

The time evolution of a phase space point, 𝚪(𝒓𝑖, 𝒑𝑖 , 𝜉1, … , 𝜉𝑀 , 𝑝𝜉1
, … , 𝑝𝜉𝑀

)
𝑁𝑉𝑇

, is described by the 

following EOM [3], 

�̇�𝑖 =
𝒑𝑖

𝑚𝑖
         𝑖 = 1, … , 𝑁,                                                                 (S1) 

�̇�𝑖 = 𝒇𝑖 −
𝑝𝜉1

𝑄1
 𝒑𝑖 ,                                                                    (S2) 

�̇�𝑘 =
𝑝𝜉𝑘

𝑄𝑘
    𝑘 = 1, … , 𝑀 ,                                                              (S3) 

�̇�𝜉1
= ∑  

𝑁

𝑖=1

𝒑𝑖
2

𝑚𝑖
− (𝑁f + 𝑑2)kB𝑇ext − 𝑝𝜉1

𝑝𝜉2

𝑄2
 ,                                              (S4) 

�̇�𝜉𝑘
= (

𝑝𝜉𝑘−1

𝑄𝑘−1
− kB𝑇ext) − 𝑝𝜉𝑘

𝑝𝜉𝑘+1

𝑄𝑘+1
    for    𝑘 = 2, … , 𝑀 − 1 ,                            (S5) 

Here, 𝑄𝑘 is the “mass” of the 𝑘th thermostat that tunes the fluctuations of the system’s temperature 𝑇 [4]. 

𝑁f is the number of degrees of freedom (=3𝑁), 𝑑 the system’s dimension, 𝑀 the number of NH chains, kB 

is the Boltzmann’s constant, and 𝜉𝑘 and 𝑝𝑘 are, respectively, the thermostat variable (extra 𝑀 degrees of 

freedom) and conjugate momentum of the 𝑘th thermostat. Note that 𝑇 is not a strictly conserved quantity 

in the dynamics but, rather, it is a quantity numerically controlled by an external body (i.e., the heat bath 

modeled by imposing the above degrees of freedom) which fluctuates around the defined value for the 

bath’s temperature 𝑇ext [3].  

It is demonstrated in Ref. [4] that the thermostat masses 𝑄𝑘 should satisfy 𝑄1 = 𝑁fkB𝑇ext/𝜔p
2 and 𝑄𝑘 =

kB𝑇ext/𝜔p
2 (for 𝑘 = 2, … , 𝑀 − 1), where 𝜔p is the frequency at which the particles are thermostatted. Then, 

to evaluate the effect of 𝜔p on the thermostatting properties in our MD indentations, we run additional MD 

simulations of the plastic protocol with NH-thermostatted particles with distinct values of 𝜔p (see Section 

2 of the main text for further details on the computational methodology). Figure S1 shows the resulting 

indentation load and kinetic energy fluctuations under a wide range of thermostat frequencies 𝜔p, varying 

from 𝜔p = 1d𝑡 to 𝜔p = 100,000d𝑡, where d𝑡 = 2 fs. It is observed that low frequencies (𝜔p < 10d𝑡) lead 

to wild fluctuations in both temperature and kinetic energy, while large frequencies (𝜔p > 10,000d𝑡) result 

in roughly constant-energy dynamics due to the poor contribution of the thermostat. In light of these results, 

we adopt 𝜔p = 100d𝑡 for the indentations where the particles are strongly coupled with the bath, whereas 

in the simulations with weak coupling we employ 𝜔p = 100,000d𝑡. Notice that the above quantity 

surpasses the time process of the plastic protocol (𝜏pl = 190 ps, cf. Fig. 1(c) in the main text). 
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Figure S1. Effect of the NH thermostat frequency 𝜔p on the (a) indentation load (𝑃) and (b) kinetic energy fluctuations 

during the plastic protocol with ℎmax = 9.5 Å. The number of NH chains is set to 𝑀 = 3 and the bath’s temperature to 

𝑇ext = 300 K. Large frequencies (i.e., 𝜔p > 10,000d𝑡) lead to a poor contribution of the thermostat in the dynamics. 

On the other hand, fluctuations in the kinetic energy increase by decreasing 𝜔p. Extremely small thermostat 

frequencies (𝜔p < 10 ∆𝑡) undergo unrealistic 𝑁𝑉𝑇 dynamics, where wild kinetic fluctuations appear with 𝜔p = 1 ∆𝑡, 

see (b). 

 

S2. The Langevin thermostat 
 

Langevin dynamics assume that the particles suffer collisions with much lighter ones, which 

effectively represent the interaction with a heat bath at 𝑇ext [5]. This approach mimics the conditions in 

which the system’s particles interact with a background implicit solvent [6]. The collisions are then 

described by a friction term, − 𝒑𝑖/𝛾L, and a stochastic random force, 𝜼(𝑡). The Hamiltonian equations of 

motion (EOM) [7] are coupled to the Langevin equation for the Brownian motion [8], thus leading to the 

EOM of Langevin dynamics 

�̇�𝑖 =
𝒑𝑖

𝑚𝑖
          𝑖 = 1, … , 𝑁,                                                          (S6) 

and 

𝑚𝑖�̈�𝑖 = 𝒇𝑖 −
𝑚𝑖

𝛾L
�̇�𝑖 + 𝜼(𝑡) .                                                       (S7) 

Here, 𝒇𝑖 is the conservative force computed via the usual interparticle interactions. The friction term is a 

frictional drag or viscous damping term proportional to the velocity of particle i, �̇�𝑖. The proportionality 

constant for each atom is computed as 𝑚𝑖/𝛾L, where 𝛾L is the Langevin damping factor in units of reciprocal 

time. 𝜼(𝑡) is a stochastic force due to solvent atoms at temperature 𝑇ext that randomly bump into the particle 

i, and whose magnitude is proportional to 𝜼(𝑡) ∝ √(𝑚𝑖kB𝑇ext)/(𝛾Ld𝑡)  [8], as derived from the 

fluctuation/dissipation theorem [9]. Langevin dynamics allows the system’s temperature to be controlled 

similarly to the NH thermostat, where the probability distribution also approximates the canonical 

distribution. Notice in Eq. (S7) that the larger the damping coefficient 𝛾L, the faster the kinetic energy of 

the system is effectively reduced. In other words, 𝛾L determines how rapidly the temperature is relaxed.  

We then assess the effect of 𝛾L on the thermostatting properties in our MD indentations by performing 

additional MD simulations of the plastic protocol with Langevin-thermostatted particles with distinct values 
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of 𝛾 (see Section 2 of the main text for further details on the computational methodology). Figure S2 shows 

the indentation load and kinetic energy fluctuations from these simulations under varying values of the 

damping factor 𝛾L, ranging from 𝛾L = 0.01 ps−1 to 𝛾L = 10,000 ps−1. Given these results, we adopt for 

our simulations with Langevin-thermostatted particles analyzed in the main text a damping factor of 𝛾L =

1 ps−1, which produces a coupling (of the particles with the thermal bath) similar to that produced by the 

NH thermostat under 𝜔p = 100d𝑡; compare the 𝐾tot fluctuations in Figs. S1(b) and S2(b). 

 

 

 

Figure S2. The effect of the damping factor 𝛾L on (a) the load (𝑃)-penetration (ℎ) curves and on (b) the time evolution 

of the kinetic energy of the system, 𝐾tot. The simulations were carried out following the plastic protocol with             

ℎmax = 9.5 Å.   
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S3. Reversible vs. non-reversible deformations in our crystal indentations 
 

 

 

Figure S3.  Atomistic snapshots captured during the elastic protocol (ℎmax = 3.5 Å) with NH-thermostatted particles 

(𝜔p = 100d𝑡). Atomistic visualization was conducted in the OVITO software [10], whereas the common neighbor 

analysis (CNA) algorithm [11] was employed to calculate the local crystalline structure around the constituent atoms. 

Note that the uncoordinated (gray) atoms at the top and bottom of the MD cell represent free surfaces. The perturbation 

during loading leads to the formation of an elastic imprint on the indented surface, which is fully recovered upon 

unloading.  
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Figure S4. Atomistic snapshots captured during the plastic protocol (ℎmax = 9.5 Å) with NH-thermostatted particles 

(𝜔p = 100d𝑡). Atomistic visualization was conducted in the OVITO software [10], whereas the common neighbor 

analysis (CNA) algorithm [11] was employed to calculate the local crystalline structure around the constituent atoms, 

which allows for the detection of crystalline defects in the Ta BCC crystal associated with uncoordinated (gray) atoms. 

Note that the uncoordinated atoms at the top and bottom of the MD cell represent free surfaces. In the plastic protocol, 

the perturbation during loading leads to the generation of crystalline defect at the inception of plasticity at (𝑃c, ℎc )‒

see Fig. 4(a) in the main text. With increasing indenter-tip penetrations, the nucleated defects evolve to form a defect 

structure beneath the indented surface. A plastic imprint is formed during loading that remains in the crystal’s surface 

upon unloading. Similar crystalline processes are observed in the MD indentations with unthermostatted and 

Langevin-thermostatted particles. 
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