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3 Dipartimento di Fisica, Università di Roma “La Sapienza”, Rome, Italy

4 School of Physics, University College Dublin (UCD), Dublin, Ireland
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Abstract

Mathematical relations concerning particles systems require knowledge of the applica-

bility conditions to become physically relevant and not merely formal. We illustrate this

fact through the analysis of the Jarzynski equality (JE), whose derivation for Hamiltonian

systems suggests that the equilibrium free-energy variations can be computational or ex-

perimentally determined in almost any kind of nonequilibrium processes. This apparent

generality is surprising in a mechanical theory. Analytically, we show that the quan-

tity called “work” in the Hamiltonian derivation of the JE is neither a thermodynamic

quantity nor mechanical work, except in special circumstances to be singularly assessed.
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Through molecular dynamics simulations of elastic and plastic deformations induced via

nanoindentation of crystalline surfaces that fall within the formal framework of the JE,

we illustrate that the JE cannot be verified and that the results of this verification are

process dependent.

1 Introduction

Statistical mechanics provides an atomistic perspective to the properties of physical sys-

tems through the correlation of mechanical and thermodynamic quantities. Certain con-

ditions must be however veried in the physical system so that the formal mechanical

expressions indeed become thermodynamically relevant [1–6]. In particular, expected val-

ues of observables dominated by the tails of their probability distributions are hard not

only to estimate, but also to relate to physically measurable quantities. Furthermore,

emergent phenomena make certain theoretical frameworks physically insignificant, in par-

ticular non predictive, and require different approaches [5]. Since this depends on both

the details of the process and the observable of interest, individual case-by-case analyses

are required.

The Jarzynski equality (JE) has been experimentally verified mainly in small sys-

tems evolving in low dimensional spaces whose dynamics are well described by Langevin

equations Ref.[7].[8] The original derivation of the JE concerns deterministic Hamiltonian

systems [9], and its general version given in Ref.[10] suggests that practically any kind of

nonequilibrium process allows the calculation of equilibrium free energy variations of the

system under investigation. Such an apparent universality raises interesting questions,

even of foundational nature.

The mechanical derivation of the JE presented in Ref.[10] takes full advantage of the

canonical statistics in order to correlate the work done on a particle system (usually

under non-equilibrium) as one parameter of its Hamiltonian is varied over time while the

free energy is allowed to change. This derivation is based on two main ingredients: (i)

the effect of the work on the Hamiltonian, which is assumed to exclusively change one

parameter λ from an initial value α to a final value ω, and (ii) the canonical ensemble at

a given temperature T . Once this framework is accepted, the JE becomes fully prescribed

regardless of the process that shifts λ from its initial to its nal value. It however remains to

be checked whether the conditions of the derivation are met by the systems of interest, or
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are violated by e.g. emergent phenomena. Related publications, such as those discussing

optimal protocols [11–14], support the use of the JE, while others express concern [15–17].

In a recent paper, we investigated the applicability of the JE to a variable-volume

Hamiltonian system [18]. We found that the JE is not as universal as commonly believed,

since it does not apply to such a paradigmatic case. In this present paper, instead, we

consider instead a system fully described by the Jarzynski Hamiltonian. We give a special

attention to the presumed universality of the process that links the initial Hamiltonian

with the final one.

Firstly, we observe that the JE does not compute the free energy difference of the bare

system of interest, except in special cases (as, for instance, those described in Ref.[19]). In

principle, it gives an expression to compute the solvated free energy, which expresses an

important property of the system of interest in interaction with its environment. Secondly,

we perform molecular dynamics simulations to investigate a crystal nano-indentation pro-

cess that fully complies with the Jarzynski formal setting. In this case, the spherical

nanoscopic tip, modeled by a repulsive potential whose center moves in time, pulls down-

ward the crystal’s surface. We analyze two indentation processes that induce elastic and

plastic deformations. In both cases, the Hamiltonian returns to its initial form at the end

of the process. Although this fits the Jarzynski scheme in a system that is not particu-

larly large, detailed analyses show that the JE cannot be successfully applied to either of

these indentation processes. We argue that these findings are due to sampling difficulties

under large values of work, as anticipated in the original JE paper [9].[20] Indeed, the

exponential structure of the JE and the form of the canonical ensemble make prohibitive

the use of the JE for macroscopic systems; see e.g. Ref.[19, 21].

Our present analysis points out that the method suggested by the JE may prevent a

proper exploration of the relevant parts of the phase space, even if the system is small and

the process quite mild. Moreover, it is stressed that the currently observed sampling dif-

ficulties underlie fundamental limitations when the JE is applied to analyze plastic defor-

mation processes, which microscopically correspond to phases trapped in a limited region

of the phase space. These limitations are, indeed, analogous to the strongly irreversible

systems examined in Ref.[22], which fail to recover their initial state after perturbation.

Since this feature cannot be solved through improved statistics, a modification of the JE

appears to be at issue.
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2 The Jarzynski equality and its meaning

Following Ref.[10], we consider an N -particle system S interacting with an environment

E made of M particles. The combined system is then denoted as S+E, which is made

of N + M particles. Let Γ = (x, y) represent a mechanical state of S+E in the phase

space M, with x = (qS, pS) with coordinates vector qS = (q1, ..., qN ) and momenta pS =

(p1, ..., pN ) of S, and y = (qE, pE) representing E, with qE = (qN+1, ..., qN+M ) and pE =

(pN+1, ..., pN+M ).

Suppose an external agent perturbs S in such way that only the energy HS of S is

affected, where the energy HE of E and the energy of the interaction between S and

E, hint, are not directly affected. While this is not a general condition in Ref.[18], it

is our purpose to focus on systems for which this assumption holds. Moreover, let the

perturbation be described by a time dependent parameter, λ ∈ R, that varies according to

a specified rule λ(t), with t ∈ [0, τ ], λ(0) = α and λ(τ) = ω. Under these assumptions, the

dynamics of the particles of the combined system S+E may be described by the following

Hamiltonian:

H(Γ;λ) = HS(x;λ) +HE(y) + hint(x, y) (1)

For sake of simplicity, and as commonly done, let us assume that the external agent acts

on such a mechanical system by exerting on the particles of S forces that derive from an

external potential Φ:

Fi = −
∂Φ

∂qi
, i = 1, ..., N . (2)

The Hamiltonian system S+E is initially in thermodynamic equilibrium with a heat bath

B at temperature T . Hence, its initial phases are distributed according to the canonical

ensemble with parameter λ(0) = α:

fα(Γ) =
e−βH(Γ;α)

QS+E(α)
, with QS+E(λ) =

∫

e−βH(Γ;λ)dΓ, (3)

where β = 1/kBT , and QS+E(λ) is the canonical partition function of a system at temper-

ature T , with Hamiltonian H(Γ;λ). At time t = 0, when the phase of S+E is Γ0 = (x0, y0),

the energy is H(Γ0;α) and S+E is separated from B. Then, λ is allowed to change for

t ∈ (0, τ ].

Let St
λ : M → M denote the evolution operator for time t, for the phases in M,
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meaning that an initial phase Γ ∈ M turns into St
λΓ ∈ M at time t. The process stops at

time t = τ , when λ(τ) = ω, and the Hamiltonian of S+E is expressed by H(Γ;ω). On the

other hand, the energy of a realization of the process with initial condition Γ0 is given by

H = H(Γτ ;ω), where Γτ = (xτ , yτ ) = Sτ
λΓ0 denotes the final phase. Although obvious,

it is important to remark the difference between the energy of the system at the end of

the process, which is H(Γτ ;ω), and the Hamiltonian with parameter λ = ω at a generic

phase point Γ, which is H(Γ;ω). The former, indeed, is not the Hamiltonian, but the

composition of the Hamiltonian with the time evolution up to time τ , Sτ
λ.

Let qi(t; Γ) be the coordinates of particle i at time t, along the phase space trajectory

starting at Γ, and pi(t; Γ) the corresponding momenta. Then, in the time interval [0, τ ], the

external agent determining the variation of λ performs a mechanical work on S, expressed

by:

W
[

St
λΓ; 0 ≤ t ≤ τ

]

=

∫ τ

0
ds

N
∑

i=1

q̇i(s; Γ) · Fi(S
s
λΓ) (4)

which, in this deterministic framework, depends only on the initial condition Γ and on the

chosen function λ = λ(t). For such a process, W can take positive, null and also negative

values depending on Γ. In the Jarzynski theory, the term “work” is used, instead, for a

different quantity, which we denote as WJ, and is defined by

WJ

[

St
λΓ; 0 ≤ t ≤ τ

]

=

∫ τ

0
ds λ̇(s)

∂HS

∂λ
(xs;λ(s)) . (5)

Obviously, this corresponds to mechanical work when λ represents a position in space and

the derivative of HS with respect to λ is a force [23]. Because the following holds:

∂HS

∂t
= λ̇

∂HS

∂λ
= λ̇

∂H
∂λ

=
∂H
∂t

=
dH
dt

, (6)

one obtains

WJ

[

St
λΓ; 0 ≤ t ≤ τ

]

= H(Sτ
λΓ;ω)−H(Γ;α) . (7)

Eq.(7), exponentiated and averaged over the canonical ensemble at temperature T and

parameter λ = α, straightforwardly leads to

〈

e−βWJ

〉

α
=

1

QS+E(α)

∫

e−βWJ (Γ)e−βH(Γ;α) dΓ =
QS+E(ω)

QS+E(α)
= e−β

[

FS+E(ω)−FS+E(α)
]

(8)

where ∆FS+E = [FS+E(ω)− FS+E(α)] is the difference of the free energies of S+E in the
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canonical equilibrium at temperature T and parameters ω and α, respectively. Given the

exponential form of the quantity to be averaged in Eq.(8), it is readily seen that large

negative values of WJ give important contributions, even if they are very unlikely in the

canonical ensemble fα.

As far as we understand, the desired result in Refs.[9, 10] is not ∆FS+E, but the free

energy difference for the system S alone, defined by

∆FS = [FS(ω)− FS(α)] , FS(λ) = −β−1 lnQS(λ) , QS(λ) =

∫

dx e−βHS(x;λ) (9)

The quantity FS is the “intrinsic” free energy of S; it is particularly interesting when hint

vanishes. Jarzynski indeed originally assumed that hint is negligible compared to HS and

HE [9]. In that case, and under the assumption that S remains isolated, it follows that

FS+E(λ) = FS(λ) + FE , λ = α, ω and ∆FS+E = ∆FS (10)

since in the difference, the free energy of E cancels out. However, this framework is not

satisfactory for the kinds of experiments that the JE is mainly supposed to describe.

When hint is not negligible, it becomes appropriate, as argued also by Jarzynski [24], to

consider a quantity that accounts for such interaction, and that is called solvated free

energy. The derivation of the JE then proceeds introducing the following Hamiltonian

H∗
S(x;λ) = HS(x;λ)−

1

β
ln

∫

dye−β[HE(y)+hint(x,y)]

∫

dye−βHE(y)
(11)

which was proposed by Kirkwood [25] to treat subsystems of macroscopic dense fluids in

thermodynamic equilibrium.[26] This is the energy of S, HS, referred to the interaction

energy averaged over the variables of E, which essentially amounts to a potential of mean

force. Its meaning can be understood in terms of the marginal probability of the particles

of S in E:

pS(x;λ) =

∫

dy fλ(x, y) =
e−βHS(x;λ)

QS+E(λ)

∫

dy e−β{HE(y)+hint(x,y)} (12)

whose associated Landau free energy takes the form

− 1

β
log pS(x;λ) = − 1

β
log

[

e−βHS(x;λ)

QS+E(λ)

∫

dy e−β{HE(y)+hint(x,y)}

]

= FS+E(x;λ) . (13)

6

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
71

00
1



Accepted to J. Chem. Phys. 10.1063/5.0071001

This shows that H∗
S is the effective Hamiltonian of S in S+E. Indeed we can write:

H∗
S(x;λ) = FS+E(x;λ) −

1

β
log

QS+E(λ)

QE
= FS+E(x;λ) + constant , (14)

where the constant is absorbed by the normalization condition. The associated canonical

partition function takes the form

Q∗
S(λ) =

∫

dx e−βH∗

S
(x;λ)dx =

∫

dx e−βHS(x;λ)

∫

dy e−β[HE(y)+hint(x,y)]

∫

dy e−βHE(y)

=

∫

e−βH(Γ;λ) dΓ
∫

e−βHE(y) dy
=

QS+E(λ)

QE
.

(15)

The logarithm of Q∗
S(λ) multiplied by −β yields:

F ∗
S (λ) = FS+E(λ)− FE , i.e. FS+E(λ) = F ∗

S (λ) + FE , (16)

where F ∗
S (λ) = −β−1 lnQ∗

S(λ) is the “solvated” free energy, that can be interpreted as the

free energy of a hypothetical system S∗ with Hamiltonian H∗
S, or of “S in E”, and

FE = −β ln

∫

e−βHE(y) dy (17)

is the free energy of E alone in thermodynamic equilibrium at temperature T . Now, the

free energy of S+E is given by the sum of the two contributions, taken separately, as if

S∗ and E were not interacting, or the interaction was negligible. It follows that

[

FS+E(ω)− FS+E(α)
]

=
[

F ∗
S (ω)− F ∗

S (α)
]

≡ ∆F ∗
α→ω (18)

because in this investigation FE does not depend on λ. Therefore, denoting by 〈·〉α a

canonical average with respect to the initial ensemble fα, one can finally write:

〈

e−βWJ

〉

α
= e−β∆F ∗

α→ω , (19)

which is the JE. Could one assume

∆F ∗
α→ω = FS(ω)− FS(α), (20)
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with FS standing for the intrinsic free energy of S defined in Eq.(9), the JE would then

provide the difference of such physically relevant free energy variation from the statistics

of WJ. However, the previous derivation reveals that F ∗
S and FS are far from equivalent.

In fact, when λ = α, F ∗
S depends on the environment in a different fashion than when

λ = ω. On the contrary, FS should not depend on E whatsoever. Apart from such an

unneglectable fact, the derivation of the JE is formally quite general and applicable to

any particle system, under any kind of perturbation of an initial equilibrium state at a

given temperature T . Indeed, no restrictions are imposed on the time dependence of

λ. Summing up, we note that the Jarzynski approach does not separate the degrees of

freedom of S and E unless the interaction term hint is negligible or absent. Then, different

environments lead to different estimates of the solvated free energy F ∗
S which, in general,

differ from the intrinsic free energy FS . In the early Hamiltonian derivations the focus

was on FS . Later, the solvated free energy has become the focus of the Hamiltonian

derivations, which is relevant under strong coupling between S and E.

A related observation concerns WJ. In general, this quantity is directly related neither

to mechanical nor to thermodynamic work, cf. Ref.[18] and references therein. It is not

related to mechanical work since, without further specification, the derivative of HS with

respect to λ is not a force, and dλ = λ̇dt is not an associated elementary displacement. In

particular, the Hamiltonian may depend on a time dependent parameter in many different

fashions that do not correspond to displacements of the external driving mechanism.

Moreover, averaging WJ with respect to the initial ensemble one obtains:

〈WJ〉α =

∫

H(Sτ
λΓ;ω)

e−βH(Γ;α)

QS+E(α)
dΓ−

∫

H(Γ;α)
e−βH(Γ;α)

QS+E(α)
dΓ = U∗(τ, ω)− U(α) , (21)

Here, the second integral, U(α), is the initial internal energy of S+E, because of the

average of the initial Hamiltonian with respect to the initial canonical ensemble. On the

other hand, the first integral, U∗(τ, ω), is the average of the Hamiltonian of S+E with

parameter ω computed in a τ -dependent position:

uω,τ (Γ) = [H(·;ω) ◦ Sτ
λ] (Γ) = H(Sτ

λΓ;ω)

so that it is not the Hamiltonian with parameter ω, but a function of function, with

H(·;ω) as external function, averaged with respect to the initial ensemble fα.[27] Only
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the average of the exponential of WJ, not of WJ itself, appears to be directly associated

with a known physical quantity. Although computable in numerical simulations, WJ and

〈WJ〉α, are hardly relevant in experiments except in particular situations to be identified

case by case [18].

The numerical simulations discussed in the following sections correspond to a case

intentionally chosen so that WJ results a measurable mechanical work. Then, we investi-

gate the presumed process independence of the JE, remaining within the bounds of the

Jarzysnki theory. We show that the process affects the results, as natural in physics.

In particular, we investigate a Hamiltonian system describing indentation on a small

crystal made of O(104) particles. We realize closed work loops, i.e. processes for which

λ(0) = λ(τ) where the right hand side of Eq.(19) should take unity. Thus, we consider the

case involving elastic deformations of the crystal, which is reversible, and should lead to

no surprise. In addition, we study the irreversible case of plastic deformations, in which

the impossibility for the system to close the loop shows an emergent property of (even

relatively small) Hamiltonian systems.[28] In both cases, we find that it is impossible to

verify the JE, although we remain within the Jarzynski framework. As for the claims

that the JE should be invoked in the case of small systems only, we note that the num-

ber of particles of our system is not larger than those of proteins and DNA used in the

experiments assessing the JE [29].

3 Crystal indentation

3.1 The simulation

In the following, we systematically investigate the properties of a small solid indented

by a spherical nanoscopic tip. The solid of interest is a (001)-oriented Ta crystal of size

10.8 × 10.8 × 6 nm3 made of Ntot = 40, 293 particles whose coordinates are denoted by

qi = (xi, yi, zi) i = 1, ..., Ntot . (22)

The particles in the top layer of the solid are free to move whereas those in the bottom

layer are fixed and constitute a rigid flat surface that prevents the downward displacement

of the system during indentation. Periodic boundary conditions are applied on the lateral
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sides of the crystal, see Fig.1(a). In the Jarzynski theory in contact with the rigid flat

can be taken to represent an external field which does not contribute to the number Ntot.

Because only the top layers of the crystal are affected by the action of the indenter, we

may indifferently consider the solid as a whole or just the top N particles as the system

S without any expected change in the numerical results. The remaining M = Ntot − N

particles, which are not brought into contact with the indenter, will then be considered as

the environment E. One way or the other, the dynamics is determined by a Hamiltonian

of the likes of Eq.(1), which turns H = HS in the first case. Note, however, that the

JE is in principle an immediate consequence of the Hamiltonian dynamics and of the

canonical statistics for N = Ntot, while further assumptions are required for N < Ntot.

This ambiguity is consistent with the fact in that the JE only computes the free energy

variations of the whole S+E.

Our investigation comprises an extensive number of all-atom molecular dynamics (MD)

simulations performed with the LAMMPS code [30]. The indenter is modeled by a time-

dependent spherically symmetric, repulsive external potential of finite range, with R =

3 nm and center C of coordinates qc(t) = (xc, yc, zc(t)), defined by:

Φ(q1, ..., qN+M , qc(t)) =

N+M
∑

i=1

ϕ(qi, qc(t)) ; ϕ(qi, qc(t)) =











−kδi(t)
3/3 δi ≤ 0

0 δi > 0
(23)

where k is the indenter stiffness and

δi(t) =
√

(xi − xc)2 + (yi − yc)2 + (zi − zc(t))2 −R (24)

is positive if particle i is outside the range of action of Φ, and negative if it is inside.

The indenter acts on the particles of the solid that lie within a distance R from the

center C, and there is no recoil in the system because the atoms of bottom layer are

fixed. That places our system in the laboratory frame. Here, k is set to 100 eV/Å3(≈

1.6 × 10−10 erg/Å3). This computational approach has been largely employed in MD

investigations of nano-indentation on metal surfaces (cf. Refs.[31–34]). Figure 1(a) depicts

the computational domain of the indentation simulations, which contains the particle

system and the repulsive indenter.

In the present simulations, we take an initial state in which particles lie at their

crystal lattice positions and velocities are taken from a normal distribution with 0 mean
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and a standard deviation chosen to produce a temperature close to T = 300 K. Then, in

order to generate the equilibrium canonical distribution in the phase space of the system

(Eq.(3)), we carry out a preliminary 20-ps thermalization run during which the particles

follow the NV T ensemble where the system’s volume remains fixed and the Nosé-Hoover

thermostat controls the system’s temperature. This allows us to produce a large set of

n initial conditions that sample the canonical distribution fα at T = 300 K, from which

each load-unload indentation process is carried out.

A closed indentation load loop is realized by letting zc move vertically with constant

downward and upward speed, λ̇. The vertical coordinate of the indenter center, zc(t),

then follows

zc(t) = z0 − λ(t) , with |λ̇| = const , λ(t) =











|λ̇|t t ∈ [0, τ/2)

|λ̇|(τ − t) t ∈ [τ/2, τ ]
(25)

where λ reaches its maximum, λmax, at time t = τ/2, with zc(τ/2) = z0 − λmax, and

τ = 2λmax/|λ̇|; see Fig.1(b). Thus, we have λ(α) = λ(ω) . During the indentation run,

the particles dynamics is given by Hamilton’s equations of motion under the following

time-dependent Hamiltonian:

H(Γ) =
N+M
∑

i=1

1

2
mv2i +Ω(q1, ..., qN+M ) + Φ(q1, ..., qN+M , qc(t)) . (26)

where m is the mass of each Ta atom, vi =
√

v2ix + v2iy + v2iz is the speed of particle i. The

constituting Ta particles of the crystal interact with each other via the embedded-atom

method (EAM) potential built by Ravelo et al. [35]. This model is based on concepts from

density functional theory which stipulate that the (potential) energy of atom i, Ωi, is a

function of the spatially dependent electron density. The potential energy of the system,

Ω, is then prescribed by the following EAM functions:

Ω =

N+M
∑

i=1

Ωi , Ωi = E∗(ρi) +
1

2

N+M
∑

i 6=j=1

φ(rij) , ρi =

N+M
∑

i 6=j=1

w(rij) ; (27)

where rij is the distance between atoms i and j; φ is a pairwise, spherically symmetric

interaction potential; ρi is the electron density at site i, which is taken proportional to the

atomic density surrounding the site, and given by a sum of spherically symmetric weights

w evaluated at the pairs distances; E∗(ρi) is the embedding energy, a nonlinear function
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Figure 1: Simulation setup. (a): Schematic representation of the indentation process. The
computational domain contains the particle system of size 3.6R× 3.6R× 2R and the repulsive
spherical indenter of radius R modeled by Eq.(23). Periodic boundaries are applied to the
lateral sides of the cells. The indented top surface is free while the atomic positions in the
bottom atomic layer are fixed to prevent the downward displacement of the particle system
during indentation. The vertical coordinate of the indenter center, zc, is plotted in (b) as a
function of the process time τ . (c): Evolution of the quantity (λ − ∆)/R as a function of t
in the elastic and plastic cases with |λ̇| = 10 m/s whose process times are τel = 70 ps and
τpl = 190 ps, respectively.

of the electron density; and φ is expressed by

φ(r) =























−U0

(

1 + r∗ + β3r
∗3 + β4r

∗4
)

e−r∗ 0 ≤ r ≤ rs

U0(rc − r)s
∑4

i=1 ai(rc − r)i−1 rs < r ≤ rc

0 r > rc

(28)

where r∗ = αp(r/r1 − 1) and αp, r1, rc, rs, s, U0, β3, β4 are fitting parameters adjusted to

Ta atoms [35].

Note that no thermostat is coupled to S+E during the indentation process, as required

by Jarzynski’s theory. The integration timestep is set to 2 fs in all of the MD simulations.

3.2 Computation of work fluctuations during indentation

The simulated particles may be indifferently taken to constitute S+E, or just S, as the

short range potential Φ only affects the first few atomic layers of the solid, and the

particles close to the bottom flat do not approach those at the top layers in any physically

imaginable time. In particular, taking E as the bottom half of the solid, so that N = M ,

is more than sufficient to make sure that the indenter does not contact the environment;

see Fig.1.

The repulsive force exerted on particle i, Fi = −(∂Φ/∂qi), where Φ is the only time-

dependent term in the Hamiltonian, is given by:

(Fix, Fiy, Fiz) =











kδ2i (xi − xc, yi − yc, zi − zc) /(δi +R) δi ≤ 0

0 δi > 0
(29)
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The elementary mechanical work done by the indenter on S is expressed in terms of the

elementary particle displacements, dqi = (dxi,dyi,dzi), through

dWI→S =
N
∑

i=1

Fi · dqi =
N
∑

i=1

k δ2i η(δi)

δi +R

[

(xi − xc)dxi + (yi − yc)dyi + (zi − zc)dzi

]

, (30)

where η is the step function: η(δi) = 1 for δi ≤ 0, and η(δi) = 0 for δi > 0. The elementary

work done on the indenter by S, which involves instead the elementary displacements of

the indenter, dqc = (0, 0,dzc), and the opposite forces, −Fi, is given by:

dWS→I =
N
∑

i=1

(−Fiz) dzc = −
N
∑

i=1

k δ2i η(δi)

δi +R
(zi − zc) dzc 6= −dWI→S , (31)

moreover dzc = −dλ = −λ̇dt , hence (32)

dWS→I = −
N
∑

i=1

k δ2i η(δi)

δi +R
(zi − zc) (−λ̇) dt =

N
∑

i=1

Fiz λ̇ dt (33)

where the minus sign in the force of particle i on the indenter is derived from the action-

reaction principle. Note that the mechanical works dWI→S and dWS→I differ not only in

the sign, but substantially. Therefore an external operator cannot deduce the work done

on the system WI→S from (external) measurements of WS→I . Under these conditions,

the elementary Jarzynski work (from Eq.(5)), in turn, takes the form

dWJ = λ̇
∂HS

∂λ
dt = λ̇

∂Φ

∂λ
dt =

N
∑

i=1

(−Fiz) λ̇dt = −dWS→I . (34)

WJ equals, in this case, the opposite of the work done by the system on the indenter.

4 Results

In the indentation protocols, we conveniently take z0 separated by a vertical distance

R + ∆ from the crystal’s surface so that the constituting particles are guaranteed to lie

outside the range of Φ at t = 0 and t = τ ; see Fig.1(a). This effectively allows the particles

to arrange initially into an unperturbed Ta bcc crystal configuration during the canonical

thermalization run. The indenter then exerts a localized repulsive force on the particles

when they enter the indenter’s range of action, thus mimicking the mechanical conditions

of ultra-low load indentation experiments using an infinitely rigid indenter tip. For fixed

λ̇ and τ , the imposed λmax value that characterizes the indentation process prescribes
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the minimum value of zc, which is [z0 − λ(τ/2)]; see Fig.1. The load P = −∑N
i=1 Fiz

applied by the indenter is defined as the sum of the vertical, repulsive force contributions

coming from the particles that satisfy δi ≤ 0. Finally, the works defined by Eqs.(30),

(32), and (34) are systematically computed with a fixed range of values of λ, |∆λ| = 5 pm

(=0.05 Å), where dt=|∆λ|/|λ̇|.

4.1 The elastic case

We perform an extensive number of load/unload indentations with fixed λmax = 0.1R +

∆ = 3.5 Å, which characterizes the herein called elastic process. Our analysis includes

a wide range of indentation velocities, |λ̇|, from 1 to 100 m/s, which are nevertheless

microscopically quite slow processes (corresponding to 10−5–10−3 Å/fs in microscopic

units). Thus, the imposed indenter velocities are not exceedingly violent for a particle

system to endure, and the process avoids the emergence of evident irreversibility.

The computation of single-realization runs of the elastic process indicates that per-

turbations of the crystal with |λ̇| < 50 m/s lead to elastic contacts of the indenter with

the particle system. Under these conditions, the unloading stage approximately traces

back the mechanical path followed during loading, thus manifesting reversibility in the

protocols. This is shown in Fig.2(a) and (b), where the applied indentation load, P ,

is plotted against λ and the normalized time t/τ , respectively. The elastic load-unload

curves adhere to the continuum Hertzian solution that follows P ∼ (λ−∆)3/2 [36].

The reversibility of the elastic perturbation also becomes evident in the work vs. λ

plots in Fig.3(c). In the same vein, Fig.3(d) shows the symmetry of both WS→I and WJ

as a function of t/τ . Note that the sharp points at t = τ/2 in Figs.2(b) and 3(d) is due

to the fact that the motion of the indenter is inverted while the exerted forces from the

indenter at t = (τ/2)− and t = (τ/2)+ remain the same. Thus, along the time interval

[0, τ ], the absolute values of WJ and WS→I gradually increase from 0 to the maximum

value at time τ/2, and then decrease during unloading, matching the loading work path.

For comparison, the much more noisy time evolution of the work done on S, WI→S, is

drawn in Fig.3(a). The inset of this figure shows the absolute values of WI→S, which are

continuous increasing functions of time. In this regard, the net values that WI→S takes as

a function of time largely diverge from those of WJ and WS→I , where WI→S(t = τ) ≫ 0;

compare Fig.3(a) with Fig.3(b).
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Figure 2: A single realization of the elastic process at |λ̇| = 10 m/s (τ = 70 ps), where
λmax = 3.5 Å. (a) and (b): P −λ and P − t/τ curves, respectively. In panel (a) the reversibility
of the protocol is revealed by the matching of the load and unload paths. “Loading” and
“unloading” mark the P direction during the the loading, t ∈ [0,τ/2), and unloading, t ∈ [τ/2,τ ],
of the indenter.

Figure 3: Evolution of the three works defined in Eqs.(30)-(34). The plots refer to a single
realization of the elastic protocol at |λ̇| = 1 m/s, with τ = 700 ps. dW stands for work done
in an infinitesimal time dt = 5 ps. (a): dWI→S vs. t/τ , with time average of about 9kBT (at
T = 300 K). The time evolution of WI→S is given in the inset to (a). (b): dWJ and dWS→I vs.
t/τ . (c) and (d): Evolution of WJ and WS→I as functions of λ and t/τ , respectively. In the
inset to (a), in (c) and in (d) the works are the cumulative sum of the sequence of corresponding
elementary works.
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The probability density function (PDF) describing the resulting WJ-value statistics

from n realizations of a given elastic indentation can be approximated by the general

form of the normal Gaussian distribution,

g(WJ, µ, σ) =
1

σ
√
2π

exp

[−(WJ − µ)2

2σ2

]

, (35)

where µ is the average and σ2 the variance of the WJ data. In all instances, WJ stands

for WJ(τ). Figure 4 shows the resulting PDF of the elastic case, obtained from 1000

realizations. The results of different values for the imposed indenter velocity, |λ̇|, are

considered next; see Fig.4(a). With decreasing values of |λ̇|, one gradually obtains inden-

tations in which the noise associated with P during mechanical loading and unloading is

substantially reduced. Accordingly, the PDFs of the WJ data shift towards µ → 0 with

decreasing |λ̇|; see Fig.4(a). In the event that this yielded to to quasi-static indentation

transformations, with increasingly narrower WJ distributions (σ → 0), one would not

need much statistics in the |λ̇| → 0 limit. For the |λ̇| = 10m/s case, Fig.4(b) shows that

increasing the sample size (n > 500) does not lead to substantial changes in the resulting

WJ distribution.

Using the WJ data from the indentation realizations, the computed average of the

exponential,
〈

e−βWJ
〉

(where in present simulations β = 24.143 pico-erg−1), results in 3.4

and 42.3 for |λ̇| = 10 m/s and 1 m/s, respectively; see Fig.4(a). Using the same data,

the free-energy difference ∆F ∗
α→ω obtained from the JE (Eq.(19)) stabilizes (as visible for

n > 500) at ≈ −0.4 pico-erg for |λ̇| = 1 m/s, and at ≈ −0.12 pico-erg for |λ̇| = 10 m/s,

cf. Fig.9 below. We also observe stabilization of the WJ data moments with increasing

sample size; cf. Fig.4(b). In light of these results, we cannot expect the theoretical result,

∆F ∗
α→ω = 0, to be obtained in any physically sensible observation scale.

Different indentation responses are obtained for indenter speeds |λ̇| larger than 50 m/s.

These indentations are characterized by marked undulations in the P − λ curves; see the

plots in Figs.5(a) and (b) obtained with |λ̇| = 100 m/s. This suggests that we have a

solid-to-solid impact rather than a continuous elastic contact. The results from the single-

realization runs shown in Fig.5(a) reveal that although the unloading force also vanishes

at the end of the loading loop, the load and unload P − λ paths are not identical. Thus,

although the elasticity threshold of the solid is not exceeded, some kind of irreversibility

progressively builds up as the speed of the indenter is increased.
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Figure 4: WJ statistics of the elastic case. (a): WJ histograms under |λ̇| = 1 m/s and 10 m/s.
(b): The resulting PDFs from 100, 500 and 1000 realizations at |λ̇| = 10 m/s, which shows the
saturation of moments with ensemble size n.
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Figure 5: The elastic case performed at |λ̇| = 100 m/s (τ = 7 ps). (a) and (b): load evolution
in a single realization. (c): The PDF of the WJ data from 2000 realizations.
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Figure 6: A single realization of the plastic case at |λ̇| = 10 m/s (τ = 190 ps), where λmax =
9.5 Å. (a) and (b) P −λ and P − t/τ curves, respectively. The grey line in panel (a) represents
the elastic fit given by the Hertzian contact theory, where P ∼ (λ − ∆)3/2. The process is
characterized by irreversibility due to the plasticity evidenced by the utterly mismatched load
and unload paths. Note in panel (a) that departure from the elastic behaviour starts at a
critical load Pc ≈ 0.11 µN at λc ≈ 4 Å.

Finally, we note in Fig.5(c) that the WJ distribution obtained from 2000 realizations

yields a much larger absolute value of the average of WJ (µ = 31.3226 pico-erg, ≈ 756

in dimensionless WJ/(kBT ) units at T = 300 K) as compared to that obtained in the

indentations with smaller |λ̇|, Fig.4. Then, under the fast elastic protocols, Eq.(19) gives

an even worse estimate of the free-energy variation than that obtained in slow elastic

processes.

4.2 Divertissement: The plastic case

Following the view that it does not matter how λ is taken from its initial value to its

final value, we have performed simulations with greater imposed penetrations where the

mechanical response changes drastically. Rather than elastic reversible deformations,

our indentation process with λmax > 4.5 Å leads to (irreversible) crystal plasticity, i.e.

deformations of the crystal that persist in time due to the formation of crystalline defects

underneath the indenter [37]. Then, besides the difficulties encountered to verify the

JE in the purely elastic case, a new condition emerges which is complex to describe

using equilibrium statistical mechanics. Irreversibility thus emerges from the reversible

dynamics of a rather small Hamiltonian system when λmax is increased.

The plastic indentation case studied here is a load/unload process with λmax = 0.3R+

∆ = 9.5 Å; see Fig.1(c). In the simulations, the elastic behaviour is clearly violated at

values of λ ≈ λmax/2 during the loading stage, cf. Fig.6. Therefore, the imposed λmax is

well within the λ range in which plastic features can be observed in the P −λ curves. The

load evolutions obtained in single-realization runs are given in Fig.6.

The resulting P −λ curves are characterized by an early elastic response followed by a

load drop at the inception of plasticity (Fig.6).[38] With increasing λ, further load drops

result from the activation of additional plastic processes in the crystal, where the P − λ
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Figure 7: Evolution of the works WJ, WS→I , WI→S defined by Eqs.(7,30,32) and measured in
erg, for single realizations of the indentation process at |λ̇| = 10 m/s (τ = 190 ps). Panel (a)
illustrates the elementary works dWS→I and dWJ done over an infinitesimal time of dt = 0.5 ps.
Panels (b) and (c) give the evolution of WS→I and WJ as functions of λ and of t/τ , respectively.

evolution fundamentally diverges from the elastic fit. During unloading, the force vanishes

with λ values greater than ∆; e.g. see in Fig.6(a) where λf ≈ 3 Å. In this regard, steep

unloading curves are a fundamental manifestation of the generation of a plastic imprint

induced during the indentation process, which remains in the particle system after the full

removal of the indenter tip from the surface. In addition, this feature leads to an absolute

value of the work done during loading that is greater than that done during unloading,

thus resulting in relatively large WJ; see Fig.7. For further details of such indentation

responses in metals using nanometer-sized indenter tips, see Refs.[34, 37].

When the WJ data is fitted, the resulting PDF reveals a clear tendency to develop

some skewness, while the average and the variance take values of µ ≈ 0.576 nano-erg

(≈ 13, 960 in dimensionless WJ/(kBT ) units) and σ2 ≈ 4.8 nano-erg2. Figure 8 shows the

left-skewed WJ distribution of the plastic process.

Also, note that in the elastic (reversible) case, we obtained larger values for
〈

e−βWJ
〉

α

that range from≈ 3 to ≈ 37 (with n=1000), which are still computable in terms of Eq.(19).

On the contrary, in the case of the plastic (irreversible) indentations with n=2000, we

have large values for WJ, then
〈

e−βWJ
〉

α
converges to 0, and ∆F ∗

α→ω of Eq.(19) cannot be

handled numerically. For instance, we find that the quantity −β 〈WJ〉α is of the order of

O(1022) in the plastic process with n = 2000; see Fig.8. Actually, the numerical analysis

of the right hand side of Eq.(19), which should be 1, drastically misses this target value

in all indentation tests.

5 Discussion

Our MD investigation of indentation on a Ta crystal composed of O(104) atoms completely

fails to reproduce the correct value of the left hand side of Eq.(19), although:

1. the dynamics of S+E and of the indenter are cast in a Hamiltonian formalism;

2. only the energy of S is affected by the moving potential representing the indenter;
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Figure 8: The PDF of the WJ data from 2000 realizations of the plastic case with |λ̇| = 10 m/s.
The curve g represents the Gaussian approximation of the normalized histogram of the WJ/kBT
data.

and

3. the initial conditions on which we estimate the expected values are sampled from a

canonical distribution.

These are the conditions required in the formal derivation of the JE. In addition, our

system is not large and, in the case of the slow elastic indentations, we avoid any evident

onset of irreversibility. Since our numerical analysis can compute WJ, the difficulty of

verifying the JE must then be of a subtler nature than what the formalism readily reveals.

Our first observation is that the problem is not merely statistical. The sampling

problem exists and has been evidenced in various works, beginning with the original

paper [9]. In Ref.[19], it has also been shown that even in the simple case of adiabatic

expansion of an ideal gas, the number of repetitions of the experiment required to verify

the JE grows exponentially with the size of the system. Consequently, the JE rapidly

turns unverifiable, for statistical reasons, even when it correctly represents a property of

the system. To check whether this or more fundamental effects prevented the verification

of the JE, we have performed two tests suggested by one of the referees. For the elastic

indentation cases with |λ̇| = 1 and 10 m/s, we have first computed the following quantity:

V =
〈WJ〉α −∆F ∗

S

kBT
, (36)
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where ∆F ∗
S = 0 corresponds to our cases. It is noted that large values of this quantity

indicate that the verification of the JE may be difficult, thus requiring larger statistics [9].

We have obtained V ≈ 6 and V ≈ 14 for |λ̇| = 1 and 10 m/s, respectively. This first test

suggests that the JE should be verifiable for |λ̇| = 1 m/s and that the outcome should

be closer to the JE prediction than for |λ̇| = 10 m/s. However, we have not been able

to verify the JE in either case. Moreover, the estimation of the free-energy difference for

|λ̇| = 1 m/s is worse than that for |λ̇| = 10 m/s. This is illustrated in Fig.9 in connection

with the second test, where we plot the estimated value of the free energy difference

∆F ∗est
S (n) = −

1

β
ln







1

n

n
∑

l=1

e−βWJ,l






(37)

as a function of the ensemble size n. For |λ̇| = 1 m/s, we find that ∆F ∗est
S gradually

settles at ≈ −0.16 pico-erg (and not at 0) as n grows up to n = 1000. For |λ̇| = 10 m/s,

∆F ∗est
S takes about −0.06 pico-erg, hence closer to 0.

While in some cases improved statistics or statistical techniques may solve the problem,

in other cases the predictions may be simply incorrect. The latter seems to be the case

regarding our numerical simulations of the plastic deformations, which the JE cannot

describe. In this context, it can be useful to consider Refs.[22, 39], which refer to systems

that, after a perturbation, by definition cannot restore their original state.

It is, however, even more interesting to note that the JE may fail even in the absence

of the above extreme (irreversible) situations. In the elastic cases, certain fluctuations of

WJ produced by an external intervention can never be observed despite being apparently

allowed by certain initial conditions. For instance, these fluctuations include deformations

of the crystal working against the action of the indenter, which would translate into

large negative values of WJ. Although weighted with exceedingly low probabilities, these

negative WJ values could give a substantial contribution as they are multiplied by −β

and exponentiated. However, a complete sampling of the canonical ensemble would be

needed, and that results unworkable. Even when possible in principle, it requires an

infinite amount of time. The fact is that the dynamics improperly explores the final

canonical equilibrium at temperature T and λ = ω. The trajectories sampled as typical

from the initial equilibrium ensemble are not suitable to correctly span the range of typical

values of the observables of interest in the final equilibrium state.
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Figure 9: Estimated values of the free-energy difference associated to the elastic indentation
processes. The quantity ∆F ∗est

S defined by Eq.(37) is plotted as a function of the ensemble
size n, using the data from the MD indentations with |λ̇| = 10 m/s (a) and 1 m/s (b). The
discontinuities in the values of ∆F ∗est

S (n) gradually decrease with growing n, as expected.
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These observations concern both elastic and plastic deformations occurring in the

crystal. In the latter, energy is lost in the unloading stage of the hysteresis cycle. In

particular, plastic deformations manifest the emergence of irreversible phenomena in the

system, within the reversible, fully conservative, classical mechanical scheme of the Jarzyn-

ski theory. While this could in principle be quantified and taken into account to restore

the validity of the JE, the limited exploration of the ensemble and the finite size effects

are exacerbated. Then, the fact that the system does not recover its initial state directly

implies –even in principle, not just in practice– a violation of the JE: a violation that is

not eased by any collection of statistics, be it finite or infinitely large.

The notion that irreversible phenomena may violate the JE is known, although the

impact of irreversibility is not always disruptive; see e.g. Refs.[40–42]. For instance,

Ref.[7] notes that the JE fails in chaotic dissipative systems [43], in active matter [44],

and also for the strongly irreversible systems of Ref.[22, 39]. Such scenarios, however, lie

outside the framework of the JE. The question is whether anything similar may happen

within the JE framework. We show that it does. In our investigation, irreversibility is an

emergent phenomenon of (reversible) Hamiltonian dynamics related not just to the size of

the system [5], but also to the process being performed. It is perhaps even more interesting

that there is no need to reach such degrees of irreversibility. All of our processes violate

the JE, including the fully reversible elastic indentations.

To sum up, our main arguments highlight and clarify the following:

1. It is impossible to verify the JE in indentation processes like ours, although they

concern small systems fully complying with the requirements under which the JE is

formally derived.

2. The results depend on the work process, because it is impossible to sample the

regions of phase space required by the theory.

3. The JE does not compute, in general, the free-energy difference of the system, cf.

Eq.(9). It computes the free-energy difference of system and environment together,

cf. Eq.(18).

4. Although in our investigation the quantity WJ can be identified with a mechanical

or thermodynamic work, this consideration is not universal.

5. Emergent, process-dependent plastic deformations of Hamiltonian systems with a

fixed number of particles complying with the JE framework violate the JE because
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the undeformed state is not restored.
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