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Abstract
We investigate the stochastic behavior of the single-trajectory spectral density S(ω, T ) of several
Gaussian stochastic processes, i.e., Brownian motion, the Ornstein–Uhlenbeck process, the
Brownian gyrator model and fractional Brownian motion, as a function of the frequency ω and the
observation time T . We evaluate in particular the variance and the frequency–frequency
correlation of S(ω, T ) for different values of ω. We show that these properties exhibit different
behaviors for different physical cases and can therefore be used as a sensitive probe discriminating
between different kinds of random motion. These results may prove quite useful in the analysis of
experimental and numerical data.

1. Introduction

The power spectral density (PSD) of a stochastic process contains a wealth of information on its temporal
evolution and correlations. In particular, the asymptotics of the frequency dependence of the PSD of a
diffusion process characterise the short- and large-time behaviour of the process under consideration and
can often discriminate anomalous from standard behavior (see, e.g., [1–11]). As a consequence, a
substantial knowledge of the PSDs of rather diverse processes has nowadays been accumulated. Examples
contain, for instance, the spectral analysis of time-series associated with the loudness of musical recordings
[12, 13], noise in graphene devices [14], evolution of climate data [15], fluorescence intermittency in
nanosystems [16], time gaps between large earthquakes [17], current fluctuations in nanoscale electrodes
[18] and across nanopores [19], statistics of blinking quantum dots [20], dynamics of tracers in artificially
crowded fluids [21], as well as the evolution of velocities of motile amoebae [22, 23], trajectories of
nano-machines, e.g., of the Brownian gyrator (BG) [24, 25], of active Brownian motion [26], of
anomalously diffusing walkers evolving in optical traps [27], and of membrane proteins and other
subordinated random walks [28]. Other examples can be found, e.g., in [29].

In most of these works, the attention is focused on the limit, for the observation time T going to
infinity, of the average μ(ω, T ) = S(ω, T ) of the PSD over all realizations of the process for a given
(angular) frequency ω (see, e.g., [1]). However, since S(ω, T ) for each realization of the process is a random
quantity, there is a great deal of untapped information in the statistical properties of the single-trajectory
PSD. This information can be experimentally retrieved thanks to the recent progress in tracking trajectories
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of individual particles. One can thus be interested, e.g., in the variance of S(ω, T ) or in the correlation of
the spectral density for two different values of ω for the same realization.

These questions have been addressed in particular for the time series associated with blinking events in
quantum dots [3], in standard Brownian motion [30] and in several anomalous diffusion processes
[31–34], and also for the trajectories of the BG [35]. For instance, in [3] (see also [1] for some other
examples) the distribution of S(ω, T ) was obtained for the time series of blinking events in quantum dots,
and shown to converge to the exponential function in the limit T →∞. However, this is the only system, to
our knowledge, in which the frequency–frequency correlation of the PSD has been analyzed [3]. It is
therefore interesting to investigate the behavior of the frequency–frequency correlation of the PSD in
different Gaussian processes.

It was shown for several distinct examples of centered Gaussian processes,10 that the probability
distribution function (PDF) of S(ω, T ) has a universal expression that depends only on its average μ(ω, T )
and on its coefficient of variation γ(ω, T ), defined by

γ(ω, T ) =

√
S2(ω, T ) − μ2(ω, T )

μ(ω, T )
. (1)

The explicit form of the PDF for these processes implies that γ(ω, T ) satisfies the crucial two-sided
inequality

1 � γ �
√

2. (2)

This has the consequence in particular that fluctuations of the PSD are generically larger than its mean
value. It was shown in [36] that this inequality holds in general for centered Gaussian processes.

It was also shown, for the same processes as above, that γ(ω, T ) depends on the frequency and the
observation time only via the product ωT . Importantly, for fixed ω > 0 and T →∞, the coefficient of
variation approaches a constant ω-independent value, dependent only on the spread of the process. It was
thus suggested [31] (see also [32]) that γ can also serve as a robust criterion of anomalous diffusion—the
issue to which we will return at the end of this paper. Moreover, the PDF reached in the T →∞ limit
depends on S(ω) = limT→∞S(ω, T ) and on its average μ(ω) only in the combination

bω =
S(ω)

μ(ω)
. (3)

Therefore, in the limit of infinite observation time, the statistical properties of S(ω, T ) are summarized by
those of the random variables bω for different values of ω. It is therefore natural to investigate the properties
of these variables, and in particular of their mutual dependence for different values of ω. It was shown in
particular that for the blinking quantum dots [3] and also for some bounded processes (see [1]) the values
of bω for different values of ω are totally uncorrelated. However, in processes of different kinds these
quantities can in principle fit in three possible scenarios, namely (1) they could be totally correlated, i.e., the
Pearson correlation coefficient ρ(ω1,ω2) (see the definition in equation (10) below) of the single-trajectory
spectral densities evaluated at two different frequencies will tend to 1 when T →∞, or (2) be only partially
correlated, such that ρ(ω1,ω2) → const. < 1 in this limit, or (3) fully uncorrelated with ρ(ω1,ω2) → 0.

In this paper we determine the frequency–frequency correlation function and the Pearson correlation
coefficient of several Gaussian stochastic processes, i.e., the standard Brownian motion, the
Ornstein–Uhlenbeck process, the out-of-equilibrium BG model and a family of anomalous diffusion
processes—i.e., fractional Brownian motion (FBM) with the Hurst index H ∈ (0, 1). We show that,
depending on the process under consideration, in the limit T →∞ all three above-mentioned scenarios
can be realised such that, in principle, the two-frequency correlations of bω can serve as a robust criterion of
anomalous diffusion for the analysis of experimentally-recorded trajectories or big data series, and in some
aspects may be even more advantageous than γ, which was suggested for this purpose in [31, 32]. Moreover,
we realise that the behavior of the correlations for finite observation time T is very rich and exhibits
different properties when one of the frequencies is kept equal to zero.

In section 2 we present, for an arbitrary Gaussian process, general expressions for the
frequency–frequency correlation function and for the associated Pearson correlation coefficient. In
section 3 we discuss in detail the cases of standard Brownian motion and standard Ornstein–Uhlenbeck
process. Section 4 is devoted to the analysis of expressions of the correlations and of the Pearson coefficient
for a BG model, while in section 5 we discuss the rich behaviour of the frequency–frequency correlations of

10 These examples include standard Brownian motion [30], fractional Brownian motion with Hurst index H ∈ (0, 1) [31] and this pro-
cess in presence of localisation errors [32], scaled Brownian motion [33], several kinds of diffusing-diffusivity model [34], as well as the
Brownian gyrator model [35].
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a single-trajectory PSD in case of the FBM with arbitrary Hurst index H. In section 6 we conclude with a
brief summary of our results and a discussion. Some details of the (rather lengthy) intermediate calculations
for FBM are relegated to appendix A.

2. General framework

In this section we sketch the method to evaluate the frequency–frequency correlation function of the PSD
for a general Gaussian process.

The single-trajectory spectral density S(ω, T ) of the process X(t) is defined by

S(ω, T ) =
1

T

∣∣∣∣
∫ T

0
dt eiωt X(t)

∣∣∣∣
2

. (4)

With this definition, the frequency–frequency correlation function of S(ω, T ) is given by

S(ω1, T )S(ω2, T ) =
1

T 2

∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3

∫ T

0
dt4 X(t1)X(t2)X(t3)X(t4)

× cos(ω1(t1 − t2)) cos(ω2(t3 − t4)).

(5)

Concentrating from now on exclusively on Gaussian processes X(t), we take advantage of Wick’s probability
theorem [37] to obtain

X(t1)X(t2)X(t3)X(t4) = X(t1)X(t2) X(t3)X(t4) + X(t1)X(t3) X(t2)X(t4) + X(t1)X(t4) X(t2)X(t3). (6)

Noticing next that the second and the third terms on the right-hand-side of the latter expression provide
identical contributions to S(ω1, T )S(ω2, T ), we rewrite equation (5) in the form

S(ω1, T )S(ω2, T ) =
1

T 2

∫ T

0
dt1

∫ T

0
dt2 X(t1)X(t2) cos(ω1(t1 − t2))

×
∫ T

0
dt3

∫ T

0
dt4 X(t3)X(t4) cos(ω2(t3 − t4))

+
2

T 2

∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3

∫ T

0
dt4 X(t1)X(t3) X(t2)X(t4)

× cos(ω1(t1 − t2)) cos(ω2(t3 − t4))

= μ(ω1, T )μ(ω2, T ) + J(ω1,ω2),

where
μ(ω, T ) = S(ω, T ), (7)

is the mean spectral density at frequency ω, while J(ω1,ω2) is given by

J(ω1,ω2) =
2

T 2

∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3

∫ T

0
dt4 X(t1)X(t3) X(t2)X(t4) × cos(ω1(t1 − t2)) cos(ω2(t3 − t4))

= 2W2
cc(ω1,ω2; T ) + 2W2

ss(ω1,ω2; T ) + 2W2
cs(ω1,ω2; T ) + 2W2

cs(ω1,ω2; T ).

(8)

Here we have defined

Wcc(ω1,ω2; T ) =
1

T

∫ T

0
dt1

∫ T

0
dt2 X(t1)X(t2) cos(ω1t1) cos(ω2t2),

Wss(ω1,ω2; T ) =
1

T

∫ T

0
dt1

∫ T

0
dt2 X(t1)X(t2) sin(ω1t1) sin(ω2t2),

Wcs(ω1,ω2; T ) =
1

T

∫ T

0
dt1

∫ T

0
dt2 X(t1)X(t2) cos(ω1t1) sin(ω2t2),

Wcs(ω1,ω2; T ) =
1

T

∫ T

0
dt1

∫ T

0
dt2 X(t1)X(t2) sin(ω1t1) cos(ω2t2).

(9)

3
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We stress that the expressions (7) to (9) hold for arbitrary Gaussian processes. Correspondingly, the Pearson
correlation coefficient of the random variables S(ω1, T ) and S(ω2, T ), defined by

ρ(ω1,ω2) =
S(ω1, T )S(ω2, T ) − μ(ω1, T )μ(ω2, T )√(

S2(ω1, T ) − μ2(ω1, T )
)(

S2(ω2, T ) − μ2(ω2, T )
) , (10)

is given by

ρ(ω1,ω2) =
J(ω1,ω2)√

J(ω1,ω1)J(ω2,ω2)
, (11)

an expression which also holds for an arbitrary Gaussian process.
Lastly, we note that the covariance function in the frequency domain of the random amplitude bω

defined in (3) can be formally expressed through the Pearson correlation coefficient via the relation

bω1 bω2 =
S(ω1, T )S(ω2, T )

μ(ω1, T )μ(ω2, T )
= 1 + γ(ω1, T )γ(ω2, T )ρ(ω1,ω2), (12)

where γ(ω, T ) is the coefficient of variation defined in equation (1). As we show in what follows, bω1bω2

attains distinctly different values for Gaussian sub-diffusive processes, Brownian motion and super-diffusive
processes, and thus offers an interesting criterion that permits to distinguish between these three cases from
the analysis of correlations of b in the frequency domain.

3. Brownian motion and the Ornstein–Uhlenbeck process

As a warming-up exercise, we start with two ‘simple’ cases, namely, the standard Brownian motion (BM)
and the Ornstein–Uhlenbeck (OU) process, for which we can obtain comparatively compact expressions
that hold for arbitrary frequencies and observation times.

3.1. Brownian motion
The trajectory X(t) of a BM satisfies the stochastic Langevin equation

Ẋ = ζ(t), (13)

where the dot stands for the time derivative, the viscosity is set for simplicity equal to unity, and ζ is a
Gaussian zero-mean white noise satisfying

ζ(t) = 0, ζ(t)ζ(t′) = 2kBT δ(t − t′), (14)

where kB is the Boltzmann constant (set to 1 from now on), and δ(t) is Dirac’s delta function.
Equations (13) and (14) imply that the two-time correlation function X(t1)X(t2) obeys

X(t1)X(t2) = 2 T min(t1, t2). (15)

As a consequence, for the BM, the standard spectral density μ(ω, T ), defined in equation (7), is given for
arbitrary ω and T by

μ(ω, T ) =
4T

ω2

[
1 − sin(ωT )

ωT

]
μ(ω) = lim

T→∞
μ(ω, T ) =

4T

ω2
. (16)

See, e.g. [30] for more details.
Next, inserting the expression (15) into equation (8) and integrating, we find the following exact

expression, which is valid for arbitrary frequencies and observation times:

JBM(ω1,ω2) =
8T2

ω2
1ω

2
2

[
1 − 2 sin(ω1T )

ω1T
− 2 sin(ω2T )

ω2T

+
2(ω1 sin(ω1T ) cos(ω2T ) − ω2 sin(ω2T ) cos(ω1T ))(

ω2
1 − ω2

2

)
T

+
2
(
ω6

1 + ω6
2

)
ω2

1ω
2
2

(
ω2

1 − ω2
2

)2T 2
− 2

(
ω2

1 + ω2
2

)(
ω2

1 cos(ω2T ) − ω2
2 cos(ω1T )

)
ω2

1ω
2
2

(
ω2

1 − ω2
2

)
T 2

− 2
((
ω2

1 + ω2
2

)
cos(ω1T ) cos(ω2T ) + 2ω1ω2 sin(ω1T ) sin(ω2T )

)
(
ω2

1 − ω2
2

)2T 2

]
.

(17)

4
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Figure 1. Brownian motion. Logarithm of JBM(ω1,ω2) (upper panels) in equation (17) and Pearson correlation coefficient
ρBM(ω1,ω2) (lower panels) as functions of ω1 for fixed ω2 = 2 (left panels) and ω2 = 0 (right panels). Temperature: T = 5. Solid
lines: T = 200. Dashed lines: T = 15.

We show in figure 1 (upper panels) JBM(ω1,ω2) as a function of ω1 for ω2 = 2 and ω2 = 0, and for T = 15
and T = 200. The y-axis is logarithmic since the variation range of JBM is large, in particular as a function
of T when one of the frequencies vanishes.

The behaviour of JBM(ω1,ω2) is rather rich and deserves a detailed discussion. First of all, JBM(ω1,ω2) is
an oscillatory and symmetrical function of both frequencies. When, e.g., ω2 is kept fixed at a nonzero value,
JBM(ω1,ω2) exhibits pronounced peaks at ω1 = 0 and at ω1 = ±ω2 (see panels (a) and (b) in figure 1). In
this case, the height of the two peaks at ω1 = ±ω2 = ω is given by

JBM(ω,ω) =
20T2

ω4

[
1 +

sin(2ωT )

5ωT − 12 sin(ωT )

5ωT

+
17

10ω2T 2
− 8 cos(ωT )

5ω2T 2
− cos(2ωT )

10ω2T 2

]
.

(18)

This expression approaches 20T2/ω4 as T →∞. Consequently, the height of the peak at ω1 = ±ω2

vanishes as ω−4 when ω →∞. In turn, the height of the peak at ω1 = 0 (for ω2 �= 0) is given by

JBM(0,ω2) =
2T2 T 2

ω2
2

[
1 − 4 sin(ω2T )

ω2T
+

8

ω2
2T 2

− 4 cos(ω2T )

ω2T 2
− 8 sin(ω2T )

ω3
2T 3

+
8

ω4
2T 4

− 8 cos(ω2T )

ω4T 4

]
.

(19)

Consequently, in the leading order in T , JBM(0,ω2) grows proportionally to T 2 and decreases as the
frequency ω2 grows. On the other hand, when ω2 = 0 there is a single peak at ω1 = 0 (see panel (b) in
figure 1), whose height is given by

JBM(0, 0) =
8T2

9
T 4, (20)

i.e., it is a monotonically increasing function of the observation time T .
We now discuss the leading large-T behaviour of the Pearson correlation coefficient ρBM(ω1,ω2)

(see panels (c) and (d) in figure 1). For ω2 �= 0, we obviously have ρBM(ω1,ω2) = 1 at ω1 = ±ω2. On the
other hand, ρBM(ω1,ω2) does not vanish for ω1 �= ω2 when neither frequency vanishes, but approaches in
the large-T limit the constant value

ρBM(ω1,ω2) =
2

5
. (21)

This means that the single-trajectory PSDs S(ω1, T →∞) and S(ω2, T →∞) remain correlated for
arbitrary different values ω1 and ω2. Moreover, the Pearson coefficient exhibits an additional peak at

5
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Figure 2. Brownian motion. Panel (a): Pearson correlation coefficient ρBM(ω1,ω2 →∞), equation (23), as a function of ω1T .
Panel (b): Pearson correlation coefficient ρBM(ω1,ω2) for ω1 = ω and ω2 = αω as a function of ωT for several values of the
parameter α. In both panels the horizontal dashed line indicates the constant level 2/5.

ω1 �= 0, whose value approaches

ρBM(ω1 = 0,ω2 �= 0) =
3

2
√

10
≈ 0.474, (22)

in the limit T →∞. Consequently, there is some excess correlation between S(ω, T →∞) for
non-vanishing ω and S(0, T →∞). We note in passing that S(0, T ) is formally given by the squared area
under the random curve X(t), divided by T .

Further on, we consider the behaviour at finite observation time and focus on two special cases: (a) ω1 is
fixed, while ω2 →∞, (i.e., we quantify the correlations between S(ω1, T ) and S(∞, T )), and (b) ω1 = ω

while ω2 = αω, where α � 1 is a scale parameter. In the case (a), the Pearson correlation coefficient is
given by

ρBM(ω1,ω2 →∞) =
JBM(ω1,∞)√

JBM(ω1,ω1)JBM(∞,∞)

=
2

5

1 − 2 sin(ω1T )
ω1T + 2(1−cos(ω1T ))

ω2
1T 2√

1 + sin(2ω1T )−12 sin(ω1T )
5ω1T + 17−16 cos(ω1T )−cos(2ω1T )

10ω2
1T 2

,

(23)

and hence is a function of the product ω1T only. Its behavior is shown in figure 2, panel (a) as a function of
the product ω1T . One can see that the behavior of the correlations is quite complicated and that in
particular S(ω, T ) and S(∞, T ) do not decouple neither at a finite nor at an infinite observation time. The
case (b) is shown in figure 2, panel (b), where ρBM(ω,αω) is plotted as a function of ωT for several values
of α. We observe that S(ω, T ) and S(αω, T ) are completely correlated within some well-defined region of
values of ωT , and such a correlation drops rapidly to the constant level 2/5 upon a further increase of ωT .
The size of the window in which S(ω, T ) and S(αω, T ) are completely correlated increases as α approaches
1, which is not counter-intuitive.

Finally, summarizing our results for the BM and recalling that γBM(0, T ) =
√

2 and
γBM(ω > 0, T = ∞) =

√
5/2 [30], we find that the covariance function of the random amplitude bω (see

equations (3) and (12)) in the frequency domain is given, as T →∞, by

bω1 bω2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3/2, for ω1 �= ω2, ω1 ω2 > 0;

7/4, for ω1 = 0, ω2 > 0;

9/4, for ω1 = ω2 > 0;

3, for ω1 = ω2 = 0.

(24)

This implies that the bω exhibit some degree of correlation for different values of ω.

3.2. Ornstein–Uhlenbeck process
The OU process obeys the Langevin equation

Ẋ = −X + ζ(t), (25)

where ζ(t) is a Gaussian noise whose properties are defined in equation (14). At variance with the BM, this
process approaches a stationary distribution when t →∞. The solution of equation (25) for the initial

6
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Figure 3. Ornstein–Uhlenbeck process. The covariance function JOU(ω1,ω2) and the Pearson correlation coefficient
ρOU(ω1,ω2) are plotted as functions of ω1 for fixed ω2 = 2 (panels (a) and (c)) and ω2 = 0 (panels (b) and (d)). The
temperature T is set to 5. Solid lines depict JOU(ω1,ω2) and ρOU(ω1,ω2) for T = 200, and the dashed lines for T = 15.

condition X(0) = 0 and a given realization of the noise is given by

X(t) = e−t

∫ t

0
dτ eτ ζ(τ). (26)

Consequently, the two-time correlation function of X(t) for t2 � t1 is given by

X(t1)X(t2) = T
[
exp(−(t1 − t2)) − exp(−(t1 + t2))

]
. (27)

The correlation function X(t1)X(t2) for t2 � t1 is obtained by merely interchanging t2 and t1 in this relation.
Note that, in contrast to the BM whose mean-squared displacement grows without bounds in time, the
variance of OU process is bounded. Indeed, setting t1 = t2 = t in equation (27), we obtain
X2(t) = T(1 − exp(−2t)), and therefore the mean-squared displacement from the origin approaches the
constant value T for t →∞.

Inserting the expression (27) into equation (9) and performing the integrations, we eventually find a
rather lengthy expression for JOU(ω1,ω2), which holds for arbitrary ω1, ω2, and T and it is unnecessary to
copy here. We show in figure 3 the behavior of JOU(ω1,ω2) as a function of ω1 for two values of the
frequency ω2: ω2 = 2 and ω2 = 0 (see panels (a) and (b)). We observe that JOU(ω1,ω2) behaves differently
from the BM case in several aspects. First of all, for ω2 = 2 the covariance function JOU(ω1,ω2) exhibits
only the peaks at ω1 = ±ω2, while the peak at ω1 = 0 is absent. Moreover, the height of the peak at
ω1 = ±ω2 �= 0 is given by

JOU(ω,ω) =
4T2

(1 + ω2)2
+

4T2
(
ω2 − 3

)
(1 + ω2)3T

+
2T2

(
1 + 7ω2 − ω4 + ω6

)
ω2(1 + ω2)4T 2

+
2T2

(
3ω2 − 1

)
cos(2ωT )

ω2(1 + ω2)3T 2
+

2T2
(
ω2 − 3

)
sin(2ωT )

ω(1 + ω2)3T 2
+O

(
e−T ),

(28)

where the symbol O
(
e−T ) signifies that the omitted terms decay exponentially with the observation time.

Therefore, the height of the peaks approaches a T -independent value as T →∞, which decays as the
fourth inverse power of the frequency in the limit ω →∞. This is quite similar to the behaviour of
JBM(ω,ω) (see equation (18)). Note that the limit ω → 0 of the expression (28) does not correctly
reproduce JOU(0, 0). In fact, the height of the peak in case ω1 = ω2 = 0 must be evaluated by setting ω1 = 0
and ω2 = 0 from the very beginning. In doing so, we find that JOU(0, 0) is given by

JOU(0, 0) = 8T2 − 24T2

T +
18T2

T 2
+O

(
e−T ), (29)

where the coefficient in front of T2 is twice what would be obtained directly from equation (28).
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We now dwell on the case ω1 �= ω2. Here, rather lengthy calculations show that JOU(ω1,ω2) has the
following large-T asymptotic form:

JOU(ω1,ω2) =
2T2AOU(ω1,ω2)

T 2
+ O

(
e−T ), (30)

where the omitted terms decay, in the leading order, in proportion to exp(−T ), while the decay amplitude
AOU(ω1,ω2) in the first term on the right-hand-side of equation (30) is given explicitly by

AOU(ω1,ω2) =
8
(
ω2

1 + ω2
2

)
+
(
ω2

1 − ω2
2

)2(
1 + ω2

1

)(
1 + ω2

2

)(
ω2

1 − ω2
2

)2

− 4
(
(1 + ω1ω2)2 + ω1ω2(ω1 − ω2)2

)
(
1 + ω2

1

)2(
1 + ω2

2

)2
(ω1 − ω2)2

cos((ω1 − ω2)T )

− 4
(
(1 − ω1ω2)2 − ω1ω2(ω1 + ω2)2

)
(
1 + ω2

1

)2(
1 + ω2

2

)2
(ω1 + ω2)2

cos((ω1 + ω2)T )

− 2
(
3 + ω2

1 + ω2
2 − ω2

1ω
2
2

)
(
1 + ω2

1

)2(
1 + ω2

2

)2

sin((ω1 − ω2)T )

ω1 − ω2

− 2
(
3 + ω2

1 + ω2
2 − ω2

1ω
2
2

)
(
1 + ω2

1

)2(
1 + ω2

2

)2

sin((ω1 + ω2)T )

ω1 + ω2
.

(31)

This expression contains the T -independent first term, while the following ones oscillate with T .
Therefore, when ω1 �= ω2 and both are non-vanishing, JOU(ω1,ω2) vanishes in the limit T →∞,

implying that the random variables S(ω1, T →∞) and S(ω2, T →∞) become statistically independent.
Moreover, keeping ω1 fixed and ω2 →∞, we observe that AOU(ω1,ω2) in equation (31) vanishes as 1/ω2

2,
meaning that correlations between S(ω1, T ) and S(ω2, T ) also vanish when T is finite (but large enough to
ensure the validity of the asymptotic form in equation (30)) and |ω1 − ω2| →∞. Such a behaviour is
markedly different from the one we found for the BM. Finally, we obtain that the covariance function of the
random amplitude bω (see equation (3)) satisfies in the limit T →∞ the relations

bω1 bω2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, for ω1 �= ω2, ω1,ω2 > 0;

1, for ω1 = 0, ω2 > 0;

2, for ω1 = ω2 > 0;

3, for ω1 = ω2 = 0.

(32)

These values are different from the BM case, except for the case ω1 = ω2 = 0. Notice that this implies that
the bω for different values of ω are totally uncorrelated.

4. Brownian gyrator

We focus next on the BG model [38], defined as a pair of coupled OU processes X(t) and Y(t), which obey
the following system of Langevin equations:

Ẋ = −X + u Y + ζx(t),

Ẏ = −Y + u X + ζy(t).

Here ζx,y are Gaussian zero-mean white noises such that

ζi(t)ζj(t′) = 2Tiδi,jδ(t − t′), i, j = x, y, (33)

where δi, j is the Kronecker delta, while Tx and Ty are the temperatures (measured in units of the Boltzmann
constant) of two thermal baths.

Despite its simplicity, the model defined by equation (33) exhibits a rather non-trivial physical
behaviour. It was in fact realized in [39] that it represents a minimal model of a heat machine. When u = 0,
X(t) and Y(t) decouple and form two independent OU processes, leading us back to the case studied in the

8
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previous section 3.2. On the other hand, when 0 < |u| < 1 and Tx �= Ty, the system eventually reaches a
non-equilibrium steady state, characterized by a non-vanishing average rotation frequency in the (X, Y)
plane. This explains the name of the model. Various aspects of the BG dynamical behaviour and of its
steady-state properties have been studied, see, e.g., [24, 25] and [40–51]. In particular, a non-trivial
fluctuation theorem was established by considering the response of the BG to external regular forces, what
allowed to define explicitly an effective temperature [46–48]. We also remark that the setting with constant
forces exerted on the BG is mathematically identical to the one-dimensional bead-spring model studied via
Brownian-dynamics simulations in [52] and analytically in [53, 54]. A generalization of the BG model for a
system of two coupled noisy Kuramoto oscillators has been discussed in [55].

Solving equation (33) for the trajectories, with the initial condition X(0) = Y(0) = 0, we find that for
given realisations of noises ζx(τ ) and ζ y(τ), X(t) and Y(t) are given by

X(t) = e−t

∫ t

0
dτ eτ cosh(u(t − τ))ζx(τ) + e−t

∫ t

0
dτ eτ sinh(u(t − τ))ζy(τ),

Y(t) = e−t

∫ t

0
dτ eτ sinh(u(t − τ))ζx(τ) + e−t

∫ t

0
dτ eτ cosh(u(t − τ))ζy(τ).

(34)

We thus obtain the following expressions for the two-time correlation function of the X-component. For
t1 � t2 we have

X(t1)X(t2) =
e−t1−t2

2(1 − u2)

[
cosh(u(t1 − t2))

(
Ty + et2

(
Tx cosh(t2) +

(
3Tx + 2u2

(
Ty − Tx

))
sinh(t2)

))

−
(
Tx + Ty

)(
cosh(u(t1 − t2)) + u

(
sinh(u(t1 − t2)) + e−2t2 sinh(u(t1 − t2))

))]
.

(35)

For t2 � t1 we have

X(t1)X(t2) =
e−t1−t2

2(1 − u2)

[
cosh(u(t2 − t1))

(
Ty + et1

(
Tx cosh(t1) +

(
3Tx + 2u2

(
Ty − Tx

))
sinh(t1)

))

−
(
Tx + Ty

)(
cosh(u(t1 + t2)) + u

(
sinh(u(t1 + t2)) − e2t1 sinh(u(t2 − t1))

))]
.

(36)

As one may readily check, the variance X2(t) of the X-component is bounded in the t →∞ limit:

X2(t) =
Tx + (u2/2)(Ty − Tx)

1 − u2
+O

(
e−(1−|u|)t

)
. (37)

The latter expression naturally reduces to the one obtained for the OU process when u = 0. A similar
expression holds for the Y component.

We now consider the PSD of the X-component of the BG. First, by inserting the expressions (35) and
(36) into equations (4) and (7), and evaluating the integrals, we obtain the following large-T form for the
mean PSD of the X-component:

μx(ω, T ) 
 2
((

1 + ω2
)
Tx + u2Ty

)
(ω2 + (1 − u)2)(ω2 + (1 + u)2)

−
2
((

ω4 +
(
1 + ω2

)2 − (u2 + ω2)2
)

Tx + 2u2(1 − u2)Ty + 2u2ω2
(
Ty − Tx

))
(ω2 + (1 − u)2)2(ω2 + (1 + u)2)2

1

T ,

(38)

where the omitted terms decay exponentially with T in the limit T →∞. The symbol 
 here and
henceforth signifies that we consider only the leading terms in the limit T →∞. Next, inserting (35) and
(36) into equation (8), we evaluate the covariance function JBG(ω1,ω2) for arbitrary T , ω1, and ω2. Since
the obtained expression appears to be too lengthy to be listed explicitly here, we instead show its behavior it
in figure 4 in the same way as we did it for the OU process. In panels (a) and (b) we present JBG(ω1,ω2) as
function of ω1 for T = 15 and T = 200, and two fixed values of ω2: ω2 = 2 and ω2 = 0. We observe that
JBG(ω1,ω2) exhibits essentially the same behaviour as JOU(ω1,ω2), which was discussed in the previous
section, and differs from it only in some details. The covariance function JBG(ω1,ω2) is an oscillatory

9
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Figure 4. Brownian gyrator with the temperatures Tx = 5 and Ty = 10. The covariance function JBG(ω1,ω2) (upper panels) and
the Pearson correlation coefficient ρBG(ω1,ω2) (lower panels) as functions of ω1 for fixed ω2 = 2 (left panels) and ω2 = 0 (right
panels). Solid lines: T = 200; dashed lines: T = 15.

function of ω1 (and hence, of ω2) with peaks at ω1 = ±ω2, which naturally merge into a single peak for
ω2 = 0 (see panel (b)). The height of the peaks, i.e., JBG(ω1 = ω2 = ω) (for ω bounded away from zero) is
given in the limit T →∞ by

JBG(ω1 = ω2 = ω) =

(
2(1 − u2)2

(
4(1 + ω2)Tx + 3u2Ty

)2
+ u4

(
ω6 + 2(1 + u2)2

)
T2

y

)
8(1 − u2)2(ω4 + 2(1 + u2)ω2 + (1 − u2)2)2 , (39)

i.e., is T -independent as is its counterpart for the OU process. The difference with the OU case, (apart from
the fact that JBG(ω,ω) depends on the parameters u, Tx and Ty), is that the height of the peaks vanishes
with ω much slower, as the second inverse power of the frequency,

JBG(ω1 = ω2 = ω) =
u4T2

y

8(1 − u2)2ω2
+ O

(
1

ω4

)
, (40)

while JOU(ω1 = ω2 = ω) ∼ 1/ω4 (see equation (28)). Interestingly enough, the amplitude in this large-ω
asymptotic form for the X-component is entirely defined by the temperature of the Y-component of the BG
and the coupling parameter u. In turn, for ω2 = 0, the height of the peak at ω1 = 0 (see panel (b) in
figure 4) approaches in the asymptotic limit T →∞ the following constant value

JBG(ω1 = ω2 = 0) =
8
(
Tx + u2Ty

)2

(1 − u2)4
, (41)

which reduces to the one in equation (29) when u = 0, i.e., the X- and Y-components of the BG decouple.
Lastly, analysing the obtained expression for JBG(ω1,ω2), we realize that for ω1 �= ω2 (and both

frequencies bounded away from zero) the leading behavior in the large-T limit is given by

JBG(ω1,ω2) =
ABG(ω1,ω2)

T 2
+ o

(
1

T 2

)
, (42)

where the omitted sub-leading terms decay as exp(−(1 − |u|)T ), and ABG(ω1,ω2) is a T -independent
amplitude which is a rather complicated function of ω1 and ω2, that we prefer not to show here. Therefore,
in the leading in T order and for ω1 �= ω2 the covariance function JBG(ω1,ω2) vanishes as a power law, in
proportion to the second inverse power of the observation time. We note, as well, that ABG(ω1,ω2) vanishes
when either of the frequencies is kept fixed while the other one tends to infinity. In particular, for ω2 fixed
and ω1 →∞, we find

10
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ABG(ω1,ω2) =
4
(
Tx + u2Ty

)2
+ ω2

2

(
2Tx + u2

(
Ty − Tx

))2

2(1 − u2)2(ω2
2 + (1 − u)2

)(
ω2

2 + (1 + u)2
) 1

ω2
1

+ O

(
1

ω4
1

)
, (43)

meaning that S(ω1, T ) and S(ω2, T ) become statistically independent when either T →∞ or when
|ω1 − ω2| →∞. Such a behaviour is identical to the one which we observed for the OU process. Moreover,
the covariance function bω1 bω2 has exactly the same form as the one of the OU process, equation (32).

In reference [35] the joint distribution of the PSD for X and Y, for the same values of ω and T has been
evaluated.

5. Fractional Brownian motion

We finally consider the FBM [56]. This is a Gaussian process with zero mean and covariance function

X(t1)X(t2) = D
(
t2H
1 + t2H

2 − |t1 − t2|2H
)
, (44)

where the Hurst index H is a real number such that 0 < H < 1. Notice that the FBM is an H-parameterised
family of anomalous diffusion processes (except for the case H = 1/2, when one recovers the standard BM
with independent increments). For H < 1/2, the process is sub-diffusive as one can readily infer from
equation (44) by setting t1 = t2 = t to find that the mean-squared displacement obeys X2(t) = 2D t2H ,
where 2H < 1. One can show with little effort that the increments of the process in this case have negative
long-ranged correlations. On the contrary, for H > 1/2 the exponent 2H exceeds unity and one observes a
super-diffusive behaviour. In this latter case the increments have positive long-ranged correlations.
Therefore, one naturally expects for such a family of anomalous diffusion processes a richer behaviour than
the one discussed in previous sections.

5.1. Sub-diffusive fractional Brownian motion
We start with the case of sub-diffusion, defined by a value of H satisfying 0 < H < 1/2. In this case we take
advantage of the fact that for H = 1/4 we can obtain an explicit, albeit lengthy, expression of the covariance
function JFBM(ω1,ω2). We checked that the behavior for different values of H in this range, obtained by
numerical integration of equation (8), is qualitatively similar. Figure 5 shows the covariance function
JFBM(ω1,ω2) and the Pearson correlation coefficient ρFBM(ω1,ω2) for H = 1/4 as functions of ω1 for two
fixed values of ω2: ω2 = 2 (panels (a) and (c)) and ω2 = 0 (panels (b) and (d)), and for two values of the
observation time, namely T = 200 (solid green curve) and T = 15 (dashed red curve). We observe that
JFBM(ω1,ω2) exhibits a different behavior from the cases examined so far. Here, in panel (a), the peaks at
ω1 = ±ω2 are much more pronounced than for the BM, and also the central peak at ω1 = 0 (and ω2 = 2)
appears to diverge with the observation time, what did not happen for the OU process and for the BG
model. Indeed, we find (see appendix A) that for ω1 = 0, and for (ω2T ) →∞ (i.e., for either fixed ω2

and T →∞, or fixed T and ω2 →∞), the covariance function JFBM(0,ω) obeys

JFBM(0,ω) 
 2D2T 4H

ω2
. (45)

This asymptotic form holds for arbitrary values of H, i.e., for sub-diffusion, super-diffusion, and also for
the Brownian case with H = 1/2 (see equation (19)). Correction terms to the asymptotic form in
equation (45) are shown in appendix A. Interestingly, the ω−2 dependence on the frequency ω in
equation (45) seems to hold for all the processes studied here. The T -dependence is, of course, quite
different for the processes with a bounded variance (the OU process and the BG model) and for the
sub-diffusive FBM for which the variance exhibits an unbounded growth.

Next, on panel (b) of figure 5 we present the covariance function JFBM(ω1,ω2 = 0) for ω2 = 0. We
observe that, qualitatively, the behaviour appears similar to the ones encountered in all our above analyses,
i.e., JFBM(ω1,ω2 = 0) has a single peak at ω1 = 0. The height of this peak is found analytically to be
given by

JFBM(0, 0) =
2D2T 2+4H

(1 + H)2
. (46)

This expression is also valid for arbitrary H (see [31] and appendix A). In particular, setting H = 1/2 (and
hence, D = T), we recover our previous equation (20). Since JFBM(0, 0) is the squared area under the X(t)
curve divided by T , we find quite naturally that it diverges for the FBM as for the BM, at variance with the
bounded processes (OU and BG).

Conversely, for sub-diffusive FBM the behaviour of the Pearson correlation coefficient is strikingly
different from what we have found for the BM and, in fact, appears to be closer to what we have found for
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Figure 5. Sub-diffusive fractional Brownian motion with H = 1/4. Logarithm of the covariance function JFBM(ω1,ω2) and the
Pearson correlation coefficient ρFBM(ω1,ω2) as functions of ω1 for fixed ω2 = 2 (panels (a) and (c)) and for ω2 = 0 (panels (b)
and (d)). Solid lines: T = 200; dashed lines: T = 15.

Figure 6. Fractional Brownian motion with arbitrary H ∈ (0, 1). Panel (a): Pearson correlation coefficient ρFBM(ω1,ω2) for
ω1 = 1 and ω2 = 2 as function of the Hurst index H for different values of the parameter ω1T (see the inset). The solid line
shows the T →∞ limit, given by θ(H − 1/2), where θ(x) is the Heaviside function. The value 2/5 for H = 1/2 is highlighted.
Panel (b): Pearson correlation coefficient ρFBM(ω1 = 0,ω2 = 2) as function of the Hurst index H for T = 200. The solid lines
shows the T →∞ limit, given by θ(H − 1/2)(1 + H)/2 (see equation (53)). The value 3/(2

√
10) (equation (22)) for H = 1/2 is

highlighted.

the OU process and for the BG model. Indeed, we observe in panels (c) and (d) of figure 5 that
ρFBM(ω1,ω2) for H = 1/4 tends to zero as T →∞, both when ω1 �= ω2 (and both frequencies are not equal
to zero) and when ω2 = 0 and ω1 �= 0. This implies, of course, that the amplitude bω in equation (3) is
totally uncorrelated for different values of ω in this limit. Furthermore, in figure 6 we show that this is
indeed the case for arbitrary H in the sub-diffusive regime: ρFBM(ω1,ω2) with ω1 �= ω vanishes as T grows
for any H < 1/2 (see panel (a)) and also ρFBM(ω1 = 0,ω2 > 0) is close to zero when T is large (see panel
(b)).

Below we define the rate at which ρFBM(ω1,ω2) vanishes for the sub-diffusive FBM in the limit T →∞
(see appendix A for the details of intermediate calculations). Suppose first that ω1 = ω > 0 and ω2 = 0. In
this special case the analytical calculations are much simpler than for arbitrary fixed ω2. We recall that
ρFBM(ω, 0) is formally defined by (see equation (11))

ρFBM(ω, 0) =
JFBM(ω, 0)√

JFBM(ω,ω)JFBM(0, 0)
, (47)

where the large-T asymptotic form of JFBM(ω, 0) is given in equation (45), while JFBM(0, 0) is defined in
equation (46). In turn, we notice that JFBM(ω,ω) is simply the variance of a single-trajectory PSD of a
sub-diffusive FBM. This quantity has been previously determined in [31] for arbitrary H ∈ (0, 1) and is
given by
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JFBM(ω,ω) = 4D2

(
c2

H

ω2+4H
+

2cH

ω3+2HT 1−2H
+

2

ω4T 2−4H

)
, (48)

where cH = Γ(1 + 2H) sin(πH). The expression (48) is valid for arbitrary ω > 0 and sufficiently large T .
Noticing that for H < 1/2 the first term in equation (48) defines the dominant large-T behaviour and
combining it with equations (45) and (46), we therefore conclude that for a sub-diffusive FBM the Pearson
correlation coefficient ρFBM(ω, 0) vanishes as a power-law when T →∞ as

ρFBM(ω, 0) 
 1 + H√
2cH

1

(ωT )1−2H . (49)

Here, two comments are in order. First, as shown in appendix A (see equation (A.7)), the asymptotic form
in equation (45) defines the dominant behaviour in the limit when (sufficiently large) T is fixed, while
ω →∞. Similarly, in this case the dominant large-ω behaviour of the variance in equation (48) is defined
by the first term. As a consequence, the asymptotic form in equation (49) describes as well the behaviour of
the Pearson coefficient in the limit ω →∞ at fixed sufficiently large T . We therefore conclude that,
similarly to the OU process and the BG model, for sub-diffusive FBM, i.e., for any H ∈ (0, 1/2), the
correlations between S(0, T ) and S(ω, T ) vanish when either ω is fixed and T →∞, or when T is fixed and
ω →∞. Second, we note that the limit of expression (49) for H → 1/2 yields an incorrect value. Indeed, for
H = 1/2 the Pearson coefficient in equation (49) becomes independent of ω and T , but the numerical
value is wrong. The point is that in order to recover our equation (22), we have to take into account all
three terms in equation (48). This implies that the case H = 1/2 is singular.

We consider at last the behaviour in a more general case when ω1 �= ω2 > 0. Relegating the quite tedious
calculations to appendix A, we find that in the leading order in the limit T →∞, the covariance function
JFBM(ω1,ω2) is given by

JFBM(ω1,ω2) 
 8D2T 4H−2

ω2
1ω

2
2

, (50)

an expression that holds for any H ∈ (0, 1). Taking into account equation (48), we obtain

ρFBM(ω1,ω2) 
 2

c2
H(ω1ω2)1−2HT 2−4H

. (51)

Hence, in this more general case ρFBM(ω1,ω2) also vanishes as T →∞, and the decay is faster than when
either of the frequencies is equal to zero (see equation (49)).

Summarizing, for a sub-diffusive FBM the two-frequency correlation function in equation (12) obeys, in
the limit T →∞,

bω1 bω2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, for ω1 �= ω2; ω1,ω2 > 0;

1, for ω1 = 0, ω2 > 0;

2, for ω1 = ω2 �= 0;

3, for ω1 = ω2 = 0.

(52)

This implies again that for ω1 �= ω2 the bω are totally uncorrelated.

5.2. Super-diffusive fractional Brownian motion
We turn finally to super-diffusive FBM, i.e., to the case with H > 1/2. We again exploit the fact that an
explicit form of JFBM(ω1,ω2) is available for the special value H = 3/4. In figure 7 we plot JFBM(ω1,ω2) for
this value of H as a function of ω1 for ω2 = 2 (panel (a)) and ω2 = 0 (panel (b)), as well as the
corresponding Pearson coefficient ρFBM(ω1,ω2) (panels (c) and (d)). However, we verified that the curves
exhibit essentially the same behaviour for any value of H in the super-diffusive regime.

We find that the behaviour in the super-diffusive case appears to be qualitatively different, as compared
to the previous situations. We observe in particular that J(ω1,ω2 = 2) in panel (a) of figure 7 grows
uniformly as T grows, while in the previous case it either decreased as T increased (for the OU process, the
BG model and sub-diffusive FBM), or reached a T -independent limit, as for the BM (except for the vicinity
of ω1 = 0). Moreover, the peaks at ω1 = ±2 are less pronounced than in the above studied situations and
become almost indistinguishable from the base curve for longer observation times. This apparently signals
that the correlations between S(ω1, T ) and S(ω2, T ) become very strong for any different values of ω1 and
ω2. Of course, this is not totally surprising, because of the strongly correlated increments of the parental
process. On the other hand, JFBM(ω1, 0) (see panel (b) in figure 7) behaves very similarly to the BM or the
sub-diffusive FBM.
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Figure 7. Super-diffusive fractional Brownian motion with H = 3/4. Logarithm of JFBM(ω1,ω2) and the Pearson correlation
coefficient ρFBM(ω1,ω2) as functions of ω1 for fixed ω2 = 2 (panels (a) and (c)) and ω2 = 0 (panels (b) and (d)). Solid lines:
T = 200; dashed lines: T = 15.

The behaviour of the Pearson correlation coefficient ρFBM(ω1,ω2 = 2) on panel (c) of figure 7 also
differs qualitatively from what we have previously observed in two aspects: (i) while there still exist two
peaks at ω1 = ±2, there is no peak at ω1 = 0 and there is instead a dip, and (ii) ρFBM(ω1,ω2 = 2) raises
towards higher values upon an increase of T (except in the vicinity of ω1 = 0). Such an increase with
increasing T is also apparent in panel (d). The levels which the curves attain for T = 200 are, however,
rather different.

To interpret this behavior, we start by dwelling on JFBM(ω1,ω2 = 0), which defines the value of the
covariance function at the location of the dip on panel (c) and on its behavior depicted on the panel (d).
We focus first on the limit T →∞ with ω1 kept fixed. In this limit, the dominant contribution to
JFBM(ω,ω) in equation (48) is provided by the third term in the brackets, while the first sub-dominant
correction is given by the second term. The first term is irrelevant, unlike for the case of sub-diffusion, for
which it plays the dominant role. Recalling the expressions (45) and (46), we find that the Pearson
correlation coefficient admits the following asymptotic form for large T :

ρFBM(ω1, 0) =
H + 1

2

(
1 − cH

2(ω1T )2H−1
+ o

(
1

T 2H−1

))
. (53)

Therefore, ρFBM(ω1, 0) indeed increases as T grows, saturating at the constant value (H + 1)/2. Such a
behaviour is clearly seen on panel (b) of figure 6, in which we plot ρFBM(0,ω2 = 2) as function of H for a
sufficiently large observation time (T = 200), as well as the leading term in equation (53). We note that
expression (53) yields an incorrect value in the limit H → 1/2. We thus have a discontinuity at H = 1/2: a
drop from the value 3/4 predicted by equation (53) when we extrapolate H to 1/2, to the smaller actual
value 3/(2

√
10) ≈ 0.474 (see equation (22)).

Next, we look at the correlations of S(ω1, T ) and S(0, T ), in the limit ω1 →∞ with T kept fixed and
sufficiently large to ensure the validity of equation (48). Inspecting equation (48), we obtain that the leading
behaviour in this limit is provided by the third term in the brackets and the first sub-dominant correction
comes from the second term. This straightforwardly implies that ρFBM(ω1, 0) in this limit obeys
equation (53). Thus the Pearson correlation coefficient saturates at the constant value (1 + H)/2 and
correlations do not decouple completely. Such a behaviour is apparent in figure 6 (panel (b)).

Lastly, we turn to the more general case when ω1 �= ω2, both non-zero. Taking advantage of
equations (48) and (50), we arrive at

lim
T→∞

ρFBM(ω1,ω2) = 1. (54)

This means that for a super-diffusive FBM the variables S(ω1, T ) and S(ω2, T ) become completely correlated
in the limit T →∞.
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Summarizing, we have, in the limit T →∞,

bω1 bω2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3, for ω1 �= ω2; ω1,ω2 > 0;

2 + H, for ω1 = 0, ω2 > 0;

3, for ω1 = ω2 �= 0;

3, for ω1 = ω2 = 0.

(55)

We thus have complete correlations among the bω, when ω �= 0, and a partial one when one of the ω
vanishes. We can therefore conclude that the correlations of bω are a powerful probe to distinguish between
the sub-diffusive, diffusive and super-diffusive cases of the anomalous diffusions.

6. Conclusions

In conclusion, we examined the correlations of the reduced spectral density bω = S(ω, T )/μ(ω, T ) for a
class of Gaussian random processes, where S(ω, T ) is the spectral density of a single trajectory X(t) of the
process, equation (4), ω is the frequency, T is the observation time, and μ(ω, T ) = S(ω, T ) is the average of
S(ω, T ) over all realizations of the process. It was shown in previous works that for a number of different
classes of Gaussian stochastic processes, the spectral density S(ω, T ) is a random variable whose probability
distribution depends on S(ω, T ) and μ(ω, T ) only in the combination bω = S(ω, T )/μ(ω, T ). (The
resulting distribution depends moreover on ω only via the coefficient of variation γ(ω, T ).) We have
therefore looked at bω as an ω-dependent random quantity. Looking at the behavior of this quantity for
different values of ω and for different cases, we have shown that the values of bω can be either fully
uncorrelated (e.g., for the Ornstein–Uhlenbeck process, for the BG, and for the subdiffusive Brownian
motion), partially correlated (e.g., for the ordinary, diffusive Brownian motion) or totally correlated (e.g.,
for superdiffusive Brownian motion, when both frequencies are non-vanishing). Therefore bω can be used
as a sensitive probe of the nature of the process, that is available upon inspection of a single trajectory,
provided the observation time T is large enough. It can thus supplement in this role the coefficient of
variation γ. Indeed, it was suggested in [31] to use γ as a criterion that permits to distinguish between
different kinds of Gaussian processes. This requires, however, to evaluate either the large-ω asymptotical
behaviour of γ in case of sub-diffusion and diffusion, or its ageing properties (i.e., its T -dependence) for
superdiffusion, what may be somewhat difficult to access. Thus using bω appears advantageous, because it
does not require to evaluate the asymptotical behavior, and the values of the frequencies can be arbitrarily
chosen. In particular, if we look at the bωbω′ correlation function when one of the frequencies vanish in the
super-diffusive FBM case, we are able to extract the value of the Hurst parameter H. As a perspective, we
envisage to consider another exactly solvable family of anomalous Gaussian processes—the so-called scaled
Brownian motion (see, e.g., [33])—in order to verify our general conclusions and moreover, to check
whether an analysis of the frequency–frequency correlations permits to distinguish between different kinds
of anomalous diffusions.

There remains, of course, the challenging problem of extending this kind of analysis to non-Gaussian
processes.
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Appendix A. Analytical results for FBM

A.1. Covariance function JFBM(0, ω)
We take advantage of the representation of the covariance function of the FBM with arbitrary H in the
integral form (see [57]), in which the kernel has a convenient factorised dependence on t1 and t2:

t2H
1 + t2H

2 − |t1 − t2|2H =
2cH

π

∫ ∞

0

dz

z2H+1
[sin(zt1) sin(zt2) + (1 − cos(zt1))(1 − cos(zt2))], (A.1)

where
cH = Γ(2H + 1) sin(πH). (A.2)

Inserting this expression into the definition of J(ω1,ω2), we perform the integrations over the time
variables, and eventually, over z. In doing so, we find that J(0,ω) is given by

JFBM(0,ω) = D2T 2+4HJH(w), w = ωT , (A.3)

where JH(w) is the following function of the dimensionless variable w only:

JH(w) =
1

2(1 + H)2(1 + 2H)4

[
w2

(2H + 3)2
K2

1(w, H) +K2
2(w, H)

]
. (A.4)

In this expression, one has

K1(w, H) = (2H + 3) 1F2

(
1;H +

3

2
, H + 2;−w2

4

)
− 2 1F2

(
2;H + 2, H +

5

2
;−w2

4

)

− (1 + 2H)
(
4H2 + 8H + 3

)
1F2

(
H + 1;

3

2
, H + 2;−w2

4

)

+ 2(1 + H)(1 + 2H)1F2

(
H +

3

2
;

3

2
, H +

5

2
;−w2

4

)

− 2(1 + H)(1 + 2H)(2H + 3)
(1 − cos(w))

w2
,

(A.5)

and

K2(w, H) = −2(H + 1) 1F2

(
1;H + 1, H +

3

2
;−w2

4

)

− 1F2

(
H + 1;

1

2
, H + 2;−w2

4

)

− 2H 1F2

(
H + 1;

1

2
, H + 2;−w2

4

)

+ 2F3

(
1,

3

2
;

1

2
, H +

3

2
, H + 2;−w2

4

)

+ 2
(
2H2 + 3H + 1

)
1F2

(
H +

1

2
;

1

2
, H +

3

2
;−w2

4

)

+ 2(H2 + 3H + 1)
sin(w)

w
,

(A.6)

where 1F2 and 2F3 are hypergeometric functions. The expression (A.3) is valid for arbitrary H ∈ (0, 1) and
for arbitrary values of T and ω. In particular, for ω = 0 it reduces to expression (46).

We next consider the large-w behaviour of JFBM(0,ω) in equation (A.3), which is realised when either ω
is fixed and T tends to infinity, or alternatively, T is fixed but ω →∞. Expanding the hypergeometric
functions in the limit when w = (ωT ) →∞, we find

JFBM(0,ω) =
2D2T 4H

ω2

[(
sin(w) − cH

w2H
− 1 + (1 − 2H) cos(w)

w
+O

(
1

w2H+1

))2

+

(
cos(w) − cH cot(w)

w2H
+

(1 − 2H) sin(w)

w
+O

(
1

w2H+1

))2
]

,

(A.7)
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where cH is defined in equation (A.2). This expression is dominated by the first terms in the parentheses,
that oscillate as functions of w. We thus arrive at the asymptotic form in equation (45). Notice that this
expression is valid for any H such that 0 < H < 1. The finite-w corrections to the leading behaviour in
equation (45) are however different in the cases H < 1/2, H = 1/2 or H > 1/2. Indeed, in case of
sub-diffusion, the dominant correction terms is given by the second terms in brackets in equation (A.7),
while in the super-diffusive case is given by the third terms.

A.2. Large-T asymptotic behaviour of the covariance function JFBM(ω1, ω2)
Here we discuss the large-T behaviour of the covariance function JFBM(ω1,ω2) in the more general case
when ω1 �= ω2 and both frequencies are non-vanishing. We start by appropriately rescaling the integration
variables in equation (9) to get, e.g., for Wcc, the following representation

Wcc(ω1,ω2; T )

DT 2H+1
=

∫ 1

0
dτ1 cos(ω1T τ1)

∫ 1

0
dτ2

(
τ 2H

1 + τ 2H
2 − |τ1 − τ2|2H

)
cos(ω2T τ2). (A.8)

Similar expression can be obtained for Wcs, Wcs and Wss and will differ from the one in equation (A.8) only
by the sine and cosine factors. The integrals corresponding to the first and the second terms in the
covariance function can be performed analytically and give, in the leading in the limit order for T →∞,

∫ 1

0
dτ1

⎧⎨
⎩ cos(ω1T τ1)

sin(ω1T τ1)

⎫⎬
⎭
∫ 1

0
dτ2 τ

2H
2

⎧⎨
⎩ cos(ω2T τ2)

sin(ω2T τ2)

⎫⎬
⎭

=

⎧⎨
⎩ sin(ω1T )

1 − cos(ω1T )

⎫⎬
⎭
⎧⎨
⎩ sin(ω2T )

− cos(ω2T )

⎫⎬
⎭ 1

ω1ω2T 2
+O

(
1

T 3

)
.

(A.9)

This asymptotic expression is valid for any 0 < H < 1. The analysis of the integrals involving the third,
non-local term in the covariance of the FBM is a bit more delicate and we first would like to cast it in a
more transparent form. To this end, we expand both cosine functions in powers of τ 1 and τ 2, perform the
integrals, and then re-sum the series. In doing so, we get∫ 1

0
dτ1 cos(ω1T τ1)

∫ 1

0
dτ2 |τ1 − τ2|2H cos(ω2T τ2)

=
Γ(2H + 1)

(ω2T )2H+2

∫ ω2T

0
u2H+1du cos

(
ω1

ω2
u

)
E2,2(H+1)(−u2)

+
Γ(2H + 1)

(ω1T )2H+2

∫ ω1T

0
u2H+1du cos

(
ω2

ω1
u

)
E2,2(H+1)(−u2),

(A.10)

where

E2,2(H+1)(u) =
∞∑

k=0

uk

Γ(2k + 2(H + 1))
(A.11)

is the Mittag–Leffler function, whose behaviour is well-documented [58]. In a similar way, we obtain the
following results: ∫ 1

0
dτ1 cos(ω1T τ1)

∫ 1

0
dτ2 |τ1 − τ2|2H sin(ω2T τ2)

=
Γ(2H + 1)

(ω2T )2H+2

∫ ω2T

0
u2H+2du cos

(
ω1

ω2
u

)
E2,2H+3(−u2);

(A.12)

∫ 1

0
dτ1 sin(ω1T τ1)

∫ 1

0
dτ2 |τ1 − τ2|2H cos(ω2T τ2)

=
Γ(2H + 1)

(ω1T )2H+2

∫ ω1T

0
u2H+2du cos

(
ω2

ω1
u

)
E2,2H+3(−u2);

(A.13)

∫ 1

0
dτ1 sin(ω1T τ1)

∫ 1

0
dτ2 |τ1 − τ2|2H sin(ω2T τ2)

=
Γ(2H + 1)

(ω1T )2H+2

∫ ω1T

0
u2H+2du sin

(
ω2

ω1
u

)
E2,2H+3(−u2)

+
Γ(2H + 1)

(ω2T )2H+2

∫ ω2T

0
u2H+2du sin

(
ω1

ω2
u

)
E2,2H+3(−u2).

(A.14)
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We now turn to the analysis of the leading large-T asymptotic behaviour of expressions (A.12) to
(A.14). To this end, we first note that the leading large-u asymptotic behaviour of the Mittag–Leffler
function obeys

E2,β(−u2) 
 1

Γ(β − 2)

1

u2
. (A.15)

Consequently, the integral which enters equation (A.12) diverges on the upper terminal of integration in the
super-diffusive case, and converges to a finite value when T →∞ in the sub-diffusive case. This yields∫ 1

0
dτ1 cos(ω1T τ1)

∫ 1

0
dτ2 |τ1 − τ2|2H cos(ω2T τ2)




⎧⎪⎪⎨
⎪⎪⎩

2H

ω1ω2T 3

(
sin(ω1T )

ω2
+

sin(ω2T )

ω1

)
, for H ∈ (1/2, 1),

cos(πH)Γ(2H + 1)
(
ω2H

2 − ω2H
1

)
ω2H

1 ω2H
2

(
ω2

2 − ω2
1

)
T 2H+2

, for H ∈ (0, 1/2),

(A.16)

where we took advantage of the identity∫ ∞

0
u2H+1 du cos(λu) E2,2(H+1)(−u2) =

cos(πH)

|λ|2H (1 − λ2)
, (A.17)

which holds for H ∈ (0, 1/2). Comparing equations (A.12) and (A.9), we infer that the dominant
contribution to the large-T behaviour of Wcc(ω1,ω2; T ) is provided by the latter, such that Wcc has the
following asymptotic form

Wcc(ω1,ω2; T ) 
 2D sin(ω1T ) sin(ω2T )

ω1ω2
T 2H−1, (A.18)

which is valid for any H.
Further on, inspecting the kernels in the integrals in equations (A.12)–(A.14), we realise that the large-u

tails do not decay fast enough to ensure the convergence of the integrals even in the sub-diffusive case.
Performing some rather straightforward calculations, we then find that for any H ∈ (0, 1) the leading
asymptotic behaviour of the integrals is given by∫ 1

0
dτ1 cos(ω1T τ1)

∫ 1

0
dτ2 |τ1 − τ2|2H sin(ω2T τ2) 
 sin(ω1T )

ω1ω2T 2
,

∫ 1

0
dτ1 sin(ω1T τ1)

∫ 1

0
dτ2 |τ1 − τ2|2H cos(ω2T τ2) 
 sin(ω2T )

ω1ω2T 2
,

(A.19)

and ∫ 1

0
dτ1 sin(ω1T τ1)

∫ 1

0
dτ2 |τ1 − τ2|2H sin(ω2T τ2) 
 − cos(ω1T ) + cos(ω2T )

ω1ω2T 2
. (A.20)

Taking into account the expressions (A.9), we eventually find

Wcs(ω1,ω2; T ) 
 −2D sin(ω1T ) cos(ω2T )

ω1ω2
T 2H−1,

Wcs(ω1,ω2; T ) 
 −2D cos(ω1T ) sin(ω2T )

ω1ω2
T 2H−1,

(A.21)

and

Wss(ω1,ω2; T ) 
 2D cos(ω1T ) cos(ω2T )

ω1ω2
T 2H−1, (A.22)

which yields our asymptotic expression for JFBM(ω1,ω2), equation (50).
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