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Abstract The main purpose of the present study is to develop a
debris ow susceptibility map of a mountain area (Susa Valley,
Western Italian Alps) by using an upgraded version of the Bonetto
et al. (Journal of Mountain Science 18, 2021) approach based on the
Rock Engineering System (RES) method. In particular, the area
under investigation was discretized ina5 5-m grid on which GIS-
based analyses were performed. Starting from available databases,
several geological, geo-structural, morphological and hydrographi-
cal predisposing parameters were identi ed and codi ed into two
interaction matrices (one for outcropping lithologies and one for
Quaternary deposits), to evaluate their mutual interactions and
their weight in the susceptibility estimation. The result for each
grid point is the debris ow propensity index (DfPI), an index that
estimates the susceptibility of the cell to be a potential debris ow
source. The debris ow susceptibility map obtained was compared
with those obtained from two expedited and universally recognized
susceptibility methods, i.e. the Regional Qualitative Heuristic Sus-
ceptibility Mapping (RQHSM) and the Likelihood Ratio (LR). Each
map was validated by using the Prediction Rate Curve method. The
limitations and strong points of the approaches analysed are dis-
cussed, with a focus on the innovativeness and uniqueness of the
RES. In fact, in the study site, the RES method was the most ef cient
for the detection of potential source areas. These results prove its
robustness, cost-effectiveness and speed of application in the iden-
ti cation and mapping of sectors capable of triggering debris ow.

Keywords Rock Engineering System (RES) « Debris flow
susceptibility « Susceptibility mapping * Open source data

Debris ows are rapid landslides of mixed and unconsolidated
sediments and water which occur when soil and rock fragments
become saturated and ow down into a steep channel driven by
the force of gravity. Debris ow events can be extremely danger-
ous for humans and infrastructures due to their high velocity (up
to 20 m/s), their large mobilized volumes (even more than 10° m®)
and their unpredictability (Varnes 1978; Hutchinson 1988; IAEG
1990; Cruden and Varnes 1996). A careful territorial analysis should
include the identi cation of potential debris ow source areas for
correct land use and risk management, especially in mountain
regions where these aspects become fundamental for the resilience
of the rural areas and to tackle the effects of climate change.
Geological, geomorphological, hydrogeological and landslide
maps (Soeters and Van Westen 1996; Fell et al. 2008; Corominas
et al. 2014), supported by direct eld observations, are fundamen-
tal to detect and delimit zones susceptible to landslide triggering
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(including debris ow). Several models have been proposed in the
scienti c literature for evaluating landslide susceptibility by com-
bining geo-environmental factors and landslide spatial distribution
(Brabb 1987; Soeters and van Westen 1996; Carrara et al. 1984, 1999,
2008; Aleotti and Chowdhurry 1999; Guzzetti et al. 1999; Dai and
Lee 2001; Chac n et al. 2006; Fell et al. 2008; Reichenbach et al.
2018). In general, these models are based on the identi cation of
those factors that contribute to landslide triggering, by distinguish-
ing between predisposing and triggering factors (e.g. Costa and
Jarrett 1981; Hutchinson 1992; Cruden and Varnes 1996; Jakob and
Hungr 2005; Hungr 2005; Van Westen et al. 2008; Pereira et al. 2012;
Corominas et al. 2014; Iverson 2014, 1997; Hungr et al. 2014 and
references herein). Data related to triggering factors represent an
important set of input parameters for landslide hazard assessment,
while the predisposing factors and landslide inventories play a key
role in landslide susceptibility analysis (Dai and Lee 2001; Clerici
et al. 2002; Corominas et al. 2003, 2014; Van Westen et al. 2006).

Susceptibility analysis can be assessed through both qualitative
(inventory-based and knowledge-driven methods) and quantita-
tive (data-driven methods and physically based models) methods
(Carrara et al. 1995; Soeters and Van Westen 1996; Guzzetti et al.
1999, 20064, b; Dai and Lee 2001; Van Westen et al. 2006; Clerici et al.
2002). Inventory-based methods provide a multitemporal landslide
distribution (spatial and temporal frequencies) based on historical
series and represent a key starting point for hazard mapping and
risk assessment. The analysis of past debris ow events provides
useful information for forecasting future debris ow, based on
topographic, geological and geomorphologic characteristics. The
knowledge-driven approaches, or heuristic methods, are based
on the expert knowledge of landslide mechanisms that allows the
degree of instability, combining geomorphological observations
and thematic geological maps to be determined (Abella and Van
Westen 2008; Nachbaur and Rohmer 2011). This approach can be
applied when the landslide inventory is incomplete or when a pre-
liminary and expedited evaluation is needed.

In data-driven landslide susceptibility methods, statistical and
guantitative predictions are made using the records of past land-
slide events through three different approaches: bivariate, multivar-
iate and active learning statistical analyses. Landslide distribution
could de ne the functional relationships among known or inferred
instability factors (Malus and Mosca 2002; Guzzetti et al. 1999;
Huabin et al. 2005; Chac n et al. 2006; van Westen et al. 2008), but
results are strongly in uenced by the quality and completeness of
the inventory (Guzzetti et al. 20064, b; Reichenbach et al. 2018).

The physically based models are based on the mathematical
modelling of landslide failure and a set of numerical parameters that
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describe the geometry, and the internal and external slope condition.
Slope analysis can be done using simple limit equilibrium mod-
els, such as the in nite slope model, or more complex approaches
like kinematics analysis or numerical modelling (Montgomery and
Dietrich 1994; Rigon et al. 2006; van Asch et al. 2007; Simoni et al.
2008; Baum and Godt 2010; Anagnostopoulos and Burlando 2012;
Alvioli and Baum 2016).

For susceptibility mapping purposes, the choice of the meth-
ods should be driven by the availability of the input parameters
required for the analyses and their mutual interactions. Recently,
Bonetto et al. (2021) proposed an application of the Rock Engineer-
ing System (RES; Hudson 1992) to debris ows analysis. The RES
approach has also been used for other landslide types (Mazzoccola
and Hudson 1996; Kim et al. 2008; Rozos et al. 2008; Tavoularis
et al. 2017, 2021; Xiao et al. 2020; Pokharel et al. 2021 and references
herein) and implemented in neural network approaches (Wang
et al. 2014; Meten et al. 2015). Bonetto et al. (2021) combined inven-
tory, expert evaluation and data-driven methods for a quantita-
tive evaluation of the debris ow propensity at a basin-scale RES
methodology were then used to evaluate the Debris ow Propensity
Index (DfPI) by quantifying and scoring the mutual interaction
between predisposing parameters. Starting from these assump-
tions and promising results, in this paper, the authors propose an
upgraded version of the Bonetto et al. (2021) methodology applied
to debris ow by considering new parameters for the DfPI deter-
mination and by implementing the procedure in GIS environment.
The predisposing parameters are encoded into two interaction
matrixces to consider outcropping lithologies and Quaternary
deposits and the DfPI values are mapped onto a5 5-m grid cell
resolution. The procedure has been tested on the same sector of the
western Italian Alps (Upper Susa Valley) as in Bonetto et al. (2021)
for a direct comparison and validation of the results.

The susceptibility map obtained is compared with those
obtained by two methods available in the scienti c literature: the
Regional Qualitative Heuristic Susceptibility Mapping (RQHSM)
method proposed by Soeters and van Westen (1996) and the Like-
lihood Ratio (LR) method (Lee 2004; Regmi et al. 2010; Sujatha
et al. 2013; Kanungo et al. 2011; Akgun 2012). The limitations and
strong points of the methodologies are discussed by comparing
susceptible areas with an available debris ow source area database.
Furthermore, the differences between the three methods are quan-
titatively assessed by using the Prediction Rate Curve method
(Chung and Fabbri 2003).

>

The study area is the Upper Susa Valley, in the Western Italian Alps
(Fig. 1A). Many basins of this valley are affected by recurrent debris

ow events, which occurred especially during late summer and fall
seasons (Tiranti et al. 2008, 2014, 2016). These phenomena have
caused many damages to the crucial infrastructures, which link the
valley (and more in general Turin) to France, and to the urbanized
areas, which mainly developed on debris fans.

This valley is drained by the Dora Riparia River, a left-hand tribu-
tary of the Po River, and has been carved by glaciers at the end of
Pleistocene in units belonging to the Penninic domain of the Western
Alps.

The Western Alps result from the collision between European and
Adriatic plates following subduction and closure of their interposed
Piemonte-Liguria oceanic basin (e.g. Dal Piaz 2010a, b and therein
references). The upper Susa Valley exposes a tectonic stack of conti-
nental margin (Ambin Massif Auct., Pre-Piedmont and Brian onnais
units) and oceanic Piemonte-Liguria units (Fig. 1; Polino et al. 2002;
Piana et al. 2017). The Ambin massif Auct. comprises two pre-alpine
complexes: the Clarea and the Ambin complexes, resting at lower and
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upper structural levels respectively (Polino et al. 2002; Malus et al.
2002; Malus and Mosca 2002). The Clarea complex consists of micaschist
and paragneiss embedding metabasite and orthogneiss of dioritic com-
position. The Ambin complex is formed by gneiss and quartz-micaschist
derived from volcanoclastic protoliths, several types of micaschist and
bodies of aplitic gneiss. This complex is overlaid by a Permo-Mesozoic
cover consisting of conglomeratic quartzite with pink quartz clasts
and levels of sericitic schist (upper Permian), massive quartzite (lower
Triassic) and a succession of dolomitic marbles and calcareous schists
with local intercalation of carbonate breccias (Triassic to Cretaceous).
The Vallonetto unit is characterized by a Brian onnais-type succes-
sion including marble and dolomitic-marble of Triassic age followed
by Jurassic to Cretaceous calcschist. The Chaberton-Grand Hoche-
Grand Argentier unit, belonging to the Pre-Piedmont zone, is formed
by a thick dolomitic succession of Norian age followed by Rhaetian-
Hettangian calcareous schists and then unconformable overlaid by
prevailing calcschists with phyllites and beds of breccias (Jurassic to
Cretaceous). The Piemonte-Liguria Oceanic units are formed by thick
sequences of Upper Jurassic (?)-Cretaceous calcschist containing lev-
els of micaschist and phylladic schist and embedding bodies of ophi-
olites (serpentinite, metabasite). Masses of gypsum and of carbonate
breccias (Carniole Auct.) occur along the main tectonic contacts.

During the Quaternary, the Susa valley was carved with typical
U-shaped cross section by the action of the glacier and, in its upper
part, glacial deposits are recognizable on the valley anks. Follow-
ing the retreat of glaciers, several deep-seated gravitational slope
deformations (DSGSD) developed on the valley anks.

The data used in this paper can be classi ed into two main categories:
(1) landslide inventory and (2) thematic G1S-based maps. Data were
collected using freely accessible and available datasets in national and
regional geodatabases. Since the RES approach applied to debris ow
requires the identi cation of environmental predisposing factors, the-
matic GIS-based maps were drawn starting from the available spatial
datasets. Compared to the original version proposed by the authors
(Bonetto et al. 2021), in this study, ten predisposing factors were con-
sidered for the de nition of the DfPI (Table 1): bedrock lithology, qua-
ternary deposits, lineament density, slope angle, curvature, elevation,
slope aspect, channel network, landslide activity and land use. For the
sake of simplicity, these factors are grouped into geological, geomor-
phological and hydrogeological parameters and land use.

Data management and analysis were conducted by using the
QGis software (v. 3.16.14 Bucuresti).

Scale or
resolution

Predisposing factor GIS type

(Px)

Source link:

- Piemonte Region Geodatabase — http://www.geoportale.piemonte.it/, last access 2022
- Regional Environmental Agency — ARPA — http://webgis.arpa.piemonte.it/geoportale/, last access 01/2022

- Regional Environmental Agency — ARPA — http://webgis.arpa.piemonte.it/risknat/index.php/cat-news-nasc/402-pubblicata-la-base-dati-
transfrontaliera-advitam-delle-frane-sullo-spazio-alcotra, last access 10/2021
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Debris ow source areas were available in the RiskNat Arpa Piemonte
inventory that contains events occurred (among other) in the Upper
Susa Valley from 1990 to 2015. The original source area map was
updated by manually adding recent events, easily identi able from
the analysis of the past aerial photographs between 2017 and 2018.
An amount of 846 points of debris ow source area were recorded in
390 km?in the study area (Fig. 2).

The geology of Upper Susa Valley was derived by the Foglio 132 152-
153 Bardonecchia at 1:50,000 scale (Polino et al. 2002) of the of cial
Italian Geological Cartography project (Fig. 3). The shape les of
bedrock lithologies, quaternary deposits and landslides were con-
verted into raster formats with 5 5-m cell resolution.

Based on the differences in strength and permeability of rocks
and deposits and the presence of landslides, ve classes for bedrock
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lithology and ve classes for quaternary deposits were identi ed
(Bonetto et al. 2021) (Table 2).

Geological discontinuities (i.e. fractures, faults and foliations)
induce a decrease in the mechanical strength of rock mass and
increase the capacity to produce loose debris (Ferrero et al. 2016;
Caselle et al. 2020; Umili et al. 2020). A regional map of the rock
fracturing degree with a traditional survey is not feasible, and
consequently, the general condition of the rock masses can be
described by remote extraction of the main lineaments (Tripathi
et al. 2000; Jordan et al. 2005; Vaz et al. 2012; Bonetto et al. 2015;
Umili et al. 2018). Lineament extraction can be realized through
automatic or manual approach from digital elevation model or
orthophotos. In the automatic approach, the linear traces are
detected on a DTM by algorithms based on principal curvature
values (Bonetto et al. 2015, 2017) while in manual approach the user
manually detects and tracks the lineaments. In this paper, manual
lineament extraction was performed from visual interpretation of
the orthophotos to increase lineament extraction accuracy, only
focusing on bedrock outcrop areas. The track density map was
derived (Fig. 3B) by using the Line Density tool on QGis. This tool
allows the measurement, within a given circular area, of the line
density for each raster cell. This measure is obtained as the sum
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of all the line segments that intersect the circular area, divide to
the area.

The geomorphological layers were obtained from the DEM analysis
using speci c tools freely available in QGis software. The resulting
maps are shown in Fig. 4.

Slope angle is the result of the combined in uence of many agents
(Huma and Radulescu 1978; Carrara 1983; Maharaja 1993; Rozos et al.
2008) and is one of the predisposing factors capable of triggering
debris ows. Slopes ranging between 20 and 45 (Takahashi 1981;
Hungr et al. 1984; Rickenmann and Zimmermann 1993) are char-
acteristic values for source area location. Five different slope classes
were selected (Fig. 4A) for the classi cation of the study areas: (i)
0 8,(ii)8 15, (iii) 15 25,(iv) 25 35,(v)>35.

The terrain curvature is the curvature of a line formed by inter-
secting a plane with the terrain surface. Operatively, the curvature
value is the reciprocal of the radius of curvature of the line. Debris

ows generally start where curvature is concave (Wieczorek et al.
1997; Delmonaco et al. 2003) and the ow can be channelled into
gullies. Consequently, a distinction between concave (negative val-
ues), convex (positive values) and at surface (values near zero)
was made (Fig. 4B).

Elevation (Fig. 4C) and slope aspect (exposition) (Fig. 4D) do
not directly in uence the slope failure, but they are the result of
tectonic activity and erosion process related to climatic condition
(Rozos et al. 2008). The elevation was distinguished into classes
with an elevation step of 500 m. In alpine regions, source areas are
usually located at high elevation where deposits are concentrated.

The slope aspect re ects the exposition that is responsible for
different local microclimatic conditions and solar exposition dur-
ing the day. The exposition was classi ed with a step of 60 starting
from the north (0 value).

The landslide activity map (Fig. 4E) shows the landslide dis-
tribution (not only debris ow but also every landslide type) and
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their state of activity: (i) active, (ii) quiescent, (iii) inactive and
(iv) not de ned. In these areas, the overall rock mass and deposit
conditions might increase the loose material availability that could
be mobilized duringa ow event.

f

Debris ow events require a channel to ow downstream. The ow
erodes the channel leaves and banks, which are important sources
of material available during the event. Usually, the areas prone to
supplying material are located at distances lower than 200 m, while
beyond these values the probability decrease (Rozos et al. 2008). For
this reason, ve different buffer zones were created to identify the
distance along the river where material can be mobilized during
the ow: (i) 0 50 m, (ii) 50 100 m, (iii) 100 150 m, (iv) 150 200 m,
(v)>200 m (Fig.5).

> >

The land use describes the vegetational, mechanical and hydro-
logical characteristics that control the slope stability (Glade 2003;
Reichenbach et al. 2004). The land use in uences the soil behaviour
during rainfall and the magnitude of potential mobilizable mate-
rial. The dataset, in raster format, provided by the regional archive
allows ve classes to be identi ed: (i) grassland, (ii) lakes, (iii) high
forest, (iv) low forest, (v) rock and deposits (Fig. 6). This classi ca-
tion re ects the different soil conditions related to erodibility or
resilience to the impact of rainfall.

The RES was proposed by Hudson in 1992. The methodology is
based on a matrix approach that allows the numerical encoding
of mutual interactions between the predisposing factors arranged
along the diagonal terms (Pi) of the matrix (Fig. 7). Off-diagonal
terms (1;;) are scored with values from 0 (no interaction) to 4 (criti-
cal interaction) using the Expert Semi-Quantitative method (ESQ)
(Harrison and Hudson 2006; VVagnon et al. 2015). The contribution
of each parameter to the debris ow triggering is described by the
weighting coef cient a;:

e ®

where C is the sum of the values in each row (Cause C) and it
represents the in uence of the parameter P; on the system, E is the
sum of the values in each column (Effect E) and it represents the
in uence of the system on parameter P;.

The debris ow susceptibility index (DfPI) is given by:

@

where g; is the weighting coef cient calculated for each parameter
using Eq. 1, and Py, corresponds to a speci ¢ value between 0 and 4
attributed to each class of the identi ed predisposing factors. The
0 value represents the most stable conditions (lower debris ow
susceptibility) while the 4 value represents the most favourable con-
ditions for debris ow triggering. The P, value describes the weight
assigned to each predisposing factor based on its propensity to
induce instability (Mazzoccola and Hudson 1996; Rozos et al. 2008, 2011).



In this paper, an upgraded version of the Bonetto et al. (2021)
approach is proposed to develop a GIS-based debris ow suscepti-
bility map for the whole Upper Susa Valley by usinga5 5-m reso-
lution grid. Curvature, land use and landslide activities were con-
sidered as predisposing factors in addition to those of the original
version: lithology, fracture network, quaternary deposits, slope and

channel network. Two interaction matrices were created to sepa-
rately analyse the mutual interaction between the bedrock lithology
(matrix A) or deposits (matrix B) and the other parameters.

The GIS-based DfPI has the same range of values of the original
DfPI version (from 0 to 100). Five susceptibility classes were de ned
by usingamodi ed version of Brabbs susceptibility scale: low (0 20),
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medium (20 40), high (40 60), very high (60 80) and extreme
(80 100).

The off-diagonal terms of each matrix were coded considering the
mutual in uence between the parameters and a; were calculated
respectively for matrix A (bedrock lithologies) and matrix B (qua-
ternary deposits) (Tables 3 and 4). By applying Eq. 2 to each grid
cell and analysing separately bedrock outcrop areas and quaternary
deposits (Table 5), the map of the whole study area was obtained
(Fig. 8). The RES method highlights that debris ow susceptibility
zones are concentrated at high elevation and where talus deposits
are present. In addition, a large concentration of high susceptibility
areas near the channel network and along the slope is emphasized.
The NW sector has the areas with the highest susceptibility values
compared to the rest of the valley. In fact, these sectors are char-
acterized by the presence of deformed dolomitic rocks affected by
intense post-metamorphic brittle deformation, as highlighted by
the presence of the high amount of talus deposits.

| Landslides

The basins analysed in Bonetto et al. (2021) and their correspond-
ent global DfP1 are highlighted in Fig. 8. The results highlight that (i)
qualitatively, there is a good agreement between the global DfPI and
the grid DfPIs and (ii) the grid DfPI allows the direct identi cation
of the areas capable of triggering debris ow events, providing great
advantages especially for the planning of risk management activities.

Qualitative and preliminary analysis of the proposed RES approach is
promising for the identi cation of the areas of the Upper Susa Valley
most susceptible to debris ow triggering. However, for evaluating the
reliability of this procedure, highlighting its potentialities and limita-
tions, RES was  rstly compared with two well-established susceptibil-
ity methods available in the scienti c literature: the Regional Quali-
tative Heuristic Susceptibility Mapping (RQHSM) and the Likelihood
Ratio (LR). Then, for a quantitative comparison and for evaluating the
effectiveness of the RES, the RQHSM and the LR, the prediction rate
approach (Chung and Fabbri 2003) was used. Figure 9 shows the logical
steps followed for the quantitative comparison between the susceptibil-
ity mapping methods analysed in this work.



geomorphologic criteria (Soeters and van Westen 1996; Riopel et al.
2006; Blais-Stevens et al. 2010, 2011, 2012, 2014 and references herein).
For each parameter, different classes were de ned, according to the

The RQHSM is a heuristic method that allows de ning asusceptibility ~ propensity of triggering debris - ows (Table 6). Following the equation

index (SI) by scoring the predisposing factors using geological and

SubjectA

Influence of
B onA

Subject B

Influence of
AonB

proposed by Blais-Stevens and Behnia (2016), SI was calculated as:

CAUSE -C

P classes Py
Classl 0
Class2 1
Class3 2
Class4 3
Class5 4

EFFECT -E
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The interaction
matrix encoded for bedrock
lithologies outcrop (matrix A)

Matrix A — bedrock lithologies

2.70

5.39

5.64

3.92

3.68

3.68

®

with geology (G), slope angle (S1), slope aspect (S2), drainage sys-
tem (D) and plan curvature (C). The resulting debris ow suscep-
tibility map is shown in Fig. 10. For a direct comparison with DfPI
values, SIs were multiplied by 100 and classi ed following the same
criteria.
The RQHSM highlights the areas near the drainage system with
a high probability of failure, considering that the onset of debris
ows is usually triggered in steep streams. In this case, only the
materials into the stream and along the riverbanks are detected as
susceptible at triggering phenomena.

The likelihood ratio (Lee 2004; Lee and Pradhan 2007; Demir et al.
2015 and references herein) is a statistical method that correlates

The interaction
matrix encoded for Quaternary
deposits outcrop (matrix B)

environmental conditions with landslide areas and extends the
landslides spatial occurrence in similar setting areas.

Based on the assumption that future landslides will occur under
the same conditions as past landslides, the statistical method allows
de ning which factors, or combination of factors, play a funda-
mental role in the landslide initiation. With the LR, it is possible
to evaluate the relationship between the dependent parameter
(landslide occurrence) and the independent parameter (such as
geological, geomorphological and hydrogeological features) and
retrieve a ratio between the landslide occurrence probability and
the non-occurrence probability calculated for each class factor. For
debris ow analysis, these terms correspond to the ratio between:

(4)

where the landslide occurrence ratio is the ratio between the number
of landslides in i-th class and the total amount of landslide in study

Matrix B— quaternary deposits

3.77

4.97

4.67

4.37

4.22

3.01
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Matrix B— Quaternary deposits

Parameter

o> >
> ¥> >
« < « <
« < « <
« < « <
« < « <
fi < fi <«
f « f «
« «
« «
« «
fi fi
> > > >
8§ 8§
> > >
f f
——

area, the area domain is the ratio between the area of i-th class and
the total area in our case study. If the FR is greater than 1, it means
that factor class has a high correlation with the event and vice versa.
Operatively, for evaluating the FR, the landslide inventory
described in the Landslide inventory and source area archive
section, was randomly divided into two sets in the proportion 70%
(593) 30% (253): the training and the validation sets (Fig. 11). The

training set was used to build the statistical model, while the valida-
tion set was used to validate the results.

Using Eq. 4, the FR values were calculated for each layer class
(Table 7). The susceptibility index for each cell was obtained as the
sum of all the FRs calculated for each selected parameter:

®
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and the resulting debris ow susceptibility map is shown in Fig. 12.
SI values were scaled up to vary between 0 and 100 for a direct
comparison with DfPIs and SlIs from the RQHSM.

The LR method highlights three areas with high susceptibility
values (>80) located in the southwestern and central parts of the
study area. These areas correspond to the high-altitude zones at
the peaks and the crests of the mountain chain and to large areas
occupied by detrital materials and talus deposits. In these areas, the
structural setting of the rock masses (made of prevailing marble-
dolostone and calcschist) and their mechanical proprieties are
favourable for producing a huge amount of loose material. Along
the slope and in presence of the forests, the susceptibility values are
low while the presence of talus deposits is noted as the most critical
areas. These low values are attributed to high slope areas and zones
in proximity to the channel network focusing on the areas with
coarse deposits and high fractured rocks.

In the previous section, a visual and qualitative comparison was
made between the RES and the other models. In this section,
quantitative analyses were performed to assess the validity of
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the three susceptibility methods. However, the assessment of the
model robustness is always a challenging task. Many authors have
proposed different methodologies for the comparison between
forecasted results and observed data. In this study, the suscep-
tibility maps were validated by using the Prediction Rate Curve
(Chung and Fabbri 2003). This approach is based on the direct
comparison between the source area estimated from susceptibil-
ity maps and the real source area from debris ow inventory. The
validation set consists of 253 landslide source areas (30% of total
source areas inventory) previously excluded from the statistical
model analysis. The source area was overlaid on the susceptibility
maps (Fig. 13) and the validation phase was performed plotting
the LSI value in x-axis and the cumulate percentage of landslides
on y-axis (Fig. 14).

The use of the same validation dataset for all three methodolo-
gies allows the direct comparison between the curves obtained
and the evaluation of their robustness. The validation step veri-

es that the maximum number of landslides was included in the
highest susceptibility classes. Results show that the landslide areas
predicted by the RES method in the high-extreme susceptibility
range (50 100) are 96% while in the same range, the performance



Bedrock Lithology Quaternary Deposifs
SlopeAngle Curvature

Elevation SlopeAspect
Channel Network Land Use
LandsldieActivity Lineament Density

—
C Parameters )

GIS spatial analysis | I'Bedrock Lithology '
|

i SlopeAngle
Matrix A

Predisposing
factors
data preparatio

. Curvature '
| Channel Network |
. Land Use

| LandsldieActivity ‘
LLineamenl Density R

" Quaternary Deposits | Debris flow inventory
' SlopeAngle |

| Curvature .
: Channel Network

| Land Use ‘
« LandsldieActivity
Lo ... .1

- T -0
' Bedrock Lithology

. | Quaternary Deposits
Landslide ‘ SlopeAngle ‘ 70%
susceptibility I LR | ‘gE;gg;ng;em ) I'|~—] Trainig
' Channel Networl
methods | Chagnel! } Set

i LandsldieActivity

"Bedrock Lithology -
' Quaternary Deposits

I SlopeAngle ‘
RQHSM ' Curvature |
| SlopeAspect .

Lchannel Network

e
: 7 ~_
Maps Generatio|
30%
Validation Sé
l Validation l

of the RQHSM and LR methods is 82% and 77%. This means that  in the other methods more landslides were predicted in areas
in the RES methodology most landslides were predicted in areas  of low high susceptibility. This fact re ects a lower prediction
characterized by high-extreme susceptibility while, in contrast, capability.

Distance from channel network

Classes

«

«

«

fi
« « fl
« «
« «
« « fi
fi «

Landslides |



Using predisposing parameters selected from national and regional
geodatabases, debris ow susceptibility maps were developed using
the RES, RQHSM and LR methods. Analysis of the prediction
curves (Fig. 14) shows the trend differences between the analysed
methodologies: the RES appears to be more accurate in predict-
ing susceptible areas based on debris ow database analysis. To
compare and evaluate the models, the percentage of the areas clas-
si ed as susceptible is reported in Fig. 15. In the RES and RQHSM
methods, the differences in the percentage of susceptible areas are
negligible (0.2]0.8 Low, 13.2|17.7 Medium, 47.0|43.8 High, 33.3|32.2
Very high, 6.3]5.5 Extreme). These two methodologies classify most
of the territory with high and very high susceptibility while, on the
other hand, the LR approach identi es a different proportion of
areas with respect to the other two methods (25.3 Low, 44.2 Medium,
16.8 High, 10.2 Very high, 3.3 Extreme). In this case, the LR method
identi es few areas of high susceptibility by concentrating high
values in a small portion of the area. The difference is also appreci-
able comparing the maps in Fig. 13, which shows the overlay of the
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susceptibility map and the location of the source areas used in the
validation process.

A common feature of all three methods is that the spatial dis-
tribution of the most susceptible areas corresponds to the zone of
maximum elevation with the presence of debris along the slope and
steep sections. The RQHSM and RES methods identify the channel
network as playing a signi cant role in the triggering phenomena,
while the LR method highlights highly fractured outcrop rocks as
a key factor. The low susceptibility zone was detected in the alluvial
planesand at areas, but the same susceptibility class in the LR was
also detected along the slope and near channels.

The applicability of different methods to debris ow susceptibil-
ity depends on several factors (e.g. amount and quality of the data)
but established standards and codes of practice are not available for
the choice of the most appropriate method for landslide susceptibil-
ity evaluation.

The LR method is based on the evaluation of the relationships
between predisposing factors (thematic layers) and the distribution of
debris ow source areas collected in the past years (landslide inventory).



Thus, a detailed landslide archive is a necessary input to apply the
methodology. In remote mountain areas, where it is dif cult to collect
information, some events may be missed, and this issue can lead to an
underestimation of the potential triggering areas with a consequent
decrease in forecasting quality. The application of remote sensing sur-
vey can redress this problem, but the precise time of occurrence and the
de nition of magnitude remain undetectable. This information is not
required for landslide susceptibility, but it is fundamental for hazard or
risk assessment. Moreover, the visual detection of source areas has some
limitations due to the misclassi cation of landslide events and under-
estimation of the number of events recorded. The growth of vegetation
and action of snow and glaciers could partially or totally delete the
evidence of past events. In addition, the complex terrain morphologies
may not allow the proper identi cation of the source area if the quality
of aerial photography is not suf ciently detailed.

The evaluation of landslide susceptibility requires geological,
morphological and statistical input data to process the analysis. Much

effort is required to collect and validate the necessary input data,
which are not always available from open-access geo-environmental
databases. Statistical methods need the available spatial temporal
datasets of landslide events. The RES and RQHSM methodologies
are essentially based on predisposing parameters derived from
geological, morphological and hydrogeological thematic layers.

In the RES methodology proposed, starting from available
databases, several geological, geo-structural, morphological
and hydrographic parameters were considered to quantify their
mutual interaction and to de ne adebris ow susceptibility map.
In particular, the parameters for the different lithological classes
of the bedrock and for their degree of fracturing were quanti-

ed in the regional-scale tectonic setting, and for the Quaternary
deposits.

The RES method, as applied in this study, proved to be low-cost
and time-saving and allowed sectors with different propensities to
triggering debris ow to be identi ed.

Landslides |



Areain the % of domain No. of % of landslide*

domain (km?) landslide
« < 23.11 792 0.51 0.06
« < 33.94 17.44 1.35 0.08
« < 96.40 31.18 6.07 0.19
« < 131.84 30.17 28.50 0.94
fi < 101.48 9.12 63.58 6.97
32.16 8.36 25.63 3.06
10.69 2.78 10.29 3.70
— 26.40 6.87 6.58 0.96
— 3.95 1.03 0.17 0.16
> 0.62 0.16 0.34 2.10
67.17 17.47 6.58 0.38
> 30.53 794 29.34 3.69
22.79 5.93 4.22 0.71
¥> > 189.05 49.18 15.51 0.32
« 84.24 21.76 39.63 1.82
« 67.76 17.51 20.24 1.16
« 51.74 13.37 15.51 1.16
« 39.56 10.22 8.43 0.82
fi 143.75 37.14 16.19 0.44
fl 11.99 3.10 1.18 0.38
« 85.07 21.99 2.19 0.10
« 110.02 28.44 15.18 0.53
« 107.75 21.86 47.72 1.7
« 62.67 16.20 32.88 2.03
fi 9.34 2.41 0.84 0.35
17.30 4.49 2.87 0.64
131.50 34.14 20.74 0.61
i 2.12 0.55 1.01 1.84
158.53 41.16 9.27 0.23
75.70 19.65 66.10 3.36
fl < 56.15 14.54 14.33 0.99
« < 55.59 14.40 25.97 1.80
« < 80.30 20.80 28.84 1.39
« < 65.80 17.04 16.02 0.94
« < 58.14 15.06 6.91 0.46
fi < 70.08 18.15 793 0.44
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Area in the % of domain No. of % of landslide*

domain (km?) landslide
79.01 33.22 52.43 1.58
122.68 51.58 29.13 0.56
— 35.40 14.88 18.45 1.24
0.74 0.31 0.00 0.00
fl 45.28 11.72 4.72 0.40
84.72 21.93 26.31 1.20
157.89 40.88 19.39 0.47
fi 98.36 25.47 49.58 1.95

*Total number of landslides is 593 (training sets)
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Susceptibility analysis in mountain areas is the rst step in the risk
assessment procedure. It is useful for local authorities to de ne
potential areas that could be affected by debris ow phenomena.
Different methodologies for susceptibility analyses are available in
the scienti c literature, but which to choose depends on the scale
of analysis required and the amount and quality of available data.

In this work, an innovative GIS-based application of Rock Engi-
neering System (RES) was used for debris ow susceptibility map-
ping. Starting from the de nition of a global DfPI for a single debris

ow basin, as suggested by Bonetto et al. 2021, in this paper, a debris

ow susceptibility map of the Upper Susa Valley (W Alps, Italy) was
developed witha5 5-m grid resolution. Important updates to the
Bonetto et al. (2021) approach were proposed: (i) new predisposing
factors, such as land use, landslide activity and other geomorpho-
logical aspects, were considered; (ii) two interaction matrices were
proposed for considering the mutual interaction of the bedrock
lithology or deposits with the other parameters; (iii) GIS-based
mapping with evaluation of DfPI for each cell of the grid.

The susceptibility map obtained was compared with the RQHSM
and LR methods. Numerical quanti cation of the validity of the
susceptibility forecasting was performed by using the Prediction
Rate Curve model, comparing the susceptibility model results with
an available debris ow source inventory. In general, there was a
good agreement between the forecasted and observed source areas.
However, the RES-based map appears to be the most ef cient and
robust in the detection of source areas, since it was able to predict
96% of the source areas that fall into the high-extreme susceptibil-
ity range (50 100).

The study demonstrates that the application of the RES method
offers an opportunity for initial debris ow susceptibility screening
at medium and large scale, using available and open-access data,
and meets the needs of authorities for land use management and
planning. Further studies will be devoted to a comparison with
other more sophisticated and complex methodologies (e.g. multi-
variate statistical approach or arti cial neural network methods)
developed in recent years.
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