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Abstract: In this work, the contrast source inversion method is combined with a finite element method
to solve microwave imaging problems. The paper’s major contribution is the development of a novel
contrast source variable discretization that leads to simplify the algorithm implementation and, at
the same time, to improve the accuracy of the discretized quantities. Moreover, the imaging problem
is recreated in a synthetic environment, where the antennas, and their corresponding coaxial port,
are modeled. The implemented algorithm is applied to reconstruct the tissues’ dielectric properties
inside the head for brain stroke microwave imaging. The proposed implementation is compared
with the standard one to evaluate the impact of the variables’ discretization on the algorithm’s
accuracy. Furthermore, the paper shows the obtained performances with the proposed and the
standard implementations of the contrast source inversion method in the same realistic 3D scenario.
The exploited numerical example shows that the proposed discretization can reach a better focus on
the stroke region in comparison with the standard one. However, the variation is within a limited
range of permittivity values, which is reflected in similar averages.

Keywords: contrast source inversion method; finite element method; brain stroke; microwave
imaging

1. Introduction

Microwave imaging (MWI) is a widely exploited technique in the medical field; indeed,
the sensitivity of the microwave frequencies to the dielectric contrast makes this method
suitable for different clinical applications. It can be used in combination with hyperthermia
for cancer therapy, as in [1], or microwave measurement data can be analyzed through
a machine learning algorithm to classify the brain stroke’s presence and typology [2].
In [3–5], MWI is employed for the diagnosis of breast cancer, in [6] for the detection of
traumatic intracranial hemorrhage, and in [7] for brain stroke detection. In this work, MWI
is exploited for reconstructing the dielectric properties distribution of the head tissues for
brain stroke imaging.

The basic idea is to determine some information about an unknown scatterer in the
domain of interest (DoI) from its scattered field through the solution of an inverse ill-posed
problem. This kind of problem is very demanding, and some techniques, such as the
Tikhonov regularization, can be used to solve them, as described in [8].

In this work, we use the contrast source inversion (CSI) method [9] for the solution of
the inverse problem. The CSI method is an iterative nonlinear algorithm widely exploited in
MWI technology, thanks to its capability to reconstruct the dielectric properties distribution
quantitatively inside the DoI. Another quantitative algorithm used in the literature for
brain microwave imaging is the distorted Born iterative method, as in [10,11].

The applications of the CSI algorithm are multiple. In the food industry, e.g., [12], it is
used to detect hot spots of moisture in grain bins; in [13], it is exploited to reconstruct the
distribution of the electrical conductivity between boreholes in the oil industry. Moreover,
the CSI algorithm is widely applied to medical issues. For example, in [14], it is combined
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with magnetic resonance images to detect the local absorption rate distribution. In our
work, as in [15], the algorithm is exploited for reconstructing the dielectric properties
distribution of the head tissues for brain stroke imaging. The CSI method can also be
combined with artificial intelligence and machine/deep learning algorithms. In [16],
the CSI method is enhanced through deep learning for breast cancer detection. Instead,
in [17], the tomography of electrical properties is realized through a deep learning first
reconstruction followed by the CSI method.

Here, the CSI algorithm uses a finite element method (FEM) solver to discretize the
whole domain. FEM allows using an unstructured and nonuniform mesh, fundamental
characteristics to discretize a realistic scenario accurately. In particular, we use an in-house
customized 3D FEM solver [18,19], which also comprises the numerical model of the
implemented antenna system described in [20]. The CSI algorithm, combined with an FEM
solver, was also used for a 2D scenario in [21] and a 3D one in [15], but, in both cases, the
sources were simple points or elementary dipoles. In this paper, the complete antenna
model, together with its coaxial feeding, is included in the inversion algorithm to improve
the incident field estimation in the DoI, as well as the scattering parameter evaluation at
the antennas’ ports.

The main aim of this work is to propose novel basis functions to discretize the contrast
source variables based on the vector basis functions commonly used in the 3D FEM for the
fields. This novel discretization is validated through a numerical analysis that quantitatively
compares it with the standard one in terms of efficiency and accuracy in the whole CSI
process for brain stroke imaging in a realistic scenario.

The paper is organized as follows. In Section 2, there is a brief description of the
implemented microwave imaging system and head phantom. Section 3 reports an overview
of the CSI method and, in Section 4, there is a detailed description of the standard and the
novel discretizations of the contrast source variables. In Section 5, both the discretizations
are numerically analyzed in terms of accuracy. Then, they are applied to a brain stroke
imaging problem to assess their performances using the same scenario. Finally, in Section 6,
the conclusion and perspectives are summarized.

2. Microwave Imaging System and Head Model

The herein MWI-exploited system comprises 24 low-weight flexible antennas acting
as both transmitter and receiver (for more details, see [20]). The antennas are distributed
conformally around the head to form a helmet and covered by a thin layer of coupling
medium, with a relative permittivity of around 20, which facilitates the field penetration
inside the head at a working frequency equal to 1 GHz. The working frequency is chosen
to obtain a trade-off between the wave penetration in the head tissues and the imaging
resolution that has opposite requirements on it (i.e., at high frequencies, we have high
resolution but poor wave penetration, at low frequencies, it is the opposite). Moreover,
as detailed in [22], there is a frequency band corresponding to around 1.5–4 GHz, in
which the transmission coefficient is significantly reduced due to the head dielectric tissues’
multilayer configuration. Hence, the suggested frequency choice is below 1.5 GHz because,
at frequencies higher than 4 GHz, the tissues’ losses are much higher, and the field cannot
penetrate through the head. This version of the MWI system is more compact in comparison
with the previous one proposed in [23]. It allows to reach the portability requirement
for the final system prototype, as shown in Figure 1. The FEM, used in combination
with the CSI algorithm, comprises the modeling of the entire antenna system and coaxial
feeding, allowing an accurate estimation of the field distribution in the DoI and at the
antennas’ ports.

In this work, a numerical 3D anthropomorphic phantom is exploited. In particular, the
phantom belongs to the National Library of Medicine within the Visible Human Project [24].
This project contains computerized tomography and magnetic resonance images of the cross-
sectional cryosection of a human man and a human female body. The data can be downloaded
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from the website [25]. All the tissues involved in the healthy reference human head are shown
in Figure 1 with the relative permittivity, εr, and conductivity, σ, at 1 GHz [26].

Figure 1. On the left: the MWI system; on the right: all the tissues embedded in the 3D anthropomor-
phic phantom with their dielectric properties at 1 GHz [26].

3. Contrast Source Inversion Method

In this section, we briefly summarize the CSI method to set up the notation for the
following description of the proposed discretization of the contrast source variables.

The CSI algorithm is based on the definition of two main variables. The first one is
the dielectric contrast, χ(r), between the relative complex permittivity of the background
(reference) scenario, εb(r), and of the scenario under test, ε̃r(r):

χ(r) ∆
=

ε̃r(r)− εb(r)
εb(r)

. (1)

where r indicates a generic point in the DoI.
The second variable is the contrast source, ωt(r), which identifies equivalent sources

in the DoI associated with the transmit antenna t. The contrast source causes the (scattered)
field received at the antennas’ ports in the scenario under test. They are also called induced,
passive or secondary sources and are defined with the so-called object equation:

ωt(r)
∆
= χ(r) Etot

t (r), (2)

where Etot
t (r) is the total field radiated by the antenna t in the DoI of the scenario under test

(scenario with the target). On the contrary, the same quantity in the background scenario
(scenario without the target) is called incident field, Einc

t (r). The evaluation of the scattered
field, Esct

t (r), is simply the difference between the total and the incident field as:

Esct
t (r) = Etot

t (r)− Einc
t (r). (3)

For each transmit antenna t, the Esct
t (r) and the ωt(r) are linked together via the wave

equation:
∇×∇× Esct

t (r )− k2
b (r)Esct

t (r ) = k2
b(r)ωt(r), (4)

where the background medium wave number is identified with kb(r) = ω
√

µ0ε0εb(r), in
which ω is the angular frequency, µ0 is the free space permeability, and ε0 is the free space
permittivity.

In the CSI method, χ(r) and ωt(r) are updated at each iteration n, so that a cost
functional, FCSI, is minimized. The cost functional asses the error between known data,
i.e., the scattered field at the antennas’ ports and the incident field in the DoI due to the
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transmit antenna t, and the corresponding ones obtained by the algorithm procedure. The
FCSI, at the iteration n, can be written as:

FCSI{χn(r), ωt,n(r)
}
= FS{ωt,n(r)

}
+FD{χn(r), ωt,n(r)

}
(5)

where

FS{ωt,n(r)
}

=
∑T

t=1
∥∥Esct

t (r)−GS{ωt,n(r)}
∥∥2

S

∑t
∥∥Esct

t (r)
∥∥2

S

, (6)

FD{χn(r), ωt,n(r)
}

=
∑T

t=1
∥∥χn(r) Einc

t (r)−ωt,n(r) + χn(r)GD{ωt,n(r)}
∥∥2

D

∑t
∥∥χn(r) Einc

t (r)
∥∥2

D

. (7)

The functionals FS and FD evaluate the mismatch between the known quantities and
those estimated at iteration n in the domains S, where the antennas are located (i.e., at the
antennas’ ports), and D, which corresponds to the DoI, respectively. Moreover, T is the
total number of antennas, ‖ · ‖2 identifies the Euclidean norm, and GS and GD are operators
that return the scattered field values in the domain S and D, respectively [15]. In the cost
functional described above, a regularization term can also be included to speed up the algo-
rithm’s convergence, as described in [27]. In this work, the CSI algorithm was modified to
link the scattering parameters at the coaxial antennas’ ports to the corresponding scattered
field in S, as requested in (6). A generic scattering parameter Sm,t is written by definition as:

Sm,t =
bm

at

∣∣∣∣
ak=0, k 6=t

(8)

where the antenna t is the transmitter and the antenna m the receiver, and at and bm are
the incident and reflected power waves at the corresponding antennas’ ports, respectively.
Then, assuming the same reference impedance at all antennas’ ports (corresponding to the
characteristic impedance of the coaxial cable, here equal to 50 Ω), the power waves can be
written in terms of the field at the antenna port and the transversal electromagnetic (TEM)
coaxial mode as:

Sm,t =


〈Em , eTEM〉
〈E+

t , eTEM〉

∣∣∣∣
E+

m=0
, if m 6= t

〈Et−E+
t , eTEM〉

〈E+
t , eTEM〉 , if m = t

(9)

where Et and Em are the electric fields at the t and m coaxial antennas’ ports and E+
t and

E+
m the corresponding impressed ones. The coaxial antenna port corresponds to the circular

crown surface between the radii ra and rb, as shown in Figure 2.

Figure 2. Whole model of antenna with closeup on the coaxial cable port.
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The vector eTEM is the modal function of the coaxial cable TEM mode ([28] Ch. 5),
defined as:

eTEM =
1√

2π ln( rb
ra
)

ρ̂

ρ
(10)

where ρ̂ and ρ are the direction and the amplitude of the radial variable from the center of
the coaxial cable in the considered port surface. As shown in Figure 3, the eTEM mode has a
radial behavior with respect to the center of the coaxial on the port surface and decreasing
from the smaller circumference to the larger one. Finally, 〈·〉 in (9) is the inner product
between the two considered vectors.

Figure 3. TEM mode on the coaxial port surface.

Enforcing a TEM impressed field at the t antenna port with amplitude equal to 1 V,
E+

t = eTEM and (9) can be simplified as:

Sm,t =


〈

Em, eTEM〉∣∣
E+

m=0, if m 6= t〈
Et − E+

t , eTEM〉, if m = t
(11)

Then, we can assume that the electric field propagating in a coaxial cable is the TEM
field only, writing:

Em = Vm eTEM (12)

and, substituting (12) in (11), we obtain that Sm,t = Vm. Hence, applying the same procedure
for the background (reference) scenario and the one under test, we obtain that the scattered
field at the m-th antenna port due to the t-th transmitting antenna can be written as:

Esct
m = (Stot

m,t − Sinc
m,t) eTEM, (13)

where the scattered field is written in terms of the scattering parameters at the antennas’
ports in the background and under test scenarios. The same procedure can be applied for
the case of m = t.

4. Discretization of the CSI Variables

In this section, we analyze different discretizations of the CSI variables in order to
implement numerically, via an FEM approach, the CSI method described in Section 3.

First, the entire volume, Ω, is discretized via tetrahedral cells, where the complex
relative permittivity is evaluated in each cell’s barycenter and assumed constant in the cell.
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This discretization of the complex relative permittivity allows writing the dielectric contrast
as:

χ(r) ∼=
I

∑
i=1

χi pi(r), (14)

where χi corresponds with the dielectric contrast in the i-th tetrahedron Ci, I is the number
of tetrahedra in the whole domain, and pi(r) is the pulse function, defined as:

pi(r) =

{
1 r ∈ Ci

0 elsewhere.
(15)

The field radiated by each antenna t can be written as a linear combination of a set
of vector basis functions, Ne(r), associated with each edge e of the tetrahedral mesh; the
field basis functions are curl-conforming and have a spatial domain corresponding with
all the tetrahedra with the considered edge e in common. Moreover, they have a constant
tangential component along the associated edge e and no tangential component along
the other edges of the tetrahedra. This kind of basis function is often exploited in FEM
problems with tetrahedral discretization [29]. Then, the fields can be written as:

Etot
t (r) ∼=

E

∑
e=1

Etot
t,e Ne(r) (16)

Einc
t (r) ∼=

E

∑
e=1

Einc
t,e Ne(r) (17)

Esct
t (r) ∼=

E

∑
e=1

Esct
t,e Ne(r) (18)

where E is the total number of edges of the tetrahedral mesh, and Etot
t,e , Einc

t,e , and Esct
t,e are the

coefficients of the total, incident, and scattered field, respectively.

4.1. Standard Contrast Source Discretization

The first considered discretization of the contrast source variables is the standard
one [30]. In this kind of discretization, the contrast sources are associated to each tetrahe-
dron, and this allows to write ωt in a similar way as for the dielectric contrast in (14):

ωt(r) ∼=
I

∑
i=1

ωt,i pi(r), (19)

where ωt,i are the vector coefficients and correspond to the value of the contrast source in
the barycenter of the i-th tetrahedron. These vector coefficients can be explicitly written via
(2) as:

ωt,i = χ(ri) Etot
t (ri), (20)

where ri is the position vector at the barycenter of the considered i-th tetrahedron. We
can notice that, with the discretization in (19), the contrast source is assumed constant in
amplitude and direction in each cell, loosing the linear variability instead available in the
fields’ discretization (18).

Applying the Galerkin weighted residual testing and substituting (18) and (19) in (4),
we obtain the following discretized wave equation:

([U]− [V])[Esct
t ] = [R] · [ωt], (21)
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where [U] and [V] are E × E matrices, usually called FEM stiffness and mass matrices,
respectively. Each element (i, j) of [U] and [V] can be written as:

[U]i,j =
∫

Ω
(∇× Ni) · (∇× N j) d3r, (22)

[V]i,j =
∫

Ω
k2

b Ni · N j d3r. (23)

The integrals in (22) and (23) are known in closed form [29] thanks to the chosen test
and basis functions. Moreover, [Esct

t ] is an E × 1 array that collects the scattering field
coefficients (18), and [ωt] is an I × 1 array collecting the vector contrast source coefficients
(20). Due to its vector nature, each element of the [ωt] array corresponds to three scalar
quantities that have to be updated at each CSI iteration. Finally, [R] is a vector matrix with
dimension of E× I; each element (i, j) corresponds to:

[R]i,j =
∫

Ω
k2

b Ni(r) pj(r) d3r. (24)

In (21), the symbol “·” identifies the scalar product between the vector matrix [R]
and the vector array [ωt]. Due to the use of vector arrays and matrices, the numerical
implementation is quite complex and, in particular, requires a dyadic expression for the
discretized operators GD and GS in (6) and (7).

4.2. Proposed Contrast Source Discretization

Here, we propose a novel discretization of the contrast source variables that avoids
the use of vector coefficients and, as a consequence, of vector arrays, matrices, and dyadic
operators; moreover, at the same time, a linear variation of the contrast source is kept
within each cell, as it is for the fields.

In (16), (17) and (18), each basis function Ne(r) is labeled with the generic edge
e = 1, . . . , E, where E is the total number of edges in the mesh. The basis function Ne(r) has,
as definition domain, the volume of the Qe tetrahedra that have in common the considered
edge e. Then, we can write a new basis function Ñe,q(r) as:

Ñe,q(r) = Ne(r)pα(e,q) (25)

where the pulse function pα(e,q) is defined in (15), and α(e, q) returns the i-th tetrahedron
index as a function of the edge index e and the local index q = 1, . . . , Qe of the tetrahedra
that have in common the considered edge.

Exploiting (25), the total field in (16) can be rewritten as:

Etot
t (r) ∼=

E

∑
e=1

Etot
t,e

Qe

∑
q=1

Ne(r)pα(e,q) =
E

∑
e=1

Qe

∑
q=1

Etot
t,e Ñe,q(r) (26)

Substituting (14) and (26) into (2), we obtain:

ωt(r) ∼=
[

I

∑
i=1

χi pi(r)

][
E

∑
e=1

Qe

∑
q=1

Etot
t,e Ñe,q(r)

]

=
E

∑
e=1

Etot
t,e

I

∑
i=1

Qe

∑
q=1

χi pi(r)Ñe,q(r)

=
E

∑
e=1

Qe

∑
q=1

[
Etot

t,e χα(e,q)

]
pα(e,q)(r) Ñe,q(r)

=
E

∑
e=1

Qe

∑
q=1

ωt,e,α(e,q) Ñe,q(r). (27)
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In (27), during the steps to reach the final discretization, the pulse function pi(r) is
left out because the domain of Ñe,q(r) already bounds within each tetrahedron. In this
discretization, the contrast sources are now written as a linear combination of vector basis
functions weighted by scalar coefficients. Moreover, they use the same vector basis functions
of the field, allowing a linear variation within each cell. Substituting (18) and (27) in (4),
and applying the Galerkin weighted residual testing, we obtain the following discretized
wave equation:

([U]− [V])[Esct
t ] = [R][ωt], (28)

where, unlike (21), the right-hand side is the standard matrix/vector product between
scalar quantities. Indeed, [ωt] is a 6I array (i.e., the contribution of the 6 edges for each
element i) that contains the scalar coefficients of (27), and [R] is a matrix with dimension
E× 6I with each element equal to:

[R]m,n =
∫

Ω
k2

b Nm(r) · Ñn(r) d3r, (29)

where Ñn(r) has the index n that coincides with the double indexing (e, q) in (27). To better
clarify the overall procedure, in Figure 4, we show a flowchart of the implemented CSI
algorithm.

The main advantage of the proposed discretization is that the field and the contrast
sources are written with the same basis functions, reducing the update procedure just to
the scalar coefficients. This characteristic facilitates the CSI algorithm implementation,
avoiding vector arrays and matrices as well as dyadic operators. Moreover, it improves the
discretization accuracy, as detailed in Section 5.
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Figure 4. Flowchart of the implemented CSI algorithm.



Sensors 2023, 23, 11 10 of 18

5. Numerical Results

In this section, we report the numerical comparison, in terms of accuracy in the
discretized wave equation, between the standard and the novel discretizations of the
contrast sources in a homogeneous head (see Section 5.1). Then, the performances of the
two types of discretization are analyzed and compared in the 3D imaging of a hemorrhagic
stroke inside the multitissue head shown in Figure 1 (see Section 5.2). All the simulations
are performed at 1 GHz. The stroke has the permittivity and conductivity of the blood, i.e.,
εr = 64.41 and σ = 1.58 S/m [26]; it is positioned in the gray matter and has a realistic
shape, which was obtained by medical images [31], as shown in Figure 5. The domain is
discretized via tetrahedral cells with an edge dimension of 3 mm, corresponding to around
λ/15 if we consider a background medium equal to the average of the dielectric properties
of all the head tissues, εmean = 45.37 and σmean = 0.77 S/m [32]. For each radiating antenna
t, the field distribution in the domain is evaluated through the EM solver considering the
absorbing boundary condition on the external surface of the whole domain ([28] Ch. 3).

Figure 5. Views of the considered hemorrhagic stroke (in red) within the brain.

5.1. Comparison between the Contrast Source Discretizations

Initially, a homogeneous head phantom is exploited with dielectric properties cor-
responding to the average of the dielectric properties of all the tissues inside the head.
The first step for the comparison is the assessment of the accuracy in the discretized wave
equations for the two different contrast source discretizations. In particular, we evaluate
the difference between the left-hand side (LHS) and the right-hand side (RHS) in (21)
and (28), using as input the same scattered and total fields (obtained in the considered
scenario via the FEM solver), as well the same (corresponding) dielectric contrast. In order
to have quantitative indices of the errors between LHS and RHS in the two contrast source
discretizations, we evaluate the Euclidean norm, η, and the relative one, ηr, as

η =

√√√√ E

∑
e=1
|[LHS]e − [RHS]e|2 (30)

ηr =
η√

∑E
e=1|[LHS]e|2

. (31)

where [LHS]e and [RHS]e are the e-th elements of the LHS and RHS arrays, respectively.
The results for (30) and (31) are reported in Table 1.

Table 1. Error between RHS and LHS.

η ηr

Standard 9.52× 10−8 2.03× 10−5

Novel 7.47× 10−11 1.59× 10−8

The higher error between the LHS and the RHS obtained with the standard discretiza-
tion is due to the assumption in (20) that the field value and direction are considered
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constant within each tetrahedron. Therefore, we evaluate the errors in the scattered field
coefficients, [Esct], that are obtained through (21) and (28), comparing them with the scat-
tered field obtained with the FEM solver as the difference between the total and incident
fields. The errors are reported in Table 2; a significantly lower error is obtained with the
proposed contrast source discretization.

Table 2. [Esct] error.

η ηr

Standard 4.13× 10−4 2.03× 10−5

Novel 5.14× 10−10 2.52× 10−11

Finally, in order to estimate the accuracy of the proposed discretization related with
the overall CSI procedure, we evaluate the minimum cost functional value of the algorithm
for the two discretizations. In particular, we substitute the exact values of the dielectric
contrast and the contrast sources in the cost functional (5). In Table 3, the results for the
two discretizations, separately for FS and FD, are reported.

Table 3. Cost functional.

FS FD

Standard 9.87× 10−9 9.51× 10−10

Novel 6.48× 10−20 1.11× 10−23

The novel discretization has a minimum value of FCSI of around 10 orders of magni-
tude lower than in the standard discretization.

5.2. Brain Stroke Imaging

In this section, there is the analysis of the CSI algorithm performances, applying both
the standard and the proposed contrast source discretizations. In particular, the standard
discretization is implemented by substituting Ñ(r) with Ñ(ri), where ri is the barycenter
position vector of the tetrahedron where Ñ(r) is defined. In this way, the proposed dis-
cretization is equivalent to the standard one, with the contrast source variables described
by scalar coefficients and the direction variability within each tetrahedron guaranteed by
the contribution of the six different (now constant) vector basis functions defined in it (one
for each tetrahedron edge). Hence, for all the comparisons reported in the following, we
are able to use the same code implementation in the same conditions, just with a different
discretization of the contrast source variables.

The considered scenario comprises the multitissue head phantom, described in Section 2,
in order to identify the location and dielectric characteristics of the hemorrhagic stroke,
shown in Figure 5. The scattering parameters at the antennas’ ports are simulated with a
tetrahedral mesh different from the one used to generate the incident field and the operators
in the CSI algorithm. This choice allows to avoid inverse crime and to assess the robustness
of the proposed method with respect to inaccuracies in the input data. The CSI algorithm
starts with the initial guess computation. As described in [30], the initial guess cannot be
equal to zero because the cost functional is undefined with a zero contrast source. The initial
guess corresponds to the contrast source variable that minimizes the data-error equation in
the cost functional FS{ωt,n(r)

}
. This minimization is obtained via backpropagation [9].

In [33], there is some recent research for a new analytical method, which provides good
initial guesses.

In Figure 6a,b, there are the volumes of the stroke permittivity and conductivity
identified by the CSI algorithm after 100 iterations with the standard discretization. In
this figure, each dot is the barycenter of each cell with εr > 53 (Figure 6a) and σ > 1 S/m
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(Figure 6b). The color denotes if the dot is inside (red) or outside (black) the expected stroke
region. Instead, in Figure 7, there are the stroke reconstructed dielectric properties (after
100 iterations) in the three main cuts of the brain; the perimeter of the expected stroke
shape is also shown in white. In Figure 7, it is possible to see a slightly lighter halo in the
region of the stroke, but the algorithm struggles to reconstruct the target. Then, the same
graphs are reported using the proposed discretization in Figures 6c,d and 8. In this case, the
shape of the stroke is better focused, and the values of both permittivity and conductivity
distribution are higher in the stroke region.

Figure 6. CSI algorithm results with the standard (a,b) and the proposed discretization (c,d). The spots
correspond to the volume of the stroke identified by the algorithm after 100 iterations: permittivity
(a,c) and conductivity (b,d). Red inside and black outside the stroke area.

Figure 7. CSI algorithm results with the standard discretization. Shape, position, and dielectric
property values of the stroke identified by the CSI algorithm after 100 iterations. On the first
row, three different views of the permittivity, and on the second row, three different views of the
conductivity. The perimeter of the expected stroke shape is shown in white.
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Figure 8. CSI algorithm results with the proposed discretization. Shape, position, and dielectric
properties values of the stroke identified by the CSI algorithm after 100 iterations. On the first
row, three different views of the permittivity, and on the second row, three different views of the
conductivity. The perimeter of the expected stroke shape is shown in white.

Then, we exploit the information given by the initial guess in order to improve the
algorithm convergence and the simulation time with the proposed discretization. In
particular, as reported in Figure 9, the initial guess, evaluated through backpropagation, is
able to detect the region of the brain affected by the stroke, clearly identified through the
thresholds εr > 52.4 (Figure 9, first row, left) and σ > 0.986 S/m (Figure 9, first row, right).
In Figure 9 (second row), we also reported the same thresholds used in Figure 6, but in this
case, they detect just a few spots. Then, during the iterations, the CSI method improves the
dielectric properties values and the shape of the stroke.

Figure 9. CSI algorithm initial guess with the proposed discretization. On the first row, in blue, the
region of the stroke identified by the algorithm, and on the second row, in red, the spots with higher
dielectric properties values: on the left, permittivity, and on the right, conductivity.

This information allows limiting the DoI, reducing the number of unknowns signifi-
cantly and, consequently, the simulation time: a reduction to 60 % of the initial unknowns
leads to gaining around 30 % of the simulation time, without considering the solution of
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the system that is equal in both cases. In particular, we limit the DoI to the half-back part of
the brain. Moreover, for this case, we report the results after 100 iterations. In Figure 10,
there is the estimated stroke volume and, in Figure 11, the corresponding permittivity and
conductivity. Comparing the stroke reconstructions in the three tests, the proposed dis-
cretization obtains a better focus on the stroke and higher values of the dielectric properties
in the stroke region. In fact, considering just the stroke region elements, the percentage with
εr > 53.00 is 2.00 % in the standard discretization, 28.41 % in the proposed discretization,
and 51.30 % in the proposed discretization with half head. Moreover, Figure 12 shows the
cost functional in (5) in logarithmic scale during the CSI algorithm convergence for the
three tests. As expected, the cost functional in the proposed discretization (red line) starts
and reaches the convergence with lower values with respect to the standard discretization
(blue line), and a further improvement is obtained using the proposed discretization with
half head (green line).

Finally, Table 4 reports the obtained permittivity and conductivity, averaged in the
stroke region, and the corresponding standard deviation for all the tests. However, due to
the limited range of permittivity values found by the CSI algorithm, these average values
are close to each other.

Table 4. Stroke Dielectric Properties.

Exact Standard Discr. Proposed Discr. Proposed Discr. Half brain

Permittivity 63.41
52.53± 0.18
max = 54.24

52.80± 0.31
max = 53.69

53.00± 0.42
max = 54.24

Conductivity (S/m) 1.58
1.00± 0.01
max = 1.15

1.02± 0.02
max = 1.18

1.03± 0.03
max = 1.19

Some recent works on brain microwave imaging through quantitative reconstruction
are [10,11], where the distorted Born iterative algorithm is used for the reconstruction of
the head dielectric properties. Our results are comparable with those, especially for the
focusing and positioning of the reconstructed target. However, an intrinsic limitation of the
CSI method [34] is the difficulty in high dielectric contrast reconstruction; indeed, here, the
values of the dielectric properties are lower than the expected ones.

Figure 10. CSI algorithm results with the proposed discretization, considering half-brain DoI. The
spots corresponds to the volume of the stroke identified by the algorithm after 100 iterations: on the
left, permittivity, and on the right, conductivity. Red inside and black outside the stroke area.



Sensors 2023, 23, 11 15 of 18

Figure 11. CSI algorithm results with the proposed discretization, considering half-brain DoI. Shape,
position, and dielectric properties values of the stroke identified by the CSI algorithm after 100
iterations. On the first row, three different views of the permittivity, and on the second row, three
different views of the conductivity. The perimeter of the expected stroke shape is shown in white.

Figure 12. Cost functional in (5) during the iterations in a logarithmic scale: standard discretization
(blue line), proposed discretization (red line), and proposed discretization with half head (green line).

6. Conclusions and Perspectives

In this paper, a new discretization of the contrast source variables is presented and
analyzed in the FEM-CSI algorithm. It is based on the use of the field vector basis functions
as well as the contrast source variables. Hence, the field and the contrast sources are written
with the same base of vector functions, allowing to update, at each CSI iteration, just scalar
coefficients of the contrast sources. This simplifies the implementation of the algorithm,
avoiding the use of vector matrices, arrays, and dyadic operators. Moreover, these proposed
variables’ discretization leads to a higher accuracy compared with the standard one, thanks
to the lower discretization error. The implemented FEM-CSI algorithm, based on the
proposed discretization, was validated and compared with the standard one in a 3D
multitissue head in order to assess their performances in the same realistic scenario. The
head images obtained with the new discretization showed an improvement in stroke
identification and reconstruction, which appears better focused.

The future steps of this work deal with collecting a priori information about the dis-
tribution of the head tissues, e.g., [35], where the segmented images obtained through
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ultrasounds are used as numerical background in the CSI algorithm for the MWI of breast
cancer. In addition, the CSI performances can be optimized through a regularization proce-
dure, as in [27]. Moreover, the algorithm implementation can be sped up via programmable
system-on-chip solutions [36] or via graphic processing units [11]. Finally, we plan to apply
the implemented FEM-CSI algorithm to experimental data obtained through the system
described in [20], applying a proper calibration technique, such as the one described in [37],
to mitigate the discrepancy between the simulated and real antennas due to manufacturing
tolerances.
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