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Abstract: For the commercial sector, warehouses are becoming increasingly vital. Constant efforts are
in progress to increase the efficiency of these facilities while reducing costs. The inventory part of the
goods is a time-consuming task that impacts the company’s revenue. This article presents an analysis
of the performance of a state-of-the-art, visual-inertial odometry algorithm, SVO Pro Open, when
varying the resolution and frequency of video streaming in an industrial environment. To perform
efficiently this task, achieving an optimal system in terms of localization accuracy, robustness, and
computational cost is necessary. Different resolutions are selected with a constant aspect ratio, and
an accurate calibration for each resolution configuration is performed. A stable operating point in
terms of robustness, accuracy of localization, and CPU utilization is found and the trends obtained
are studied. To keep the system robust against sudden divergence, the feature loss factor extracted
from optical sensors is analyzed. Innovative trends and translation errors on the order of a few tens
of centimeters are achieved, allowing the system to navigate safely in the warehouse. The best result
is obtained at a resolution of 636 × 600 px, where the localization errors (x, y, and z) are all under
0.25 m. In addition, the CPU (Central Processing Unit) usage of the onboard computer is kept below
60%, remaining usable for other relevant onboard processing tasks.

Keywords: visual inertial odometry; autonomous localization; aerial system; SVO; warehouse; ROS;
indoor localization; resolution; frequency

1. Introduction

As the market rises due to the strong demand and diversification of products, ware-
house logistics play an increasingly important role in the management of goods and
delivery times. The latest are relevant parameters for the customer in which there is strong
competition [1,2]. As a consequence of the pandemic period also, the e-commerce sector is
growing fast and the only way to supply the chain is to go towards smart and autonomous
warehouses [3]. For these reasons, robotic applications are growing in daily operations
inside warehouses [4–6]. Several companies are already using this technology to speed
up their operations while many others are on their way to incorporating it. However, to
increase the autonomy level in these GPS-denied environments, it is first required to solve
the problem of localizing the robot with adequate accuracy. If an inaccurate or unstable
localization system is adopted, the probability of failing the task is high and even worse,
the safety of humans can be compromised, especially if UAVs (Unmanned Aerial Vehicles),
commonly known as drones, are employed. Therefore, an efficient localization system at its
base is necessary [7]. Some of the state-of-the-art techniques for localization are presented
in the following subsection. This work aims to analyze a low-cost and lightweight system
that estimates the relative 3D position of a UAV inside a warehouse with respect to a known
starting pose. Given the optical sensor and the available computational power, the goal is
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to find a stable operating point in terms of robustness, accuracy of localization, and CPU
utilization, and to study the trends obtained. The localization problem itself has already
been addressed with various approaches. Many of these need external access points to
triangulate the robot’s position [8]. Others use heavy and expensive hardware such as
LIDAR [9], not compatible with the small size required for UAVs to safely navigate along
warehouse corridors. Instead, the system analyzed is independent of external aids and uses
only the visual-inertial sensors onboard. In addition, a warehouse-specific training dataset
is not needed as in [10]. The configuration presented has the advantage of being a low-cost
and lightweight system and is easily adaptable to most warehouses and platforms. How-
ever, an accurate calibration phase is crucial to obtain an accurate and robust localization
using only the onboard visual-inertial sensors [11–15]. To not overload the CPU, it is neces-
sary to find a trade-off between the optical resolution adopted and the image acquisition
frequency. This trade-off point is one of the main goals of the work. In addition, a detailed
study of localization errors along the three dimensions is presented, not available in similar
works such as [16]. Through the appropriate parameters, to minimize the risk of sudden
divergence in the localization, the robustness of the system is also monitored. Lately, the use
of this technology is growing fast in aerospace robotics, for terrestrial and non-terrestrial
applications. For these reasons, the analyzed system suits both aerial and ground platforms.
In this case, an aerial system with a quadcopter configuration is employed. UAVs unlike
ground robots allow inventorying the shelves at every level, saving more time and reducing
the risks that an operator would run by using traditional methods. Furthermore, thanks to
this system, the drone can be programmed to be completely autonomous, and therefore,
there is potentially no need for human pilot assistance.

The onboard computer employed is lightweight, inexpensive, and commercially avail-
able: NVIDIA Jetson Nano board. The optical sensor used is a fisheye stereo camera with an
integrated IMU. The project in question uses a programming framework that is widespread
in robotics, ROS (Robot Operating System). This system works as an operating system that
connects different processes and commonly used applications. ROS organizes its content
into packages containing executable files called nodes, programmed in C/C++, Python, and
LISP. For the estimation of the noise parameters of the IMU (Inertial Measurement Unit),
the ROS package IMU_utils is adopted. For the calibration of the optical system, the ROS
package camera_calibration is used, while for the calibration of the visual-inertial system,
the ROS package kalibr is adopted. Similarly, the localization algorithm implemented
in this project is SVO Pro Open, described in [17,18], always compatible with ROS. The
latter package is chosen for localization after several tests among the various open-source
packages available, cited in the next section. This is one of the few packages able to run
in real-time on the selected onboard computer and provide satisfactory performance. The
ROS version installed is Melodic Morenia, compatible with Ubuntu 18, on both the Jetson
Nano and the laptop used for the calibration phase. The experimental results presented are
derived from data recorded during tests in an actual warehouse, and fully belong to a real
industrial scenario.

The paper is organized as follows. The following subsection presents an overview of
the state-of-the-art of visual-inertial odometry algorithms. Section 2 shows the methodology
of data collection and hardware setup. This section presents the sensors adopted and the
calibration process of the cameras and the visual-inertial system. Section 3 describes the
obtained results and discussions. Conclusions and further developments are described in
Section 4.



Sensors 2022, 22, 9911 3 of 18

1.1. Related Work

As anticipated, one of the limits in mobile robotic applications is the uncertainty
of vehicle localization. To overcome this problem, external aids such as GNSS (Global
Navigation Satellite System), Motion Capture Cameras [19], Total Stations [20], or similar
can be adopted. In addition, Ultra-Wideband technologies are recently taking over as
a cheaper source to localize the vehicle, as described in [21]. However, these systems
can rarely be employed in critical (GPS-denied) and unknown areas without additional
equipment. Therefore, many of the robotic applications are quite limited in these scenarios.

For these reasons, several open-source algorithms (ORB-SLAM, SVO, VINS, Okvis,
Rovio, and several others) grew up recently to perform Visual-Inertial Odometry for
complete autonomous applications [22–25]. This particular technique performs a sensor
fusion between optical sensors, such as monocular or stereoscopic cameras, and inertial
sensors to estimate the traveled trajectory from the initial position, as explained in [26]. The
process flow can be divided into (1) feature extraction from the current frame of the video
stream, (2) search of the extracted features in the current frame among those of the previous
one, (3) filtering features matched, (4) triangulation of the pose, and (5) fusion with the
inertial data to scale the processed trajectory and refine the motion estimation. Specifically,
there are relevant feature extraction, filtering techniques, and integration methods with
inertial sensors, described in [17,18,22–25].

The commercial sector responded promptly by launching products such as the Intel
RealSense T265 and the ZED series (ZED mini, ZED, and ZED2), ready-to-use sensors that
provide directly the result of the Visual-Inertial Odometry to the user. Moreover, event
cameras are also gaining ground. These are already powerful sensors for this application,
even if still in a prototype state [27].

1.1.1. Visual-Inertial Odometry

This term groups together those techniques consisting of combining the data coming
from one or more inertial sensors with one or more RGB or depth cameras. Recently,
hybrid techniques such as SVO (Semi-direct Visual Odometry) emerged also [17]. In this
case, pixels are extracted with a feature-based methodology, but the variation between
frames in light intensity of pixels selected for triangulation is evaluated to estimate the
camera motion.

The triangulation process and motion reconstruction are summarized in Figure 1,
where the feature f j is recognized by two different consecutive images. It is possible to
reconstruct the epipolar plane joining the two centers c1, c2, and f j. Detailed equations can
be found in [28]. Inertial data fusion techniques are divided into two main categories, as
described in [29]:

(i) Loosely coupled: the visual and inertial systems are independent entities. In this case,
the fusion is applied through Unscented Kalman filters or Extended Kalman Filters.
Although not extremely accurate, this approach favors real-time performance. It also
makes easier the integration of information coming from other sensors. The logic is
represented in Figure 2.

(ii) Tightly coupled: this approach combines visual and inertial parameters in a single
optimization problem. This approach involves the data from cameras and the IMU
as described in Equation (1). It results more computationally demanding than the
loosely coupled approach. As described in [30], the cost function optimization can be
written as in Equation (1):
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∑
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where er are the weighted reprojection errors of the camera, and es are the weighted
temporal errors of the IMU. Instead, i represents the camera index, k is the frame
index, and j is the image feature index. The approach is shown in Figure 3.

Figure 1. Visual-Inertial Odometry feature matching principle and IMU (Inertial Measurement Unit)
measurements during motion [28].

Figure 2. Loosely coupled sensor fusion approach.

Figure 3. Tightly coupled sensor fusion approach.

In various visual-inertial odometry algorithms, some further steps and refinements
are also performed. In particular, as explained in [31], loop closure, relocalization, feature
retrieval, and bundle adjustment techniques are often adopted. These enhancements im-
prove the precision of the pose estimation thanks to a global pose graph optimization using
previously memorized features for relocation and to adjust the pose of current features.
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1.1.2. Semi-Direct Visual Odometry for Multi-Camera Systems

In particular, we are considering a system M with c ∈ C cameras. By defining TCB as
the extrinsic calibration matrix, we can estimate the previous position of the body, TBB−1.
The process is based on a minimization of the pixel intensity residual rIi c of the subsequent
frames’ corresponding pixels. Through a projection of a known point on the scene plane
ρi =̇ B−1ρi, it is possible to identify these corresponding pixels. The projection is performed
into the C camera’s frames in the k and k− 1 pose, expressed respectively as IC

k and IC
k−1.

The residual errors’ intensity is accumulated into small patches P centered into the 3D
point projection. The variable ∆u is adopted to accumulate the intensities over each patch.
The final objective of the algorithm is to find the translation and rotation of the camera,
Tkk−1=̇(R, p) that minimizes the sum of the squared errors:

(R∗, p∗) = arg min C(R, p)

C(R∗, p∗) = ∑
c∈C

N

∑
i=1

∑
∆u∈P

1
2
‖rIc

i,∆u
‖2

∑I
+

1
2
‖rR‖2

∑R
+

+
1
2
‖rp‖2

∑p

(2)

with N representing the number of 3-D visible points. The image intensity and prior
residuals can be defined as:

rIc
i,∆u

=̇IC
k (π(TCB(Rρi + p)) + ∆u)− IC

k−1(π(TCBρi) + ∆u)

rr=̇log(R̃T R)V

rp=̇p− p̃.

(3)

The cost function can be written as:

C(R, p) = r(R, p)Tσ−1r(R, p) (4)

with σ representing the measurement covariance diagonal matrix. The optimization process
is then solved through a Gauss–Newton logic, [32] since residuals (R, p) are not linear. For
these reasons, the relations defined for the perturbations can be written in Equation (5):

R← R exp(δφ∧), p← p + Rδp (5)

where (.)∧ represents a 3 × 3 skew-symmetric matrix in the R3 domain.

2. Methodology

This paper investigates the visual odometry performance under various combinations
of image resolution and image acquisition frequency. Therefore, an ROS-compatible C/C++
code is developed to vary the frequency and resolution of video streaming, as illustrated in
Figure 4.

Figure 4b is extrapolated from one of the recordings taken inside the warehouse during
the test campaign. As shown, 3 different resolutions are tested: 848 × 800 px (original),
636 × 600 px, and 424 × 400 px. The frequencies tested can be expressed as done in
Equations (6) and (7): {

fs = 2 f f

f ′f =
f f
2 + 5n, n = 0→ 3,

(6)

where fs is the sample frequency, f f the frame frequency, and f ′s is the new frame frequency
tested. Instead, the resolutions tested can be expressed as:{

w′ = n+1
Fib(n)+2 w

h′ = n+1
Fib(n)+2 h, n = 0→ 3,

(7)
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where w and h are the original width and height, respectively, while w′ and h′ are the new
resolution tested.

(a) Frequency variation logic. (b) Resolution variation logic.

Figure 4. (a) Streaming video frequency variation example from 30 Hz to 20 Hz. (b) Decrease in
resolution from 848 × 800 px on the center of the image.

The main goal is to evaluate the impact of the resolution on the performance of the
localization algorithm, as shown in the next section. The resolutions are scaled with the
same center since the central zone suffers less from lens distortion. In this way, features
extracted from that zone, shown in Figure 4b, suffer from a reduced error in terms of 2D
to 3D projection, and the pose calculation is more accurate. In addition, this cropping
excludes pixels on the edges of the image, which do not carry information on the external
environment. As shown in Figure 4a, where Tc represents the sampling period, T1 and T2
are the original and the new streaming video frequency rate, respectively; a sampling period
Tc = 2T1 is chosen to reduce the number of lost frames, but at the same time, no denser
sampling is adopted so as not to further increase the computational cost. Moreover, the
impact of the acquisition frequency on the performance of SVO Pro Open is also evaluated.
In particular, four characteristic frequencies are selected: 30 (original), 25, 20, and 15 Hz.

2.1. Hardware Setup

The system proposed is accessible on multiple platforms, since a low-cost, and
lightweight commercial onboard computer is adopted, as shown in Figure 5: Jetson
Nano embedded system (NVIDIA Maxwell™ 128 core, ARM A57 quad-core running at
1.43 GHz, LPDDR4 4 GB 64-bit 25.6 GB/s). It is equipped with an integrated GPU (Graph-
ics Processing Unit) that allows running simple machine learning algorithms [33]. The
optical sensor used is a stereo camera with a fisheye lens, with a resolution of 848 × 800 px,
hemispherical FOV (Field of View) = 163 ± 5°. The camera is part of the Lazarus device,
developed by the Spanish company Dronomy to facilitate the autonomous flight of UAVs
in GNSS-denied/degraded environments. The 6-axis inertial sensor is the Bosch BNI055.
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Figure 5. Platform employed in the warehouse: drone in a quadcopter configuration, developed by
the Spanish company Dronomy.

2.2. Sensor Calibration

This section describes the calibration operations carried out to run the visual-odometry
algorithm with accurate results. Firstly, the white noise and bias instability parameters for
the inertial sensor adopted are extracted. Later, the two optical sensors are calibrated to
extract the distortion matrix and the intrinsic parameters. Once these data are obtained, it
is possible to move on to calibrate the complete visual-inertial system.

2.2.1. IMU Parameter Extraction

To move on to the next stages of calibration, it is necessary to estimate the gyroscope
and accelerometer noise parameters of our IMU (Inertial Measurement Unit) by analyzing
the Allan Variance (Equation (8)).

σ2
y (M, T, τ) =

1
M− 1

{
M−1

∑
i=0

[
x(iT + τ)− x(iT)

τ
]2−

+
1
M

[
M−1

∑
i=0

x(iT + τ)− x(iT)−2

τ
]2},

(8)

where x(t) is the clock reading measured at time t, M the number of frequency samples
used in variance, T the time between each frequency sample, and τ is the time length of
each estimation.

In particular, an accurate prediction of parameters in Table 1 allows for a more effective
integration with the optical sensor data in the visual-inertial odometry. The ROS package
IMU_utils extracted the results shown in Table 1 for the IMU employed, through a two-hour
static acquisition.

Table 1. Gyroscope and accelerometer calibration parameters. Equations are derived in [34].

Parameter Symbol BNI055 Unit

Gyroscope “white noise” σg 0.0018491 rad (s
√

Hz)−1

Accelerometer “white noise” σa 0.01094 m (s2
√

Hz)−1

Gyroscope “bias instability” σbg 2.5482× 10−5 rad
√

Hz(s)−1

Accelerometer “bias instability” σba 0.00058973 m
√

Hz(s)−2

2.2.2. Camera Calibration

After extracting the IMU parameters, the stereo camera’s intrinsics and calibration
parameters are obtained. This phase is extremely important for an accurate 2D to 3D
reprojection of the features extracted from the images, and consequently, for an accurate
estimation of the motion. The equidistant distortion model, described in [35], is adopted.
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This model suits well to describe sensors with high FOV and a significant distortion, as
described in [36].

It is possible to obtain accurate calibration parameters using the ROS camera-calibration
package. Figure 6 shows some capture during this process with the respective feature ex-
traction for each resolution tested.

(a) (b) (c)

Figure 6. (a) 848 × 800 px; (b) 636 × 600 px; (c) 424 × 400 px. ROS camera-calibration process
capture for each of the resolutions selected with the respective target feature extraction. The marker
employed is a 7 × 6 chessboard with a square size of 5.9 cm.

Table 2 shows the calibration results for both lenses. As shown, the main differences
as the resolution changes stay in the coordinates of the central point; on the other hand, the
focal distances and the distortion parameters do not undergo significant changes as they
are not only related to the resolution but to the sensor type.

Table 2. Intrinsic and distortion parameters for left (l) and right (r) fisheye cameras for the three
resolutions selected. The parameters fx and fy represent the focal length along X and Y. Instead,
cx and cy are the principal point coordinates along X and Y. While k1, k2, k3, k4 are the distortion
parameters of the equidistant camera model [36].

Param 848 × 800l 636 × 600l 424 × 400l 848 × 800r 636 × 600r 424 × 400r

fx 285.3568 285.3568 285.7695 285.5315 285.5315 285.3433
fy 285.4461 285.4461 285.6246 285.5397 285.5397 285.1813
cx 419.0777 310.2573 207.0993 414.3119 305.4019 202.1401
cy 399.5762 297.1926 200.8910 396.4943 294.4193 196.9490
k1 −0.005900 −0.005900 −0.005900 −0.006894 −0.006894 −0.006894
k2 0.04159 0.04160 0.04160 0.04397 0.04397 0.04397
k3 −0.03861 −0.03861 −0.03861 −0.04040 −0.04040 −0.04040
k4 0.006450 0.006451 0.006451 0.006843 0.006843 0.006843

2.2.3. Visual-Inertial System Calibration

As the last calibration step, obtaining the transformation matrices imu-left camera
and the imu-right camera is needed. For this purpose, the kalibr software is used on the
same target of Figure 6. A parameter to approximate correctly during this process is the
delay between the output of the inertial sensor and the optical sensor. These sensors are
inevitably asynchronous as they operate at frequencies of different orders of magnitude:
200 Hz for the IMU and 15–30 Hz for the cameras.

The following assumptions are made as described in [13]: (i) IMU white noise and
random walk are correctly estimated; (ii) cameras’ intrinsic and distortion parameters are
known; (iii) the gravity direction can be easily guessed in the IMU values; (iv) the size of
the calibration target is known so that the calibration pattern of the target can be easily
reprojected in the world reference frame. In this way, it is possible to have (v) an initial
guess of the calibration matrix, camera_to_imu. The time offset is initially set to zero. A first
estimate of the IMU pose with respect to the two optical sensors is obtained by estimating
the position of the cameras for each frame with the calibration pattern and the accelerations
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recorded by the IMU. Then, the IMU pose is represented by a sixth-order B-spline. The
random walks are also encoded by cubic B-splines, as shown in Figure 7.

Figure 7. Example of modeling accelerometer and gyroscope bias by cubic B-spline.

The Levenberg–Marquardt (LM) algorithm [37] is finally used to minimize the objec-
tive function to find the maximum likelihood estimate of all unknown parameters at once.
This particular algorithm achieves accurate calibration parameters with reprojection errors
less than 0.13 px, as demonstrated in [37]. The estimator process is illustrated in [13], and
not reported to avoid unnecessary redundancies.

In our case, delay_imu_cam = 0.098 s is obtained. Figure 8 illustrates the reprojection
error obtained for the two optical sensors during the calibration phase. Usually, a value
between 0.1–0.2 px is a sign of a successful calibration, as in our case where an average
value of 0.1734 px is achieved.

(a) (b)

Figure 8. (a) Left cam reprojection error; (b) Right cam reprojection error. ROS kalibr reprojection
errors after the calibration optimization process. Mean reprojection error (left cam) px: 0.1627. Mean
reprojection error (right cam) px: 0.1734.

Equations (9) and (10) show the results obtained after calibration of the visual-inertial
system. In particular, the transformation matrices imu_to_le f t_cam and imu_to_right_cam
are represented in quaternions, where the last column represents the translation vector
between the two reference systems.
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T_I_L =


−0.99999847 −0.00247529 +0.00224508 0.01116282
0.00247665 −0.99999675 0.00060109 0.01267902
0.00224358 0.00060664 0.99999730 −0.00601156

0.0 0.0 0.0 1.0

 (9)

T_I_R =


−0.99999847 −0.00171156 −0.00036254 −0.05166626
0.00171121 −0.99999809 0.00094185 0.01265162
−0.00036415 0.00094122 0.99999949 −0.00598808

0.0 0.0 0.0 1.0

 (10)

In addition, the parameters obtained in Equation (9) and (10) are validated by the fact
that the translation values obtained are close (e < 0.2 cm) to the parameters measured in
the laboratory.

3. Results and Discussion

The results shown in this section are collected on a dataset recorded within the ware-
house shown in Figure 9. The trajectory performed reaches an altitude of 1.40 m after
take-off, and after a translation movement along the X-axis of 14.0 m, the same path is
traveled in the opposite direction to return to the starting point for landing. The goal of
the aircraft in this operation is to analyze and map the parcels on the shelf at that altitude
while maintaining a safe distance from it. This approach makes it possible to automate
warehouse logistics procedures, reducing the time and cost of inventories.

Figure 9. Example of a trajectory estimated inside the warehouse, with a resolution of 636 × 600 px
at a sampling rate of 25 Hz.

The algorithm implemented for localization is SVO Pro Open [17]. The values analyzed
in this section are translation errors, % CPU usage, and feature loss (FL). These are studied
by varying the optical sensor frequency (15, 20, 25, and 30 Hz) and resolution (424 × 400,
636 × 600, and 848 × 800 px).

3.1. Translation Error Analysis

In the experiments presented in this article, the visual-inertial system is transported
by hand along a predetermined linear path. To estimate the translation error along the X
and Z axes, and given that there is no absolute tracking system available in this warehouse
to collect the ground truth data, the maximum deviation to the values 0.0–14.0 m, and
0.0–1.40 m, is respectively considered. While along the Y-axis, the path followed is equal to
y = 0 m; then, any variation from this path is considered as an error. Figure 10 shows the
analysis of the effect of changing the resolution at a fixed frequency for translation errors
along the X, Y, and Z axes. It is notable in almost all trends (Figure 10c–f,h–l) that an increase
in resolution does not necessarily indicate an improvement in localization accuracy. Taking
as reference the 30 Hz configuration that provides the best performance, the translation
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error trend finds a minimum point in the intermediate resolution (636 × 600 px) along all
axes. In fact, increasing the resolution allows extracting more features for the same frame;
however, for fisheye optical sensors, the outermost features are the ones that suffer from
a higher error due to the distortion model since the features extracted are more distant
from the focal point. This can cause the performance degradation in the reprojection phase
as recorded at 848 × 800 px, where the minimal intensity residuals rI−ic, described in
Equation (3) optimization, lose accuracy. Figure 11 shows the effects of frequency variation
on translation errors. The errors along the X and Y axes are lower at high frequency, as
shown in Figure 11a,b,d,g,h. The error along the Z-axis shows random trends at higher
frequencies, but at low frequencies, it can increase considerably, as shown in Figure 11c,i.
In Figure 12 are represented all the trajectories extracted with the various combinations of
frequency and resolution. In addition, the low-resolution trajectories (424 × 400 Hz) are the
most inaccurate, as can be noted graphically in Figure 12a–c. The solution of the algorithm
improves at higher frequencies.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10. (a) X max error, 15 Hz; (b) Y error, 15 Hz; (c) Z max error, 15 Hz; (d) X max error, 20 Hz;
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(e) Y error, 20 Hz; (f) Z max error, 20 Hz; (g) X max error, 25 Hz; (h) Y error, 25 Hz; (i) Z max error,
25 Hz; (j) X max error, 30 Hz; (k) Y error, 30 Hz; (l) Z max error, 30 Hz. Translation error analysis
along the trajectory performed by varying resolution.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. (a) X max err, 424 × 400; (b) Y err, 424 × 400; (c) Z max err, 424 × 400; (d) X max err,
636 × 600; (e) Y err, 636 × 600; (f) Z max err, 636 × 600; (g) X max err, 848 × 800; (h) Y err,
848 × 800; (i) Z max err, 848 × 800. Translation error analysis along the trajectory performed by
varying frequency.

3.2. Computational Cost Analysis

To perform a computational cost analysis, the impact of the SVO Pro Open process on
the CPU percentage is evaluated, as shown in Figures 13 and 14.

In Figure 13, it can be seen how the impact of resolution on computational cost is
substantial: a reduction of up to 30% between the maximum and minimum resolution is
achieved. Furthermore, as the frequency increases, the trend as the resolution changes go
from linear, Figure 13a, to a function approximating an exponential trend.

A similar phenomenon is shown in Figure 14, whereas the resolution increases, the
computational benefits are reduced by decreasing the frequency, changing the function
from linear, Figure 14a, to a function approximating a logarithmic trend. In addition,
the effect of frequency on the CPU has a major impact on the intermediate resolution
(636 × 600 px), as shown in Figure 14b, while for other resolutions, it has a lower effect,
Figure 14a,c. All the computational data results are collected in Tables 3–5, respectively.
The theoretical explanation for this trend can be found in the definition of the cost function
described in Equations (2) and (5). As N, the number of 3D visible point increase, more
iterations are needed to elaborate the cost function, and therefore more CPU resources.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 12. (a) 424 × 400, 15 Hz; (b) 424 × 400, 20 Hz; (c) 424 × 400, 25 Hz; (d) 424 × 400, 30 Hz;
(e) 636 × 600, 15 Hz; (f) 636 × 600, 20 Hz; (g) 636 × 600, 25 Hz.; (h) 636 × 600, 30 Hz; (i) 848 × 800,
15 Hz; (j) 848 × 800, 20 Hz; (k) 848 × 800, 25 Hz; (l) 848 × 800, 30 Hz. 3D trajectory of all the
conditions analyzed.

Table 3. Low-resolution CPU usage values.

Freq (Hz) Mean (% CPU) Max (% CPU) Min (% CPU)

15 13.968 16 5.5
20 16.578 19.25 4
25 18.148 21.5 9
30 19.056 24.25 7.5

Table 4. Mean-resolution CPU usage values.

Freq (Hz) Mean (% CPU) Max (% CPU) Min (% CPU)

15 24.543 30.5 21.25
20 34.993 45.25 23.75
25 37.298 44.5 29.25
30 45.31 53 30.5
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Table 5. High-resolution CPU usage values.

Freq (Hz) Mean (% CPU) Max (% CPU) Min (% CPU)

15 40.658 46 34
20 48.048 50.75 44.25
25 49.467 51 48.5
30 49.637 53 48.25

(a) (b)

(c) (d)

Figure 13. (a) CPU usage, 15 Hz; (b) CPU usage, 20 Hz; (c) CPU usage, 25 Hz; (d) CPU usage,
30 Hz. Jetson Nano board computational cost analysis along the trajectory performed by varying
the resolution.

(a) (b) (c)

Figure 14. (a) CPU usage, 424 × 400; (b) CPU usage, 636 × 600; (c) CPU usage, 848 × 800. Jetson
Nano board computational cost analysis along the trajectory performed by varying the frequency.

3.3. Feature Loss Analysis

The Feature Loss (FL) parameter is monitored to estimate the robustness of the al-
gorithm. This parameter indicates the characteristic features that are extracted by the
algorithm in one frame and not found in the next. Higher values of this parameter can lead
to non-tolerable errors in the localization or, in the worst case, sudden divergences. It is
important to specify that during all the tests, the maximum number of extracted features
was constant.

From the several data collected, it is clear that the trend of this parameter is influ-
enced by the calibration parameters obtained in Table 2. For this reason, no clear and
unidirectional trends are highlighted in Figures 15 and 16. However, it can be noted that
at low frequencies, for the lowest resolution (424 × 400 px), the FL value increases by
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an order of magnitude, as shown in Figures 15a,b and 16a. This leads to the high errors
for the 424 × 400 px resolution shown earlier in Figure 12a–c. Furthermore, analyzing
Figure 15, the frequency of 30 Hz shows lower values of this parameter and therefore can
be considered more robust.

Instead, it can be noted from Figure 16 that the intermediate resolution (636 × 600 px)
shows better performance under this aspect, showing no divergence even at low frequencies.
Naturally, lowering the frequency increases the time between frames; consequently, in some
phases of the test, the motion of the camera can be wider than when sampling at higher
frequencies. This can compromise the Feature Matching process and therefore increase the
Feature Loss (FL) parameter.

(a) (b)

(c) (d)

Figure 15. (a) FL, 15 Hz; (b) FL, 20 Hz; (c) FL, 25 Hz; (d) FL, 30 Hz. Feature loss analysis along the
trajectory performed by varying resolution.

(a) (b) (c)

Figure 16. (a) FL, 424 × 400; (b) FL, 636 × 600; (c) FL, 848 × 800. Feature loss analysis along the
trajectory performed by varying frequency.

4. Conclusions and Further Developments

This article presents an analysis of the performance of a state-of-the-art, visual-inertial
odometry algorithm, SVO Pro Open, when varying the resolution and frequency of video
streaming. The algorithm is deployed on lightweight commercial hardware to demonstrate
the potential use of this technology in an industrial application and to provide a valid and
useful platform configuration to the scientific community.

The results obtained for three different resolutions and four acquisition frequencies
are promising. In particular, it emerges that for the analyzed intermediate resolution
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(636 × 600 px), an optimum compromise can be obtained in terms of localization accuracy,
CPU utilization, and system robustness (i.e., feature loss). The study with the variation of
the frequency shows that, at high frequencies (25 and 30 Hz), better results are obtained
in terms of localization. Furthermore, from the computational analysis, it emerged that
a frequency of 25 Hz allows a considerable saving in computational terms compared to
30 Hz for this intermediate resolution, albeit with slightly higher translation errors. There-
fore, the user can find the appropriate trade-off, depending on the computational capabili-
ties available. In addition to promising punctual results, one of the innovative aspects of
this work is that mathematical trends are highlighted and discussed in CPU usage as the
frequency and resolution of the system change. This approach opens up several possibilities
for CPU savings and localization accuracy improvements without changing the sensor
itself since this work demonstrates that localization quality does not necessarily improve
by increasing the resolution.

As a future work, it would be interesting to estimate the trends as the frequency
resolution changes when using other lenses than fisheye, and multiple visual-inertial
odometry algorithms. In addition, a collection of data and a comparison between different
environments would help further understand the problem in order to optimize solutions.
Finally, it would be interesting to extend the system to multiple cameras (rig of cameras)
and to evaluate the effects of resolution and frequency in this configuration also.
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