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Full Length Article 

Development of a neural network-based energy management system for a 
plug-in hybrid electric vehicle 

Federico Millo *, Luciano Rolando , Luigi Tresca , Luca Pulvirenti 
Politecnico di Torino, C.so Duca degli Abruzzi, 24, Turin 10129, TO, Italy   

A R T I C L E  I N F O   
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A B S T R A C T   

The high potential of Artificial Intelligence (AI) techniques for effectively solving complex parameterization tasks 
also makes them extremely attractive for the design of the Energy Management Systems (EMS) of Hybrid Electric 
Vehicles (HEVs). In this framework, this paper aims to design an EMS through the exploitation of deep learning 
techniques, which allow high non-linear relationships among the data characterizing the problem to be 
described. In particular, the deep learning model was designed employing two different Recurrent Neural Net
works (RNNs). First, a previously developed digital twin of a state-of-the-art plug-in HEV was used to generate a 
wide portfolio of Real Driving Emissions (RDE) compliant vehicle missions and traffic scenarios. Then, the AI 
models were trained off-line to achieve CO2 emissions minimization providing the optimal solutions given by a 
global optimization control algorithm, namely Dynamic Programming (DP). The proposed methodology has been 
tested on a virtual test rig and it has been proven capable of achieving significant improvements in terms of fuel 
economy for both charge-sustaining and charge-depleting strategies, with reductions of about 4% and 5% 
respectively if compared to the baseline Rule-Based (RB) strategy.    

Definitions/Abbreviations 
AI artificial intelligence 
AT automatic transmission 
AWD all-wheel drive 
BEV battery electric vehicle 
BMEP brake mean effective pressure 
BMS battery management system 
BSFC brake specific fuel consumption 
CD charge depleting 
CO2 carbon dioxide emissions 
CS charge sustaining 
DC direct current 
DL deep learning 
DNN deep neural network 
DP dynamic programming 
EC european commission 
ECMS equivalent consumption minimization strategy 
ECU electronic control unit 
EM electric machine 
EMS energy management system 

EU european union 
GHG greenhouse gas 
GPS global positioning system 
HCU hybrid control unit 
HEV hybrid electric vehicle 
HV high voltage 
ICE internal combustion engine 
LB learning-based 
LiNMC Li-ion nickel-manganese-cobalt-oxide 
LSTM long short-term memory 
LV low voltage 
NEDC new european driving cycle 
NMC nickel–manganese-cobalt 
NN neural network 
OB optimization-based 
PEMS portable emissions measurement system 
PHEV plug-in hybrid electric vehicle 
PID proportional–integral–derivative 
RB rule-based 
RDE real driving emission 
RL reinforcement learning 
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RMSE root mean square error 
RNN recurrent neural network 
SoC state of charge 
TA type approval 
TTW tank-to-wheel 
V2X vehicle-to-everything 
WLTC worldwide harmonized light-duty cycle 

1. Introduction 

The mitigation of global warming and the reduction of carbon 
footprints are among the most crucial tasks to be tackled in the near 
future in order to limit the increase of the Earth’s temperature to about 
1.5 ◦C above the pre-industrial levels [1]. Focusing on road vehicles, 
which account for nearly three-quarters of CO2 emissions coming from 
the transport sector [2], in June 2022, the European Parliament (EP) 
approved the Fit for 55 package, which will tighten the CO2 emissions 
targets set for 2030 from -37.5% to -55% and from -31% to -50%, for 
passenger cars and light-duty vehicles respectively, in comparison with 
the 1990 levels. Furthermore, the package aims to achieve carbon 
neutrality by 2050, banning Internal Combustion Engine (ICE) powered 
vehicles by 2035 [3]. 

In this framework, powertrain electrification seems to be one of the 
most promising technologies for achieving these challenging targets, 
since it can ensure lower local CO2 emissions than a traditional ICE 
powertrain, cutting them to zero for a Battery Electric Vehicle (BEV) 
with a Tank-To-Wheel (TTW) approach. Furthermore, the growth of the 
electrified powertrains market is being strongly encouraged by the Eu
ropean Commission (EC) through incentives and benefits for the pur
chase of new electrified cars [4]. These policies led to a remarkable 
growth in the sales of electrified vehicles in 2020, leading to a 21% 
decrease of the average type approval CO2 emissions of new vehicles in 
Europe [5]. 

Nevertheless, looking at the full spectrum of electrification, BEVs still 
have strong limitations related to their short range, the long recharging 
time of the battery, the lack of charging infrastructures, and their high 
costs [6]. Furthermore, to achieve a realistic net-zero carbon emissions 
propulsion system, powertrain electrification must be linked to grid 
decarbonization, adopting renewable sources for electricity production 
[7]. Therefore, in a short-term scenario, Hybrid Electric Vehicles (HEVs) 
and Plug-in Hybrid Electric Vehicles (PHEVs) may represent a stepping 
stone toward higher electrification levels of the powertrain, since they 
can combine the benefits of both electric and conventional powertrains 
[8]. 

As regards HEVs, the introduction of an additional power source 
increases the degrees of freedom of the powertrain control system. The 
overall performance of the vehicle in terms of fuel consumption highly 
depends on how the actuators are exploited. Therefore, an additional 
layer of control, called the Energy Management System (EMS), has to be 
added to the vehicle control hierarchy in order to optimize the power 
split between the power actuators installed on board [9]. Several opti
mization procedures have been proposed in the literature and, as 
described in depth in [10], they can be broadly classified into three main 
categories: Rule-Based (RB), Optimization-Based (OB), and 
Learning-based (LB). The last category is based on Artificial Intelligence 
(AI) techniques, which are extremely promising thanks to their ability to 
find hidden and complex relationships between the data that charac
terize the modeled problem. Therefore, AI models are particularly 
suitable for applications that involve high non-linear data, whose 
rule-based description could be quite complex and not very accurate. 
These features have led to the exploitation of AI techniques in techno
logical sectors quite different from data science. The automotive field 
has started to adopt AI models quite recently, thanks to the increased 
computational power installed on-board and to the combined use of 
vehicle connectivity and cloud computing, which can provide much 
more information for the optimization of the energy flows. Among LB 

techniques, Deep Learning (DL) and Reinforcement Learning (RL) [11] 
are the most promising ones, since they can obtain quasi-optimal results 
[10]. The former is a complex class of neural networks (a subset of su
pervised learning techniques) that must be trained off-line on a target 
solution [12,13]. 

Reinforcement learning techniques, on the other hand, can provide 
significant benefits for planning and optimization tasks, thanks to their 
ability to self-learn from errors by directly interacting with the external 
environment (i.e., the vehicle model) through a trial-and-error proced
ure. In addition, the RL framework can combine the advantages of its 
learning method with the potentiality of deep learning techniques to 
design the controller of the model. However, it still presents numerous 
difficulties that many researchers are trying to address, such as a tricky 
and time-consuming training process due to the lack of a target solution 
[14,15]. In the literature, hybrid electric vehicle control process is 
usually modeled as a Markov Decision Process (MDP) [15,17], so that 
the actual state is sufficient to completely describe the environment. In 
[16] several works are described where RL techniques are applied to 
electrified vehicle power management. Among the different RL algo
rithms, Q-Learning and Deep Q-Learning (DQN) are the most common 
ones. In [15] a Q-Learning method is used to optimize the electric ma
chine torque in a mild-HEV, without using the battery State of Charge 
(SoC) as an environment state. However, this methodology relies only 
on the WLTC driving cycle. In [17] an improved TD3 agent controls the 
power split of a parallel HEV. The performance of the training phase is 
enhanced thanks to an off-line computed optimal experience buffer, that 
is employed in addition to the online learned experience. Concerning a 
Machine Learning (ML) framework, in [13] a combined DP-ML-based 
approach is developed to control the power flow and the gear ratio of 
an HEV. This methodology is also used for training different control 
logics, to be more effective in various driving scenarios and drivers’ 
behaviors. Finally, in [18] an innovative Adaptation algorithm for an 
Equivalent Consumption Minimization Strategy exploiting V2X con
nectivity (A-V2X-ECMS) is developed where driving pattern identifica
tion is employed to adapt the equivalence factor of the ECMS according 
to the future driving conditions. 

In this framework, this paper proposes an innovative deep learning- 
based EMS able to efficiently handle the energy management of a PHEV, 
achieving sub-optimal results both in Charge-Sustaining (CS) and 
Charge-Depleting (CD) operating conditions. The supervised learning 
model has been trained off-line by providing the optimal solutions given 
by the Dynamic Programming (DP), a global optimization strategy 
capable of ensuring optimal performance [19], over a wide range of 
driving and traffic scenarios. Moreover, by considering sequential in
formation about the history of the vehicle, it is possible to identify some 
crucial information to decide the optimal power split management. For 
this reason, the Authors modeled the hybrid electric vehicle control 
process as a Partially Observable Markov decision Process (POMDP) by 
designing the deep learning model through a subset of deep neural 
networks, called Recurrent Neural Networks (RNNs) since they can deal 
with the temporal information of input data. RNN architecture can up
date the current state based on the feedback of both the current input 
data and the past states (the so-called “short-term memory) [20], 
allowing relevant past information (i.e., driving pattern, past SoC trend), 
to be provided to the network. In particular, the so-called Long 
Short-Term Memory (LSTM) layer has been adopted because, for tradi
tional RNN dealing with a large time gap between the relevant input 
data, the error signal “flowing backwards in time” tend to either blow up 
or vanish (“vanishing gradient problem” [21]). To overcome these 
back-flow error problems, and correctly handle the so-called “long-term 
dependency”, in 1997 Hochreiter and Schmidhuber proposed the 
above-mentioned LSTM layer [22–24]. The potential of the proposed 
methodology in real-world conditions was assessed through numerical 
simulation on a virtual test rig of a PHEV, built in previous work [25]: 
the vehicle was modeled in GT-SUITE® and coupled to an EMS devel
oped in Simulink®. 

F. Millo et al.                                                                                                                                                                                                                                    



Transportation Engineering 11 (2023) 100156

3

This paper is organized as follows: after a brief introduction of the 
case study (Section 2), the virtual test rig developed and the method
ology proposed are described in Sections 3 and 4 respectively. After
ward, the performance of the developed EMS is assessed on two different 
driving scenarios. The first assumes the vehicle to be operated with a 
fully discharged battery in CS mode, while the second considers the 
vehicle working in CD mode starting from the maximum SoC (Section 5). 
Finally, the paper summarizes the main findings of the research activity 
and its potential future developments. 

2. Case study 

2.1. Vehicle specifications 

The vehicle under investigation is a state-of-the-art diesel PHEV 
available in the European market. It features a P2 architecture, and the 
powertrain layout is schematically shown in Fig. 2.1. A Euro 6d-temp 
1950 cc diesel engine, fitted in the front of the vehicle in a longitudi
nal position, is integrated and connected, through an auxiliary clutch 
(K0), to an Electric Machine (EM) of Permanent Magnet (PM) synchro
nous type. Both the ICE and the EM are connected, through a Torque 
Converter (TC) and a 9-speed Automatic Transmission (AT), to the rear 
axle. The EM is powered by a 13.5 kWh Li-Ion Nickel-Manganese-Co
balt-oxide (Li-NMC) HV battery. A DC/DC converter allows the HV 
battery to feed the 12 V battery and all the Low Voltage (LV) loads (i.e., 
the 12V starter and the electrical oil pump for gearbox lubrication). 

Table 2.1 summarizes the main vehicle and powertrain 
characteristics. 

3. Virtual test rig 

In order to assess the potential of advanced energy management 
strategies based on artificial intelligence algorithms, a virtual test rig of 
the investigated vehicle developed in [25] was exploited. It was built in 
the GT-SUITE® [27] software environment and validated against 
experimental results. In this context, with the aim of estimating vehicle 
fuel consumption, a quasi-static approach was adopted [28]: a virtual 
vehicle driver - i.e., a Proportional–Integral–Derivative (PID) controller - 
compares the actual vehicle speed to a target one and generates a power 
demand profile to follow the target speed. The code computes the actual 
vehicle speed by solving the longitudinal vehicle dynamics, while fuel 
consumption is computed based on steady-state performance maps. The 
vehicle and powertrain parameters are shown in 

Table 2.1. The parameters along with the performance maps were 
derived from [26], where a set of dedicated tests was performed to es
timate the relevant powertrain data required for fuel 
consumption-oriented modeling of the vehicle. 

As far as the EMS is concerned, the Rule-Based (RB) control strategy 
was derived from [25], where a reverse engineering investigation was 

carried out to extract the strategy implemented in the EMS of the actual 
vehicle. The control logic was implemented in the Simulink environ
ment and coupled with the GT-SUITE vehicle model. For the sake of 
example, Figs. 3.1 and 3.2 show the model validation performed on an 
RDE cycle. The simulation results (red line) are compared to the 
experimental measurements (black dashed line). The accurate predic
tion of the battery SoC trajectory - Fig. 3.1 (b) - and the good agreement 
between simulated and measured engine torque - Fig. 3.2 - prove both 
the robustness of the simulation platform and the accuracy of the 
implemented control strategy. 

Hereinafter, the extracted control logic will be indicated as Rule- 
Based (RB) and will be used as a reference for the assessment of the 
deep learning model performance. The same modeling approach (i.e., 
implementation in Simulink, and coupling with the GT-SUITE model) 
was adopted for the deep learning-based control strategy. The dataset to 
train and validate the neural networks must be filled with the results 
coming from DP optimization on a wide range of driving cycles. Since 
the computational effort of this algorithm strongly depends on the 

Fig. 2.1. Powertrain layout with instrumentation details [26].  

Table 2.1 
Vehicle and powertrain main specifications.  

Vehicle 

Curb Weight 2060 kg 
Power 14.9 kW @ 100 km/h 
Configuration Rear Wheel Drive  

Transmission 

Type 9-AT w/ Torque Converter 
Speed Ratios I 5.36 IV 1.64 VII 0.87 

II 3.25 V 1.22 VIII 0.72 
III 2.26 VI 1.00 IX 0.61 

Reverse -4.93 Final Drive 2.65  

Engine 

Engine Type In-line 4 cylinders Turbo Diesel 
Displacement 1950 cm3 

Max Power/Max Torque 143 kW @ 3800 rpm / 400 Nm @ 1600-2800 rpm 
Compression Ratio 15.5:1  

Electric Machine 

Type PM Synchronous Motor 
Max Power/ Max Torque 90 kW @ 2000 rpm / 440 Nm @ 1750 rpm 
Max Speed 6000 rpm  

High Voltage Battery 

Type Li-NMC 
Rated Voltage 365 V 
Capacity 13.5 kWh / 37 Ah 
Cooling System Water Cooled  

Fig. 3.1. Comparison between experimental data and numerical results.  
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complexity of the interaction environment, a backward kinematic 
approach [28] was exploited to build a simplified vehicle model to carry 
out DP optimization. 

3.1. Driving cycles database 

The performance of deep learning algorithms depends on the amount 
of available data, and its increase does not reach an upper boundary, 
differently from traditional machine learning techniques (see Fig. 3.3). 
For this reason, all the driving cycles acquired during the experimental 
campaign, both Type-Approval (i.e., NEDC and WLTC) and Real Driving 
Emissions (RDE) cycles, were used to create the initial database. Then, 
thanks to the reliability of the validated test rig, additional simulations 
were carried out to make the database cover a wider spectrum of driving 
patterns. 

In this process, new RDE-compliant [30] driving cycles were created 
through a simplified methodology, inspired by [31]. Each driving cycle 
performed during the experimental campaign was split into sub-cycles 
starting and finishing with a vehicle stop. Then, each sub-cycle was 
assigned to the Urban, Rural, or Highway categories, depending on its 
speed profile pattern. Finally, the extracted sub-cycles were randomly 
combined to generate new driving cycles satisfying the RDE-compliant 
conditions, summarized in Table 3.1. Fig. 3.4 depicts one driving cycle 
generated with the methodology described above. It should be noted 
that some amount of variability was introduced by adding random noise 
to the original speed profile. 

The database created through the abovementioned methodology was 
then split into train, validation, and test datasets. The first one was used 
to train the algorithm in finding out the optimal parameters for the deep 
learning model, i.e., weights and biases of each node of the network (see 
Section 4.3 for more details). The validation dataset was used during the 
training phase for a preliminary model performance evaluation. Finally, 
the test dataset was used to evaluate the performance of the trained 
model. It should be noted that, in order to avoid the model overfitting on 
training data [32], it is of the utmost importance that the test dataset 

differs from the train and validation ones. 

4. Deep learning-based EMS 

The RB control strategy, mentioned in Section 3, does not guarantee 
the optimal or a sub-optimal solution to the energy management prob
lem. On the contrary, a global optimization strategy, such as DP, can 
provide the optimal solution to the control problem with the drawback 
of high computational efforts. However, it needs the a-priori knowledge 
of the whole driving cycle which cannot be available on an on-board 
application. In this work, the DP was used to benchmark the benefits 
that an optimization-based EMS can bring to the energy management of 
the case study. Moreover, it was provided as the target solution to be 
pursued by the artificial intelligence model during the training phase 
[33]. The AI cannot guarantee the optimal solution, but, if effectively 
trained, can provide a sub-optimal solution very close to the optimal 
one, with much lower computational effort compared with DP, 
achieving a good compromise in terms of on-board feasibility. In this 
paper, the authors decided to exploit deep learning techniques to extract 
control relationships among the provided data, thanks to their potential 
to achieve sub-optimal results while being theoretically feasible in a 
vehicle Electronic Control Unit (ECU). 

4.1. Energy management problem 

Since the design of the Energy Management System can be consid
ered as an optimal control problem, its mathematical formulation is 
presented. Consider a generic dynamic system with a state equation 
expressed in Eq. (4.1) [19]: 

ẋ = f (x, u, t) (4.1) 

Where x ∈ Rn is the vector of the state variable, u ∈ Rm is the vector of 
the control inputs, and t is the time. Eq. (4.2) defines the cost function 
(or performance index) that has to be minimized by choosing the law 
u(t): [t0, tf ] → Rm. The right choice of u(t) leads to the definition of the 
optimal control problem in the time interval t ∈ [t0, tf ] 

J = Φ
(
x
(
tf
)
, tf

)
+

∫tf

t0

L(x(t), u(t), t)dt (4.2) 

The boundaries conditions related to the optimal control problem 
definition are related to the terminal conditions: 

ψ
(
x
(
tf
)
, tf

)
= 0 (4.3) 

And the local constraints: 

G(x(t), t) ≤ 0

x(t) ∈ X(t)

u(t) ∈ U(t)

∀t ∈
[
t0, tf

]
(4.4)  

L(x(t), u(t), t)∈ R is the instantaneous cost function, Φ(x(tf ), tf ) is the 
terminal cost, G(x(t), t) is the set of constraints, U(t) and X(t) indicate, 
respectively, the set of admissible control and states values at time t. The 
general formulation of the optimal control problem expressed in Eq. 
(4.2) can be applied to an HEV control problem through Eq. (4.5) [34]. 
The only state variable is the battery state of charge, while several 
control variables can be selected. 

J =
∫tf

t0

ṁf (SoC(t), u(t), t)dt (4.5) 

Where ṁf [g/s] is the instantaneous mass flow rate and SoC is the 
state of charge of the battery. Since the objective function J must be 
minimized under a set of both local and global constraints on the state 
and control variables, the optimal energy management problem of an 

Fig. 3.2. Comparison between experimental and simulation ICE torque for a 
section of the cycle. 

Fig. 3.3. General dependency of machine learning and deep learning models’ 
performance on the amount of data [29]. 
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HEV is a constrained, finite-time optimal control problem: it means that 
the minimization of J is subject to constraints related to physical limi
tations of the actuators and the energy stored in the Rechargeable En
ergy Storage System (RESS). Moreover, the battery SoC must be always 
contained within prescribed limits. The optimal control problem can be 
addressed with several methods, such as through Dynamic Programming 
(DP) control algorithm [34]. 

4.2. Dynamic programming 

DP [19] belongs to global optimization strategies. It is a numerical 
method for solving multistage decision-making problems. It can provide 
the optimal solution, but only in a simulation environment since it is 
non-casual. DP algorithm is based on Bellman’s principle of optimality 
[9]. A DP optimization on a kinematic model of the PHEV (see Section 3) 
was performed by exploiting an open-source MATLAB code developed at 
ETH-Zurich [35,36] which solves discrete-time optimal control prob
lems using Bellman’s Dynamic Programming algorithm. The battery SoC 
is the only state variable, while the engine status (ON/OFF) uICE and the 
electric machine power PEM are the control variables. The goal of the 
optimization is to minimize the fuel consumption of the vehicle. Both 
the state and control variables were discretized as described in 
Table 4.1. 

The mathematical description of Bellman’s principle of optimality 
applied to the HEV control problem can be formulated in Eq. (4.6): 

SoCk+1 = fk
(
SoCk, uICE,k,PEM,k

)
(4.6)  

k = 0,1,…,N − 1, is the discretization time step, while the control and 

state variables are subject to the local constraints expressed in Eq. (4.4). 
The optimal control policy π∗, expressed in Eq. (4.7), must be defined in 
order to minimize the cost function, expressed in Eq. (4.8), from the 
initial state SoC0 to the final state SoCN. 

π∗ =

⎧
⎪⎨

⎪⎩

uICE,0∗
P∗
EM,0

,
uICE,1∗
P∗
EM,1

,…,
uICE,N− 1∗

P∗
EM,N− 1

⎫
⎪⎬

⎪⎭
(4.7)  

Jπ(SoC0) = mf ,N
(
SoCN , uICE,k,PEM,k

)
+
∑N− 1

k=0
mf ,k

(
SoCk, uICE,k,PEM,k

)
(4.8) 

Consider now the cost function from the time step ki to the time step 
kN, optimizing the tail subproblem: 

Jπ∗i (SoCi) = mf ,N
(
SoCN , uICE,k,PEM,k

)
+
∑N− 1

k=i
mf ,k

(
SoCk, uICE,k ,PEM,k

)
(4.9) 

Exploiting Bellman’s principle of optimality, it can be stated that the 
tail policy π∗i is optimal for the tail subproblem. It is possible to determine 
the optimal sequence of control actions π∗ = {π∗N− 1,…, π∗i ,…, π∗1, π∗0}
proceeding backward and choosing at each time step the path that 
minimizes the cost-to-go Jπ(SoCk). The presence of a backward phase in 
this control algorithm makes it unfeasible for an online application 
because, for the optimization of the energy management of HEVs, the 
complete a-priori knowledge of the driving cycle is needed. 

4.3. Long Short-Term Memory (LSTM) neural network 

LSTM networks [22] are a particular class of Recurrent Neural Net
works (RNNs) [20], which can deal with temporal sequences, using 
feedback connection to store information coming from recent input 
events. LSTM can overcome the vanishing or exploding gradient prob
lem [21] that affects RNNs when the error signal of information with a 
large time lag must be backpropagated in time. This is possible thanks to 
the presence of four gates, that act as traditional neurons, each of them 
with a specific task in the network behavior, enabling the network to 
handle both the short-term dependency, available also with RNNs, and 
the long-term dependency. Focusing on the LSTM layer mathematical 
description, Fig. 4.1 shows a schematic representation of the standard 
LSTM cell applied to the EMS framework. At time step t, the block uses 
the previous state of the network (ct− 1), the previous output (ht− 1), and 
the current inputs (xt) to compute the output (ht) and update the cell 
state (ct), so that it contains information from previous time steps. The 
layer adds or removes information from the cell state through the gates: 
gate f is in charge of deciding what information must be kept or dis
carded, while gates g and i update the state with the information coming 
from the actual input xt . Gate o collects the actual input and previous 
time step output information which must be later combined with the 
state information to compute the output. Based on the connections 
shown in Fig. 4.1, the LSTM cell can be mathematically expressed as in 
Eq. (4.10) [37]: 

it = σg(Wixt + Riht− 1 + bi)
ft = σg

(
Wf xt + Rf ht− 1 + bf

)

gt = σc
(
Wgxt + Rght− 1 + bg

)

ot = σg(Woxt + Roht− 1 + bo)
ct = ft⋅ct− 1 + it⋅gt
ht = ot⋅σc(ct)

(4.10) 

Table 3.1 
RDE-compliant driving cycle characteristics.  

Segment Distance percentage Minimum distance Instantaneous speed Average speed 

Urban 29-44% 16 km v ≤ 60 km/h 15km/h < v ≤ 40km/h 
Rural 23-43% 16 km 60 km/h < v ≤ 90 km/h 60km/h < v ≤ 90km/h 

Motorway 23-43% 16 km v > 90 km/h v > 90km/h  

Fig. 3.4. Example of RDE-compliant generated driving cycle.  

Table 4.1 
State and control variables grid description.   

SoC 
(State) 

Engine Status 
(Control) 

Electric Machine Power 
(Control) 

Bottom Value 8% 0 -90000 W 
Upper Value 100% 1 90000 W 
Discretization 

Step 
0.5% 1 200 W 

Number of 
Elements 

185 2 901  
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W and R are the input weights and recurrent weights vectors respec
tively for the relative gate, while b are the bias values. σg and σc are the 
activation functions whose main purpose is to introduce some non- 
linearity into the model. Their standard definition is expressed in Eq. 
(4.11) [37]: 

σg(x) =
1

1 + e− x

σc(x) = tanhx
(4.11) 

Concerning the HEV energy management design, Fig. 4.1 displays 
the LSTM layer application to predict engine torque. The network inputs 
are vehicle speed, vehicle acceleration, powertrain power demand, en
gine rotational speed, and engine state. 

4.4. LSTM-based EMS 

The proposed methodology exploits a deep neural network model, 
based on LSTM layers architecture [22], whose flowchart is represented 
in Fig. 4.2. Firstly, the deep learning control algorithm was trained with 
the target solution provided by the DP [19], which was applied to all the 
available driving cycles. During the training phase, a backward kine
matic model of the vehicle was used for running the DP optimization. 
Finally, the pre-trained deep learning model was tested online, by 
integrating the controller into the GT-SUITE vehicle model. The 
RDE-compliant driving cycles were split into training (57 cycles), vali
dation (28 cycles), and testing (6 cycles) sets. It should be noted that the 

driving cycles used for the testing phase were not employed during 
training and validation. 

Concerning the EMS architecture, two different networks were 
trained for CS and CD operations. This distinction is necessary since the 
management of the battery significantly changes between the two con
ditions, and the same controller cannot provide sub-optimal results on 
both of them. Both models have the same architecture, as shown in 
Fig. 4.3. A first network (classification model) decides the engine state 
and a second network (regression model) controls the engine torque. 
Higher performance can be obtained with the double neural network 
architecture if compared to the single one since the engine state repre
sents a crucial input for the second neural network: thus, the latter can 
output engine torque values closer to the target ones when the ICE is 
turned on. 

The training effectiveness strongly depends on the quality of the 
training data. Concerning an HEV application, the driving cycle must be 
described by features strongly related to the output prediction (e.g., 
vehicle speed profile, vehicle power demand profile). The extracted 
features are summarized in Tables 4.2 and 4.3, for CS and CD conditions 
respectively. The networks take as inputs some features obtained from 
the driving cycle as evident from Fig. 4.3. 

As evident from Table 4.3, both information about the distance to the 
final destination and the time needed to reach it are used as inputs to the 
first neural network in the CD network. A good estimation of both var
iables can be easily obtained from the navigation system, standard 
equipment in many vehicles on the market. Moreover, the increasing 
connectivity level of last-generation vehicles can further enhance the 

Fig. 4.1. LSTM layer layout for CS operations: the network inputs are vehicle speed, vehicle acceleration, powertrain power demand, engine rotational speed, and 
engine state; the network output is engine torque. 

Fig. 4.2. Flowchart of the proposed methodology: a supervised learning algorithm is trained off-line where the target is given by the DP; the pre-trained deep 
learning model is then tested online. 
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accuracy of time prediction. In this work, a perfect knowledge of the 
future speed profile is assumed (e.g., the uncertainties related to the 
estimation of traffic conditions are neglected), leading to a perfect 
estimation of the total travel time. The Experiment Manager tool inte
grated into the MATLAB environment [38] was employed to choose, 
through a Bayesian optimization procedure [39], the network hyper
parameters: i.e., all the parameters that are not optimized through the 
training algorithm, but should be manually set by the user, e.g., learning 
rate, network deep, regularization factor, etc. Table 4.4 displays the 
hyperparameters of the LSTM networks used in the following section. 

5. Results 

In Table 5.1 the results of the training and validation phases in terms 
of Performance Indices (PIs) are reported. The engine state and engine 
torque networks were evaluated through the accuracy [40] and Root 

Mean Square Error (RMSE) indices [41], respectively. The choice of the 
PI index depends on the type of the network, i.e., accuracy and RMSE for 
classification and regression networks, respectively. It should be noted 
that training and validation values are pretty comparable: this proves 
that the networks do not overfit the training data. 

In this section, for the sake of brevity, the results are shown only on 
one test cycle for both CS and CD strategies. The results of the proposed 
EMS were compared with two different control strategies: the Rule- 
Based (RB) strategy, extracted from the actual vehicle as described in 
Section 3, and an Equivalent Consumption Minimization Strategy 
(ECMS). The ECMS is a local optimization algorithm that can provide a 
sub-optimal solution while being online implementable in a vehicle ECU 
[34]. It should be pointed out that the DP results can be considered as an 
optimum benchmark only in terms of optimal battery management, but 
not in terms of fuel consumption. The fuel consumption coming from the 
two models cannot be directly compared, due to the discrepancies in 
terms of modeling approaches. A simplified model, i.e., backward 

Fig. 4.3. EMS based on two LSTM NN architecture representation.  

Table 4.2 
Input features for CS networks.  

CS ICE status NN CS ICE Torque NN 

Vehicle speed vi Vehicle speed vi 

Vehicle acceleration ai Vehicle acceleration ai 

Driver power demand Ppwt,i Driver power demand Ppwt,i 

State of charge SoCi Input gearbox speed ωgb,i   

Engine state uICE,i  

Table 4.3 
Input features for CD networks.  

CD ICE status NN CD ICE Torque NN 

Time percentage ti
tf 

Vehicle speed vi 

Distance ∫ti

t0

v(t)dt 
Vehicle acceleration ai 

Distance percentage ∫ ti
t0 v(t)dt

∫ tf
t0 v(t)dt 

Driver power demand Ppwt,i 

Vehicle speed vi Input gearbox speed ωgb,i 

Vehicle acceleration ai State of charge SoCi 

Driver power demand Ppwt,i Engine state uICE,i 

State of charge SOCi    

Table 4.4 
Values of the hyperparameters for all the LSTM networks. They were optimized 
by employing the Experiment Manager tool.  

Hyperparameters CS ICE 
State 

CS ICE 
Torque 

CD ICE 
State 

CD ICE 
Torque 

Number of LSTM - Hidden 
Layers 

1 3 2 5 

nNodes1 48 54 42 43 
nNodes2 / 50 30 75 
nNodes3 / 24 / 20 
nNodes4 / / / 33 
nNodes5 / / / 19 
Dropout 0.015 0.2 0.6 0.5 
Learn Rate 0.025 0.003 0.03 0.009 
Regularization Factor 0.01 1.03 * 10− 7 0.17  1 * 10− 4  

Table 5.1 
Performance Indices (PI) for training and validation phases.  

Hyperparameters Index Train PI Validation PI 

CS Engine State Accuracy 98% 96% 
CS ICE Torque RMSE 0.014 0.021 
CD Engine State Accuracy 98% 95% 
CD ICE Torque RMSE 0.012 0.017  
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kinematic, is used to perform the DP optimization (see Section 3), 
entailing lower fuel consumption. The SoC trend provided by the DP, 
instead, is used as a benchmark for the battery management strategy and 
can be directly compared with the one obtained by the proposed EMS. 
The driving cycle used to assess the EMS performance is an RDE cycle, 
conducted on the public roads in the surroundings of the Italian city of 
Turin, during the experimental campaign described in [26]. Table 5.2 
displays the most relevant features of the test cycle, while Fig. 5.1 plots 
the vehicle speed as a function of time. 

5.1. Charge sustaining 

Fig. 5.2 shows the SoC trend of the proposed EMS (LSTM) compared 
to RB, DP, and ECMS logic. It should be noted that both LSTM and ECMS 
better handle the battery energy management if compared to the RB 
strategy since the final SoC value is closer to the target one. This leads to 
lower fuel consumption, as shown in Fig. 5.3, where the trade-off be
tween CO2 emission and final SoC value is shown for all three considered 
cases. The proposed control strategy leads to a reduction of CO2 emis
sions of about 3.5% and 2.2% if compared to RB and ECMS, respectively. 
Focusing on Fig. 5.2, it is eye-catching that the SoC trend of the LSTM 
logic is the one that better mimics the DP one. For this reason, the 
control law defined by the LSTM is able to reach better fuel economy if 
compared to the ECMS one (see Fig. 5.3), although the latter presents a 
final SoC level closer to the target one. Thus, despite the worse exploi
tation of the energy stored in the battery (higher final SoC value), the 
LSTM can reduce fuel consumption if compared to the ECMS control 
strategy. 

Fig. 5.4 shows the differences between LSTM, ECMS, RB, and DP in 
terms of engine operation on its Brake Specific Fuel Consumption (BSFC) 
map. The engine operating points are represented by circle markers 
whose size is proportional to the time spent by the engine in that effi
ciency region. It should be noted that the LSTM - Fig. 5.4 (a) - has a more 
uniform distribution on the BSFC map than the ECMS - Fig. 5.4 (b). It 
means that the engine can work at higher load conditions, thus higher 
efficiency, entailing a better fuel economy. Furthermore, the distribu
tion of the operating points for the LSMT is pretty similar to DP one - 
Fig. 5.4 (d) - which represents the best solution. It is important to un
derline that the engine operating points are not affected by the different 
modeling approaches between LSTM and DP (see Section 3) because it 
only involves ICE torque management. 

5.2. Charge depleting 

According to the literature [42,43], the fuel consumption of a fully 
charged PHEV can be minimized by following an almost linear SoC 
discharge trend on a distance-based plot, while PHEVs available in the 
market usually follow a CD+CS logic. However, in order to obtain a 
linear discharge trend, it is necessary to have reliable information about 
the distance to the final destination and the time needed to reach it. For 
this reason, these variables were introduced as inputs to the neural 
networks (see Table 4.3). Moreover, all the electrical energy stored 
onboard should be depleted at the end of the cycle. However, since very 
low values of SoC could accelerate the aging of the battery, a minimum 
threshold value of 0.2 is imposed for this variable. In this section, the 
results of the proposed EMS based on LSTM are compared only with the 
baseline RB control strategy, since the ECMS controller was only 

developed for a CS application. From Fig. 5.5 it is eye-catching that the 
SoC trend obtained by the LSTM is completely different from the RB one. 
While the RB tends to follow a strategy typically employed on PHEV, i.e., 
a CD mode followed by a CS operation, the LSTM can better mimic the 
DP control law. Thus, the LSTM tends to have an almost linear SoC 
discharge if considered in the distance-based plot, reliable information 
about the distance to the final destination and the time needed to reach 
it is available. This behavior, as confirmed by Fig. 5.6, allows obtaining a 

Table 5.2 
Characteristic values of the RDE cycle used for testing the proposed EMS 
performance.  

Time Distance Avg. 
Speed 

Max 
Speed 

Avg. 
Acc. 

Max 
Acc. 

Required 
Energy 

[s] [km] [km/h] [km/h] [m/s2] [m/s2] [Wh/km] 
5926 97 59 139 0.38 3.42 225  

Fig. 5.1. Vehicle speed as a function of time of the RDE cycle used for testing 
the proposed EMS performance. 

Fig. 5.2. SoC trends over the RDE cycle for the considered control strategies.  

Fig. 5.3. Trade-off between CO2 emissions and final SoC values of the 
compared control strategies in CS mode. 
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CO2 emissions reduction of about 5.2% if compared to the RB strategy. 
The CO2 reduction for the LSTM strategy can be related to a slightly 

lower final SoC and to more efficient management of both the engine 
operating points and the battery energy. The improvement of the engine 
efficiency can be seen in Fig. 5.7, where the engine operating points are 
plotted, by means of time distribution markers, on its Brake Specific Fuel 
Consumption (BSFC) map. It is eye-catching that the LSTM distribution - 
Fig. 5.7 (a) - features operating points at a higher load than the RB one - 
Fig. 5.7 (b) - since it mimics the time distribution of the DP logic - 
Fig. 5.7 (c). 

5.3. Sensitivity analysis 

Since, in real-life applications, a PHEV cannot always start a trip with 
a fully charged battery, its energy management system should be able to 
handle also different levels of initial SoC. In order to train the LSTM also 
on these conditions, additional DP optimizations were performed by 
varying the energy content of the battery at the beginning of the cycles. 
Fig. 5.8 shows the results of a sensitivity analysis performed on the 
trained deep learning model to assess the robustness of its performance 
in the case of initial SoC variability. 6 different scenarios were investi
gated with the initial SoC spanning from 0.5 to 1. The results of the 
LSTM - Fig. 5.8 (a) – are compared with the ones obtained by the RB 
logic - Fig. 5.8 (b) – and the DP - Fig. 5.8 (c). As expected, the DP results 
show that whichever is the initial value, the optimal strategy always 
follows a quasi-linear trend of SoC in a distance-based plot. On the other 

Fig. 5.4. Time distribution of the engine operating points of LSMT (a), ECMS (b), RB (c), and DP (d).  

Fig. 5.5. SoC trend function of distance run by the vehicle of the two compared 
control strategies. 

Fig. 5.6. Trade-off between CO2 emission and final SoC value of the compared 
control strategies in CD mode. 

F. Millo et al.                                                                                                                                                                                                                                    



Transportation Engineering 11 (2023) 100156

10

Fig. 5.7. Time distribution of the engine operating points of LSMT-EMS (a), ECMS-EMS (b), and DP (c).  

Fig. 5.8. SoC trend in CD mode starting from different initial SoC values spanning from 1 to 0.5 for LSTM (a) RB (b) and DP optimization (c).  
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hand, the RB strategy always follows the same behavior, i.e., a CD mode 
followed by a CS operation. It should be noted that starting from a lower 
initial SoC level only leads to a higher share of the CS mode, but the 
discharge rate of the battery is unchanged as well as the control law in 
the second part of the driving cycle. It is eye-catching that the LSTM 
strategy is able to efficiently handle the battery energy when starting 
with a not fully charged battery since it well mimics the DP behavior. All 
the different cases present an almost linear battery depletion, with a 
residual SoC, at the end of the cycle, that spans from 0.15 to 0.18. It 
should be noticed that only with an initial SoC of 0.5 - the yellow line in 
Fig. 5.8 (a) – there is a deviation of the SoC trend from the linear one: at 
about 63 km the minimum value is reached and the vehicle starts 
operating in CS mode. 

Table 5.3 reports the CO2 emissions of the LSTM-based EMS for all 
the analyzed cases. For each case, Table 5.3 also reports the CO2 emis
sions reduction using the RB strategy as a benchmark. The LSTM-based 
EMS can improve the engine efficiency if compared to the RB strategy, 
enhancing the vehicle fuel economy and reducing its CO2 emissions for 
all the analyzed cases. It should be noted that the CO2 emissions 
reduction is lower for an initial SoC value of 60% or 50%. Since the 
phase in CS is longer for these two cases, the overall behavior of the 
LSTM is more similar to RB one, leading to smaller improvements in 
terms of fuel economy. 

6. Conclusions 

This paper developed a methodology to design a deep learning-based 
Energy Management System for a Plug-in Hybrid Electric Vehicle 
(PHEV), through the exploitation of deep Recurrent Neural Networks. 
The proposed architecture is based on two different neural networks that 
decide the vehicle operating mode (i.e., full electric or hybrid propul
sion) and the power split in the case of hybrid propulsion. The networks 
were trained off-line using the optimal results provided by Dynamic 
Programming (DP). In this way, DP optimization significantly simplifies 
the training process in comparison with other techniques proposed in 
the literature, such as Reinforcement Learning based controllers, which 
are characterized by a long and tricky training process based on a trial- 
and-error procedure. The results obtained were then compared with two 
different powertrain control strategies, the first based on a Rule-Based 
(RB) strategy, extracted through an experimental campaign carried 
out on the real vehicle, and the second exploiting an Equivalent Con
sumption Minimization Strategy (ECMS) optimization. A significant 
improvement in terms of CO2 emissions, and so in terms of fuel econ
omy, was achieved for both charge-sustaining and charge-depleting 
strategies. For charge-sustaining, a CO2 emissions reduction of about 
4% if compared to the RB strategy was achieved, while for charge- 
depleting a CO2 emissions reduction of about 5% was obtained. 
Finally, a sensitivity analysis on the initial energy content of the battery 
proved the robustness of the proposed EMS, which can obtain sub- 
optimal performance for all the values of initial State of Charge (SoC) 
considered. Future work will assess the potential benefits that the 
introduction of information deriving from Vehicle-to-Everything (V2X) 
connectivity could provide to the Neural Network-based EMS. A pre
diction on the future vehicle speed, and real-time information about 

traffic conditions and road infrastructure could further enhance the fuel 
economy of the proposed strategy. 
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