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Abstract—A multimodal sensory feedback was exploited in the
present study to improve the detection of neurological phenomena
associated with motor imagery. At this aim, visual and haptic
feedback were simultaneously delivered to the user of a brain-
computer interface. The motor imagery-based brain-computer
interface was built by using a wearable and portable electroen-
cephalograph with only eight dry electrodes, a haptic suit, and a
purposely implemented virtual reality application. Preliminary
experiments were carried out with six subjects participating
in five sessions on different days. The subjects were randomly
divided into "control group" and "neurofeedback group". The
former performed pure motor imagery without receiving any
feedback, while the latter received multimodal feedback as a
response to their imaginative act. Results of a cross validation
showed that at most 61% of classification accuracy was achieved
in performing the pure motor imagination. On the contrary,
subjects of the "neurofeedback group" achieved up to 82% mean
accuracy, with a peak of 91% in one of the sessions. However, no
improvement in pure motor imagery was observed, either when
practicing with pure motor imagery or with feedback.

Index Terms—brain-computer interface, motor imagery, elec-
troencephalography, extended reality, neurofeedback, wearabil-
ity, dry elecrtrodes.

I. INTRODUCTION

Motor Imagery (MI) is widely exploited in building Brain-
Computer Interfaces (BCIs). Indeed, when imagining the
movement of a body part, the associated neurological phe-
nomena can be measured and translated into a command to
control an external device [1]. Moreover, imagined movements
are linked to the conscious activation of brain areas that are
also involved in the preparation and execution of a movement.
For these reasons, MI-based BCIs are increasingly exploited in
neurorehabilitation [2], but also in sports, music, and gaming
[3], [4], [5], [6], [7]. Application examples consist of using
a word processing system, driving a wheelchair, controlling a
robotic limb, or navigating 2D and 3D environments.

When detecting MI, the adopted processing algorithms rely
on the detection of “event-related desynchronization" and
“event-related synchronization" phenomena in the µ (about
8Hz to 12Hz) and β (about 13Hz to 30Hz) bands, whose
spatial localizations depend on the specific MI task [8]. How-
ever, these phenomena have great variability across subjects
and across different sessions even for the same subject. This
implies poor reproducibility of system performance. There-
fore, in such a context, neurofeedback (NF) aids the user in the
self-regulation of brain rhythms and promotes neural plasticity
[9]. In details, a sensory feedback is delivered to the user as
a result of real-time processing of his/her brain signal. This
aims to reduce the training time needed to use the interface
by actively engaging the user of the system.

Regarding brain signals acquisition, a non-invasive, wear-
able, and possibly portable neuroimaging technique is the
electroencephalography (EEG) [10]. Due to its advantages,
BCIs are often based on EEG by typically using more than
10 wet electrodes [11], [12], [13]. Unfortunately, such a setup
would require excessively long preparation time for the user
and discomfort due to the usage of conductive gel. Therefore,
with the aim to increase the usability of BCI technologies by
end users, EEG devices relying on dry electrodes have been
investigated [14]. Indeed, dry electrodes measure EEG signals
by directly touching the scalp without the use of gel. However,
they are associated with high and unstable contact impedances,
which results in signals with low signal-to-noise ratios [15],
[16].

Some studies have attempted to solve such issues and they
even evaluated whether system performance decreased when
using dry electrodes in MI-based BCIs [17], [18], [19], [20]. In
particular, literature suggests that dry and wet electrodes lead
to compatible classification accuracies [21]. Further evidence
has shown that deep learning approaches are promising in
building robust systems with dry electrodes [22]. Finally,
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Figure 1: Block diagram of the proposed system. EEG: electroencephalography, UDP: User Datagram Protocol.

spectral power measures during rest in the 4Hz to 50Hz
range were also found to be compatible in both wet and dry
systems [23]. This would imply that dry electrodes should be
even useful in measuring phenomena in the frequency ranges
associated with MI. Nonetheless, the use of dry electrodes in
MI-BCI appears still limited.

Upon these considerations, the present study proposes a
wearable MI-based BCI system relying on an EEG device with
only eight dry electrodes. A multimodal NF is investigated
within such a system in order to improve the detection of
left hand and right hand MI over 5 experimental sessions. In
aiming to evaluate how much the feedback is assisting the sys-
tem functionality, a control group was also taken into account,
i.e. some subjects did not receive the NF. Hence, Section II
presents the materials and methods used in implementing and
testing the system, while Section III discusses the preliminary
results associated with motor imagery detection.

II. MATERIALS AND METHODS

The block diagram of the proposed system is shown in
Fig. 1. EEG signals are acquired and sent through Bluetooth
to the processing module, whose output drives the eventual
feedback. The feedback application also dictates the timing
for the execution of the MI tasks, namely the system operates
synchronously. Details are reported in the following subsec-
tions per each block.

Figure 2: Wearable and portable electroencephalograph by ab
medica.

A. EEG acquisition

EEG signals were acquired by using the Helmate device
by ab medica® 1 (Fig. 2). Along with its dedicated software,
this is a device for acquiring, displaying, and analyzing EEG

1https://www.abmedica.it/

signals. It is a Class IIA device certified according to the
Medical Device Regulation (EU) 2017/745 and it consists
of eight single-ended channels. A total of 10 dry electrodes
(channels plus reference and bias) are employed and different
shapes are available to overcome the hair and reach the
skin. According to the international 10-20 EEG system [24],
channels are located at FP1, FP2, Fz, Cz, C3, C4, O1, and O2,
while the reference and bias electrodes are placed in the frontal
region at AFz and FPz, respectively. The quality of electrode-
skin contact can be checked too through the software, which
implements a contact quality check. For each electrode, the
optimal numerical value associated with contact quality is
set to be below 100, though a value below 200 is already
acceptable. Notably, this value does not directly represent the
impedance measurement but is rather an index. In the proposed
setup, data were collected at a sampling rate of 512 Sa/s and
transmitted via Bluetooth to a custom Simulink model.

B. EEG processing

In order to drive the feedback, the EEG signals were
processed and its features extracted by means of the Filter
Bank Common Spatial Pattern (FBCSP) [25]. Although this
approach was proposed about 10 years ago, it still remains one
of the most popular and stable algorithm in binary EEG-based
BCIs [26], [27]. The mutual information-based best individual
features (MIBIF) was employed in conjunction with FBCSP to
select the most significant features, while the Naive Bayesian
Parzen Window (NBPW) was employed as classifier. This
returns the class to which the EEG signals belong (e.g., right
or left) and the probability associated with that class.

In driving the feedback, EEG signals had to be pro-
cessed online. Therefore, this algorithm was implemented in
Simulink. In there, the class and the probability returned by
the classifier were sent to Unity via User Datagram Protocol
(UDP), so as to modulate the feedback direction and intensity.

C. Multimodal feedback

With the aim of improving the detection of MI and speed up
the user training, multimodal feedback is proposed. Visual and
haptic feedback modalities were simultaneously provided to
the users as a consequence of their mental task. The feedback
were managed through an application developed with Unity2.

The visual feedback consisted of a ball rolling left or right
on a virtual floor. Two white lines were set as targets on the

2https://unity.com/



two sides of this scenario (Fig. 3). Starting from the center, the
ball’s movement could be modulated in terms of direction and
applied force. The virtual environment was delivered through
a PC monitor.

Figure 3: Visual feedback in the virtual scene.

Instead, the haptic feedback was provided by means of
TactSuit X40 from bHaptics Inc 3 (Fig. 4). This is a wearable
and portable haptic vest equipped with 40 individually con-
trollable vibrotactile motors. The vibration can be modulated
in terms of duration, frequency, and intensity. In the current
proposal and in accordance with the movement of the virtual
ball, the vibration started from the center of the torso (front
side) and it could be moved to the left or to the right. The
class probability could modulate the position and the intensity
of the vibration. The suit was controlled via Bluetooth through
the Unity application.

Figure 4: Vibrotactile suit by bHaptics Inc.

D. Experimental paradigm

Preliminary experiments were carried on with the described
system. The experiments involved participant in five experi-
mental sessions over five weeks. Each session lasted about one

3https://www.bhaptics.com/tactsuit/tactsuit-x40

hour. Participants were divided into two groups, namely the
"control group" and the "neurofeedback group". In both cases,
they were asked to imagine the movement of the left hand or
the right hand. In the former group, each session included
only pure motor imagery. In the latter group, instead, each
session included both the pure motor imagery phase with the
aim of training the algorithm, and a subsequent online phase,
where EEG signals were processed to drive the feedback. In
any case, a synchronous paradigm was adopted, i.e. the user
had to imagine according to an external cue.

For the pure motor imagery, the Unity application only
indicated the timing. For each trial it sequentially showed
a fixation cross for 2.00 s, a cue (i.e., a left or right arrow)
between the time instants t = 2.00 s and t = 3.25 s, the word
"GO!" up to 6.00 s, and the word "RELAX" lasting from 1.00 s
to 2.00 s (Fig. 5). Participants were only asked to prepare to
imagine the movement during the cue, and then to actually
imagine when the "GO!" was displayed. The relax at the end
was instead randomized in order to avoid any bias between
consecutive trials. One run consisted of 30 trials, randomized
between the left and right sides. Three or six of such runs
were recorded for the neurofeedback and the control groups,
respectively.

GO!

RELAX

2.00 s

1.25 s

3.00 s

1.00 s to 2.00 s

Figure 5: Timing of a single trial for the pure motor imagery
phase.

On the other end, the first three runs for the neurofeedback
group were exploited to train the online subject-dependent
model. This was used in the last three runs. In identifying that
model, a cross-validation technique was used for selecting the
best time window in terms of optimal classification accuracy
during the MI task. For this purpose, a sliding window of
2.00 s with a shift of 0.25 s in the MI window was adopted.
Once the model was identified, participants underwent further
three runs during which they received feedback in response to
the MI task. The timing scheme was similar to the previous
one, with two exceptions: the participants started to imagine in
correspondence of the cue and they received the feedback from
4.50 s to 6.00 s. No "GO!" or "RELAX" text was displayed
this time, but the only arrow to indicate the task. A 2.00 s-
wide sliding window with 0.25 s shift was used to process
the EEG signal online with the FBCSP approach. Participants
were instructed to try moving the ball over the white lines of
the game environment, which also corresponded to maximum
activations of the vests’ haptic feedback at the rear of the
respective side.



III. RESULTS

The results of the preliminary experiments are reported in
this section. First, the subjects participating in the experiments
are described. Then, the performance of the proposed system
are discussed.

A. Subjects

Six right-handed healthy volunteers (four female and two
male, age 26 ± 2) participated in the preliminary experiments.
They were randomly divided into "control group" (S01, S02,
S03) and "neurofeedback group" (S04, S05, S06). Subjects
S01 and S03 had previous experience with motor imagery
paradigm, S02 and S05 had previous experience with multiple
BCI paradigms. The remaining two subjects had never used a
BCI before. Prior to the beginning of the experiments, subjects
were asked to try to imagine different hand movements (e.g.
squeezing an object, snapping fingers) by testing internal
visual, external visual and kinesthetic imagery. Once they
chose the one they were most confident with, they were asked
to keep it constant throughout the session. The study was
approved by the Ethical Committee of Psychological Research
of the Department of Humanities of the University of Naples
Federico II. Information about the experimental protocol was
provided to the participants and they were asked to read and
sign an informed consent form.

B. System performance

First results were obtained in terms of best classification
accuracy during the MI window using a 5-fold cross validation
with 10 repetitions. As mentioned before, a 2.00 s-wide sliding
window with 0.25 s shift was exploited in the MI window for
both groups and both phases (i.e. pure motor imagery and mo-
tor imagery with feedback). The optimal 2.00 s-wide window
was selected as the one that simultaneously maximizes the
classification accuracy and minimizes the difference between
accuracies per class.

Fig. 6 and Fig. 7 show the results obtained by the "control
group" and the "neurofeedback group", respectively, during the
pure motor imagery phase of each experimental session. The
subjects participating in the experiments are reported on the
x-axis, and for each of them the five sessions are shown. The
mean classification accuracy is instead reported in percentage
on the y-axis. In both cases, no training effect is evident,
i.e. classification accuracy is not increasing across sessions.
Moreover, all the accuracies remain below 60% throughout
the sessions.

Fig. 8 and Fig. 9 show the results obtained by the "control
group" and the "neurofeedback group", respectively, during
the second phase of each experimental session. It is useful
to remark that, while the control group repeated pure motor
imagery, the neurofeedback group received feedback as a
response to the imaginative act. In the former case, the results
are similar to the previous ones and S01, S02, and S03
reached 58%, 61%, and 56% average classification accuracy
across the sessions, respectively. In the latter case, when
subjects received the online feedback, there is a substantial
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Figure 6: Mean accuracy over the sessions for the "control
group" during the first part of the session of pure motor
imagery.
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Figure 7: Mean accuracy over the sessions for the "neurofeed-
back group" during the first part of the session of pure motor
imagery.

improvement in classification accuracy. These subject reached
up to 91%. In details, S04, S05, and S06 obtained an average
during the sessions of 75%, 82%, and 59%, respectively.
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Figure 8: Mean accuracy over the sessions for the "control
group" during the second part of the session of pure motor
imagery.

As a whole, the improvement in classification accuracy
due to the multimodal feedback should be associated with a
better detection of phenomena associated with MI thanks to
the proposed system. Subjects in the "neurofeedback group"
actively engaged in the motor imagery task and their awareness
increased. This effect has been observed despite the usage of
few channels with dry electrodes and by using wearable and
portable equipment. However, in some subjects, the use of dry
electrodes caused discomfort towards the end of the session
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Figure 9: Mean accuracy over the sessions for the "neurofeed-
back group" during the online feedback.

due to the greater pressure on the scalp compared to wet
electrodes. Moreover,the training effect that could be expected
is not observed. As future steps, a greater experimental sample
would thus be needed to make a better investigation and
in-depth analyses. Metrics other than classification accuracy
could be considered as well.

IV. CONCLUSION

An MI-based BCI has been proposed in this work and a
multimodal neurofeedback has been exploited. The system
was implemented with low density EEG (only eight channels),
dry electrodes, a haptic suit commercialized for gaming, and
a custom Unity application. A synchronous paradigm was
adopted and six participants were involved in the experiments.
Preliminary results show that the mean classification accuracy
among subjects of the neurofeedback group is higher than the
one related to the control group, thus suggesting a proper func-
tionality of the implemented wearable and portable system.
However, no training effect was observed between sessions,
although this could be expected from literature. Therefore, this
work will be continued by considering a greater experimental
sample and deeper analyses.

V. DATA AVAILABILITY

Part of the data used to obtain the results presented
in this work can be accessed at https://metroxraine.org/
contest-dataset, named "MOTOR IMAGERY DATASET".
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