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Intelligent Energy Management for 
Mobile Manipulators Using Machine 
Learning 
 
Integrated robotic systems combining manipulators with mobile robots 
provide outstanding improvement opportunities for semi-automatic 
assembly processes leveraged by Industry 4.0. Factory operations are 
released from the rigid layout constraints imposed by conventional fixed 
robots. Thus, they introduce new challenges in managing the recharge 
cycles as the energy consumption of mobile manipulators is not simply 
related to the travelled distance but to the overall tasks executed. Its 
estimation requires a systemic approach. In the proposed solution, an 
intelligent monitoring system is implemented on board. Data gathered 
online, and Key Performance Indicators (KPIs) calculated during the 
working tasks are exploited by Machine Learning (ML) to optimize energy 
recharging cycles. Although the development of an intelligent monitoring 
framework for a mobile manipulator was the original objective of the 
research, the monitoring system is exploited here for energy management 
only, leaving space for other future applications. 
 
Keywords: Mobile robots, Collaborative manipulators, Machine Learning, 
Energy consumption, Online Monitoring, Industry 4.0. 

 
 

1. INTRODUCTION 
 

Currently, robotic technologies such as collaborative and 
mobile robots are considered enabling technology for 
deploying Industry 4.0 (I4.0) [1]. Multi-robot systems in 
Figure 1 composed of one or more mani–pulator arms 
mounted on a mobile robot can offer new employment 
possibilities for industry automation, gre–atly increasing 
the flexibility of factory layout definition [2]. 
Unfortunately, there are also negative fallouts. Among 
them autonomy of the mobile robot is lowered by the 
energy consumption of the manipulator; there–fore, it is 
no more related to the travel distance (or the operating 
time, as mobile robots usually travel at constant speed). 

The limited autonomy of the batteries mounted 
onboard mobile robots is the main constraint limiting 
the operational time of the robot inside the factory. It 
negatively affects potential employment on the line. 
When the battery charge is low, the robot must quit 
work, locate the nearest charging station and dock to it. 

The estimate of energy level in order to schedule the 
time and frequency of recharging cycles is still an open 
problem, as it is scarcely correlated with the operating 
time of either of the two robots. Furthermore, the 
common method of estimation of the State Of Charge 
(SOC) by integrating the ampere-hour was demon–
strated to be both inaccurate and unreliable [3]. 

It is possible to gather a huge amount of data to 
monitor the mobile manipulator through the application 
of the Internet of Things (IoT) [4]. Many of them are 
directly or indirectly related to energy consumption [5] 

and can be exploited to estimate the need for recharging. 
In small production, the future tasks of the robot could be 
unknown. It is difficult to build a consumption model 
analytically as it depends on uncountable parameters. On 
the contrary, ML presents advanced analytical capa–
bilities for processing and analyzing large amounts of 
production data without requiring an underlying con–
sumption model. ML allows predicting with reasonable 
accuracy the energy consumed based on an approximate 
description of the working tasks described only in terms 
of their effect on some Key Performance Indexes (KPIs).  

 

 
Figure 1. Mobile manipulator 

Energy management belongs to the production 
control as far as robot halts during recharging can have 
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a significant impact on production performances. The 
recharging stops should be chosen and scheduled to 
optimize the production throughput. In turn, optimal 
scheduling relies on an accurate and reliable estimate of 
SOC. To provide such an estimate, the necessary actions 
include the selection of appropriate indicators of the 
impact of each work task on energy consumption and 
the continuous monitoring of the mobile manipulator. 
Simulating the future missions of the mobile 
manipulator, it is possible to validate the optimized 
recharging sequence and to predict the future energy 
demand. The present research aims at providing a robust 
and effective estimate of SOC for mobile manipulators. 

In conclusion, the research questions the study 
proposes to answer are: 
RQ1: classify robot work tasks according to energy 
consumption by using measurable KPIs. 
RQ2: measure the mentioned KPIs on a mobile 
manipulator, during its work, by continuous monitoring. 
RQ3: provide a reliable estimation of battery con–
sumption, given a programmed work sequence. 

 
2. STATE OF THE ART 

 
The above-defined RQs have already been considered in 
the literature. The answer to RQ1 requires defining 
meaningful KPIs that are used not only to monitor and 
display energy consumption but also for planning, 
scheduling, predictive maintenance, quality control, etc. 
ISO 22400 defines standardized KPIs, of which 34 KPIs 
may be utilized in manufacturing ([6] and [7]). Among 
them, there are 5 that significantly affect the working 
performance of mobile and collaborative robots emp–
loyed in the factory ([8]). They are reported in Table 1. 
Table 1. Implemented KPIs on the monitoring framework 

KPI Formulation Description 
Cycle time  sequence start time - 

previous sequence 
start time 

- 

Cycles 
completed  

Number of cycles 
completed 

Increment every time a 
cycle finish 

Wait time Sum of robot wait 
times 

Robot idle or waiting 

Utilization use time / total time How long is the robot 
used against the 
potential use time 

Efficiency cycle time/ use time % of productive work 
 

The answer to RQ2 requires setting up a remote 
monitoring system providing the data needed to cal–
culate the aforementioned KPIs. In [9], an intelligent 
monitoring framework has been implemented on a 
mobile robot, allowing the measurement of the consi–
dered KPIs [10]. Mobile manipulators could be con–
nected with the factory network through WIFI once the 
connectivity is guaranteed by adopting proper strategies 
as described in [4]. 

Therefore, the first two RQs have found a solution in 
the literature and require only the implementation of the 
present case study. On the contrary, to the author's 
knowledge, RQ3 has not yet been answered. 

Estimation of battery consumption is necessary to 
adjust the scheduling of work tasks with battery 

management. The scheduling problem is not trivial and 
requires global optimization, but it already has a number 
of solutions in the literature.  

As an example, [11] recurs to the Theory of 
Inventive Problem Solving (TRIZ) and the multiagent 
system (MAS). Other authors find the optimal travel 
route that considers additional charging stops. [12] 
propose a general constrained optimization algorithm by 
modeling the problem as an extension of the classic 
Travelling Salesman Problem. 

In the present case study of the mobile manipulator, 
none of the existing solutions can be adopted 
straightforwardly because all of them rely on an 
estimate of SOC as a function of the length of traveled 
routes. On the contrary, in the present case, the battery 
could run out while the mobile robot is stationary at a 
workstation and only the manipulator arm is working. 
This prevents access to a charging point. Therefore, it is 
necessary to monitor the battery level and predict in 
advance when robotic arm operations will lead to a low 
battery situation. SOC and temperature for the battery of 
mobile robots can be monitored with the Internet of 
Things (IoT), as described by [13]. In literature already 
exist efficient predictive models of energy consumption 
for mobile robots, given the known state of charge, like 
the one employed by [14]. No model applicable to 
mobile manipulators was found. 

Machine Learning (ML) was already used in mobile 
robotics to assist navigation [15] or to control the 
trajectories [16,17], while regression analysis assists 
predictive maintenance of the robot [18,19].  

The advantage of ML is the possibility to include 
numerous input data from production in the learning 
phase, leading to a quality prediction even in the absence 
of a reliable analytical model of the process. Therefore, in 
the present study, ML assists in deve–loping a predictor 
for energy consumption in a mobile manipulator. 

 
3. DEVELOPED METHODS 

 
In former research [10], KPIs of the robotic cell and 
robot data were measured in real-time on the mobile 
manipulator and made accessible through a dashboard, 
as can be seen at the top of  Fig. 2. 

The framework's application layer integrates and 
visualizes ML results, status and battery data, and KPIs. 
A Node-RED program calculates KPI metrics from the 
onboard robot's data by user-defined functions. To com–
pute KPIs, Node-red requests data (status, start time, 
uptime, downtime, etc.) using the MODBUS TCP/IP and 
RTDE protocols. The raw data received are trans–formed 
into human-readable data, and robot KPIs are computed.  

Starting from this monitoring framework, a set of 
experiments was conducted to classify the robot's ope–
rative tasks in terms of impact on energy consumption. 
 
3.1 Experiment with a monitoring framework  
 
The monitoring framework is composed of several 
interconnected pieces, including data acquisition from 
robots, communication layers, ML and KPI deployment, 
and dashboard integration. Figure 2 depicts the propo–
sed framework of the ML-based monitoring system. 
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Figure 2. Intelligent Manufacturing Monitoring Framework 

Table 2. Evaluation metrics and descriptions of the classification models 

Metric Formulation Description 

Log loss 
( ) ( ) ( )( )

1

1
ln ln 1 ln 1

N

i i i i i
i

Logloss y p y p
N

ω
=

= − + − −∑  
N is the total number of observations in the 
equation;ω is the per-row user-defined 
weight; p is the predicted value, and y is the 
actual target value. 

MSE  ( )2
1

1 ˆ
N

i
i

MSE y y
N =

= −∑  
The mean squared error averages the squares 
of the mistakes or variances. N, the total 
number of observations;  yi actual target 
value; ŷ  predicted target value 

RMSE ( )2
1

1 ˆ
N

i
i

RMSE y y
N =

= −∑  

The root means square error measures a 
model's ability to predict a continuous value. 
N, the total number of observations; ŷ  actual 

target value; ŷ predicted target value 
VAR 

( )2
1

1 ˆ
N

i
i

VAR y y
N =

= −∑  
The statistical significance of each variable in 
the dataset in terms of its effect on the model. 
The variables are presented in descending 
order of relevance.  

 
In the proposed framework, the ML best-trained 

model classifies robots' different conditions, such as if the 
mobile robot is "ON". The cobot is "OFF" if the mobile 
robot moves with the cobot "ON" and if the mobile robot 
is moving. The cobot program is running if the multi-
robot system is moving with different weights, such as 
30kg, 60 kg, and 90 kg, and to visualize the condition of 
the intelligent monitoring system in real-time. 

The main components of the framework are the UR3-
collaborative robot and MIR 100 mobile robot, which are 
connected through an ethernet cable. The MIR100 has 
WiFi and, therefore, can connect to gateways to get 
access to the Internet network. It supports the MQTT 
protocol since it allows direct access to the MQTT 
broker. MODBUS and RTDE protocols and interfaces 
are used for communication with robots. The RTDE 
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protocol is used to acquire UR3 status data such as 
POWER OFF/ON, Emergency Stop, Protective Stop, the 
status of program-is it running, paused, or stopped, and 
other parameters necessary to compute KPIs. The 
received data are delivered to the cloud using an MQTT 
broker. Mobile robot registers contain discrete variables 
such as the On/Off status, emergency, battery status, 
distance run, uptime, length of missions, and PLC 
registers are used to calculate cycle, average times, etc... 

 
3.2 Machine learning model 
 
The Automatic machine learning (AutoML) approach is 
used to identify the robots' behavior and condition based 
on the data acquired. According to recent research,  
H2O AutoML outperforms other competing automated 
ML systems [20]. AutoML's robustness and efficiency 
were examined by [21]. According to them, in contrast 
to other automated models such as TPOT [22] and 
AutoKeras [23], AutoML is the quickest tool for 
training machine learning algorithms to generate a large 
number of ML models in a short period of time.  

H2O AutoML provides supervised training of 
regression, binary classification, and multi-class classi–
fication models on datasets [24]. The H2O AutoML 
platform key models include Generalized Linear Models 
(GLM), Distributed Random Forests (DRF), XGBoost, 
Gradient Boosting Machines (GBM), and Deep 
Learning. The H2O AutoML platform chooses one of 
three different models. The assessment metrics used for 
the classification models are listed and described in 
Table 2. Logarithmic loss (Log loss), mean squared 
error (MSE), root mean square error (RMSE), and 
variable importance (VAR) metrics were used to assess 
the performance of multinomial classification models. 

ML classification models predict multi-robot system 
behavior and condition according to the battery, status 
data, and KPIs.  

In the multi-robot system, the mobile robots' default 
dashboard does not provide information about 
manipulator power consumption. For this reason, ML 
models classify multi-robot systems' conditions and 
status according to the battery data of the mobile robot. 
Predicted ML class names are MIR_0, MIR_30, 
MIR_60, MIR_90, MIR_ON, MIR UR_P_R (mobile 
robot is steady while manipulator is doing some tasks), 
MIR_UR_ON (both mobile robot and manipulator are 
actively performing tasks). 

 
3.3 Robotic cell monitoring and KPI integration 

 
The dashboard deployment and integration constitute 
the application layer (top layer in Fig.2), presenting 
robot data, KPIs, and ML prediction results. 

The dashboard is intended for a wider utilization 
apart from energy management. It may be utilized to 
analyze robot performance in production lines and for 
predictive maintenance applications. Furthermore, pro–
duction managers can receive remote alarm signals for 
emergency stops, warnings, protective stops, etc. 

KPI metrics are implemented utilizing user-defined 
functions in the Node-RED program. To compute KPIs, 
Node-red requests data (status, start time, uptime, down–

time, etc.) using the MODBUS TCP/IP and RTDE proto–
cols.  

The raw data received are transformed into human-
readable data and integrated into KPIs. The following 
results are provided: Figure 3 shows the dashboard of 
the mobile robot, whereas Figure 4 depicts the 
dashboard of the manipulator's arm. 

The dashboard displays basic information (battery 
level, robot condition, mission/task distance, and dura–
tion), cycle time (number of completed tasks, previous 
and average cycle time, beginning mission time), and 
selected KPIs (utilization, efficiency, and wait time). 

 
3.4 Robotic cell simulation 

 
The robotic cell simulation was developed to evaluate 
the mobile robot's energy consumption during the task 
execution and to provide the same simulation 
environment for the case study. MATLAB, Simulink, 
and the Robotics System Toolbox are used to simulate a 
robotic cell and case study environment.  

As illustrated in Figure 5, five main blocks have 
been defined in the simulation environment (Simulink): 
Robot Scheduler, Planning, Control, Plant Model, and 
Visualization. 

Robot Scheduler is the initial block. In this block, 
the robot's position on the map is updated, and the 
robot's mission is controlled using a Finite State 
Machine. The scheduler's input data are the positions 
of the Charging, Loading, and Unloading stations. The 
goal of the control block is to determine whether or not 
the robot is at the target position. The output data 
consists of the mobile robot's start and final positions, 
as well as a stop signal indicating that the robot is in 
the charging station position. The Finite State Machine 
describing the logic of charging management is 
integrated into the robot scheduler. The Planning block 
is a roadmap path planner object for the supplied 
environment map. The map of the mobile robot is used 
to produce a roadmap in the shape of a graph of 
feasible pathways based on free and occupied areas in 
the map.  

The Planner block receives three inputs, start 
position, target position, and mobile working map, and 
generates a set of waypoints on the trajectory. The 
Control block utilizes the Pure Pursuit algorithm (PPA) 
[26] to simulate the trajectory of the mobile robot on the 
map. The control block calculates linear and rotational 
velocity signals based on the waypoints and the robot's 
current position. 

If the robot reaches the goal, the zero velocity at the 
goal simulation block will halt it. The PPA simulation 
block has two inputs and two outputs. The pose 
indicates the robot's location on the xy-plane of the 
simulation map. The Lookahead distance is set in the 
simulation to fine-tune how closely the robot follows 
the trajectory. Path tracking of the robot is improved 
with a decreased Lookahead distance, which in our case 
study is 0.3 meters.  

The plant model block consists of the Differential 
Drive Kinematic Model (DDKM), which is used to 
generate a vehicle model that may be used to simulate 
reduced mobile robot kinematics. Using the Differential 
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Drive Kinematics object, the differential drive kine–matics 
equations simulate a vehicle in which the wheels on the left 
and right may spin separately, as shown in Figure 6. 

Finally, the robot visualizer simulation block receiv–
es as inputs the robot position (from the plant model 
simulation block) and waypoints (from the Control 
block) and visualizes robot movements on the map. 

 
 

 
Figure 3. Mobile robot’s dashboard 

 
Figure 4. Manipulator’s dashboard 
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 Figure 5. Energy management simulation blocks 

 
Figure 6. A simplified view of differential drive 

 

4. EXPERIMENTAL SETUP 
 

The robotic cell is located inside the Mind4Lab labora–
tory of the Turin Polytechnic. MIR learns the map of 
Mind4Lab during preliminary navigations. Forbidden 
areas are added by hand. Figure 7 shows the final map 
of the experimental area. 

The use case consists of an assembly operation on a 
desk followed by the transportation of assembled parts 
to a target unloading position. 

The process is repeated until the battery of MIR 
decreases below 5%. After that point, the MIR is prog–
rammed to go to the charging point and wait until it is fully 
charged. The mobile robot repeats the same work–flow for 
the loading/unloading tasks of 30kg, 60kg, and 90 kg 
weights. During the experiment, different condi–tional data 
of the MIR battery were acquired in the database. The 
acquired dataset is driven by ML classification. 

The same case study is simulated using Matlab 
Simulink. In the simulation case, the Charging state is 
the robot’s initial state on the map. MIR’s battery is 
fully charged at the beginning. In the simulation, the 
battery level is managed by a Finite State Machine to be 
reduced by a constant value as it moves between states. 
Transitions between the Loading and Unloading states 
occur until the battery goes below 5%.  

The Planner MATLAB function block uses the 
mobileRobotPRM route planner, which receives three 
inputs: a start location, a goal position, and the 
Mind4Lab laboratory map. The Pure Pursuit controller 
block employs the scheduled waypoints downstream by 
generating linear and rotational velocity signals based 
on the waypoints and the robot's current position. The 
Differential Drive Kinematic Model block creates a 
mobile robot model that is used to simulate simple 
vehicle kinematics. 
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Figure 7. Map of the experimental area

5. RESULTS 
 

In the proposed framework, H2O AutoML is used to 
determine which robot is operating based on the battery 
and status data of the robots. The AutoML function in 
H2O automates the process of identifying the best 
suitable models for a given dataset. 

As the dataset is categorical, the multinomial distri–
bution technique is utilized for training it. To assess the 
best performing models, error metrics were selected. 
Table 3 displays the results of the top ML models used 
to identify different robot conditions. 

According to Table 3, the best models for the 
present dataset are GBM 2 and DRF 1. Gradient 
Boosting Machine (GBM) and Distributed Random 
Forest (DRF) models are powerful classification and 
regression techniques that forward-learn ensemble 
models and progressively construct regression trees on 
all aspects of the dataset in a completely distributed 
manner - each tree is constructed in parallel. 
Table 3. Results of metrics on different ML models  

Model id Mean  
error 

Log 
loss 

RMSE MSE Training 
time(ms) 

 GBM_2 0 1.46 0.014
5 

2.11×
10-4 

149 

DRF_1 0 2.53 0 7.13×
10-8 

74 

XRT_1 0 2.48 0 6.85×
10-8 

110 

Stacked 
Ensemble 

0 1.03 0.01 4.62×
10-8 

4664 

GLM_1 0 9.94 0.03 1.28×
10-8 

5900 

DL_1 0.09 4.75 0.17 3.04×
10-8 

41280 

 
The models' performance is excellent with low to null 

values for RMSE. The variables that impact more on the 
GBM model prediction more are robot battery capacity 
(rbcap), battery voltage (battvolt), and robot battery 
discharge time in seconds (rbtimesec). Figure 8 displays 
the variable importance determined by AutoML. 

 
Figure 8. Variable importance for the GBM prediction model 
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In the case study, the majority of battery consum–
ption occurred when the mobile robot was performing 
transportation procedures and the cobot software was 
operating. As a result of the case study, the battery goes 
from 100% to less than 5% after 4 hours and 13 
minutes. The robotic cell completes 60 assembly opera–
tions with a fully charged battery during this timeframe. 
During the real case study, the robot runs a total 
distance of 2.61 km. 

Most of the battery consumption occurred during the 
transportation processes rather than assembly opera–
tions. Furthermore, because the mobile robot's battery 
depletes quicker than 5%, it is suggested that a higher 
threshold level be used to recharge the battery, 
depending on the distance between the charging and 
unloading positions. 

The simulation model provides the battery consum–
ption rate as a constant number. The map of the real 
case study is uploaded to Simulink. In the simulation 
scenario of the robotic cell, the robot performed 58 
assembly operations in 4 hours and 11 minutes. The 
simulation distance of the robot for the given setup is 
2.25 km. The simulation and case study experiment 
results are quite similar. In the simulation, the battery 
consumption is reduced constantly. In the actual case, 
the battery consumption differs throughout the 
processes and operations. This might explain why the 
number of assembly procedures differs in the two 
scenarios. Figure 9 shows a comparison between the 
case study and simulation results. 

 
Figure 9. Comparison simulation vs. experiment 

6. DISCUSSION AND CONCLUSIONS 
 
The paper describes the possible exploitation of an 
intelligent monitoring system based on machine lear–
ning, as recommended by [27]. The framework is 
organized into four layers: the smart devices (robots) 
layer, the network layer, the cloud layer, and the 
application layer. On the application layer, machine 
learning algorithms are applied to classify various 
conditions and behaviors of the robots.  

The simulation model controls the SOC and 
predicts the battery consumption of the mobile robot 
when the manipulator is connected. The prediction 
model, trained by ML, guarantees the reliability of the 
system. The proposed system can be advantageous to 

manufacturers who are willing to integrate mobile and 
manipulator robotic cells in their production lines, 
specifically in logistics. Data acquisition systems and 
data sets acquired from the experiments can be utilized 
for predictive maintenance tools and algorithms. To 
prove the applicability and reliability of the framework 
experiment has been conducted on a case study in the 
laboratory.  

ML model predicts robotic cell conditions if a 
mobile robot is working alone or with a manipulator 
based on the data coming from the robotic cell. The 
automatic ML platform tool AutoML H2O is used to 
classify different conditions, and according to the 
multinomial classification models, the DRF model is the 
best-performed model for our case study. 

During the experiment, most of the battery 
consumption occurred while the mobile robot was 
executing transportation tasks, and the manipulator was 
in use. The robotic cell completed 60 assembly 
operations with a fully charged battery in this period. In 
the simulation scenario, the robotic cell performed 58 
assembly operations. Current research fills a gap in 
modeling mobile manipulators, specifically addressing 
energy management. Nevertheless, there are several 
significant limits to this study, which are as follows: in 
terms of the ML monitoring framework for robotic 
cells, the framework is quite limited. Future 
investigations are required to add more labeling to the 
robotic cell's conditional dataset and integrate other ML 
tools such as unsupervised or reinforcement learning, as 
well as evaluate the system's integration with other 
production lines to assess robotic cell reliability, 
repeatability, robustness, and ease of use. Future 
research will focus on developing a digital twin of the 
mobile manipulator to adapt the production manage–
ment to the actual working conditions continuously. 
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ИНТЕЛИГЕНТНО УПРАВЉАЊЕ ЕНЕРГИЈОМ 
ЗА МОБИЛНЕ МАНИПУЛАТОРЕ КОЈИ 

КОРИСТЕ МАШИНСКО УЧЕЊЕ 
 

Д. Антонели, К. Алијев 
 
Интегрисани роботски системи који комбинују 

манипулаторе са мобилним роботима пружају 
изванредне могућности побољшања за 
полуаутоматске процесе склапања које користи 
Индустрија 4.0. Фабричке операције су ослобођене 
ригидних ограничења распореда које намећу 
конвенционални фиксни роботи. Дакле, они уводе 
нове изазове у управљању циклусима пуњења јер 
потрошња енергије мобилних манипулатора није 
повезана само са пређеном раздаљином већ и са 
укупним извршеним задацима. Њена процена 
захтева системски приступ. У предложеном решењу, 
на броду је имплементиран интелигентни систем 
праћења. Подаци прикупљени на мрежи и кључни 
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индикатори учинка (КПИ) израчунати током радних 
задатака се користе од стране Машинског учења 
(МЛ) за оптимизацију циклуса пуњења енергије. 
Иако је развој интелигентног оквира за праћење за 

мобилни манипулатор био првобитни циљ 
истраживања, систем за надзор се овде користи само 
за управљање енергијом, остављајући простор за 
друге будуће апликације. 

 


