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Abstract 

Hyporheic exchange is the main driver of the biogeochemical transformations of 

nutrients in streambeds. The bed morphology and its interactions with surface flow 

induce different scales of flow in the hyporheic zone. The aim of this study is to 

better understand the mixing processes underpinning hyporheic exchange in 

streams. Improving our ability to quantify the mixing processes in stream sediments 

is crucial for enhancing the study of biogeochemical processes involving nutrients 

and other contaminants in streams.  

Alternate bars are one of the complex morphologic configurations that can 

affect the characteristics of the hyporheic zone. The modeling results presented in 

this thesis show that two main hyporheic zones are formed in sediments with 

alternate bars: a shallow zone that is highly linked to the streamflow, and a deep 

one that is more influenced by groundwater flux variations. This distinction 

between the two zones is reflected in the hyporheic residence times distribution 

(RTD), that displays a bimodal shape. This bimodality is enhanced by anisotropic 

sediment conditions, while it is much milder in isotropic ones. The bar submergence 

has various effects on the hyporheic zone characteristics; higher bar submergence 

induces less hyporheic flow with longer residence times in the shallow zone. 

Moreover, the deep zone is significantly affected by the groundwater flux, which 

decreases exchange flow, hyporheic extent in the sediment, residence times, and 

the area of exchange. The hyporheic extent is further enhanced by sediment 

anisotropy. 

Considering a different type of streambed morphology, dune-shaped bedforms 

have been shown to play a paramount role in driving hyporheic exchange. An 

analytical representation of the RTDs would be important to facilitate the study of 

hyporheic exchange processes because of the importance of the RTD for 

biogeochemical reactions in the hyporheic zone (e.g., as quantified by the 

Damköhler number). The analysis considered different conditions in terms of 

dimensionless sediment depth 𝑑𝑏
∗  and groundwater underflow 𝑢𝑏

∗  and their 

influence on the shape of the hyporheic RTD was assessed. Empirical RTDs were 

generated, over a range of combinations of 𝑑𝑏
∗  and 𝑢𝑏

∗  values, with numerical 

particle tracking experiments. The resulting hyporheic RTDs were then compared 

to different analytical distributions (Exponential (EXP), Gamma (GAM), 

Lognormal (LN) and Fréchet (FR)) with the Anderson-Darling test. The empirical 



 

RTDs were found to be represented by different distributions over the considered 

range of 𝑑𝑏
∗  and 𝑢𝑏

∗ . FR is the best fit for deep beds (𝑑𝑏
∗ > 3.2) and negligible 

underflow (𝑢𝑏
∗ < 0.1). LN is often the best representation for 𝑢𝑏

∗ ≤ 0.8, while GAM 

performs better for larger values of 𝑢𝑏
∗ . In general, LN provides a good description 

of the empirical RTDs in all cases, as it was identified as either the best or the 

second-best fitting distribution. The parameters of these analytical distributions 

vary with 𝑑𝑏
∗  and 𝑢𝑏

∗ .  

The analysis described above relied on the adoption of a physically based model 

of hyporheic exchange induced by the streambed morphology. A different approach 

to describe the surface water-groundwater interactions was also considered in this 

thesis. It employs the diffusion equation to represent the overall transfer at the 

Sediment Water Interface (SWI), lumping all the physical mixing processes in the 

so-called effective diffusion. Specifically, a 1-D diffusive model was adopted to 

describe the vertical exchange at SWI and in the benthic biolayer, the biologically 

active upper (~2 − 5 cm) layer of the streambed. The model was here applied to an 

extensive set of previously published laboratory experiments with different 

morphology types: flat beds, ripples and dunes, and alternate bars. Although there 

are different physical processes at the SWI associated with these morphology types, 

the overall mixing can be very well represented by a parsimonious diffusion based 

model controlled by only two parameters. These parameters define the exponential 

diffusivity model, are the effective diffusion coefficient at the SWI and the decay 

coefficient of the exponential profile. Moreover, a single predictive equation can 

estimate the effective diffusion coefficient based on stream and sediment properties. 

However, different equations are required to predict the decay coefficient of the 

exponential profile for each morphology type.  

Finally, the thesis also focused on travel times of solutes on a much larger 

spatial scale. The travel times of salt tracers were examined in the Occoquan 

reservoir in northern Virginia (USA) as a case study. Observed time series of solute 

concentration and solute load, and discharge time series, were analyzed using a 

geostatistical method to determine the travel times distribution. The Occoquan 

reservoir is very relevant as it hosts the Fairfax water treatment plant, that is the 

main water supply for the surrounding region, and it is affected by the increasing 

salt concentration in recent years. The analysis of the concentration time series 

revealed that the salt takes 8 − 9 days to travel through the system, while analysis 

of time series of the salt load – as well as discharge – indicated a much faster 

response (from 5 to 14 hours). These results can be useful in the regulation and 

operation of the Occoquan reservoir. 
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Chapter 1                            

Introduction 

1.1 Solute Exchange between Water Column and Sediment 

The solute exchange between streams and their underlying sediment domain plays a 

paramount role in determining the river system ecology and environment. Many physical 

and biological processes in aquatic ecosystems depend on, or are strongly affected by, 

turbulent fluid motions at the sediment-water interface (SWI) (Franca & Brocchini, 2015; 

Grant et al., 2012). The shallow sediment adjacent and underneath the stream possess 

unique chemical and biological properties stemming from the mixing between 

groundwater and surface water (Hester & Gooseff, 2010). Its high potential for nutrients 

removal and pollutant attenuation has attracted the attention of many researchers 

(Galloway et al., 2019). 

In literature, two main approaches were followed to study the characteristics of this 

biogeochemically active area. First, the physically based approach aims to reproduce the 

main physical transport processes, which typically include advection (e.g., Elliott & 

Brooks, 1997b), and sometimes diffusion and dispersion (e.g., Bardini et al., 2012). These 

exchange processes form a zone in the shallow sediment called the hyporheic zone (HZ) 

that possesses a wide range of spatial and temporal scales of transport  (e.g., Boano et al., 

2014). Second, the lumped approach (e.g., the diffuse approach, which lump all the 

physical transport processes at the sediment water interface (SWI) in a unique and 

simplified model (Grant et al., 2020a, 2020b). This later approach uses the so-called 

benthic biolayer that is a region of the hyporheic zone ranges from 2 𝑐𝑚 to 5 𝑐𝑚, where 

microbial biomass and nitrification and denitrification potential tend to be concentrated 

(Caruso et al., 2017; Knapp & Kelleher, 2020; Tomasek et al., 2019). 

1.1.1 Hyporheic Exchange Characteristics 

The hyporheic zone is defined as the sediment immediately beneath and adjacent to 

streams, rivers, and riverine estuaries where surface water and groundwater interact. It is 

a hotspot for physical, biological, and biogeochemical processes that control pollutant 

removal (Beaulieu et al., 2011; Grant et al., 2014),  stream nitrogen cycling (Galloway et 

al., 2019), particle transport and mobilization (Stewardson et al., 2016), pathogen 

sequestration and mobilization (Grant et al., 2011), heat budgets (Sawyer et al., 2012; 
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White et al., 1987), oxygen consumption (Tonina et al., 2015), habitat quality (Baxter & 

Hauer, 2000; Wu, 2000) and stream health (Feminella & Walsh, 2005). 

The movement of water into and out of the hyporheic zone, or “hyporheic exchange,” 

occurs over a wide range of spatial (and temporal) scales, from > 10 km (> 1 𝑦𝑒𝑎𝑟) to <

1 𝑚 (< 1 ℎ𝑟) (Boano et al., 2014; Gomez-Velez et al., 2014; Wörman et al., 2007). This 

> 103 range of temporal and spatial scales raises trade-offs —relative to residence times, 

reaction times, and exchange rates—that can influence the hyporheic zone's ability to 

process nutrients and other pollutants (Harvey et al., 2013). The hyporheic flow (𝑄ℎ) is 

hydrologically defined as the volume of stream water per unit of time, which flows through 

the subsurface domain, and it starts and terminates at the stream after a certain period of 

time (Hester & Gooseff, 2010). The hyporheic flux (𝑞ℎ) is the corresponding flow per unit 

area through the streambed. It differs from groundwater flux because the former is 

exchanged back and forth across the sediment-water interface (SWI) at a relatively small 

scale, typically centimeters to tens of meters; in contrast, groundwater flow travels 

unidirectionally over much longer distances (see for example Boano et al., 2014 and 

citations therein). 

1.1.2 Solute Transport at the Sediment Water Interface using a Diffusive 

description. 

In streams, the hydrodynamic characteristics at the SWI dictate the transport of solutes 

between the interstitial fluid and the overlying flow (Grant & Marusic, 2011; Huettel et al., 

2003). This solute transport through the SWI forms a zone called the benthic biolayer that 

is the most biogeochemically active in the river. This area is rich in nutrients and biogenic 

substances that support diverse microbial communities (Hester & Gooseff, 2010; Liu et al., 

2021). There are many transport processes simultaneously active within this layer (e.g., 

advective pumping, dispersion, molecular and turbulent diffusion) (Grant et al., 2020a, 

2020b). These many processes grouped together to be expressed as one quantity (effective 

diffusion) representing the overall transport process through the SWI (Grant et al., 2012; 

Grant et al., 2020a, 2020b; O’Connor & Harvey, 2008; Voermans et al., 2018). 

The interfacial hydrodynamics at the SWI induces different exchange mechanisms. 

When the sediment has very low permeability, molecular diffusion is primarily responsible 

for the molecular transport process. For other sediment and overlying flow characteristics, 

other processes become the main drivers of solute transport. For more permeable sediment, 

dispersive mixing (Grant et al., 2020a), also called turbulent pumping (Boano et al., 2011; 

Higashino et al., 2009; Kim et al., 2020; Zhong et al., 2016) occurs when turbulent eddies 

generate pressure waves over the SWI and cause oscillating laminar flow at the interface 

(Grant et al., 2020a). For very permeable sediment, exchange is dominated by the turbulent 



Salt Load as a Conservative Solute in Freshwater 3 

 

3 

 

diffusion process, in which eddies penetrate the sediment and transfer energy and 

momentum through the SWI (Grant et al., 2020a; Kim et al., 2020; Reidenbach et al., 2010; 

Ren & Packman, 2004; Roche et al., 2018; Voermans et al., 2018). These two exchange 

processes (i.e., dispersive mixing and turbulent diffusion) can occur regardless of the 

streambed morphology. In addition, the presence of dunes further enhances exchange 

through bedform pumping, which determines advective exchange though downwelling and 

upwelling zones (e.g., Azizian et al., 2017; Cardenas et al., 2008; Elliott & Brooks, 1997a, 

1997b). The 3-D geometry of alternate bars (i.e., pool-riffle sequences) induces a more 

complex mixing pattern, as large bedforms usually induce more mixing magnitude and 

depth (Hester et al., 2021). The induce hyporheic flow paths move longitudinally in the 

downstream direction and laterally in the transverse direction (Marzadri et al., 2010; 

Monofy & Boano, 2021; Tonina & Buffington, 2007; Trauth et al., 2013). Moreover, 

turnover exchange due to dune migration can play an important role in the exchange 

process through the entrapment and release of the interstitial fluid (Elliott & Brooks, 

1997a). For all these processes, sediment properties like porosity and permeability 

influence the overall mixing (Grant et al., 2012; Herzog et al., 2018; Laube et al., 2018; 

Newcomer et al., 2016; Salehin et al., 2004). 

1.2  Salt Load as a Conservative Solute in Freshwater 

Increasing salinity in rivers is a worldwide problem that is observed in many regions 

around the world: North America (Kaushal et al., 2005; Kaushal, Likens, et al., 2018; Stets 

et al., 2020), South America (Kaushal et al., 2021), Asia (Kaushal et al., 2019, 2021), 

Africa (Kaushal et al., 2021), Europe (Kaushal et al., 2019; Schulz & Cañedo-Argüelles, 

2019), and Australia (Kefford et al., 2003; Rengasamy, 2006; Williams, 2001). The 

freshwater salinity is caused by various sources in different locations but usually includes 

𝑁𝑎+, 𝐶𝑎2+, 𝑀𝑔2+, 𝐾+, 𝐶𝑙− and 𝑆𝑂4
2− as major ions (Kaushal et al., 2005). Increasing the 

concentration of these ions leads to the increase of freshwater salinity, that impacts the 

natural, social, and built environment, and this condition is known as the Freshwater 

Salinity Syndrome (FSS) (Kaushal et al., 2022).  

Kaushal et al. (2022) hypothesized that there are four main factors (human activity, 

flow paths, geology, and climate) that control the progression and diversity of FSS, in 

addition to time as a fifth one. The human activities causing FSS are related to urbanization 

and land uses that release a variety of ions to the waterways (Kaushal et al., 2017; Kaushal, 

Gold, et al., 2018), e.g., road salts that release mainly 𝑁𝑎+ and 𝐶𝑙− plus other ions with 

lower concentrations (e.g., Kaushal et al., 2005), water softeners (e.g., Bhide et al., 2021), 

fertilizers that are sources of 𝐾+, 𝐶𝑙− and 𝑆𝑂4
2− (Kaushal et al., 2021; Kaushal, Gold, et 

al., 2018), agriculture lime (Kaushal, Gold, et al., 2018; Raymond et al., 2008), vegetation 

removal (Rengasamy, 2006), mining (Kaushal, Gold, et al., 2018; Meybeck & Helmer, 

1989), urban wastewater (Bhide et al., 2021; Kaushal, Gold, et al., 2018), some household 
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products (Bhide et al., 2021; Tjandraatmadja et al., 2010), and resource extraction (Galella 

et al., 2021; Kaushal et al., 2021). Flow paths of water can transport solutes locally and 

regionally, as they can carry ions on timescales varying from minutes to decades from the 

source in a catchment to a stream (Hrachowitz et al., 2016; Kirchner et al., 2000). The 

effect of flow paths on FSS can be observed in groundwater pumping (Paul et al., 2019), 

saltwater intrusion into groundwater (Galella et al., 2021), and irrigation return flow 

(Bouzourra et al., 2015). Catchment geology is also a controlling factor of FSS, as 

exemplified by the interaction of acidic rain with soil lithology (Kaushal et al., 2022). In 

addition, climate can play a paramount role in altering the freshwater salinity; in semi-arid 

and Mediterranean climates, high temperatures cause high ion concentration because of 

evaporation and evapotranspiration (Marie & Vengosh, 2001; Salameh, 2001), and sea 

water rise (Kaushal et al., 2021; Kaushal, Gold, et al., 2018). FSS develops and progresses 

over time from a single pulse in a watershed to a long-term trend of high concentration 

(Kaushal et al., 2022). The previous mentioned factors can affect FSS at different 

timescales; climate and geology can initially induce FSS that can then be accelerated by 

human activities through flow paths, which can lead to more severe FSS conditions 

(Kaushal et al., 2022). 

1.3 Thesis Outline  

This thesis is organized in five chapters as follows:  

Chapter 1: This chapter is an introduction about the general concepts discussed in this 

thesis. It includes a brief description of solute mass transport at SWI, as well as the 

definition of the hyporheic zone. In addition, an introduction about the conservative solute 

transport in the Occoquan reservoir. 

Chapter 2: In this chapter, we present the effects of different streamflow, ambient 

groundwater, and sediment anisotropy on the hyporheic zone (HZ) characteristics in 

alternate bars. Solutes are advected in the shallow sediment due to different factors. Bed 

morphology is an important factor that triggers hyporheic exchange and delineates the HZ 

in the sediment bed and define its characteristics. Several simulations, using a sequentially 

coupled surface water-groundwater model of a synthetic river reach with fully developed 

alternate bars morphology, were performed.  A predictive model was derived to predict the 

hyporheic flux, residence times, and hyporheic depths dependence on bar submergence, 

ambient groundwater, and sediment anisotropy. 

Chapter 3: Differently from the previous chapter, in this one we focus on the hyporheic 

residence times (RTs) in dune-like bedforms. We evaluate the influence of dimensionless 

sediment depths of 𝑑𝑏
∗  and of dimensionless groundwater underflow 𝑢𝑏

∗  on the shape of the 

hyporheic residence times distributions (RTDs). Empirical RTDs were generated for a 
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range of combinations of 𝑑𝑏
∗  and 𝑢𝑏

∗  values, from numerical particle tracking simulations 

in which 10000 particles were released over a flat bed domain. These empirical RTDs 

were then fitted to different analytical distributions (specifically, to the Exponential, 

Gamma, Lognormal, and Fréchet distributions) to identify the best analytical 

representation of the RTDs.  

Chapter 4: A diffusivity model was introduced to model the reactive and non-reactive 

solutes such as nutrients, and pollutants vertical transport across the SWI. These solutes 

transport vertically to the so called benthic biolayer in the shallow sediment. In this 

biogeochemically active layer, microorganisms catalyze a broad range of redox reactions 

that can work as a sink or source for nutrients. The vertical transport is due to exchange 

processes that are controlled by stream and sediment characteristics. In this chapter, we test 

the dependence of the transport parameters within the introduced diffusivity model on these 

characteristics. We perform a meta-analysis using previously published laboratory 

experiments with different streambed configurations that influence the physics of the 

exchange processes. Finally, we build robust and parsimonious predictive formulae that 

can predict the exchange parameters on the basis of the stream and sediment characteristics.  

Chapter 5: We apply the geostatistical method to estimate the characteristic timescales 

of salt transport into the Occoquan reservoir in northern Virginia (USA) from its upstream 

tributaries. This method, formulated in the groundwater field, has been applied to identify 

contaminant sources in river pollution problems. The problem modeled here consists of 

recovering a contaminant source at a known location from a finite number of concentration 

measurements. The Occoquan reservoir is treated as an in input-output system, and the 

response times of water flow and salt transport are determined. The determination of the 

response time helps the authorities in the management and operation of the Occoquan 

reservoir and Fairfax water treatment plant. 
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Chapter 2                                

Hyporheic Zone Characteristics in 

Alternate Bars  

2.1  Introduction. 

The work presented in this chapter is derived from Monofy & Boano. (2021) 

The geometry of alternate bars is more complex than other morphology types (e.g., ripples 

and dunes), as it induces 3-D patterns of hyporheic flow due to the hydraulic head 

variations in longitudinal and transverse directions on its morphology (Tonina & 

Buffington, 2007; Trauth et al., 2013). Many studies have been carried out on the HZ 

characteristics in 3-D gravel bars morphology. Laboratory experiments and 3-D modeling 

were conducted to investigate the effect of streamflow and bar amplitude variations on 

hyporheic exchange flow (Tonina & Buffington, 2007). Alluvium depth can also constrain 

the extent of the HZ (Tonina & Buffington, 2011). A predictive model was proposed by 

Marzadri et al. (2010) to estimate the hyporheic residence times (RT) dependence on bar 

submergence, hydraulic conductivity, and the slope of a stream reach. Additionally, the 

undermining effect of ambient groundwater on the HZ was analyzed by Trauth et al. (2013) 

for fully submerged bars.  

Despite these many studies, the HZ characteristics in partially submerged bars have 

not been fully discovered yet. The importance of bars with low submergence lies in their 

common occurrence during low stream flow periods, e.g., low flow mountain stream 

during the period of spawning activity of many salmonids (Tonina & Buffington, 2007). 

Even though the ambient groundwater has a considerable effect on HZ characteristics 

(Trauth et al., 2013), to our knowledge, it has been less studied for partially submerged 

bars. Besides, even though sediment anisotropy is very common in nature, no study has 

deeply disentangled its effect on the HZ characteristics. Here we carried out an extensive 

modeling study to assess the effect of (a) bar submergence due to different stream flows, 

(b) ambient groundwater, and (c) sediment anisotropy on the HZ characteristics. From our 

results, we provided a new set of predictive formulae to account for the variations in HZ 

characteristics depending on the above mentioned parameters. 
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2.2  Methodology 

In this work we performed 45 numerical simulations to represent different combinations 

between streamflow (𝑄𝑠𝑢𝑟𝑓) and groundwater flux (𝑞𝑏𝑜𝑡) (Table 2.1). Out of these 

simulations, 2 simulations were dedicated to the isotropic conditions (𝑞𝑏𝑜𝑡 = 0). These 

different combinations between the values of 𝑄𝑠𝑢𝑟𝑓 and 𝑞𝑏𝑜𝑡 were chosen to help 

understand their effect on the HZ characteristics in alternate bars. For this purpose, a 

sequentially coupled surface water-groundwater model was built. In our model, it is 

considered that flow in the surface domain imposes the boundary conditions that drive flow 

in the subsurface domain, while the latter provides no feedback on surface flow. 

Table 2.1: The performed simulations (checkmarks) conducted in this study in different 

conditions of stream flow and groundwater flux. 𝑄𝑏𝑓 and 𝑄𝑎𝑣𝑔are the bankfull and average 

stream flow, respectively. 

Groundwater 
fluxes 

Stream flows 
Isotropic 

conductivity Anisotropic conductivity  

𝑞𝑏𝑜𝑡 0.5𝑄𝑎𝑣𝑔 𝑄𝑏𝑓 0.5𝑄𝑎𝑣𝑔 𝑄𝑎𝑣𝑔 2𝑄𝑎𝑣𝑔 3𝑄𝑎𝑣𝑔 𝑄𝑏𝑓 

𝑞𝑏𝑜𝑡 = 0 (neutral) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛 - - - ✓ - - ✓ 
𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛 - - - ✓ - - ✓ 
𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 - - ✓ ✓ ✓ ✓ ✓ 
𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 - - ✓ ✓ ✓ ✓ ✓ 
𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛 - - - ✓ - - ✓ 
𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛 - - - ✓ - - ✓ 
𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 - - ✓ ✓ ✓ ✓ ✓ 
𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 - - ✓ ✓ ✓ ✓ ✓ 
𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 - - ✓ ✓ ✓ ✓ ✓ 
𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 - - ✓ ✓ ✓ ✓ ✓ 

A synthetic stream reach, whose dimensions and characteristics are the same as the 

Maruia River in New Zealand (reported by Berg (1995) (Table 2.2)), was used in our 

simulations. However, it is important to highlight that this study does not aim to analyze 

the hyporheic exchange in the Maruia River. Instead, its geometric and hydraulic properties 

were used as an example of a realistic stream reach with alternate bars. The river roughness 

coefficient was calculated with the Manning equation for wide channels due to its large 

width (𝑤) compared to the channel depth (𝑑), as 𝑤 𝑑⁄ = 64. The median of sediment 

particles within the riverbed (𝐷50 = 36 mm) is typical of gravels (Julien, 2002), as alternate 

bars usually form in gravel bed rivers (Da Silva & Yalin, 2017). Moreover, the flow data 

exhibit a considerable difference between the average and bankfull streamflow discharge 
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(𝑄𝑏𝑓 ≈ 4𝑄𝑎𝑣𝑔), hence providing a sufficiently wide range to emphasize the differences in 

the pertinent HZ characteristics among the different submergence ratios. 

Table 2.2: Hydraulic and Geometric Characteristics of the Maruia River (Berg, 1995) that are 

used in the present work to build the synthetic reach. 

Stream reach characteristics 

Bankfull Width (𝑤𝑏𝑓) 87.4 𝑚 

Bankfull Depth (𝑑𝑏𝑓) 1.36 𝑚 

Sediment size (𝑑𝑔) 36 𝑚𝑚 

Stream reach slope (𝑆0) 3.49 𝑚/𝑘𝑚 
Average discharge (𝑄𝑎𝑣𝑔) 55.8 𝑚3/𝑠 

Bankfull discharge (𝑄𝑏𝑓) 214 𝑚3/𝑠 

Sinuosity (𝑝) 1.09 
Manning coefficient (𝑛) 0.04 

Alternate bars* 

Wavelength (𝜆𝑎𝑏) 271.5 𝑚 
Amplitude (∆𝑎𝑏) 1.25 𝑚 

* The dimensions of the alternate bars were calculated with the 
empirical equations of Da Silva & Yalin (2017). 

 

2.2.1 Alternate Bars Geometry. 

An idealized rectangular stream reach was built by implementing the geometric data (𝑤, 

𝑑) of the Maruia river. Alternate bar morphology was imposed on the constructed reach. 

To estimate the bar dimensions (wavelength 𝜆𝑎𝑏, and amplitude ∆𝑎𝑏), the empirical set of 

equations recently developed by Da Silva & Yalin (2017) for free-formed one-row bars in 

wide and straight channels was adopted in our work. The existing morphology is assumed 

to be in equilibrium with the bankfull flow. Therefore, the calculated single bar wavelength 

is 𝜆𝑎𝑏 =  271.5 𝑚 and the amplitude ∆𝑎𝑏 =  1.25 𝑚. Subsequently, gradually varying 

streambed with respect to the calculated alternate bars dimensions was defined by Eq. (2.1) 

(Trauth et al., 2013): 

𝐸𝑎𝑏(𝑥, 𝑦) = ∆𝑎𝑏 sin (
2𝜋𝑥

𝜆𝑎𝑏
) 𝑐𝑜𝑠 (

𝜋𝑦

𝑤𝑏𝑓
)   (2.1) 

where 𝐸𝑎𝑏 is the streambed elevation, 𝑥 is the longitudinal direction (streamflow direction), 

𝑦 is the transverse direction, and 𝑤𝑏𝑓 is the reach width under bankfull streamflow. 

According to Eq. (2.1) , a sequence of peaks and troughs was present along each bank of 

the stream reach (the gray surface in Figure 2.1). The aspect ratio is 𝜆𝑎𝑏 𝑤⁄ = 3: 1, which 

is within the range reported in literature for free-formed alternate bars (≈ 3 − 7) (Keller, 

1972; Leopold & Wolman, 1957). Therefore, this stream reach can be representative of a 

more common type of alternate bars. 
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Finally, to avoid the effect of upstream and downstream boundary conditions, a 

sequence of seven alternate bars was developed to define the model domain extent using 

Eq. (2.1). Only the middle bar was considered for the hyporheic exchange analysis, similar 

to the approach followed by Trauth et al. (2013). The smoothly varying bed elevation was 

built using a fine spatial resolution (∆𝑥 =  ∆𝑦 =  0.1 𝑚). Afterward, it was used as a 

bottom boundary for the 2-D domain to calculate the surface water elevation (SWE) as 

well as a top boundary for the subsurface domain. 

2.2.2 Surface Water Modeling.  

A 2-D model was built using the HEC-RAS 5.0.4 package to simulate different 𝑄𝑠𝑢𝑟𝑓 

applied on the constructed stream reach. HEC-RAS 2-D calculates SWE on a defined grid 

mesh in a x-y plane. In the synthetic stream reach, the vertical length scale is much smaller 

than the horizontal length scale with a smoothly varying streambed. Therefore, the 

hydrostatic pressure was assumed to be a good surrogate for the total hydraulic pressure at 

the streambed (Tonina & Buffington, 2007). 

A structured grid mesh of square cells (0.35 𝑚 𝑥 0.35 𝑚) was applied on the seven 

bars with a maximum cell size of 0.25 𝑚2, the minimum size of 0.09 𝑚2 and the average 

size of 0.12 𝑚2. The upstream and downstream boundary conditions were imposed at 

sections of flat bed to have a streamflow value that is uniformly distributed on the entrance 

and exit of the calculation domain. At the upstream boundary, five steady streamflow 

values (0.5 𝑄𝑎𝑣𝑔, 𝑄𝑎𝑣𝑔, 2𝑄𝑎𝑣𝑔, 3𝑄𝑎𝑣𝑔 𝑎𝑛𝑑 𝑄𝑏𝑓 (Table 2.3)) were imposed. 

Table 2.3: Streamflow cases and bar submergence ratios considered in this study. 

Discharge ratio Discharge value (𝒎𝟑 𝒔⁄ ) Bar submergence ratio 
(%) * 

Bar submerged area 

(𝒎𝟐) 

0.5𝑄𝑎𝑣𝑔 27.9 65.74 18,432 

𝑄𝑎𝑣𝑔 55.8 74.69 19,866 

2𝑄𝑎𝑣𝑔 111.6 87.63 21,784 

3𝑄𝑎𝑣𝑔 167.4 97.84 23,060 

𝑄𝑏𝑓 214 105.16 23,888 

* The bar submergence ratio associated with each streamflow case is calculated by dividing average 
flow depth (𝑑) by double bar amplitude (2𝛥𝑎𝑏). 

The “Normal Depth” boundary condition with the average stream reach slope value 

was imposed at the downstream boundary. Impermeable non-erodible bed and banks that 

are commonly used in such simulations (Tonina & Buffington, 2009; Trauth et al., 2013) 

were assumed in the surface water model. This assumption is common because the 

hyporheic exchange flow rate (𝑄ℎ) is usually ranging from 0.1% to 10% of the river flow 

(Thibodeaux & Boyle, 1987), and hence its influence on 𝑄𝑠𝑢𝑟𝑓 is negligible. 
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HEC-RAS 2-D uses a time-stepping approach to solve the 2-D flows until steady state 

conditions are attained. We started with the dry bed condition with a dynamic wave and 

set the time step to be such that the Courant number will be below the unity in all cases. 

The “Diffusion Wave” equations approach was selected over the “Full Momentum” one 

due to its lower computational cost (USACE, 2016). The “Full Momentum” equations set 

was activated on one of the streamflow discharges cases (𝑄𝑏𝑓), and the resulting difference 

in SWE between the two methods was less than 0.012 𝑚. Therefore, the “Diffusion Wave” 

approach provided very reliable results for the surface water simulations. Finally, a 2-D 

map of SWE was exported for each 𝑄𝑠𝑢𝑟𝑓 case (section 2.3.1) to be applied afterward as a 

top boundary condition for the groundwater model. 

2.2.3 Groundwater Modeling.  

The MODFLOW Flex 2015.1 package was used to build the groundwater numerical 

model. MODFLOW, that is based on the finite-difference method, is extensively used for 

addressing flow problems of surface water-groundwater interaction systems (McDonald & 

Harbaugh, 1988). The model domain included, in length, the pre-built sequence of seven 

bars and, in-depth, five layers with a deep bottom (≈ 200𝑚 >  2𝑤𝑏𝑓), which was designed 

to be deep enough to allow the hyporheic flow paths to develop vertically without any 

restrictions (Tonina & Buffington, 2011). At first, a finite-difference grid mesh was created 

under all the streamflow cases to discretize the seven alternate bars domain. The mesh was 

constructed with 800 cells in the longitudinal direction (𝑥), 250 in the transverse direction 

(𝑦), and 5 layers in-depth direction. Therefore, each cell dimensions in 𝑥 − 𝑦 plane was 

2.38 𝑚 𝑥 0.35 𝑚. This cell size was chosen as it limited convergence time for all 

simulations; finer meshes with square cells (0.7 𝑥 0.7 𝑚2 and 0.35 𝑥 0.35 𝑚2) were tried 

in 𝑄𝑏𝑓 case, resulting in an error of less than 0.2% for 𝑞ℎ compared to the chosen mesh 

size. Finally, in 𝑧 direction, the first two layers were thinner since they were used to 

calculate the hyporheic exchange flux (vertical Darcy flux) with Eq. (2.1). Therefore, their 

thicknesses were chosen to be 1 𝑚, except for bankfull flow (0.5 𝑚) (thinner thicknesses 

were tried for lower stream flows, but model convergence was hampered). The third and 

fourth layers had the same depth of 50 𝑚. Finally, the deepest layer had a thickness of 

100 𝑚.  

The head in each cell of the first layer is the surface water hydraulic head imposed as 

a “Dirichlet” boundary condition. MODFLOW-2005 flow engine was employed to solve 

the subsurface water flow field in the sediment. The hyporheic exchange flux (𝑞ℎ) was 

calculated using Darcy's law (Wu et al., 2018): 

𝑞ℎ = −𝐾𝑣 (
∆𝐻

∆𝑧
)     (2.2) 
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where ∆𝐻 is the head difference between the first two layers of the domain and ∆𝑧 is the 

elevation difference between the same layers. Homogeneous anisotropic conductivity was 

applied over the model domain, where the horizontal value (𝐾𝑥  =  𝐾𝑦  =  𝐾ℎ) is an order 

of magnitude higher than the vertical conductivity (𝐾𝑧  =  𝐾𝑣). The first four layers were 

assumed to share the same characteristics of conductivity (𝐾ℎ  = 10
−3  𝑚/𝑠, 𝐾𝑣 =

 10−4 𝑚/𝑠 (Domenico & Schwartz, 1998)), while the deepest layer was assumed to be 

more compacted (Nelson, 1994) (𝐾ℎ = 10
−4 𝑚/𝑠, 𝐾𝑣  =  10

−5 𝑚/𝑠). However, this deep 

and less conductive layer eventually did not affect the results of the HZ analysis, as the HZ 

extent is only within the first three layers (Section 2.3). Two homogeneous isotropic 

simulations (𝐾ℎ = 𝐾𝑣  =  10
−3  𝑚 𝑠⁄  for the whole domain) were added as reference cases 

for 𝑄𝑎𝑣𝑔 and 𝑄𝑏𝑓 to unravel the effect of the sediment anisotropy. 

On the upstream and downstream boundaries as well as the domain sides, “Neumann” 

boundary conditions were applied with no-flux. On the bottom boundary, no ambient 

groundwater flux (𝑞𝑏𝑜𝑡 = 0; neutral conditions) was assigned in the two isotropic 

simulations. However, for 43 anisotropic ones, a specified flux value was imposed 

depending on the ambient groundwater conditions (neutral, gaining, or losing). 

In neutral conditions, the no flux boundary condition was applied to the bottom 

boundary (𝑞𝑏𝑜𝑡 = 0). To represent gaining and losing conditions, positive and negative 

flux values, respectively, were imposed uniformly on the domain bottom (see Table 2.1). 

The values of groundwater flux (𝑞𝑏𝑜𝑡) were [±1;±2;±3]×  𝑞ℎ𝑛, where  𝑞ℎ𝑛 is the resulted 

value of 𝑞ℎ in neutral conditions (obtained after carrying out a simulation with no flux at 

the bottom layer), whereas positive and negative signs refer to gaining and losing 

conditions, respectively. Under 𝑄𝑎𝑣𝑔 and 𝑄𝑏𝑓 cases, 4 more simulation steps 

([±0.5;± 1.5]×  𝑞ℎ𝑛) were added to have more refined results under these streamflow 

cases. 

Then, to analyze the characteristics of the hyporheic zone, a particle tracking analysis 

was performed using MODPATH software with a one-day time step. As proved later by 

the results, this time step was able to track the hyporheic flow paths with sufficient 

resolution. Particles were located with 1 𝑚 of spacing on 𝑥 − 𝑦 plane on the middle bar. 

Due to the variations in the bar submerged area that corresponds to different streamflow, 

different particle numbers were injected into the subsurface domain (see bar submerged 

area in Table 2.3). 

To extract only the hyporheic exchange flow paths, the forward particle tracking option 

was activated in neutral and gaining conditions to force the particles to move in the same 

direction of the hyporheic flux. Conversely, the backward particle tracking was employed 
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in losing conditions. Consequently, in all cases, the hyporheic flow paths, which start and 

end at the streambed, were recognized and separated from the groundwater flow paths.  

Finally, the aforementioned linked model was run to obtain the HZ characteristics under 

different 𝑄𝑠𝑢𝑟𝑓 and ambient groundwater conditions. The hyporheic flow paths were 

exported with the associated values of pressure heads at the top two layers, travel times, 

and depths data. The flow path flux (𝑞𝑓), total residence times (RTs), and maximum 

hyporheic depths (𝑍) were assigned to each corresponding flow path. 𝑞𝑓 for each flow path 

was calculated by applying Eq. (2.2) to the resulting head difference between the first two 

layers of the subsurface domain and assigning the resulting value to its corresponding flow 

path. For all the cases shown in Table 2.1, 𝑞ℎ was calculated by averaging 𝑞𝑓 for all flow 

paths, and flux distribution maps of upwelling and downwelling fluxes with corresponding 

areas (later denoted as hyporheic exchange area, 𝐴ℎ) were produced. 𝑄ℎ (𝐴ℎ × 𝑞ℎ) is here 

defined as the water volume per unit time that infiltrates into the groundwater aquifer and 

exits back to the surface water. RTs values of the exported flow paths were determined by 

the value of the last step on each path when its carried particle reenters the surface water 

domain. 𝑍 of each flow path was calculated as the difference between the streambed 

elevation (the mean elevation of a flow path starting and ending points) and the elevation 

of the deepest point reached. The flux-weighted averaging method was used to construct 

the cumulative RTDs and the maximum depths cumulative distribution (𝑍 − 𝐶𝐷) of the 

hyporheic flow paths. 

2.2.4 Predictive Model Derivation.  

- Data Collection 

A total of 41 out of 45 simulations were used to build the regression model, as the 

remaining 4 (gaining and losing at 𝑞𝑏𝑜𝑡 = 3𝑞ℎ for streamflow discharges of 0.5 𝑄𝑎𝑣𝑔 and 

𝑄𝑏𝑓) were excluded because the hyporheic zone disappeared (Tables 2.4, 2.6 and 2.8). The 

simulations were divided into two groups: a first one is in neutral conditions (𝑞𝑏𝑜𝑡 = 0) 

containing 7 simulations (corresponding to 5 different 𝑄𝑠𝑢𝑟𝑓; 5 simulations with 

homogeneous anisotropic, and 2 simulations with homogeneous isotropic conductivity), 

and a second one combining gaining and losing conditions (𝑞𝑏𝑜𝑡 ≠ 0) with 34 simulations 

in homogeneous anisotropic conditions. 

- Multiple Linear Regression 

Multiple Linear Regression (MLR) analysis was implemented on the set of simulations, to 

build a set of predictive equations for 𝑞ℎ, and specific quantiles of residence times and 

hyporheic maximum depths (RTs𝑖%, and 𝑍𝑖%, respectively, where 𝑖 =  10, 20, 50, 80 and 

90). Therefore, these quantities were included in the model as dependent variables. On the 
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other hand, the independent variables in the data group for the neutral conditions were 

average surface water depth (𝑑) and velocity (𝑉), and the horizontal and vertical 

conductivities (𝐾ℎ and 𝐾𝑣, respectively). While for the gaining and losing data group, 𝐾ℎ 

and 𝐾𝑣 were constant. Therefore, they were removed, and the included independent 

variables were 𝑑, 𝑉 and 𝑞𝑏𝑜𝑡. 𝑑 was calculated for each 𝑄𝑠𝑢𝑟𝑓 as the average water depth 

on the middle bar resulted from the surface water modeling (see sections 2.2.2 for method 

and 2.3.1 for results) 

- Dimensionless Variables 

Dimensionless groups of the independent variables (𝑑, 𝑉, 𝐾ℎ, 𝐾𝑣 and 𝑞𝑏𝑜𝑡) were created. 

For the neutral conditions, the independent variables can be used to compose two 

dimensionless quantities. First, the Reynolds number (𝑅𝑒 =
𝑉𝑑

𝑣⁄ , where 𝜈 =  10−6 𝑚2 

is the water kinematic viscosity) that represents the streamflow regime, and 𝐾𝑣 𝐾ℎ⁄  that 

denotes the sediment anisotropy. As in the gaining and losing conditions, simulations were 

performed in a single anisotropic condition, 𝐾𝑣 𝐾ℎ⁄  is constant in the combined gaining 

and losing data group. However, another dimensionless variable (|𝑞𝑏𝑜𝑡 𝑉⁄ |) was added to 

account for the effect of groundwater flux, in absolute value, on the HZ characteristics. 

3-D dependent variables were also defined as 𝑞ℎ 𝑉⁄ ,  RT𝑠𝑖%𝐾𝑣 𝑑⁄ , and 𝑍𝑖% 𝑑⁄ . This 

normalization is similar to the one employed by Huang and Chui (2018) work except for 

RTs𝑖%, in which 𝑉 is used instead of 𝐾𝑣. Using 𝐾𝑣 in the present work to normalize RTs𝑖% 

resulted in a more robust model which fit the simulations results better than using 𝑉 (see 

Section 2.3 for model robustness criteria). 

- Model Equations and Evaluation 

The relationship between the dimensionless dependent and independent variables can be 

summarized as follows: 

𝐹𝑛𝑒𝑢𝑡𝑟𝑎𝑙 = 𝑓 (𝑅𝑒 ,
𝐾𝑣

𝐾ℎ
)         (2.3) 

𝐹𝑔𝑎𝑖𝑛/𝑙𝑜𝑠 = 𝑓 (𝑅𝑒, |
𝑞𝑏𝑜𝑡

𝑉
|)        (2.4) 

where 𝐹 represents the dimensionless dependent variables, neutral and 𝑔𝑎𝑖𝑛/𝑙𝑜𝑠 

superscripts refer to the neutral data group and the combined gaining and losing data group, 

respectively. 

A power law form was assumed for function 𝑓() in Eqs. (2.3) and (2.4) which, after 

log-transformation, takes on the following linear forms: 
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log 𝐹𝑛𝑒𝑢𝑡𝑟𝑎 = log 𝑎 +𝑏 log 𝑅𝑒 + 𝑐 log
𝐾𝑣

𝐾ℎ
                  (2.5) 

log 𝐹𝐺𝑎𝑖𝑛/𝑙𝑜𝑠 = log𝑚 +𝑛 log𝑅𝑒 + 𝑔 log |
𝑞𝑏𝑜𝑡

𝑉
|          (2.6) 

MLR was performed on the linear forms (Eqs. (2.5) and (2.6)) to estimate the 

regression coefficients (𝑎, 𝑏, 𝑐, 𝑚, 𝑛 and 𝑔). Various model robustness criteria were used 

for model evaluation; a better model has a higher the coefficient of determination (𝑅2), 

lower Root Mean Square Error (𝑅𝑀𝑆𝐸), and lower corrected Akaike Information Criterion 

(𝐴𝐼𝐶𝑐) value, which accounts for the trade-off between model complexity and goodness of 

fitting (Akaike, 1974). 

2.3  Results and Discussion. 

2.3.1 Hydraulic Head Distribution on Streambed.  

2-D spatial SWE maps (Figure 2.1) were exported for each 𝑄𝑠𝑢𝑟𝑓 and bar submergence 

ratio (Table 2.3) from HEC-RAS (section 2.2.2). The flow is subcritical in all cases; the 

Froude number is lower than 0.9 at any point in the domain. The longitudinal head variation 

is due to both the stream reach slope and the morphology features. Also, the sequence of 

pools and riffles that forms the alternate bar induces a lateral variation of the head 

distribution where the head is higher on the upstream side of the riffle and dissipates 

gradually through the lee side of the riffle within the subsequent pool (Figure 2.1). 

Increasing 𝑄𝑠𝑢𝑟𝑓 as well as decreasing the bar amplitude undermine the lateral head 

variations. This behavior is due to less horizontal flow displacements (Tonina & 

Buffington, 2007), as the hydrostatic pressure is dominant compared to the hydrodynamic 

effect of the morphology pattern as SWE rises (compare pressure head distributions of 

different 𝑄𝑠𝑢𝑟𝑓 in Figure 2.1). 

At lower 𝑄𝑠𝑢𝑟𝑓, a considerable head variation is evident in the longitudinal and 

transverse directions because the bed topography has more influence on the streamflow at 

lower submergence ratios. The instability zones (hydraulic jumps and surface waves) are 

assumed to be absent in the current analysis because of the very smooth variation in 

streambed elevation with mild-slope bar (∆𝑎𝑏 𝜆𝑎𝑏⁄ ≈ 0.004) and the low Froude number 

within the surface domain. 

2.3.2 Hyporheic Flow and Area.  

The value of the hyporheic flux determines the amount of solutes enters to the HZ, which 

is necessary to fuel the reactions within this biogeochemically active zone (Bardini et al., 

2012). Therefore, it is important to be able to quantify the hyporheic flux.  
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Figure 2.1: Water surface elevation for different 𝑄𝑠𝑢𝑟𝑓 cases ((A) 0.5𝑄𝑎𝑣𝑔, (B) 𝑄𝑎𝑣𝑔, (C) 2𝑄𝑎𝑣𝑔, 

(D) 3𝑄𝑎𝑣𝑔, (E) 𝑄𝑏𝑓) and bar submergence. The gray surface represents the streambed elevation of 

the middle alternate bar. 
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Similar to the case of large amplitude in Tonina & Buffington (2011) study (partially 

submerged bar), a decrease in 𝑞ℎ is observed when increasing 𝑄𝑠𝑢𝑟𝑓 (Table 2.4 and Figure 

2.2). This is caused by an overall decrease in head gradient, due to lower influence of the 

morphological feature, at higher 𝑄𝑠𝑢𝑟𝑓. Despite the increase in 𝐴ℎ, as a larger portion of 

the alternate bar is submerged (Table 2.3), 𝑄ℎ plummets because of the significant decrease 

in 𝑞ℎ (Table 2.4 and Figure 2.2). 

Besides the hydraulic head gradients along the streambed, the hyporheic flow field is 

also influenced by vertical head gradients that are induced by 𝑞𝑏𝑜𝑡. In agreement with 

Trauth et al. (2013), the imposed gaining and losing fluxes decrease 𝑄ℎ values (Figure 2.3) 

and significantly shrink 𝐴ℎ in all streamflow cases (Figure 2.2 for 𝑄𝑎𝑣𝑔 and 𝑄𝑏𝑓). 

Nevertheless, the shrinkage rate is similar between all streamflow cases (Table 2.4). This 

decrease is due to either the loss of some flow paths within the subsurface domain to the 

groundwater flow, or hindering of some surface particles from entering the subsurface 

domain at SWI. In other words, in losing conditions, some particles (flow paths) enter the 

subsurface domain without coming back again to the surface water due to the relatively 

strong vertical negative gradient caused by the assigned negative flux on the domain 

bottom. On the other hand, in gaining conditions, they are hampered from entering the 

subsurface domain, as the streambed pressure gradient is overcome by the upward vertical 

gradient that is induced by the upwelling 𝑞𝑏𝑜𝑡. At very strong 𝑞𝑏𝑜𝑡, the hyporheic zone 

disappears under the cases of very low streamflow (0.5 𝑄𝑎𝑣𝑔) and bank full streamflow 

(𝑄𝑏𝑓) due to the large magnitude of 𝑞𝑏𝑜𝑡, that is proportional to the value of 𝑞ℎ in neutral 

conditions, compared to the 𝑞ℎ induced by the head variation of the surface water. 

Peculiarly, there are some discrepancies in 𝑄ℎ values and behavior between losing and 

gaining conditions. It can be explained by the differences between the spatial extent of 

infiltrating cells (Figure 9 in Trauth et al. (2013)), as different cells are activated in each 

streamflow case. In partially submerged bars with low 𝑄𝑠𝑢𝑟𝑓 (0.5 𝑄𝑎𝑣𝑔, 𝑄𝑎𝑣𝑔, and 2 𝑄𝑎𝑣𝑔), 

𝑄ℎ is more hampered by 𝑞𝑏𝑜𝑡 in gaining condition than in the losing one. Contrarily, and 

in agreement with fully submerged bars in Trauth et al. (2013), for 3 𝑄𝑎𝑣𝑔 and 𝑄𝑏𝑓 , in 

general, 𝑄ℎ is slightly higher in gaining than in losing conditions. One possible explanation 

of this behavior is discussed by Tonina & Buffington (2007), who stated that the strength 

of the pressure gradient is not always decreasing with higher submergence. Instead, at a 

certain point, it can increase again, which implies a change in the hyporheic exchange 

mechanism. Also, in partially submerged bars, the existence of dry cells around the bars 

peaks could contribute to these discrepancies, unlike the case of fully submerged bars. 

The sediment properties, especially hydraulic conductivity, are key parameters in 

determining the HZ characteristics. In gravel sediments, 𝑞ℎ is strongly affected by the 

vertical hydraulic conductivity (Glose et al., 2019). In other words, increasing the vertical 
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conductivity from 10−4𝑚 𝑠⁄  to 10−3𝑚 𝑠⁄  in the isotropic conditions decreases the 

sediment resistance to the flow paths penetration into the streambed. Therefore, 𝑞ℎ 

increases by almost the same order of magnitude as 𝐾𝑧, while 𝐴ℎ is slightly lower. This 

decrease in 𝐴ℎ could not compensate for the increase in 𝑞ℎ, thus resulting in higher values 

of 𝑄ℎ in isotropic conditions (Table 2.5). 
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Table 2.4: Hyporheic flux (𝑞ℎ, 𝑚/𝑠), Hyporheic Area (𝐴ℎ ,𝑚
2) and Hyporheic Flow (𝑄ℎ, 𝑚3/𝑑) in different streamflow cases (0.5 𝑄𝑎𝑣𝑔, 𝑄𝑎𝑣𝑔, 

2 𝑄𝑎𝑣𝑔, 3 𝑄𝑎𝑣𝑔, 𝑄𝑏𝑓), and different values of gaining and losing Conditions (qbot is expressed as a fraction of the hyporheic flux in neutral condition, 

qhn). 

  

Groundwater 
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𝑞𝑏𝑜𝑡 = 0 (neutral) 5.58 9070 437 4.71 9838 400.2 3.4 10892 319.6 2.76 11530 275 1.78 11944 183.8 

𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛    3.49 7076.2 213.1       1.55 8173 109.8 

𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛    4.26 6679 246       1.46 8319 105.1 

𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 3.12 3400 91.5 2.97 4913 126.1 2.47 5470 116.6 2.11 5718 104.2 1.17 5364 54.1 

𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 4.59 3700 146.6 3.36 4584 133.2 2.34 6268 126.7 1.83 6269 99.3 1.16 5267 53 

𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛    2.92 2370 59.8       8.07 3081 21.5 

𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛         2.97 3583 92       8.31 2959 21.2 

𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 2.97 380 9.8 3.38 1053 30.7 2.83 1849 45.2 2.06 1904 33.8 6.01 1939 10.1 

𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 3.96 496 16.9 3.01 1418 36.9 3.03 1766 46.2 1.68 1836 26.7 6.49 1991 11.2 

𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 0 0 0 3.44 237 7 3.22 467 13 2.59 553 12.4 0 0 0 
𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 0 0 0 5.03 272 11.8 6.06 280 14.7 2.45 394 8.3 0 0 0 

 

𝟎. 𝟓 𝑸𝒂𝒗𝒈 𝑸𝒂𝒗𝒈 𝟐 𝑸𝒂𝒗𝒈 𝟑 𝑸𝒂𝒗𝒈 𝑸𝒃𝒇 

𝒒𝒉 
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𝒎𝟑 𝒅⁄  
𝑸𝒉 

𝒎𝟑 𝒅⁄  

𝒒𝒉 

𝟏𝟎−𝟕 𝒎 

𝑸𝒉 
𝒎𝟑 𝒅⁄  

𝑨𝒉 

𝒎𝟐 

𝑨𝒉 𝑨𝒉 

𝟏𝟎−𝟕 𝒎 

𝒒𝒉 𝑨𝒉 𝑨𝒉 𝒒𝒉 

𝟏𝟎−𝟕 𝒎 𝒎𝟑 𝒅⁄  

𝑸𝒉 

𝒎𝟐 𝒎𝟐 𝒎𝟐 𝒎𝟐 
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Figure 2.2: Hyporheic flux rate (𝑞ℎ, 𝑚/𝑠) spatial distribution over the middle bar in 𝑄𝑎𝑣𝑔 (left 

column; A–F) and 𝑄𝑏𝑓 (right column; G–L) under different ambient groundwater flux (𝑞𝑏𝑜𝑡) in 

anisotropic conditions. The red areas denote downwelling (losing) areas while the green ones 

indicate the upwelling (gaining) zones. The numbers in each panel that are written on the 

horizontal and vertical axes represent the streamwise and spanwise distances (in meters), 

respectively. 

 

Figure 2.3: (A) Normalized hyporheic exchange flow (𝑄ℎ 𝑄ℎ𝑛⁄ ) and (B) absolute hyporheic 

exchange flow (𝑄ℎ) values, in the anisotropic conditions. 𝑞𝑏𝑜𝑡 𝑞ℎ𝑛⁄  on the horizontal axes 

represents gaining (positive sign) and losing (negative sign) conditions, where 𝑞𝑏𝑜𝑡 is the value of 

imposed ambient groundwater. 𝑄ℎ𝑛 and 𝑞ℎ𝑛are the hyporheic flow and flux, respectively, in the 

neutral condition. 

Table 2.5: Hyporheic flux (𝑞ℎ ,𝑚 𝑠⁄ ), hyporheic area (𝐴ℎ) and hyporheic flow (𝑄ℎ, 𝑚3 𝑑⁄ ) in 

isotropic and anisotropic conditions under neutral condition (𝑞𝑏𝑜𝑡 = 0). 
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Flow 
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  24.9 9605 2066.5 4.71 9838 400.2 
 

  
 

11.5 11256 1114.6 1.78 11944 183.8 

2.3.3 Hyporheic Residence Times.  

The longitudinal and lateral flow paths within the HZ are divided into shallow and 

deep flow paths. This is evident in Figure 2.4A and B, where the group of deep flow paths 

(red lines) moves longitudinally, while the group of shallow flow paths (blue lines) moves 

quasi-laterally. These flow paths infiltrate through the downwelling zones and exfiltrate 

10−7 𝑚 𝑚2 𝑚3 𝑑⁄  10−7 𝑚 𝑚2 𝑚3 𝑑⁄  

𝑄𝑎𝑣𝑔 

𝑄𝑏𝑓 

𝑞ℎ 𝐴ℎ 𝑄ℎ 𝑞ℎ 𝐴ℎ 𝑄ℎ 
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back to the stream through the upwelling zones (see the downwelling and upwelling zones 

in Figure 2.2A and G for neutral conditions). The deep flow paths travel relatively deep 

under the bars as the particles flow into the upstream face of the alternate bar and move 

longitudinally for a distance of similar magnitude to the bar wavelength 𝜆𝑎𝑏 to exfiltrate at 

the downstream bar face (red lines in Figure 2.4A and B). On the other hand, the shallow 

flow paths travel quasi-laterally through the pool-riffle sequences. The cumulative RTDs 

for these flow paths is shown in Figure 2.4C for partially submerged bar under 𝑄𝑎𝑣𝑔 and 

in Figure 2.4C for fully submerged bar under 𝑄𝑏𝑓. The blue part of the distribution 

represents the shallow flow paths while the red one represents the deep one. Evidently, 

slightly less portion of the flow paths infiltrate laterally in case of fully submerged bar 

(Figure 2.2D) compared to the partially submerged one (Figure 2.2C). This distinction 

between the two types of flow paths present within the hyporheic zone creates a bimodal 

cumulative RTDs, which is demonstrated by the double-S shape of the cumulative RTDs 

(Figure 2.4C and D), and it is more obvious in case of partially submerged bar (Figure 

2.4C). This bimodality was verified by applying 𝐻𝐷𝑆𝑤 𝐵𝐶⁄  (Kang & Noh, 2019) and 𝐻𝐷𝑆 

(Hartigan & Hartigan, 1985) tests, as they are very accurate in determining the existence 

of multimodality (Freeman & Dale, 2013; Kang & Noh, 2019).  
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Figure 2.4: Shallow flow paths (blue paths) and deep flow paths (red paths) directions and their 

associated cumulative RTDs under 𝑄𝑎𝑣𝑔 (A and C), and 𝑄𝑏𝑓 (B and D) cases, in neutral and 

anisotropic conditions. The blue and red parts of cumulative RTDs line correspond to the blue 

paths and the red paths, respectively. The blue and red arrows in A and B arrows represent the 

directions of shallow and deep flow paths, respectively. 

The deep flow paths are mostly influenced by the longitudinal variations of head 

distribution between the upstream and downstream of the riffle peak, and they travel for 

longer distances and remain in the HZ for a longer time (Figure 2.5 and RTs90% and 

RTs80% in Table 2.6). On the other hand, the shallower ones tend to travel within the 

sediment domain for a much shorter time (RTs20% and RTs10% in Figure 2.5 and Table 

2.6) before returning to the surface water domain. 
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Figure 2.5: Cumulative frequency distribution of residence times (𝐹(RTs)) in neutral and 

anisotropic conditions under different streamflow cases (0.5𝑄𝑎𝑣𝑔, 𝑄𝑎𝑣𝑔, 2𝑄𝑎𝑣𝑔, 3𝑄𝑎𝑣𝑔, and 𝑄𝑏𝑓). 

The gray arrow represents the direction of increasing the streamflow value. 

In neutral conditions (𝑞𝑏𝑜𝑡 = 0), the residence times of the deep flow paths slightly 

decrease with increasing 𝑄𝑠𝑢𝑟𝑓. However, in case of full submergence, RTs80% increases 

marginally (Table 2.6). Therefore, the values of RTs80% in neutral conditions exhibit a 

slight sensitivity to 𝑄𝑠𝑢𝑟𝑓 variations, implying a weak correlation between the streamflow 

and RTs in the deep HZ. On the other hand, while an increase in bar submergence generally 

undermines the role of pool-riffle sequence in driving the hyporheic exchange by reducing 

the pressure gradient on the streambed, the shallow hyporheic flow paths travel for a longer 

time for higher 𝑄𝑠𝑢𝑟𝑓 (see RTs10% and RTs20% in Table 2.6 and also Figure 2.5). Trauth et 

al. (2013) found that the median residence times (RTs50%) decrease with increasing 𝑄𝑠𝑢𝑟𝑓 

in case of fully submerged bars. This trend is also present in current results for partially 

submerged bars (Table 2.6, 0.5 𝑄𝑎𝑣𝑔 to 3 𝑄𝑎𝑣𝑔), although with some minor deviations 

(compare RTs50% for 0.5 𝑄𝑎𝑣𝑔 and 𝑄𝑎𝑣𝑔 in Table 2.6). The previous results indicate that 

residence times in deep HZ are marginally affected by 𝑄𝑠𝑢𝑟𝑓 variations, unlike RTs in the 

shallow HZ which is more influenced by the surface water domain. In agreement with 

Tonina and Buffington (2011), the mean residence time (RTs𝑚𝑒𝑎𝑛) decreases with 

increasing 𝑄𝑠𝑢𝑟𝑓, except for fully submerged bar, in which longer RTs within the shallow 

HZ cause RTs𝑚𝑒𝑎𝑛 to increase again to a higher value than those of partially submerged 

one. 

 

 



Results and Discussion. 25 

 

25 

 

 

Table 2.6: Residence times at different probability values of the cumulative frequency 

distributions (RTs90%, RTs80%, RTs50%, RTs20%, RTs10% and RTs𝑚𝑒𝑎𝑛; in days) in different 

streamflow cases (0.5𝑄𝑎𝑣𝑔, 𝑄𝑎𝑣𝑔, 2𝑄𝑎𝑣𝑔, 3𝑄𝑎𝑣𝑔 and 𝑄𝑏𝑓), and in different values of gaining and 

losing conditions (𝑞𝑏𝑜𝑡 is expressed as a fraction of the hyporheic exchange flux in the neutral 

conditions, 𝑞ℎ𝑛). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Groundwater 
fluxes 

 
 

 

  

 

  
𝑞𝑏𝑜𝑡 = 0 (neutral) 98.5 81.5 36 4 3 64 

𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 27 16 7 3.5 2.5 21.7 

𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 25.5 11 4.5 2.5 2 18.3 

𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 17 12.5 6.5 3 2 10.9 

𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 9.5 7 3.5 2 1.5 12.2 

𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 0 0 0 0 0 0 

𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 0 0 0 0 0 0 

Groundwater 
fluxes 

 
 

 

  

 

  
𝑞𝑏𝑜𝑡 = 0 (neutral) 97.5 80 37 5 4 56.5 

𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛 57.5 44 10 5 3.5 32.5 

𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛 63 45.5 8 4 3.5 35.7 

𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 41 27.5 8.5 4 3 28.2 

𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 35.5 15.5 6 4 3 21.2 

𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛 19 13 6.5 3.5 3 21.4 

𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛 22 14.5 7 3.5 2.5 17.1 

𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 15.5 11.5 6 3 2.5 18 

𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 13.5 10 6 3 2.5 17.6 

𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 14 10 5.5 2.5 2 211.4 

𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 10.5 7.5 4 2.5 2 7.3 

RTs90% RTs80% RTs50% RTs20% RTs10% RTs𝑚𝑒𝑎𝑛 

 

𝟎. 𝟓 𝑸𝒂𝒗𝒈 

RTs90% RTs80% RTs50% RTs20% RTs10% RTs𝑚𝑒𝑎𝑛 

 

 𝑸𝒂𝒗𝒈 
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Groundwater 
fluxes 

 
 

 

  

 

  
𝑞𝑏𝑜𝑡 = 0 (neutral) 95.5 78 32.5 8 6.5 54.7 

𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛       

𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛       

𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 41 27.5 10.5 5.5 3.5 31.5 

𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 45 29 11.5 6.5 4.5 27.6 

𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛       

𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛       

𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 14.5 11.5 6.5 3.5 2.5 18.6 

𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 17.5 14 8.5 4.5 3.5 16.3 

𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 14.5 13.5 6 3 2.5 12.6 

𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 14.5 13.5 6 3.5 2.5 11.9 

Groundwater fluxes 

 
 

  

 

 

  
𝑞𝑏𝑜𝑡 = 0 (neutral) 95 76.5 27.5 10 6.5 52.3 
𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 38 23.5 11 5 3 29.6 
𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 40 26 13 7 4.5 32.7 
𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛       

𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛       

𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 19 13 6 3 2.5 24 
𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 21.5 15 7.5 4 1.5 26.8 
𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 11.5 7.5 4 3 1.5 17.9 

𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 13 9 4.5 1.5 1 20 

Groundwater fluxes 

 

    

 

  
𝑞𝑏𝑜𝑡 = 0 (neutral) 94.5 84 49.5 14 10 59 
𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛 67.5 56 28.5 10.5 8.5 40.7 
𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛 68 57 30 11 9 41.9 
𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 47 37 15 9 7 29.4 

RTs90% 
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RTs10% 

 

RTs𝑚𝑒𝑎𝑛 
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 𝑸𝒃𝒇 
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𝟑 𝑸𝒂𝒗𝒈 

RTs50% 

 

 

RTs𝑚𝑒𝑎𝑛 
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Generally, RTs values lessen with raising 𝑞𝑏𝑜𝑡 magnitude (Table 2.6 and Figure 2.6). 

At strong 𝑞𝑏𝑜𝑡, in both gaining and losing conditions, the cumulative RTD shifts from a 

bimodal to a unimodal distribution (Figure 2.6). This shift indicates the disappearance of a 

significant part of the deep hyporheic zone, with the two HZ parts merging into a single 

shallow hyporheic zone. 

 

Figure 2.6: Cumulative frequency distribution function of residence times (𝐹(RTs)) under 

different gaining fluxes (𝑞𝑏𝑜𝑡 = 0,+0.5𝑞ℎ𝑛,+𝑞ℎ𝑛,+1.5 𝑞ℎ𝑛, +2𝑞ℎ𝑛, and +3𝑞ℎ𝑛), and different 

𝑄𝑠𝑢𝑟𝑓 cases (𝑄𝑎𝑣𝑔 (A) and 𝑄𝑏𝑓(B)), in anisotropic conditions. 

Differently from previous studies (Marzadri et al., 2010; Tonina & Buffington, 2011; 

Trauth et al., 2013), the cumulative RTDs do not follow a lognormal distribution. However, 

they are bimodal in both isotropic and anisotropic conditions. Even though the bimodality 

is very mild in the isotropic conditions (Figure 2.7), it is still detected by the 𝐻𝐷𝑆𝑤 𝐵𝐶⁄  

and 𝐻𝐷𝑆 tests. Evidently in the results, sediment anisotropy enhances the distinction 

between the shallow and deep flow paths. In addition, bar submergence plays a role in 

forming this bimodal distribution, as increasing the bar submergence decreases the degree 

of bimodality (Figure 2.7). This bimodality existence is coherent with the presence of two 

groups of flow paths in both conditions, reported by Trauth et al. (2013) and Tonina and 

Buffington (2007). Sediment anisotropy also affects the ratio of flow paths that infiltrate 

𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 49 39 15.5 9.5 7.5 31.9 
𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛 30.5 22 13.5 9 7.5 26.8 

𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛 31 22 13.5 9 7.5 15.4 

𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 27 21 13 10 9 26.1 
𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 26 20.5 13 9 8 28.4 
𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 0 0 0 0 0 0 

𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 0 0 0 0 0 0 
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into either the deep or the shallow zone. In isotropic conditions, more than 85% of the flow 

paths reach the deep zone, unlike in anisotropic conditions in which the flow paths are 

almost evenly split between both hyporheic zones (Figure 2.7). In agreement with 

(Marzadri et al., 2010), RTs𝑚𝑒𝑎𝑛 is slightly longer in anisotropic sediments (Table 2.7) 

than in isotropic ones, this is also true for deep flow paths (RTs80% and RTs90% in Table 

2.7), as the lower vertical resistance to flow allows for faster and deeper flow within the 

sediment. On the other hand, shorter residence times (RTs10%, RTs20% and RTs50% in 

Table 2.7) have smaller values in anisotropic conditions. 

 

Figure 2.7: Cumulative frequency distribution of residence times (F(RTs)) in isotropic and 

anisotropic conditions, for 𝑄𝑎𝑣𝑔 and 𝑄𝑏𝑓 in neutral conditions. 

Table 2.7: Residence times at different probability values of the cumulative frequency 

distributions (RTs90%, RTs80%, RTs50%, RTs20%, RTs10% and RTs𝑚𝑒𝑎𝑛; in days) in isotropic and 

anisotropic, and neutral conditions. 
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  91 72.5 38 13 6 39.7 
 

  

94.5 80.5 48 21 11 50.8 

𝑄𝑎𝑣𝑔 

𝑄𝑏𝑓 

RTs90% RTs80% RTs50% RTs20% RTs10% RTs𝑚𝑒𝑎𝑛 
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2.3.4 Hyporheic Depths.  

The penetration of the flow paths in the hyporheic zone delineates the hyporheic depth in 

the subsurface domain (Figure 2.8, for 𝑄𝑎𝑣𝑔 and 𝑄𝑏𝑓). In the neutral conditions, increasing 

𝑄𝑠𝑢𝑟𝑓 decreases the hyporheic depth in both shallow and deep sub-zones for partially 

submerged bars (Table 2.8). This decrease in hyporheic depth with increasing 𝑄𝑠𝑢𝑟𝑓 is due 

to milder pressure head variations on the bars morphology, which agrees with the literature 

results (compare 𝑍𝑚𝑒𝑎𝑛 in Table 2.8 with Figure 2 in Tonina and Buffington (2011)). This 

trend does not apply for shallow HZ, which can have a deeper extent in fully submerged 

bars than in the lower submergence case. This difference can be due to the different 

portions of flow paths between the shallow and deep HZ. 

 

Figure 2.8: Hyporheic flow paths extent, in neutral and anisotropic conditions, within the 

subsurface domain in (A) 𝑄𝑎𝑣𝑔 and (B) 𝑄𝑏𝑓 cases. The grey surface represents the streambed 

elevation. The flow paths direction is the same as the flow direction (from left to right). 

The imposed gaining and losing conditions decrease the extent of the hyporheic zone 

considerably (Table 2.8 and Figure 2.9). The deeper flow paths (𝑍80% and 𝑍90%) as well as 

the mean and median hyporheic depth (𝑍𝑚𝑒𝑎𝑛, and 𝑍50%, respectively) are more affected 

by 𝑞𝑏𝑜𝑡 (faster decrease at lower 𝑞𝑏𝑜𝑡) than the depth of the shallow HZ one. This happens 

 

Stream Flow 

 

Anisotropic condition 

  

   

 

 

  97.5 80 37 5 4 53 

  99 84 49.5 14 10 55.5 𝑄𝑏𝑓 

𝑄𝑎𝑣𝑔 

RTs90% RTs80% RTs50% RTs20% RTs10% RTs𝑚𝑒𝑎𝑛 
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because the deep HZ is more interactive with the ambient groundwater (Table 2.6 and 

Table 2.8), while the shallow HZ is more linked to surface water. When 𝑞𝑏𝑜𝑡 is higher than 

2 𝑞ℎ, the shallow depths (𝑍10% and 𝑍20% values in Table 2.8) are also influenced, as the 

large upwelling flux diminishes the deep HZ extent and interferes with the shallow flow 

paths. 

The lower resistance to the vertical flow in isotropic conditions results in much deeper 

HZ (Table 2.9). The increase in the extent of the deep HZ is much higher compared the 

shallow one, as the latter is more influenced by 𝑄𝑠𝑢𝑟𝑓 and the bed morphology. 

Table 2.8: Maximum hyporheic depth at different probability values of the cumulative frequency 

distributions (𝑍90%, 𝑍80%, 𝑍50%, 𝑍20%, 𝑍10%, and 𝑍𝑚𝑒𝑎𝑛; in meters) in different streamflow cases 

(0.5𝑄𝑎𝑣𝑔, 𝑄𝑎𝑣𝑔, 2𝑄𝑎𝑣𝑔, 3𝑄𝑎𝑣𝑔 and 𝑄𝑏𝑓), and different values of gaining and losing conditions 

(𝑞𝑏𝑜𝑡 is expressed as a fraction of the hyporheic exchange flux in the neutral conditions, 𝑞ℎ𝑛). 

 

Groundwater 
fluxes 

 
 

 

    

 

  

 

𝑞𝑏𝑜𝑡 = 0 (neutral)       
𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛 8.38 6.45 2.43 0.63 0.42 4.59 
𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛                     
𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 1.25 0.92 0.55 0.3 0.23 0.6 
𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 1.43 1.02 0.62 0.37 0.3 0.88 
𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛                    
𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛                 
𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 0.72 0.58 0.25 0.06 0.03 0.33 
𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 1.06 0.73 0.41 0.28 0.25 0.41 
𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 0 0 0 0 0 0 
𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 0 0 0 0 0 0 

Groundwater 
fluxes 

 
 

  

   

 

  

 

𝑞𝑏𝑜𝑡 = 0 (neutral) 7.82 5.87 2.01 0.62 0.42 3.73 
𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛 4.31 3.09 1.25 0.77 0.62 1.93 
𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛 3.28 2.16 1 0.67 0.57 1.78 
𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 2.32 1.39 0.68 0.36 0.29 0.9 
𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 1.71 1.01 0.62 0.38 0.3 0.91 
𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛 1.03 0.86 0.56 0.32 0.26 0.55 

𝒁𝟗𝟎% 𝒁𝟖𝟎% 𝒁𝟓𝟎% 𝒁𝟐𝟎% 

𝟎. 𝟓 𝑸𝒂𝒗𝒈 

𝒁𝟏𝟎% 𝒁𝒎𝒆𝒂𝒏 

𝒁𝟗𝟎% 𝒁𝟖𝟎% 𝒁𝟓𝟎% 𝒁𝟐𝟎% 

 𝑸𝒂𝒗𝒈 

𝒁𝟏𝟎% 𝒁𝒎𝒆𝒂𝒏 
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𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛 1.41 1.06 0.58 0.35 0.29 0.59 
𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 1 0.83 0.48 0.28 0.1 0.46 
𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 1.24 0.56 0.4 0.3 0.28 0.46 
𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 0.75 0.6 0.3 0.11 0.08 0.38 
𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 1.11 0.64 0.4 0.28 0.24 0.43 

Groundwater 
fluxes 

 

      

 

  

 

𝑞𝑏𝑜𝑡 = 0 (neutral) 6.49 4.78 1.53 0.57 0.4 2.76 
𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 2.18 0.96 0.65 0.38 0.3 0.9 
𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 2.09 1.34 0.65 0.39 0.32 0.86 
𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 0.89 0.74 0.42 0.18 0.1 0.41 
𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 0.85 0.73 0.5 0.35 0.3 0.48 
𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 0.88 0.68 0.29 0.1 0.07 0.36 
𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 6.49 4.78 1.53 0.57 0.4 2.76 

Groundwater 
fluxes 

 
 

  

 

  

 

  

 

𝑞𝑏𝑜𝑡 = 0 (neutral) 5.16 3.76 1.15 0.54 0.38 2.09 
𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 1.3 0.96 0.65 0.38 0.3 0.69 
𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 1.57 1.05 0.67 0.37 0.29 0.73 
𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛       
𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 0.71 0.62 0.44 0.3 0.26 0.4 
𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 0.77 0.65 0.46 0.28 0.2 0.44 
𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 0.63 0.56 0.38 0.26 0.11 0.34 
𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 0.65 0.59 0.36 0.21 0.1 0.35 

 𝟐 𝑸𝒂𝒗𝒈 

𝒁𝟗𝟎% 𝒁𝟖𝟎% 𝒁𝟓𝟎% 𝒁𝟐𝟎% 𝒁𝟏𝟎% 𝒁𝒎𝒆𝒂𝒏 

 𝟑 𝑸𝒂𝒗𝒈 

𝒁𝟗𝟎% 𝒁𝟖𝟎% 𝒁𝟓𝟎% 𝒁𝟐𝟎% 𝒁𝟏𝟎% 𝒁𝒎𝒆𝒂𝒏 
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Figure 2.9: (A) Shallow hyporheic depth (𝑍10%) normalized by its corresponding value in neutral 

condition (𝑍10ℎ𝑛). (B) Deep hyporheic depth (𝑍90%) normalized by its corresponding value in 

neutral condition (𝑍90ℎ𝑛). 𝑞𝑏𝑜𝑡 𝑞ℎ𝑛⁄  on the horizontal axes represents gaining (+ sign) and losing 

(− sign) conditions, where 𝑞𝑏𝑜𝑡 is the value of imposed ambient groundwater and 𝑞ℎ𝑛 is the 

hyporheic flux in neutral condition. The depths values in both (A and B) refer only to anisotropic 

conditions. 

 

 

 

 

Groundwater 
fluxes 

 
 

     

 

   
𝑞𝑏𝑜𝑡 = 0 (neutral) 4.79 3.84 1.83 0.6 0.43 2.03 
𝑞𝑏𝑜𝑡 = +0.5 𝑞ℎ𝑛 2.69 2.05 0.79 0.28 0.2 1.06 
𝑞𝑏𝑜𝑡 = −0.5 𝑞ℎ𝑛 2.75 2.15 0.92 0.32 0.23 1.12 
𝑞𝑏𝑜𝑡 = + 𝑞ℎ𝑛 1.28 0.96 0.38 0.22 0.17 0.55 
𝑞𝑏𝑜𝑡 = − 𝑞ℎ𝑛 1.41 1.14 0.46 0.27 0.21 0.64 
𝑞𝑏𝑜𝑡 = +1.5 𝑞ℎ𝑛 0.46 0.37 0.27 0.18 0.15 0.29 
𝑞𝑏𝑜𝑡 = −1.5 𝑞ℎ𝑛 0.56 0.38 0.26 0.19 0.17 0.33 
𝑞𝑏𝑜𝑡 = +2 𝑞ℎ𝑛 0.37 0.31 0.23 0.17 0.15 0.25 
𝑞𝑏𝑜𝑡 = −2 𝑞ℎ𝑛 0.57 0.48 0.32 0.22 0.18 0.36 
𝑞𝑏𝑜𝑡 = +3 𝑞ℎ𝑛 0 0 0 0 0 0 
𝑞𝑏𝑜𝑡 = −3 𝑞ℎ𝑛 0 0 0 0 0 0 

  𝑸𝒃𝒇 

𝒁𝟗𝟎% 𝒁𝟖𝟎% 𝒁𝟓𝟎% 𝒁𝟐𝟎% 𝒁𝟏𝟎% 𝒁𝒎𝒆𝒂𝒏 
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Table 2.9: Maximum hyporheic depth at different probability values of the cumulative frequency 

distributions (𝑍90%, 𝑍80%, 𝑍50%, 𝑍20%, 𝑍10%, and 𝑍𝑚𝑒𝑎𝑛; in meters) in isotropic and anisotropic 

and neutral conditions. 

 

Stream 
Flow 

 

Isotropic condition 

 

 

  

 

  
 

 

  35.74 29.49 15.59 4.43 1.03 14.09 
 
  
 

27.87 22.82 11.73 3.54 1.25 11.14 
 

 

Stream 
Flow 

 

Anisotropic condition 

 

 

  

 

  
 

 

  7.82 5.87 2.01 0.62 0.42 3.73 
 
  
 

4.79 3.84 1.83 0.6 0.43 2.03 
 

2.3.4 Predictive Model Results.  

The existing predictive equations proposed in previous studies (Huang & Chui, 2018; 

Tonina & Buffington, 2011; Trauth et al., 2013) were found to provide erroneous estimate 

of the results of this study in some conditions. Hence, new equations were developed by 

performing the MLR to identify coefficient values for Eqs. (2.5) and (2.6). 

Both models include all the independent variables, as their variance inflation factor 

(𝑉𝐼𝐹) did not exceed 5, which indicates no significant correlation exists among the 

independent variables (no multi-collinearity) (Ott et al., 2004). Consequently, the 

predictive equations are: 

𝐹𝑛𝑒𝑢𝑡𝑟𝑎𝑙 = 10(𝑎±𝑆𝐸𝑎) × 𝑅𝑒
(𝑏±𝑆𝐸𝑏) × (

𝐾𝑣

𝐾ℎ
)
(𝑐±𝑆𝐸𝑐)

           (2.7) 

𝐹𝑔𝑎𝑖𝑛/𝑙𝑜𝑠 = 10(𝑚±𝑆𝐸𝑚) × 𝑅𝑒
(𝑛±𝑆𝐸𝑛) × (|

𝑞𝑏𝑜𝑡

𝑉
|)
(𝑔±𝑆𝐸𝑔)

             (2.8) 

where 𝑆𝐸 is the standard error associated with the estimated value of each coefficient. 

Tables 2.10 and 2.11 show the coefficients values, 𝑆𝐸 and 𝑃-Values of each regression 

coefficient. In neutral conditions, the model works quite well in predicting the simulations 

𝑄𝑏𝑓 

𝑄𝑎𝑣𝑔 

𝑍90% 𝑍80% 𝑍50% 𝑍20% 𝑍10% 𝑍𝑚𝑒𝑎𝑛 

𝑍90% 𝑍80% 𝑍50% 𝑍20% 𝑍10% 𝑍𝑚𝑒𝑎𝑛 

𝑄𝑏𝑓 

𝑄𝑎𝑣𝑔 
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results (𝑅2 > 0.93) (Figures 2.10 and 2.12 and Table 2.10). By looking at the regression 

coefficients values, the Reynolds number has a strong influence on 𝑞ℎ and 𝑄ℎ values, while 

RTs𝑖% are more affected by sediment anisotropy. Instead, 𝑍𝑖% are almost equally affected, 

within error, by both independent variables (𝑅𝑒 and 𝐾𝑣). 

On the other hand, in gaining and losing conditions, the model predicts reasonably 

well, 𝑞ℎ and 𝑄ℎ (𝑅2 > 0.74, Figure 2.10), and it also fits better residence times and 

hyporheic depths of the deep HZ (most of the predicted values are within 90% confidence 

interval) than the shallow one (compare RTs90% and 𝑍90% to RTs10% and 𝑍10% in Figures 

2.11 and 2.12). Similar to the neutral conditions, 𝑅𝑒 has a higher effect on 𝑞ℎ and 𝑄ℎ  than 

the groundwater flux (𝑞𝑏𝑜𝑡 𝑉⁄ ) (Table 2.11). 

The novelty of these predictive equations lies in considering the sediment anisotropy 

as an independent variable. Evidently, it can play a significant role in estimating HZ 

characteristics, in addition to the inclusion of 𝑞𝑏𝑜𝑡 changes in both gaining and losing 

conditions. Even though it is hard to build a generalized model, this model helps to 

understand the dependence of the HZ characteristics on streamflow, sediment anisotropy, 

and groundwater fluxes. 
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Figure 2.10: Comparison between simulated values of 𝑞ℎ 𝑉⁄  and 𝑄ℎ 𝑄𝑠𝑢𝑟𝑓⁄ , and the predicted 

values by Eqs. (2.7) and (2.8); A and C are in neutral condition (Eq. (2.7)), and B and D are in 

gaining/losing conditions (Eq. (2.8)). 
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Figure 2.11: Comparison between simulated values of deep and shallow HZ dimensionless 

residence times (RTs90% 𝐾𝑣 𝑑⁄  and RTs10%𝐾𝑣 𝑑⁄ ), and the predicted values by Eqs. (2.7) and 

(2.8) the simulations ones; A and C are in neutral condition (Eq.(2.7)), and B and D are in 

gaining/losing conditions (Eq.(2.8)). 

C) D) 
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Figure 2.12: Comparison between simulated values of deep and shallow HZ dimensionless 

residence times 𝑍90% 𝑑⁄  and 𝑍10% 𝑑⁄ , and the predicted values by Eqs. (2.7) and (2.8) the 

simulations ones; A and C are in neutral condition (Eq. (2.7)), and B and D are in gaining/losing 

conditions (Eq. (2.8)). 

2.4 Concluding Remarks. 

The effect of streamflow, bar submergence, and isotropic variations were analyzed in this 

study. Although the hyporheic exchange area increases with higher submergence, the total 

hyporheic flow decreases due to the decrease in hyporheic flux per unit streambed area. 

The hyporheic zone is divided into two zones: a shallow zone with quasi-lateral flow paths 

underneath the pools-riffles sequence, and a deep zone with longitudinal flow paths under 

the bar’s peaks.  The presence of these two hyporheic zones having different flow 

directions and penetration depth is a peculiarity of the hyporheic flow field below bars, 

as they cannot found in the case of hyporheic exchange below dunes. The residence times 
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distribution is bimodal, which is more emphasized in anisotropic conditions. This 

bimodality supports the existence of two hyporheic zones with different characteristics. 

The residence times within the shallow zone become longer at a higher bar submergence 

ratio, while in the deep one, they are less sensitive to streamflow variations. The hyporheic 

zone extent becomes shallower with an increasing bar submergence ratio due to less 

pressure variation on the sediment bed. The presence of ambient groundwater flux reduces 

the hyporheic exchange flow, residence times, and hyporheic zone extent, especially within 

the deep zone. The hyporheic zone characteristics are significantly affected by sediment 

anisotropy; the hyporheic flow and hyporheic zone extent are enhanced considerably in 

isotropic sediment (higher vertical conductivity) compared to the anisotropic conditions. 

However, the residence times follow different trends for the shallow and deep zones. A set 

of the predictive formulae was introduced to predict hyporheic flux, residence times, and 

hyporheic depths and quantify the influence of the three factors discussed in this study 

(streamflow value (bar submergence ratio), ambient groundwater, and sediment 

anisotropy). Further investigations need to be carried out with different alternate bars 

geometry to determine its effect on the hyporheic zone characteristics and to expand the 

introduced predictive model. Finally, the division of the hyporheic zones into two zones 

with different traits is likely to influence the biogeochemical conditions and reactions, 

which needs deeper investigations. 
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Table 2.10: Regression coefficients for Eq. (2.7) (Neutral Condition). 

 
 Regression Coefficients Model performance 
 
 
    

 

    

    

  
 

1.71 0.69 0.07 -1.25 0.11 4.00E-04 0.71 0.06 3.00E-04 0.99 -7.12 0.071 

 7.42 1.08 0.002 -1.85 0.18 5.00E-04 0.64 0.09 0.002 0.98 -0.95 0.11 

 

1.7 0.08 3.00E-05 -0.45 0.01 4.70E-06 0.98 0.007 1.50E-08 0.93 -37.1 0.08 

 1.52 0.17 8.00E-04 -0.43 0.03 9.00E-05 0.98 0.01 3.00E-07 0.999 -27.1 0.02 

 1.05 0.91 0.31 -0.4 0.15 0.06 1.07 0.08 2.00E-04 0.98 -3.3 0.09 

 -3.06 0.6 0.007 0.21 0.1 0.09 1.31 0.05 1.00E-05 0.99 -9.2 0.06 
 -3.69 0.6 0.004 0.27 0.1 0.05 1.15 0.05 2.00E-05 0.99 -9.1 0.06 
 1.17 0.6 0.12 -0.41 0.1 0.02 0.93 0.05 6.00E-05 0.99 -9.1 0.06  

 6.3 0.38 7.00E-05 -0.8 0.06 2.00E-04 0.7 0.03 3.00E-05 0.99 -15.6 0.04 

 6.3 0.3 3.00E-05 -0.8 0.05 8.00E-05 0.74 0.03 8.00E-06 0.99 -19.06 0.03 

 5.9 0.72 0.001 -0.8 0.12 0.003 0.9 0.06 1.00E-04 0.98 -6.63 0.04 
 4.03 0.29 2.00E-04 -0.56 0.05 3.00E-04 0.83 0.02 5.00E-06 0.997 -19.5 0.03 
 2.68 0.33 0.001 -0.43 0.05 0.001 0.44 0.03 9.00E-05 0.99 -17.7 0.03 

 6.77 0.5 1.00E-04 -0.93 0.08 3.00E-04 0.65 0.04 1.00E-04 0.99 -11.8 0.05 
 

 

 

 

 

 

 

 

 

𝑎 𝑆𝐸𝑎 𝑃. 𝑉𝑎𝑙𝑎 𝑏 𝑆𝐸𝑏 𝑃. 𝑉𝑎𝑙𝑏 𝑐 𝑆𝐸𝑐 𝑃. 𝑉𝑎𝑙𝑐 𝑅2 𝐴𝐼𝐶 𝑅𝑀𝑆𝐸 

𝑞ℎ 𝑉⁄  
𝑄ℎ 𝑄𝑠𝑢𝑟𝑓⁄  

𝑇90%𝐾𝑣 𝑑⁄  
𝑇80%𝐾𝑣 𝑑⁄  
𝑇50%𝐾𝑣 𝑑⁄  
𝑇20%𝐾𝑣 𝑑⁄  

𝑇10%𝐾𝑣 𝑑⁄  
𝑇𝑚𝑒𝑎𝑛𝐾𝑣 𝑑⁄  

𝑍90% 𝑑⁄  
𝑍80% 𝑑⁄  

𝑍50% 𝑑⁄  
𝑍20% 𝑑⁄  
𝑍10% 𝑑⁄  
𝑍𝑚𝑒𝑎𝑛 𝑑⁄  

𝑭𝑵𝒆𝒖𝒕𝒓𝒂𝒍 
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Table 2.11: Regression coefficients for Eq. (4.8) (Gaining/ Losing Conditions). 

 Regression Coefficients Model performance 
 
 
    

 

   

     

  
 

0.81 0.8 0.31 -1.02 0.19 7.00E-07 0.21 0.11 7.00E-02 0.77 -19.7 0.11 

 6.02 1.443 2.00E-04 -3.16 0.34 1.80E-10 -1.22 0.2 8.00E-07 0.74 20.4 0.31 

 

-0.59 0.38 1.30E-01 -1.22 0.09 1.00E-14 -0.84 0.05 2.00E-16 0.9 -70.4 0.08 

 -1.48 0.44 2.00E-03 -1.06 0.11 2.00E-11 -0.81 0.06 3.00E-14 0.85 -59.8 0.1 

 -3.07 0.45 1.00E-07 -0.62 0.11 2.00E-06 -0.6 0.06 1.00E-10 0.75 -59 0.1 

 -3.61 0.6 2.00E-07 -0.52 0.13 4.00E-04 -0.53 0.08 7.00E-08 0.63 -45.2 0.11 
 -3.33 0.73 8.00E-05 -0.66 0.17 7.00E-04 -0.6 0.1 2.00E-06 0.53 -25.5 0.16 
 -1.63 0.38 2.00E-04 -0.7 0.09 7.00E-09 -0.5 0.05 8.00E-11 0.75 -70.7 0.08  

 5.48 0.77 6.00E-08 -1.61 0.18 7.00E-10 -0.68 0.11 5.00E-07 0.71 -21.6 0.17  

 4.68 0.72 3.00E-07 -1.42 0.17 2.00E-09 -0.6 0.1 1.00E-06 0.69 -27.8 0.15 

 3.9 0.64 9.00E-07 -1.15 0.15 2.00E-08 -0.4 0.09 4.00E-05 0.65 -34.5 0.14 
 3.23 0.9 1.00E-03 -1.03 0.21 4.00E-05 -0.38 0.13 5.00E-03 0.43 -11.2 0.19 
 3.44 1.07 0.003 -1.17 0.25 7.00E-05 -0.46 0.15 4.00E-03 0.41 0.28 0.23 

 5.48 0.77 6.00E-08 -1.61 0.18 7.00E-10 -0.68 0.11 5.00E-07 0.71 -21.6 0.17 

𝑎 𝑆𝐸𝑎 𝑃. 𝑉𝑎𝑙𝑎 𝑏 𝑐 𝑆𝐸𝑐 𝑃. 𝑉𝑎𝑙𝑐 𝑅2 

𝑞ℎ 𝑉⁄  
𝑄ℎ 𝑄𝑠𝑢𝑟𝑓⁄  

𝑇90%𝐾𝑣 𝑑⁄  

𝑆𝐸𝑏 𝑃. 𝑉𝑎𝑙𝑏 𝐴𝐼𝐶 𝑅𝑀𝑆𝐸 

𝑇80%𝐾𝑣 𝑑⁄  
𝑇50%𝐾𝑣 𝑑⁄  
𝑇20%𝐾𝑣 𝑑⁄  

𝑇10%𝐾𝑣 𝑑⁄  
𝑇𝑚𝑒𝑎𝑛𝐾𝑣 𝑑⁄  

𝑍90% 𝑑⁄  
𝑍80% 𝑑⁄  

𝑍50% 𝑑⁄  
𝑍20% 𝑑⁄  
𝑍10% 𝑑⁄  
𝑍𝑚𝑒𝑎𝑛 𝑑⁄  

𝑭𝒈𝒂𝒊𝒏/𝒍𝒐𝒔𝒔 



Concluding Remarks. 41 

 

41 

 

 

 



42                                                                                            Chapter 3    

 

Chapter 3                                                                            

The Effect of Sediment Depth and 

Groundwater Underflow on Hyporheic 

Residence Times Distribution in Dune-

Like Bedform  

3.1 Introduction 

Experimental and modeling studies support the conclusion that bedforms, such as ripples 

and dunes, play a dominant role in the mixing of water across the sediment-water interface 

and through the hyporheic zone (Gomez-Velez et al., 2015). A key characteristic of the 

exchange process is the distribution of travel times over which water parcels cycle from 

the stream, through the hyporheic zone, and back, i.e., the hyporheic residence times 

distribution (RTDs). RTDs and their statistical moments are key controls on hyporheic 

metabolism in the streambed (Gomez et al., 2012; Harvey & Gooseff, 2015). For instance, 

the Damköhler number, a dimensionless number that compares the median hyporheic 

residence time and the characteristic biogeochemical reaction time, is a key predictor of 

nitrogen removal in streams by denitrification (Azizian et al., 2015; Grant et al., 2018; 

Zarnetske et al., 2012), and the emission of the potent greenhouse gas nitrous oxide (N2O) 

(Marzadri et al., 2014, 2017). Gomez-Velez et al. (2015) included the Damköhler number 

in their analysis of N-cycling in the Mississippi River Basin. 

Many studies employ RTDs to analyze the influence of hyporheic exchange on nutrient 

and contaminant transport in the stream corridor. Recently, Grant et al. (2020b) unified two 

different descriptions for the unsteady transport of mass through the hyporheic zone by 

exchange across bedforms, namely, an advective pumping model (introduced by Elliott 

and Brooks (1997b)) and a one-dimensional dispersion model for which the dispersion 

coefficient decays exponentially with depth. In both cases, key quantities for water quality 

(e.g., the temporal evolution of mass concentration in the water column and interstitial 

fluids of the sediment bed, as well as the mass flux across SWI) can be obtained by 

convolving the time history of solute mass in the water column with either an RTD 
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(advective model) or Green’s Function (dispersion model) that describe transport and 

mixing in the streambed. 

Various studies have been performed to investigate the RTD of water undergoing 

hyporheic exchange through ripples and dunes. Boano et al. (2007)  utilized the continuous 

random waking theory (CTRW) to represent the interactions between in-stream solute 

transport and the hyporheic exchange RTDs in an infinite sediment bed. In such systems, 

and in the absence of an imposed groundwater flow, hyporheic exchange across dunes 

results in a strongly and positively skewed (or “heavy tailed”) RTD. This indicates that 

most water parcels transport through the hyporheic zone relatively quickly, while a 

minority of water parcels linger for a very long time. Horizontal groundwater flow induced 

by longitudinal pressure gradients (so-called underflow) can reduce the RTD’s positive 

skewness and heavy tail (Bottacin-Busolin & Marion, 2010; Marzadri et al., 2016). 

Likewise, experimental (e.g., Fox et al., 2014) and modeling (Azizian et al., 2017; 

Cardenas & Wilson, 2006; Hester et al., 2013, 2019; Marzadri et al., 2016) studies indicate 

that vertical groundwater flow (in either gaining or losing configurations) can reduce 

hyporheic exchange flux and residence times in the hyporheic zone, and thereby diminish 

key ecological functions (such as respiration and nitrogen cycling) in streambed sediments 

(Gomez-Velez et al., 2014). Moreover, Tonina et al. (2016) demonstrated that sediment 

heterogeneity decreases the mean residence time, increases its median value, and increases 

the positive skewness of the RTD.  

The existence of a shallow confining layer can limit the extent of the hyporheic zone, 

as well as alter the hyporheic RTD characteristics (e.g., Morén et al., 2017). Similarly, 

groundwater underflow affects the extend of the hyporheic zone and its RTD (Bottacin-

Busolin & Marion, 2010; Marzadri et al., 2016), and the underflow velocity can also be 

used to represent the velocity of bedform migration (Bottacin-Busolin & Marion, 2010). 

Although a finite streambed depth has been considered in previous studies (e.g., Packman 

et al., 2000a), a systematic assessment of the relative alluvium depth to dune wavelength 

effect combined with variations in groundwater underflow on RTDs in the hyporheic zone 

of dune-covered streambeds has not been evaluated yet. On one hand, most hyporheic 

studies included either the presence of streambed depth (Marzadri et al., 2016) or 

underflow velocity (Boano et al., 2009; Cardenas & Wilson, 2006). The aim of this chapter 

is to address this knowledge gap by identifying appropriate analytical representations of 

the hyporheic zone RTD for various combinations of dimensionless streambed depths and 

underflow values.  

The widely deployed Transient Storage model (TSM) (Bencala, 1983) implemented in 

the USGS OTIS package (Runkel, 1998), for example, assumes that the hyporheic zone 
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RTD can be represented by an exponential (EXP) distribution (Harvey & Gooseff, 2015). 

Although the applicability of an EXP distribution for the hyporheic zone RTD has been 

questioned (Knapp & Kelleher, 2020), Zaramella et al. (2003) claimed that it is a 

reasonable approximation for shallow beds. Other studies found that the RTD follows a 

power law tail (Cardenas, 2007; Haggerty et al., 2002; Kirchner et al., 2000; McGuire et 

al., 2005) for both homogeneous and heterogeneous sediment (Sawyer & Cardenas, 2009), 

and that this tailing behaviour is more persistent in regional and subregional flow systems 

(Cardenas, 2007).  Over the years, other analytical distributions have been suggested for 

the hyporheic zone RTD, including the Gamma (GAM) (Kirchner et al., 2000), Lognormal 

(LN) (Marzadri et al., 2016; Wörman et al., 2002), and Fréchet (FR) (Grant et al., 2020b) 

distributions. In this study, we systematically evaluate the effect on RTDs of dimensionless 

sediment depth (i.e., sediment depth normalized by dune wavelength) combined with 

various groundwater underflow values, for hyporheic exchange induced by dune-like 

bedform. We investigate the conditions (combination of relative sediment depth and 

groundwater underflow) for which these four distributions (EXP, GAM, LN, and FR) 

apply, and we analyze the values of the distribution parameters that can be useful for 

different applications. 

3.2 Methodology 

Candidate analytical RTDs were evaluated for different sediment bed depths and underflow 

values in three steps. First, a particle tracking technique was used to generate empirical 

RTDs associated with bedform pumping through the hyporheic zone for 832 combinations 

of sediment bed depths and underflow values. Second, each of the four candidate analytical 

distributions (EXP, GAM, LN, and FR) were fitted to the empirical RTDs, and sets of RTD 

parameter values were inferred. Finally, for each considered combination used to generate, 

the four candidate analytical distributions were ranked in terms of their goodness of fit to 

the empirical RTDs using an Anderson-Darling test. Details for these three steps are 

described below.  

3.2.1 Numerical Generation of Empirical RTDs 

To simulate the advective flow field associated with hyporheic exchange through stationary 

bedforms, we adopted the analytical 2-D laminar flow model published by Packman et al. 

(2000a) and generalized by Boano et al. (2009), which is based on earlier analytical 

solutions of hyporheic exchange through streambeds by Elliott and Brooks (1997b) and 

Vaux (1968). These models posit a sinusoidal pressure variation over the sediment-water 

interface mimicking the static and dynamic pressure variations that develop on the surface 

of streambeds in a turbulent overlying flow (Cardenas et al., 2008), and assume isotropic 

and homogeneous hydraulic conductivity, constant sediment porosity and fluid density. A 
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so-called “Tóth domain” (Figure 3.1) (Frei et al., 2019; Tóth, 1962) was used here, 

including an impermeable lower boundary at depth 𝑑𝑏 below the surface with underflow 

𝑢𝑏 and upwelling/downwelling groundwater velocity (±𝑣𝑔, where + indicates upwelling 

and – refers to downwelling). The model in dimensionless form is written as: 

𝑢𝑑
∗= -cos(𝑥∗) [tanh(𝑑𝑏

∗) sinh(𝑦∗)+cosh(𝑦∗)] +𝑢𝑏
∗ ,       (3.1) 

𝑣𝑑
∗= -sin(𝑥∗) [tanh(𝑑𝑏

∗) cosh(𝑦∗)+sinh(𝑦∗)] ±𝑣𝑔
∗       (3.2) 

ℎ𝑚 = 0.28 
𝑈2

2𝑔
 

{
 
 

 
 
(
ℎ𝑏

𝑑⁄

0.34
)

3
8⁄

  𝐻 𝑑⁄  ≤ 0.34

(
ℎ𝑏

𝑑⁄

0.34
)

3
2⁄

    𝐻 𝑑⁄  ≥ 0.34

                    (3.3) 

𝑢𝑚 = 𝑘 𝐾𝑐ℎ𝑚  𝑡𝑎𝑛ℎ(𝑑𝑏
∗)                                       (3.4) 

𝑢𝑑
∗ =

𝑢𝑑

𝑢𝑚
,                                                                 (3.5) 

𝑣𝑑
∗ =

𝑣𝑑

𝑢𝑚
,                                                               (3.6) 

𝑢𝑏
∗ =

𝑢𝑏

𝑢𝑚
,                                                               (3.7) 

𝑣𝑔
∗ =

𝑣𝑔

𝑢𝑚
,                                                               (3.8) 

𝑘 =
2𝜋

𝜆
,                                                                (3.9) 

𝑥∗ = 𝑘 𝑋,                                                           (3.10) 

𝑦∗ = 𝑘 𝑌,                                                          (3.11) 

𝑑𝑏
∗ = 𝑘 𝑑𝑏 ,                                                        (3.12) 

𝑡∗ =
𝑘𝑢𝑚𝑡

𝛳
,                                                        (3.13) 

where 𝑢𝑑  and 𝑣𝑑  are the horizontal and vertical Darcy fluxes, respectively, ℎ𝑏 is the 

bedform height, 𝑑 is the stream depth, 𝐾𝑐 is the hydraulic conductivity,  𝑢𝑚 is the maximum 

Darcy flux at the sediment water interface (SWI), 𝑋 and 𝑌 are the horizontal and vertical 

coordinates, 𝑑𝑏
∗  is the dimensionless sediment depth, 𝜆 is the bedform wavelength, 𝑘 is the 

wavenumber of the bedforms, and 𝛳 is the sediment porosity. The vertical coordinate, 𝑌, 

is centred at the SWI (𝑌 = 0) and oriented upward, i.e., depth into the bed corresponds to 

negative values of 𝑌. The range of 𝑑𝑏
∗  was chosen between 0.2 and 6.4 (deep enough to 

avoid affecting the hyporheic zone extent) consistently with published experimental studies 

performed with dune-like bedforms (Elliott & Brooks, 1997a; Marion et al., 2002; 
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Packman et al., 2000b, 2004; Packman & MacKay, 2003; Rehg et al., 2005; Ren & 

Packman, 2004). Similarly to Boano et al. (2009), the investigated range of 𝑢𝑏
∗  was between 

0 (no underflow) to 5 (very large underflow) with intervals of 0.1 at 𝑢𝑏
∗ < 1, 0.2 for 1 >

𝑢𝑏
∗ > 3, and 0.5 at 𝑢𝑏

∗ > 3. Due to the presence of the impervious sediment bottom at 

𝑌 = −𝑑𝑏, the effect of upwelling and downwelling groundwater was neglected (𝑣𝑔 = 0). 

 

Figure 3.1: A) Representative diagram of a conceptual model representing hyporheic exchange 

below a dune-like bedform, with pressure head distribution and consequent upwelling and 

downwelling zones due to the dune morphology. B) Simplified analytical model represented by a 

Tòth domain with a sinusoidal pressure variation creating upwelling and downwelling zones.   

The volumetric water flux predicted by Eq. (3.2) varies sinusoidally with horizontal 

distance along the SWI, forming well-defined upwelling and downwelling regions that are 

fully characterized by repeating unit cells (Elliott & Brooks, 1997b) (see Figure 3.1B). 

Thus, the RTD associated with the hyporheic flow field can be determined by tracking the 

arrival times of particles released in the downwelling zone of a single unit cell. 

Accordingly, we released 10000 particles in the downwelling zone (0 ≤  𝑥∗ ≤ 𝜋) with a 

flux-weighting scheme that generated a number of particles proportional to the local 

downwelling flux. The RTD for each combination of 𝑑𝑏
∗  and 𝑢𝑏

∗  was obtained by fixing the 

length of each particle step within the sediment domain (∆𝑠∗ = 𝑘∆𝑠 = 2 ∗ 10−3). Then, 

the i-th time step (∆𝑡∗) was calculated as:  

∆𝑡𝑖
∗ =

∆𝑠∗

√𝑢𝑑
∗
𝑖

2
+𝑣𝑑

∗
𝑖

2
 ,    (3.14) 

where 𝑢𝑑
∗
𝑖
 and 𝑣𝑑

∗
𝑖
 denote the velocity components at the particle location at the end 

of i-th step. For each particle, the time at the end of the i-th step (𝑡𝑖
∗) within the sediment 

bed domain (𝑦∗ < 0) is:  
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𝑡𝑖
∗ = 𝑡𝑖−1

∗ + ∆𝑡𝑖
∗,   𝑖 = 1,… , 𝑁,   (3.15) 

where 𝑡0
∗ = 0, N is the number of steps undertaken by each particle, and the corresponding 

horizontal and vertical particle displacements (∆𝑥𝑖
∗ and ∆𝑦𝑖

∗, respectively) of the i-th step 

are:  

∆𝑥𝑖
∗ = 𝑢𝑑

∗
𝑖
∆𝑡𝑖

∗  (3.16) 

∆𝑦𝑖
∗ = 𝑣𝑑

∗
𝑖
∆𝑡𝑖

∗ (3.17) 

For each combination of 𝑑𝑏
∗  and 𝑢𝑏

∗ , Cumulative Distribution Function (CDF) and 

probability density function (pdf) forms of the RTD were calculated from the observed 

residence times of the 10000 particles.  

3.2.2 The Inference of the Analytical Distribution Parameters 

Separate particle tracking RTDs were generated for 832 combinations of 𝑑𝑏
∗  and 𝑢𝑏

∗  over 

their previously mentioned ranges. Each of these RTDs was fitted to the four analytical 

distributions (EXP, GAM, LN, and FR, see Table 3.1 described earlier, using MLE method 

encoded in the Mathematica (Wolfram) software). EXP is characterized by a decreasing 

monotonic function and parametrized by a single parameter (𝜌). The parameters for the 

GAM distribution, 𝛼 and 𝛽, control the shape and scale characteristics of the distribution, 

respectively. The parameters of LN, 𝜇 and σ, determine the mean value and the standard 

deviation of the log-transformed random variable, respectively. Even though the FR 

distribution is a three-parameter distribution (shape parameter 𝑠, scale parameter 𝑞, and 

location parameter 𝑚), for the sake of parsimony and for consistency with the other 

distributions considered in this study, which have no more than 2 parameters, the FR 

distribution with two parameters was chosen by fixing the shape parameter (𝑠 = 1) as 

assumed by Grant et al. (2020b). To determine the ranking of these distributions according 

to their closeness to the empirical RTD from each particle tracking simulation, the 

candidate analytical distributions were ranked using the Anderson-Darling (AD) test 

(Anderson & Darling, 1952) that was created to detect sample distributions’ departure from 

normality. The AD test was chosen because its precision in comparing distributions is 

superior to other goodness-of-fit tests (Engmann & Cousineau, 2011). This deviation 

between the empirical RTD and the tested distribution is denoted here as AD (lower AD 

value means closer analytical distribution to the empirical one), and it was calculated as 

follows:  

𝐴𝐷 = −𝑛 − 1 𝑛⁄ ∑ _(2𝑖 − 1)[ln 𝐹(𝑋𝑖) + ln(1 − 𝐹(𝑋𝑛+1−𝑖))]
𝑛
𝑖=1   (3.18) 
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where (𝑋1  < . . . <  𝑋𝑛) is the ordered (from smallest to largest) element sample of size n, 

and 𝐹(𝑋) is the tested analytical cumulative distribution to which the sample is compared. 

Then, the parameters of the analytical distributions were inferred for all 𝑑𝑏
∗  and 𝑢𝑏

∗  

combinations. 

The efficiency of each analytical distribution was tested through the AD criterion by 

calculating the relative error (RE) associated with estimating different percentiles of the 

RTD. Here, we used 𝑡∗ corresponding to 20% (𝑡20%
∗ ), 50% (𝑡50%

∗ ), and 80% (𝑡80%
∗ ) of the 

flow paths have passed. Hence, RE is calculated as following:  

𝑅𝐸𝑖 =
|𝑡𝑖
∗
𝐴
−𝑡𝑖

∗
𝐸
|

𝑡𝑖
∗
𝐸

    (3.19) 

where 𝑖 corresponds to different percentiles (20%, 50%, and 80%), 𝐴 denotes the analytical 

distribution, while 𝐸 is used to represent empirical distribution.  

Table 3.1: A list of the adopted analytical distributions in this study with their associated pdf 

formulae and parameters. 

3.3 Results 

3.3.1 Hyporheic Flow Paths 

The results of the particle tracking simulations show that in case of semi-infinite bed with 

no underflow (𝑑𝑏
∗ ⟶∞,𝑢𝑏

∗ = 0), the exchanged water parcels infiltrate through the 

downwelling zone into the sediment forming two identical and symmetrical flow cells 

Distribution pdf parameters 

Gamma 
𝑒
−
𝑡∗

𝛽 𝑡∗−1+𝛼𝛽−𝛼

Gamma[𝛼]
𝑡∗ > 0 

𝛼, 𝛽 

Lognormal 
ⅇ
−
(−𝜇+Log[𝑡∗])2

2𝜎2

√2𝜋𝑡∗𝜎
𝑡∗ > 0 

𝜇, 𝜎 

Fréchet  

  

𝑒−
𝑞

𝑡∗−𝑚𝑞

(𝑡∗ −𝑚)2
𝑡∗ > 𝑚 

𝑠 = 1, 𝑞,𝑚 

Exponential 𝜌𝑒−𝑡
∗𝜌 𝑡∗ ≥ 0 𝜌 
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(Figure 3.2A). The presence of underflow (𝑢𝑏
∗ > 0) distorts the flow cells (Figure 3.2B), 

as 𝑢𝑏
∗  tends to displace the water parcels from the downwelling zone to the zone where 𝑣∗is 

positive (Boano et al., 2009). In addition, the existence of a confining layer (shallow 𝑑𝑏
∗ ) 

reduces the extent of the hyporheic zone (Figure 3.2C), while the combined presence of 

both 𝑑𝑏
∗  and 𝑢𝑏

∗  results in shallow hyporheic zone with asymmetrical flow cells (Figure 

3.2D). This hyporheic depth confinement was also observed when introducing 

groundwater gaining/losing conditions as well as sediment heterogeneity (Hester et al., 

2013, 2019). 

The hyporheic RTDs generated by the particle tracking algorithm (i.e., the empirical 

RTDs, see Methods) become progressively heavy tailed as the dimensionless depth 

increases from 𝑑𝑏
∗  = 0.2 to 6.4 (Figure 3.3A, direction of the black arrow). Increasing 𝑢𝑏

∗  

has a similar effect to decreasing 𝑑𝑏
∗  (Figure 3.3B), especially for RTDs tails that represent 

the deep flow paths. Instead, the short residence times are more affected by 𝑢𝑏
∗  than 𝑑𝑏

∗  

because underflow modifies the shape of the shallow flow paths, as explained before 

(Figure 3.2). For large values of 𝑑𝑏
∗ , the shape of the empirical RTD converges to the one 

of an infinitely deep bed (see RTDs for 𝑑𝑏
∗ = 4, 5, and 6.4 in Figure 3.3A), consistently 

with previous results (Boano et al., 2009; Fox et al., 2014; Wörman et al., 2002). 

3.3.2 Analytical Representation of the Empirical RTDs. 

Figure 3.4 was produced based on the AD values and reports the distributions that fit better 

the empirical RTDs over the considered ranges of 𝑑𝑏
∗  and 𝑢𝑏

∗ . Because the RTD becomes 

progressively heavy tailed with increasing 𝑑𝑏
∗  and its shape changes over the range of 𝑢𝑏

∗ , 

no single analytical distribution can represent the empirical RTDs over the full ranges of 

𝑑𝑏
∗  and 𝑢𝑏

∗  tested here (Figure 3.4A). According to the AD criterion, in case of negligible 

underflow (𝑢𝑏
∗ ≤ 0.1), the empirical RTD is best approximated by different analytical 

distributions over different sediment depth ranges, including: (1) GAM for shallow 

streambeds (0 ≤ 𝑑𝑏
∗ ≤  1.2, Figure 3.4A); (2) LN for streambeds of intermediate depth 

(1.2 < 𝑑𝑏
∗ < 3.2, Figure 3.4A); and (3) FR for deep streambeds (𝑑𝑏

∗  > 3.2, Figure 3.4A). 

On the other hand, for 𝑢𝑏
∗ > 0.1 the best fitting analytical distribution switches between 

GAM and LN (Figure 3.4A). Specifically, for 0.1 < 𝑢𝑏
∗ < 0.8, LN is identified as the best 

fitting distribution for nearly all 𝑑𝑏
∗  cases, as LN better fits the heavy tail of the empirical 

distribution. However, at 𝑢𝑏
∗ > 0.8 the heavy tail progressively disappears (see examples 

in Figure 3.3), and GAM becomes the best fitting distribution (Figure 3.4A).  

In some cases, the second-best fitting distribution can also provide a reliable 

representation of the empirical RTD. Therefore, the map of surrogates for the best fitting 
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distribution (i.e., the second-best fitting distribution according to AD criterion) is presented 

in Figure 3.4B. Overall, these surrogates vary between GAM and LN based on the specific 

values of 𝑑𝑏
∗  and 𝑢𝑏

∗ , except for 𝑢𝑏
∗ ≤ 0.2 and in relatively deep streambeds (𝑑𝑏

∗ ≥ 2.2) 

when LN and FR switch roles between the best fitting distribution and the second best 

(surrogate) (Figure 3.4). Finally, for 𝑢𝑏
∗ = 0.3, EXP behaves as a better surrogate than 

GAM, which is classified as the third-best fitting distribution with minimal difference with 

EXP according to the AD criterion.   

 

Figure 3.2:  Pathlines induced by dune morphology in different combinations of 𝑑𝑏
∗  and  𝑢𝑏

∗ ;(A)  

𝑑𝑏
∗ → ∞ and  𝑢𝑏

∗ = 0, (B) 𝑑𝑏
∗ → ∞ and  𝑢𝑏

∗ = 0.4, (C) 𝑑𝑏
∗ = 0.4 and  𝑢𝑏

∗ = 0, (D) 𝑑𝑏
∗ = 0.4 and  

𝑢𝑏
∗ = 0.4.  
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Figure 3.3:  The effect of different values of (A) 𝑑𝑏
∗  and (B) 𝑢𝑏

∗  on empirical CDF. The black 

arrow shows the direction of 𝑑𝑏
∗  increase (A) and 𝑢𝑏

∗  increase (B). The black arrows in (A) and 

(B) indicate the increase in 𝑑𝑏
∗  and 𝑢𝑏

∗ , respectively. 

 

Figure 3.4:  Maps of (A) best and (B) second best analytical representative at different 

combinations of 𝑑𝑏
∗  and 𝑢𝑏

∗ . 

Figure 3.5 shows that the best fitting analytical distributions reproduce remarkably 

well the empirical distributions for different combinations of 𝑑𝑏
∗  and 𝑢𝑏

∗ . The relative errors 

(RE) for different CDF percentiles (𝑡20%
∗  in Figure 3.5A, 𝑡50%

∗  in Figure 3.5B, and 𝑡80%
∗  in 

Figure 3.5C) are always less than 10%. Similarly, the second-best fitting distribution can 

fit the empirical CDFs reasonably good, as the RE is very low for 𝑡20%
∗  (less than 12%, 

Figure 3.6A), and low (< 21%) for the other two percentile (𝑡50%
∗  and 𝑡80%

∗ ). 
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Figure 3.5: The relative error associated with estimating (A) 𝑡20%

∗ , (B) 𝑡50%
∗ , and (C) 𝑡80%

∗  by 

applying Eq. (3.19) on the best analytical distributions to represent the empirical CDF (Figure 

3.4A).  

 
Figure 3.6: The relative error associated with estimating (A) 𝑡20%

∗ , (B) 𝑡50%
∗ , and (C) 𝑡80%

∗  by 

applying Eq. (3.19) on the second-best analytical distributions to represent the empirical CDF 

(Figure 3.4B). 

3.3.3 Inferring the Parameters of the Analytical distributions 

The parameter values fitted for each distribution vary with 𝑑𝑏
∗  and 𝑢𝑏

∗  (Figure 3.7). For 

EXP, 𝜌 slightly decreases with 𝑑𝑏
∗  and increases with increasing 𝑢𝑏

∗  (Figure 3.7A). For 

GAM, 𝛼 decreases and 𝛽 increases with higher 𝑑𝑏
∗  and lower 𝑢𝑏

∗  (Figure 3.7B), as the 

distribution shape shifts from unimodal to monotonically decreasing. For LN, both 𝜇 and 

𝜎 increase as the thickness of the tail increases to describe longer 𝑡∗ at higher 𝑑𝑏
∗  and lower 

𝑢𝑏
∗  values (Figure 3.7C) Lastly, for FR, 𝑞 increases and 𝑚 decreases (Figure 3.7D) for 

higher 𝑑𝑏
∗  and lower 𝑢𝑏

∗ , as the distribution flattens and its peak shifts towards longer 𝑡∗. 

For all distributions, the parameters attain constant values for deep streambeds as well as 

for strong underflow.   
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3.4 Application for Estimating the Damkhöler Number. 

The wide spatial and temporal scales of the hyporheic zone affect its associated 

characteristics (residence times, reaction times, and exchange rate) that affect its ability to 

process nutrients (Harvey et al., 2013) . Gomez-Velez et al. (2015) used a quantity called 

Reaction Significance Factor (RSF) (Harvey et al., 2013) to evaluate the residence 

time/exchange rate trade‐off for aerobic respiration and denitrification in the Mississippi 

River Network. In this framework, more nutrients are removed from the hyporheic zone 

when the residence time is comparable to the reaction time and the uptake length is shorter 

than the reach length so the water parcel can circulate many times through the reach. The 

component that compares the residence time to the reaction time in this framework is called 

the Damköhler number (𝐷𝑎), which is utilized by different models to delineate the 

boundary between aerobic and anerobic conditions that define the hyporheic zoen as either 

a source or sink for the nutrients (Zarnetske et al., 2012). It is defined as the ratio between 

the median hyporheic residence time (𝑡50%
∗ ) and the characteristic time necessary for 

oxygen consumption that was used in unidimensional form by applying Eq. (3.13) (𝜏𝑟𝑝
∗ =

𝑘𝑢𝑚𝜏𝑟𝑝 Ѳ⁄ ). At 𝐷𝑎𝑟𝑝 = 𝑡50
∗ 𝜏𝑟𝑝

∗⁄ <  1, the residence times of water parcels are less than 

the reaction time needed for oxygen consumption, aerobic conditions are dominant and 

denitrification is inhibited, while at 𝐷𝑎𝑟𝑝 >>  1, oppositely, anaerobic conditions prevail 

and denitrification is likely (i.e., provided that the other two requirements; the presence of 

nitrate and labile organic matter, are satisfied) (Zarnetske et al., 2012). When flow paths 

exhibit residence times longer than a characteristic denitrification timescale used in 

unidimensional form (𝜏𝑑𝑛
∗ = 𝑢𝑚𝜏𝑑𝑛 𝛳⁄ ), they tend to be fully anaerobic, and all or most of 

the nitrate is removed (𝐷𝑎𝑑𝑛 = 𝑡50
∗ 𝜏𝑑𝑛

∗⁄ >>  1). Gomez-Velez et al. (2015) utilized a 

limited number of reported measurements in literature for different streams with different 

morphological and geometrical characteristics to proposed reasonable values for 𝜏𝑟𝑝 and 

𝜏𝑑𝑛. They found that 𝜏𝑟𝑝 typically varies from 0.5 h to 10 h with median of 1 h, and 𝜏𝑑𝑛 

typically varies from 0.5 h to 100 h with median of 10 h. For simplicity, as determining 𝜏𝑟𝑝 

and  𝜏𝑑𝑛 is not the main focus of this study, these median values for 𝜏𝑟𝑝 and  𝜏𝑑𝑛 were used 

in determining 𝐷𝑎𝑟𝑝 and 𝐷𝑎𝑑𝑛, respectively. Correctly representing the residence 

timescales in the hyporheic zone can help in accurately determining the Damköhler 

numbers for aerobic respiration and denitrification. This leads to more accurate 

assessments of the link between the hyporheic zone RTD and key ecological functions, 

such as stream metabolism, generally, and denitrification, in particular (Mulholland et al., 

2009). 
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Figure 3.7: Maps showing the parameters values for the four analytical distributions tested in this study ((A) EXP, (B) GAM, (C) LN, and (D) FR) 

at different combinations of 𝑑𝑏
∗  and 𝑢𝑏

∗ .
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The hydraulic and morphological properties of the Embarras River (Table 3.2)  located 

15 km south of Urbana-Champaign, east-central Illinois, USA (Sukhodolov et al., 2006) 

was adopted here. This river was chosen because dune-like bedforms are its predominant 

morphology. It is used only as an application to show how the analytical distributions 

resulted from the comparison between the empirical RTDs and the four tested analytical 

distributions (EXP, GAM, LN and FR) (see section 3.3.2) can be applied for predicting 

𝐷𝑎, and consequently, the nitrification-denitrification zones. Therefore, 𝐷𝑎𝑟𝑝 and 𝐷𝑎𝑑𝑛  

where calculated using 𝑡50%
∗

𝐸
 (𝑡50%

∗  based on the empirical CDF), and then compared to 

𝑡50%
∗

𝐴
 (𝑡50%

∗  based on the analytical distributions (EXP, GAM, LN and FR)). The properties 

of the Embarras River were used to normalize the respiration and denitrification time scales 

(𝜏𝑟𝑝~1h and 𝜏𝑑𝑛~10h, respectively). 

Table 3.2: Embarras River properties used for normalizing the respiration and denitrification time 

scales. † Porosity was obtained from Figure 5 in Urumović and Urumović Sr (2014) by 

considering the referential grain size = 𝐷𝑚. ‡ The hydraulic conductivity was calculated with the 

Kozeny–Carman equation.  

Embarras River Properties 

mean grain size (𝐷𝑚) 1 𝑚𝑚 
stream depth (𝑑) 0.35 𝑚 
mean stream Velocity (𝑈𝑚𝑒𝑎𝑛) 0.44 𝑚 𝑠⁄  
Dune wavelength (𝜆) 1 𝑚 
Dune height (𝐻) 0.1 𝑚 
Dune roughness (𝐻 𝑑⁄ ) 0.29 
Porosity (𝛳) † 0.32 
Hydraulic conductivity (𝐾𝑐) ‡ 4.4 ∗ 10−3𝑚 𝑠⁄  

For different 𝑑𝑏
∗  and 𝑢𝑏

∗ = 0 , the empirical 𝐷𝑎𝑟𝑝 and 𝐷𝑎𝑑𝑛 (𝐷𝑎𝐸𝑀𝑃, asterisks in Figure 

3.8) were calculated as the ratio between the empirical  𝑡50%
∗

𝐸
 and the normalized 

respiration and the denitrification time scales 𝜏𝑟𝑝
∗  and 𝜏𝑑𝑛

∗ . The corresponding 𝐷𝑎𝑟𝑝 and 

𝐷𝑎𝑑𝑛 were calculated for each one of the four analytical distributions (𝐷𝑎𝐸𝑋𝑃, 

𝐷𝑎𝐺𝐴𝑀, 𝐷𝑎𝐿𝑁, 𝐷𝑎𝐹𝑅), and then compared to 𝐷𝑎𝐸𝑀𝑃 that is estimated using the empirical 

RTD (Figure 3.8). It should be noticed that 𝐷𝑎𝑟𝑝 and 𝐷𝑎𝑑𝑛 are simply proportional to each 

other by one order of magnitude (see vertical axes in Figure 3.8), as they differ only by the 

reaction timescales. Therefore, the comparison between empirical and analytical 

representations of 𝐷𝑎 does not depend on the specific reaction considered. 
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Damkhöler numbers generated from the empirical RTD (Figure 3.8) decline more-or-

less monotonically with increasing dimensionless streambed depth. This pattern is best 

represented by GAM for 𝑑𝑏
∗ < 1.2, and by FR over the full range of 𝑑𝑏

∗  evaluated here. The 

LN and EXP distributions under- and over-estimate 𝐷𝑎 for dimensionless depths 𝑑𝑏
∗ < 1.0 

and 𝑑𝑏
∗ >  1.0, respectively. This result-that FR provides the best estimate of the 

Damkohler Number over the two-order of magnitude change in dimensionless sediment 

bed depth evaluated here-is surprising given that this analytical distribution is not the best 

representation of the empirical RTD for 𝑑𝑏
∗  < 3.2 (see above). The explanation is that, even 

for shallow depths, the optimized CDF of FR intersects the empirical CDF at the 50% 

percentile across all dimensionless depth ranges evaluated here. Hence, the analytical 

distribution’s estimate for 𝑡50%
∗ , and hence the Damköhler number, is accurate, even for 

shallow bed depths, where FR is a relatively poor representation of the empirical RTD.  

 

Figure 3.8: Comparison between the Damköhler number of respiration and denitrification (𝐷𝑎𝑟𝑝 

and 𝐷𝑎𝑑𝑛, respectively) calculated at different 𝑑𝑏
∗  from the empirical RTD (𝐷𝑎𝐸𝑚𝑝), and the ones 

calculated by different analytical representations (𝐷𝑎𝐺𝐴𝑀, 𝐷𝑎𝐿𝑁, 𝐷𝑎𝐹𝑅, and 𝐷𝑎𝐸𝑋𝑃). 

3.5 Discussions 

The hyporheic flow paths tend to extend vertically below dune-like bedforms to an extent 

comparable to dune wavelength (e.g., Boano et al., 2009; Fox et al., 2014; Marzadri et al., 

2016). They form two symmetric cells in which the flow paths infiltrate in the pumping 

zone and exfiltrate in zones of low-pressure head (Figure 3.1). When flow paths infiltrate 

freely into the sediment, their RTDs are characterized by a heavy tail which accounts for 

the very deep flow paths which stay for longer RTs within the sediment. Introducing a 
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confining effect to the extent of the hyporheic zone prevents some of the flow paths from 

infiltrating deeper in the sediment. Therefore, the heavy tail of the RTD is partially cut off. 

The groundwater underflow affects not only the deep flow paths but also it deforms the 

shallow ones (compare different panels in Figure 3.2). This horizontal groundwater flow 

that is mathematically equivalent to the effect of a bedform migrating with velocity 𝑢𝑏
∗  

limits the thickness of the hyporheic zone. Consequently, it reduces the RTD’s positive 

skewness and heavy tail (Bottacin-Busolin & Marion, 2010).  

Both the best and second-best analytical representatives of the empirical RTD perform 

relatively well (Figures 3.53.6 and 3.6), and the difference between them is small (<20% 

in general, and <10% in most cases) (Figure 3.9). Therefore, in general, over the whole 

range of 𝑑𝑏
∗  and 𝑢𝑏

∗ , LN can be used to represent the RTD, as it is always either the best or 

the second-best representative (Figure 3.4) and it performs considerably well in fitting the 

empirical RTD in different cases. This finding is in agreement with many of previous 

studies (e.g., Cardenas et al., 2008; Marzadri et al., 2016; Wörman et al., 2002) which 

suggested that LN can be used to represent RTD in dune-like bedforms. In addition, and in 

agreement with (Kirchner et al., 2000), GAM also appears to be a good surrogate for most 

of the cases (Figure 3.4) as it represents very well the RTD compared to FR and EXP and 

in some cases even to LN. This good performance is found, especially, when the hyporheic 

zone is confined by either streambed depth (shallow 𝑑𝑏
∗) or strong underflow/fast moving 

bedform (high 𝑢𝑏
∗ ). On the other hand, when the hyporheic zone extends more deeply in 

the sediment (deep 𝑑𝑏
∗  or low 𝑢𝑏

∗ ), FR is identified as a better representative for the RTDs 

than GAM. FR works relatively well for deep 𝑑𝑏
∗  and low 𝑢𝑏

∗  (Figure 3.4), as this 

distribution is usually used to represent extreme events (Ramos et al., 2017) whose 

distributions are usually characterized by a very long tail after a relatively flat peak. This 

agrees with the findings of (Grant et al., 2020b), who also pointed out that LN cannot be 

used in their coupled advective-dispersive model framework because it cannot be Laplace 

transformed. For this purpose, GAM and FR, which can both be Laplace transformed, can 

be used as an alternative to LN depending on the combination of 𝑑𝑏
∗  and 𝑢𝑏

∗  (Figure 3.4).  



58                                                                                            Chapter 3    

 

 

Figure 3.9: Difference between relative errors associated with the best analytical representation 

(Figure 3.5) and the second-best one (Figure 3.6) for (A) 𝑡20%
∗ , (B) 𝑡50%

∗ , and (C) 𝑡80%
∗ . 

Contrary to previous reports (e.g., Zaramella et al., 2003), the EXP distribution appears 

to be a poor representation of the empirical RTD across most of the cases tested in this 

study. It can acceptably simulate the RTD tails in some cases for low 𝑢𝑏
∗  values (Figure 

3.4B). However, for higher values of 𝑢𝑏
∗ , EXP does not accurately describe neither the short 

residence times (because of the RTD skewness) nor the long residence times (because it is 

characterized by a longer tail). 

An application of the results of our study is the prediction of the Damkӧlher number 

using the predicted residence time form the best analytical RTD. This approach allows 

analytical distributions to be employed in modeling frameworks such as the advective-

diffusive model introduced by Grant et al. (2020b), for which the ranking we provide here 

is important to choose a representative RTD that can be Laplace transformed. In general, 

the availability of an analytical expression of RTDs for different combinations of 𝑑𝑏
∗  and 

𝑢𝑏
∗  can foster the future modeling studies of the hyporheic zone. 

3.6 Conclusion Remarks 

The hyporheic zone RTD associated with bedform pumping below dune-like bedforms is 

well represented by specific analytical distributions depending on the values of 

dimensionless streambed depth (𝑑𝑏
∗ ) and underflow velocity (𝑢𝑏

∗ ). From an Anderson-

Darling (AD) ranking of these distributions we found that the empirical RTD is generally 

well represented by Lognormal and Gamma distributions, except for some cases in which 

Fréchet distribution performs better. Usually, the Fréchet distribution is more accurate for 
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deep 𝑑𝑏
∗ > 3.2 with very low underflow (𝑢𝑏

∗ ≤ 0.1), while LN, generally, works better for 

low 𝑢𝑏
∗  values (0.1 < 𝑢𝑏

∗ < 0.8) and Gamma performs better for large 𝑢𝑏
∗  values (> 0.8). 

Even though Fréchet cannot capture the whole shape of the RTD in shallow beds with no 

underflow, it accurately represents the median residence time, 𝑡50%
∗ , and it therefore 

provides the best representation of the Damköhler number over > 2 orders of magnitude 

of streambed depths even when 𝑢𝑏
∗ = 0. In most cases, Lognormal and Gamma can be 

equivalently employed as they are classified as either the best or the second-best 

representations of the empirical RTD. The availability of analytical distributions can be 

useful for modeling studies of nutrient dynamics to avoid the necessity of numerical 

simulations of hyporheic flow. Therefore, the results presented in this study can prove 

useful for modelling hyporheic exchange in dune-like bedforms and assessing nutrient 

processing in the hyporheic zone. 
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Chapter 4                                   

Diffusive Description of Vertical 

Mixing in the Benthic Biolayer for 

Different Stream Morphology. 

4.1  Introduction 

Mass transport at the SWI has been investigated for decades, and diffusive approaches have 

been proposed as an attempt to quantify solute exchange (Grant et al., 2012; Grant et al., 

2020a, 2020b; O’Connor & Harvey, 2008). A seminal model based on the concept of 

diffusive boundary layer (DBL), a thin layer close to the wall where molecular diffusion is 

dominant, was used to explain the transport process. However, this model has been 

developed assuming a smooth boundary layer, and therefore, its applicability to rough 

boundaries is questionable (Jørgensen & des Marais, 1990). Moreover, this model does not 

seem to fully represent mass transport through the SWI, as the exchange rates are large and 

cannot be explained only by molecular diffusion, also these exchange rates demonstrate a 

strong dependence on the turbulence structures (Hondzo et al., 2005; Lorke et al., 2003; 

O’Connor & Harvey, 2008). Since then, many empirical formulae were introduced to 

unravel the correlation between the controlling parameters of the transport process, and 

sediment characteristics and the hydrodynamics of the overlying flow. Elliott and Brooks 

(1997b) suggested that the effective diffusion from the water column into sediment with 

ripples and dunes (𝐷𝑒𝑓𝑓) is controlled by sediment porosity, hydraulic conductivity, and 

the half amplitude of the hydraulic head variations at the SWI, that in turn depends on the 

water column depth and velocity as well as on the bedform height. Instead, Packman and 

Salehin (2003) found a scaling relationship between 𝐷𝑒𝑓𝑓 and Reynolds number and the 

mean sediment diameter. Furthermore, based on meta-analysis including many laboratory 

experiments with different morphologies, O’Connor and Harvey (2008) proposed a 

formula to estimate 𝐷𝑒𝑓𝑓 depending on the shear Reynolds number and the permeability 

based Péclet number. Grant et al. (2012) later replaced this formula with a new one that 
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considers the effect of sediment porosity, sediment bed depth, and permeability Reynolds 

number. Moreover, Voermans et al. (2018) also proved experimentally that the 

permeability Reynolds number plays a significant role in defining the exchange process at 

the SWI. In addition, different experimental studies (Hester et al., 2021; Santizo et al., 

2020) have been performed to investigate different hydraulic (infer also morphological) 

factors effect on the mixing (benthic) layer characteristics (e.g., thickness). 

All of the above-mentioned empirical formulae were based on assumptions that (1) the 

diffusivity is constant over the whole sediment depth and (2) simplifying exchange 

between the water column and the interstitial fluid as a one-way coupling, i.e., the 

variations of interstitial concentration do not affect the water column concentration. Grant 

et al. (2020a) relaxed both these assumptions by (1) trying different diffusivity profiles to 

represent the decay of diffusion within the sediment domain and (2) building a one-

dimensional model that fully couples the water column with the sediment domain. Grant 

et al. (2020a, 2020b) tested this model with the data from a stirred tank experiment 

(Chandler et al., 2016) and to bedform experiments (Elliott & Brooks, 1997a). The results 

showed that considering an exponentially decaying diffusion coefficient with depth better 

represents the transport process through the SWI and within the sediment than a constant 

diffusion coefficient. Testing the applicability of this model to different experimental 

configurations with different morphologies is necessary for its validation. 

In this chapter, we performed a meta-analysis by applying the model of Grant et al. 

(2020a,, 2020b) for flat beds and dunes to a set of 127 published experiments for different 

morphologies. For each experiment, the effective diffusion at the SWI (𝐷𝑒𝑓𝑓,0) and the 

inverse mixing depth (decay coefficient of the exponential profile, ɑ) were calculated for 

the exponential diffusivity profile. A machine learning algorithm (CART) and multiple 

linear regression technique (MLR) were then applied to develop robust predictive formulae 

to estimate dependence of 𝐷𝑒𝑓𝑓,0 and ɑ on the water column, sediment, and morphological 

characteristics. Also, the effect of different morphological configurations on the transport 

process is discussed.  

4.2 Methodology 

4.2.1 The Diffusivity Model Framework  

The derivation of the mathematical framework of the diffusivity model is provided in 

APPENDIX A. This framework was introduced, first, by Grant et al. (2020a) for a flat bed 
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and extended to be coupled with the advective model for bedforms in Grant et al. (2020b). 

The novelty of this framework lies in accounting for the two-way feedback between solute 

concentration in the sediment and in the water column (Eq.  (A.16a) in APPENDIX 

A). This means that the variation in solute concentration in the water column influences 

the concentration in the sediment and vice versa. In addition, different concentration 

profiles can be plugged into the model to simulate the concentration variation over the 

sediment depth. In this study, we adopted the constant profile (C profile; the solute 

concentration is constant over the sediment depth (𝑑𝑏)) and the exponential profile (E 

profile; The solute concentration decays exponentially over the sediment depth). The 

constant profile function is represented as 𝑓(𝑦) = 1, while for the exponential profile, 

𝑓(𝑦) = 𝑒−𝑦, where 𝑦 = 𝑎𝑦, as 𝑎 is the inverse-decay coefficient of the exponential 

function (𝑎 = 0 for C profile), and 𝑦 is the vertical axis in the sediment domain ranges 

from 0 to 𝑑𝑏. The profile functions were Laplace transformed for C profile (Eq. (4.1)) and 

for E profile (Eq. (4.2)) in order to be plugged into the governing equations of solute 

concentration variation in the water column (Eq. (4.3)) and in the sediment (Eq. (4.4)) as a 

Green function 𝐺. 

𝐺(𝑦, 𝑠) = 𝑒−𝑦√𝑠     (4.1) 

𝐺(𝑦, 𝑠) =
√𝑒𝑦 𝐾1(2√𝑠𝑒

𝑦 )

𝐾1(2√𝑠 )
     (4.2) 

𝐶𝑤(𝑡̅) = (𝐶𝑤0 − 𝐶𝑠0)ℒ
−1 [

1 �̅�⁄

1− 
1

�̅�ℎ𝑤̅̅ ̅̅ ̅(
𝜕𝐺
𝜕�̅�

)�̅�=0,�̅�

] + 𝐶𝑠0               (4.3) 

𝐶𝑠(�̅�, 𝑡̅) = (𝐶𝑤0 − 𝐶𝑠0)ℒ
−1 [

𝐺(�̅�,�̅�) 𝑠̅⁄

1− 
1

�̅�ℎ𝑤̅̅ ̅̅ ̅(
𝜕𝐺
𝜕�̅�

)�̅�=0,�̅�

] + 𝐶𝑠0                             (4.4) 

where ℒ−1 is the inverse Laplace transform operator, �̅� = 𝑠 𝑡𝑇 is the dimensionless 

Laplace variable, 𝑡̅ =  𝑡 𝑡𝑇⁄  is the normalized timescale, and 𝑡𝑇 = 1 𝐷𝑒𝑓𝑓,0𝑎
2⁄  is a 

characteristic transport timescale, ℎ𝑤̅̅ ̅̅ = 𝑎 ℎ𝑤 𝛳⁄  is the dimensionless water column depth, 

ℎ𝑤 is the water column depth, and 𝛳 is the sediment porosity. 

The temporal dimensional flux at the SWI per unit bed area (𝐽(𝑡)) can be derived from 

Fick’s law for both the C profile (Eq. (4.5) and the E profile (Eq. (4.6)). 
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𝐽(𝑡) =  −𝛳 𝐷𝑒𝑓𝑓,0
𝜕

𝜕𝑦
𝑐𝑠(𝑦, 𝑡)|

𝑦=0
= −𝛳𝐶𝑆0√

𝐷𝑒𝑓𝑓,0

𝜋 𝑡
                                 (4.5) 

𝐽(𝑡) =  −𝛳 𝐷𝑒𝑓𝑓,0𝑒
−𝑎𝑦 𝜕

𝜕𝑦
𝑐𝑠(𝑦, 𝑡)|

𝑦=0
= −𝛳 𝐷𝑒𝑓𝑓,0  

𝑎 𝐶𝑠0

2
(1 + ℒ−1 [

𝐾0(2√�̅�)+𝐾2(2√�̅�)

√�̅� 𝐾1(2√�̅�)
, �̅�, 𝑡 𝐷𝑒𝑓𝑓,0 𝑎

2 ]) (4.6) 

Where 𝐾0,  𝐾1 and  𝐾2 are the modified Bessel function of first, second and third kind, 

respectively.  

For the C profile (Figure 4.1A), the experimental data are used to infer only one 

parameter (𝐷𝑒𝑓𝑓,0
𝑐 ); however, for the E profile (Figure 4.1B) two parameters (𝐷𝑒𝑓𝑓,0

𝐸  and 𝑎) 

are needed to fit the data.  

 

Figure 4.1: The constant profile (A) vs the exponential profile (B). 𝑦 is the vertical axis into the 

sediment domain, 𝐷𝑒𝑓𝑓,0
𝑐  and 𝐷𝑒𝑓𝑓,0

𝐸  are the effective diffusivity at the SWI for Constant and 

exponential profile, respectively. 𝑎 is the decay coefficient of the exponential profile. 

4.2.2 Dataset Description 

The developed model was applied to measurements obtained from 11 studies in the 

literature (Table 4.1), which conducted many laboratory experiments (127 experiments). 

These studies were conducted in various bed morphology configurations; flat beds (76 

experiments), ripples and dunes (39 experiments), and alternate bars (12 experiments). All 

experiment were performed in flumes except for Chandler’s who investigated the mixing 

using a stirring tank technique.  In some experiments, a conservative tracer was added first 

to the water column (𝐶𝑤0 > 0 and 𝐶𝑠0 = 0) till it mixes and then diffuses to the sediment 

domain (Chandler et al., 2012), in others, the tracer was added first to the sediment domain 
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(𝐶𝑠0 > 0 and 𝐶𝑤0 = 0). Different measurements were recorded in these experiments: the 

temporal variations of concentration in the water column 𝐶𝑤(𝑡), or the temporal variation 

of flux out of SWI  𝐽(𝑡) (Table 4.1). 

Table 4.1: The list of considered experiments in this study with their morphology types and initial 

conditions of solute concentration in the water column and. The initial conditions in these 

experiments differ by either introducing the solute tracer in the water column (𝐶𝑤0 > 0) or in the 

sediment (𝐶𝑠0 > 0). Experiment technique indicates wether the expreriment was conducted using 

a recirculating flume or a strirring tank. Some studies reported the temporal variation of solute 

flux out of the sedimentbed (𝐽(𝑡)), others reported either the temporal variation of solute 

concentration in the water column (𝐶𝑤(𝑡)) or in the sediment (𝐶𝑠(𝑡)). 

Study Morphology 
Type 

Initial conditions Experiment 
technique 

Reported 
results  

(Richardson & 

Parr, 1988) 

Flat bed 𝐶𝑠0 > 0, 𝐶𝑤0 = 0 Recirculating 

Flume 
       𝐽(𝑡)  

(Chandler et al., 

2016) 

Flat bed 𝐶𝑠0 > 0, 𝐶𝑤0 = 0 Stirring Tank 𝐶𝑠(𝑡) 

(Lai et al., 1994) Flat bed 𝐶𝑠0 > 0, 𝐶𝑤0 = 0 Recirculating 

Flume 
𝐽(𝑡) 

(Packman et al., 

2004) 

Flat bed & 

Bedforms 
𝐶𝑠0 = 0, 𝐶𝑤0 > 0 Recirculating 

Flume 
𝐶𝑤(𝑡) 

(Elliott & 

Brooks, 1997a) 

Bedforms 𝐶𝑠0 = 0, 𝐶𝑤0 > 0 Recirculating 

Flume 
𝐶𝑤(𝑡) 

(Packman et al., 

2000b) 

Bedforms 𝐶𝑠0 = 0, 𝐶𝑤0 > 0 Recirculating 

Flume 
𝐶𝑤(𝑡) 

(Packman & 

MacKay, 2003) 

Bedforms 𝐶𝑠0 = 0, 𝐶𝑤0 > 0 Recirculating 

Flume 
𝐶𝑤(𝑡) 

(Ren & Packman, 

2004) 

Bedforms 𝐶𝑠0 = 0, 𝐶𝑤0 > 0 Recirculating 

Flume 
𝐶𝑤(𝑡) 

(Rehg et al., 

2005) 

Bedforms 𝐶𝑠0 = 0, 𝐶𝑤0 > 0 Recirculating 

Flume 
𝐶𝑤(𝑡) 

(Eylers, 1994) Bedforms 𝐶𝑠0 = 0, 𝐶𝑤0 > 0 Recirculating 

Flume 
𝐶𝑤(𝑡) 

(Tonina & 

Buffington, 2007) 

Alternate bars 𝐶𝑠0 = 0, 𝐶𝑤0 > 0 Recirculating 

Flume 
𝐶𝑤(𝑡) 
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4.2.3 Classification and Regression Tree (CART) Analysis 

CART algorithm is a robust machine learning method to build predictive models using a 

dataset (Loh, 2011). This technique was used here to correlate the controlling parameters 

(𝐷𝑒𝑓𝑓0 and 𝑎 for E profile) to the stream and sediment characteristics and the morphology 

type.  

All the parameters considered to construct this correlation are presented in Figure 4.2. 

For the flat bed experiments, the bedform height ℎ𝑏 was assumed to the geometric mean 

of the sediment particle size (𝑑𝑔), as both parameters represent the bed roughness. While 

the bedform wavenumber (𝑊𝑛 = 2𝜋 𝜆⁄ , where 𝜆 indicates bedform length) was assigned 

as zero for flat bed experiments, as 𝜆 ⟶ ∞ for flat bed. All the included parameters in the 

CART were first log transformed, as they differ between them in many orders of 

magnitude. The RPART package in R was used with implementing the ANOVA method 

with Gini index to measure nodes impurity. The dataset was divided into 10 subsets to 

perform the training and cross-validation on the same dataset. To avoid overfitting of our 

data, the trees were pruned using a complexity parameter (CP) that compares the tree 

complexity, based on the number of splits, versus the cross-validation error (x-val). For the 

sake of parsimony, the smallest tree with high accuracy and acceptable error (minimum of 

x-val + standard error) was adopted here rather than using the best fitting tree at the lowest 

x-val. 

 

Figure 4.2: The stream, morphological, and sediment properties included in the CART analysis. 
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This technique was used in our study as a preparation to construct predictive equations 

for 𝐷𝑒𝑓𝑓0 and 𝑎 by using the Multiple Linear Regression (MLR) technique on the 

parameters resulting from the smallest regression trees.  

4.2.4 Multiple Linear Regression (MLR) 

The MLR correlates the dependent variables (𝑌𝑖) to the independent variables (𝑋𝑖) in a 

general form: 

𝑌𝑖 = 𝑓(𝑋1, 𝑋2, 𝑋3, … ),                              (4.7) 

where 𝑌𝑖 and 𝑋𝑖 could be in either dimensional or dimensionless form.  

When a power law correlation is assumed, Eq. (4.7) takes on the following form after 

being log transformed:   

log(𝑌𝑖) = 𝐴 + 𝐵 𝑙𝑜𝑔(𝑋1) + 𝐶 𝑙𝑜𝑔(𝑋2) + 𝐷 log(𝑋3) + ⋯  (4.8) 

The parameters resulted from the CART analysis that correlate the dependent variables 

(𝐷𝑒𝑓𝑓0 and 𝑎) to the stream and sediment characteristics presented in Figure 4.2 

(independent variables), were used to build predictive formulae using the MLR technique. 

The data points of 𝐷𝑒𝑓𝑓0 and 𝑎 resulted from fitting the diffusivity model to the 

measurements from the laboratory experiments. The standard error (𝑆𝐸) associated with 

each fitting value for 𝐷𝑒𝑓𝑓0 and 𝑎 was used to estimate the weight of each data point (𝑤𝑖 =

1 𝑆𝐸2⁄ ) to be used in building the predictive model using the weighted sample mean 

estimator. 

The package “gmulti” in R was used to introduce various models to correlate between 

the dependent and independent variable, as well as ranking them based on the Bayesian 

Information Criterion (BIC) (Schwarz & others, 1978). This criteria compromises between 

the number of the independent parameters included in the model and its parsimony to give 

the most parsimonious model with high goodness of fitting. Therefore, MLR was run on 

the top ranked model resulted from the gmulti function R to build predictive formulae for 

𝐷𝑒𝑓𝑓0 and 𝑎. For each predictive formula, the coefficient of determination (𝑅2) and the 

Root Mean Square Error (RMSE) were introduced to show the quality of the predictive 

formula to the dataset. While for model validation, the cross-validation technique in R 

(𝑐𝑣. 𝑔𝑙𝑚) was used to evaluate the cross-validation prediction error (𝐶𝑉. 𝐸𝑟𝑟) by dividing 
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the dataset into subsets (10 folds) in which the model switches between them as training (9 

folds) and validation data (1 fold). 

4.3 Results 

4.3.1 C Profile versus E Profile Performance 

In the flat bed and alternat bars experiments, the E profile was found to better fit the 

measured data than the C profile, as shown, for example, for experiment B1 (flat bed) in 

Richardson and Parr (1988) study (Figure 4.3A) and experiment 12 (alternate bars) in 

Tonina and Buffington (2007) study (Figure 4.3B). Grant et al. (2020b) showed that the E 

profile is always better in the case of ripples and dunes.  

 

Figure 4.3: Fitting the C profile (dashed red line) and E profile (green line) to the flux out of the 

bed data (open black circles in (A)) of experiment B1 in Richardson and Parr (1988) study (A), 

and the dimensionless concentration in the water column (open black circles in (B)) of 

experiment 12 in Tonina and Buffington (2007) study (B). 

For each experimental dataset, the diffusivity model (the set of equations in section 

4.2) was applied, and the corrected Akaike Information Criterion (AICc (Akaike, 1974)) 

and coefficient of determination (𝑅2) values were obtained. According to AICc, the E 

profile is more parsimonious, even though it requires one extra parameter to be estimated 

compared to the constant profile, the improvement in the fit performance is high enough to 

compensate for the risk of over parameterization for most experiments (Figure 4.4A). As 

expected, the E profile also provides higher 𝑅2 (Figure 4.4B) compared to the C profile. 

This superiority of the E profile over the C profile is in line with Grant et al. (2020a) results 

for flat bed experiments in stirring tanks (Chandler et al., 2016), and with Grant et al. 
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(2020b) results for ripples and dunes experiments (Elliott & Brooks, 1997a). In addition, 

many studies have shown that turbulent mixing intensity decays exponentially with the 

sediment depth (Chandler et al., 2016; Nagaoka & Ohgaki, 1990; Roche et al., 2019). 

Moreover, the E Profile can well represent the breakthrough curve of a tracer in either the 

laboratory or in the field (Bottacin-Busolin, 2019). 

 

Figure 4.4: Comparison between the fitting criteria of C profile (horizontal axis) vs E profile 

(vertical axis) in terms of AICc (A) and 𝑅2 (B) for the whole dataset considered in this study 

including flat bed, dunes, and alternate bars.  

4.3.2 The Magnitude and Extent of the Mixing Processes. 

The mixing processes magnitude differs between different morphologies. In the flat bed 

experiments, the mixing at the SWI (𝐷𝑒𝑓𝑓0) and the penetration into the sediment (1 𝑎⁄ ) 

extend over a wide range because many experiments were included in the analysis with 

different flow and sediment characteristics that influence the mixing process. The existence 

of an extra bed configuration (bedforms; ripples and dunes) creates, on average, more 

mixing at the SWI (high 𝐷𝑒𝑓𝑓0) and deeper penetration in the sediment (low 𝑎), as an effect 

of the bedform pumping (Figure 4.5). In addition, more mixing (more 𝐷𝑒𝑓𝑓0; Figure 4.5A, 

and less 𝑎; Figure 4.5B) is observed in alternate bars due to the 3-D complexity of its shape 

that induce lateral and longitudinal exchange across its shape (Monofy & Boano, 2021; 

Tonina & Buffington, 2007; Trauth et al., 2013) (see Chapter 2 for more details about the 

alternate bars). In addition, they usually form in gravel bed which has larger bores allowing 

for more diffusion compared to smaller granular particles (i.e., sand). The values of 
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log (𝐷𝑒𝑓𝑓,0) vary over 7 order of magnitude while log (𝑎) values vary over only 3 orders 

of magnitude. 

 

Figure 4.5: The effective diffusion coefficient (A) and the decay coefficient (B) values 

distribution for different morphologies (alternate bars, flat bed, and ripples and dunes).  

4.3.3 CART Analysis Results 

As explained in section 4.2, the regression tree was built on the dependent parameters 

(𝐷𝑒𝑓𝑓0 and 𝑎) and a set of independent parameters shown in Figure 4.2, and the whole set 

of parameters are in APPENDIX A. The tree was pruned to the smallest tree with 

acceptable error (red arrows in Figure 4.6A and B). The highest discriminating parameters 

for log (𝐷𝑒𝑓𝑓𝑜) (Figure 4.6C) and log (𝑎) (Figure 4.6D) are the sediment permeability (𝑘𝑝) 

and water column depth (ℎ𝑤). The morphology type does not appear to be one of the most 

important parameters for either of the dependent parameters. These regression trees 

performed well as predictive models with high 𝑅2 and low 𝑅𝑀𝑆𝐸 (0.78 for log (𝐷𝑒𝑓𝑓,0), 

and 0.2 for log (𝑎)) (Figure 4.6). 
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Figure 4.6: The stream, morphological, and sediment properties included in the CART analysis. 

The cross-validation relative error (X-val relative error) variation with the tree complexity 

parameter (CP) is shown in A, and B for log (𝐷𝑒𝑓𝑓,0) and log (𝑎), respectively. The dashed black 

line in A and B represents the value of acceptable X-val relative error. The red arrows represent 

the pruning size of the tree. C and D are the pruned tree for log (𝐷𝑒𝑓𝑓,0) and log (𝑎). n is the 

number of data points falling in the corresponding branch.  

From the regression trees, 𝐷𝑒𝑓𝑓𝑜 can be predicted by knowing the values of 𝑘𝑝, ℎ𝑤, 𝑑𝑏 

and 𝑢∗. While for 𝑎, the most important parameters are, in order, ℎ𝑤, ℎ𝑏, 𝑢∗, 𝑘𝑝 and Ѳ. The 

results show that, sediment properties and bed configuration (e.g., 𝑘𝑝, 𝑢
∗, ℎ𝑏) has the 

greater influence on mixing processes compared to water column characteristics (e.g., ℎ𝑤). 

4.3.4 MLR Results 

- Dimensional MLR 

Based on the list of the best discriminating variables indicated by the regression trees, 

𝐷𝑒𝑓𝑓,0 and 𝑎 can be expressed as a function of the following dimensional variables: 

log(𝐷𝑒𝑓𝑓,0) = 𝐴 + 𝐵 𝑙𝑜𝑔(𝐾𝑝) + 𝐶 𝑙𝑜𝑔(ℎ𝑤) + 𝐷 log(𝑑𝑏) + 𝐸 log(𝑢
∗)  (4.9) 

𝐿𝑜𝑔(𝑎) = 𝑋 + Y log(ℎ𝑤) + 𝑍 log(ℎ𝑏) + 𝑃 log(𝑢
∗) + 𝑄 log(𝐾𝑝) + 𝑀 𝑙𝑜𝑔(𝛳) (4.10) 
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Based on Bayesian Information Criterion (BIC) (Schwarz, 1978), Table 4.2 shows the 

ranking of top three models. The top ranked models for 𝐷𝑒𝑓𝑓,0 and 𝑎 were chosen, and 

MLR was applied to determine the coefficient values. The resulting correlation equations 

are presented in Eqs. (4.11) and (4.12): 

𝐷𝑒𝑓𝑓,0 = 106.23±0.45𝑘𝑝
0.9±0.05𝑢∗2.6±0.11ℎ𝑤

−0.71±0.09, 𝑅2 = 0.94, 𝑅𝑀𝑆𝐸 = 0.65 , 𝐶𝑉. 𝐸𝑟𝑟 = 0.43    (4.11) 

𝑎 = 100.58±0.19𝑢∗−0.1±0.18ℎ𝑏
−0.24±0.08, 𝑅2 = 0.43, 𝑅𝑀𝑆𝐸 = 0.55, 𝐶𝑉. 𝐸𝑟𝑟 = 0.3               (4.12) 

Eq. (4.11) indicates the dependence of 𝐷𝑒𝑓𝑓,0  on the sediment permeability, the shear 

stress on the SWI, and the water column height. The model for 𝐷𝑒𝑓𝑓,0 explains 94% of the 

parameter variance (Figure 4.7A, and Eq. (4.11)) of which 𝑘𝑝 accounts for 32%, 𝑢∗ for 

52%, and ℎ𝑤 for 10%. For all variables, the P-value is less than 2.8 ∗ 10−11. The model 

for 𝑎 has 𝑅2 = 43% (Figure 4.7B, and Eq. (4.12)); ℎ𝑏 explains most of the variance (24%) 

with P-value = 0.003, while 𝑢∗ explains a smaller portion (19%) with P-value = 0.6. 

 

Figure 4.7: Comparison between the fitted values of (A) log (𝐷𝑒𝑓𝑓,0) and (B) log (𝑎) using the E 

profile, and the predicted values by Eqs. (4.11) and (4.12), respectively. The solid black line is the 

1: 1 line while the dashed lines are the 95% prediction interval (PI).  

Table 4.2: The list of dimensional predictive models for 𝐷𝑒𝑓𝑓,0 and 𝑎, ranked based on BIC 

criteria. 

Ranking Dimensional Models BIC 

1 𝐿𝑜𝑔(𝐷𝑒𝑓𝑓,0)~ 1 +  𝐿𝑜𝑔(𝑘𝑝) +  𝐿𝑜𝑔(𝑢∗) +  𝐿𝑜𝑔(ℎ𝑤) 215 

2 𝐿𝑜𝑔(𝐷𝑒𝑓𝑓,0)~ 1 +  𝐿𝑜𝑔(𝑘𝑝) +  𝐿𝑜𝑔(𝑢∗) 219 

3 𝐿𝑜𝑔(𝐷𝑒𝑓𝑓,0)~ 1 +  𝐿𝑜𝑔(𝑢∗) 289 

1 𝐿𝑜𝑔(ɑ) ~ 1 +  𝐿𝑜𝑔(𝑢∗) +  𝐿𝑜𝑔(ℎ𝑏) 74.03 
2 𝐿𝑜𝑔(ɑ) ~ 1 +  𝐿𝑜𝑔(ℎ𝑤) +  𝐿𝑜𝑔(𝑢∗) +  𝐿𝑜𝑔(ℎ𝑏) 77.89 
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3 𝐿𝑜𝑔(ɑ) ~ 1 +  𝐿𝑜𝑔(𝑘𝑝) +  𝐿𝑜𝑔(𝑢∗) +  𝐿𝑜𝑔(ℎ𝑏) 78.05 

- Dimensionless MLR 

Eqs. (4.11) and (4.12) are not dimensionally homogeneous; therefore, new correlations 

were developed by introducing dimensionless groups of variables. For 𝐷𝑒𝑓𝑓,0 , the variables 

identified in the top model were considered (𝑘𝑝, 𝑢∗, ℎ𝑏; Table 4.1). The coefficients of 

molecular diffusion 𝐷𝑚 and kinematic viscosity 𝜈 were added to the set of variables for 

normalizing purposes. Therefore, six primary variables were considered, and according to 

the Buckingham π theorem, 𝐷𝑒𝑓𝑓,0 can be represented as follows: 

𝐷𝑒𝑓𝑓,0

𝐷𝑚
= 𝑓 (𝑅𝑒𝑘 =

𝑢∗ √𝑘𝑝

𝜈
, 𝑅𝑒𝑏 =

𝑢∗ ℎ𝑤

𝜈
, 𝑆𝑐 =

𝜈

𝐷𝑚
)  (4.13) 

where 𝑅𝑒𝑘 is the permeability Reynolds number that characterizes the transport process at 

the SWI interface (Grant et al., 2020a; Voermans et al., 2018). 𝑅𝑒𝑏 is the Reynolds number 

based on the shear velocity and water column depth that governs the ‘log-law’ equation of 

the wall region (Nakagawa, 2017), and 𝑆𝑐 is the Schmidt number, which is related to 

interfacial mass transport (Bergman et al., 2011). Similarly, for 𝑎, the parameters in the 

top-ranked dimensional model (𝑢∗, ℎ𝑏; Table 4.2) and kinematic viscosity 𝜈 were 

considered to form the dimensionless groups. After testing different alternatives, the 

thickness of benthic biolayer (𝐿𝑏) was used to normalize 𝑎. The approximate value (𝐿𝑏= 2 

cm suggested in the literature (Knapp et al., 2017) was employed: 

𝑎 𝐿𝑏 = 𝑓 (𝐾𝑠 =
𝑢∗ ℎ𝑏

𝜈
, 𝐾𝑏 =

𝑢∗ 𝐿𝑏

𝜈
)  (4.14) 

where 𝐾𝑠 is the dimensionless bed roughness (Nakagawa, 2017) that scales the bed 

roughness height to the viscous length (𝜈 𝑢∗⁄ ), and 𝐾𝑏 compares the benthic biolayer 

thickness and viscous length. 

Similar to the dimensional MLR analysis, Eqs. (4.13) and (4.14) were assumed to have 

a power-law structure. The best predictive formulae for 𝐷𝑒𝑓𝑓,0 𝐷𝑚⁄  and 𝑎 𝐿𝑏 (Table 4.3) 

are:  

𝐷𝑒𝑓𝑓,0

𝐷𝑚
= 104.23±0.05𝑅𝑒𝑘

2±0.06, 𝑅2 = 92%, 𝑅𝑀𝑆𝐸 = 0.59, 𝐶𝑉. 𝐸𝑟𝑟 = 0.36  (4.15) 

𝑎 𝐿𝑏 = 10−0.006±0.06𝐾𝑠
−0.2±0.02, 𝑅2 = 43%, 𝑅𝑀𝑆𝐸 = 0.55, 𝐶𝑉. 𝐸𝑟𝑟 = 0.31 (4.16) 
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Eq. (4.15) predicts very well (𝑅2 = 92%; Figure 4.8A) the value of 𝐷𝑒𝑓𝑓,0 𝐷𝑚⁄ , which 

is explained only by 𝑅𝑒𝑘 with P-value < 2 × 10−16. On the other hand, Eq. (4.16) 

explains only a small portion of the variance of 𝑎 𝐿𝑏 values (𝑅2 = 43%; Figure 4.8B). 

Considering that the variations in 𝑎 is not so large for each morphology type (Figure 4.8B), 

Eq. (4.16) still can explain some of these small variations with 𝑅𝑀𝑆𝐸 = 0.55. The 

associated 𝐶𝑉. 𝐸𝑟𝑟 in both cases, created by dividing the data into 20 folds, is less than 

0.31. By looking at Figure 4.7B and Figure 4.8B, the predictive formulae for the decay 

coefficient in both dimensional (𝑎) or dimensionless form (𝑎 𝐿𝑏) do not explain the wide 

variability in the data. This is more pronounced for flat beds, for which the formulae 

underpredict 𝑎 values by at least one order of magnitude.  

 

Figure 4.8: Comparison between the fitted values of (A) log (𝐷𝑒𝑓𝑓,0/𝐷𝑚) and (B) log (𝑎 𝐿𝑏) 

using the E profile, and the predicted values by Eqs. (4.15) and (4.16), respectively. The solid 

black line is the 1: 1 line while the dashed lines are the 95% prediction interval (PI). The vertical 

black lines associated with each point represents the measurement errors. 

Table 4.3: The list of dimensionless predictive models for 𝐷𝑒𝑓𝑓,0 and 𝑎, ranked based on BIC 

criteria. 

Ranking Dimensionless Models BIC 

1 𝐿𝑜𝑔(𝐷𝑒𝑓𝑓,0 𝐷𝑚⁄ ) ~ 1 +  𝐿𝑜𝑔(𝑅𝑒𝑘) 191 
2 𝐿𝑜𝑔(𝐷𝑒𝑓𝑓,0 𝐷𝑚⁄ ) ~ 1 +  𝐿𝑜𝑔(𝑅𝑒𝑘)  

+  𝐿𝑜𝑔(𝑅𝑒𝑏) 

194 

3 𝐿𝑜𝑔(𝐷𝑒𝑓𝑓,0 𝐷𝑚⁄ ) ~ 1 +  𝐿𝑜𝑔(𝑅𝑒𝑏) 309 

1 𝐿𝑜𝑔( 𝑎 𝐿𝑏) ~ 1 +  𝐿𝑜𝑔(𝐾𝑠) 71.6 
2 𝐿𝑜𝑔( 𝑎 𝐿𝑏) ~ 1 +  𝐿𝑜𝑔(𝐾𝑠)  +  𝐿𝑜𝑔(𝐾𝑏) 71.7 
3 𝐿𝑜𝑔( 𝑎 𝐿𝑏) ~ 1 +  𝐿𝑜𝑔(𝐾𝑏) 99.8 
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Given the unsatisfactory performance of the predictive Eq. (4.16) shown in Figure 

4.8B, values of 𝑎 𝐿𝑏 were separately analyzed according to the type of streambed 

morphology. Grant et al. (2020a) provided an empirical formula to predict ɑ values that 

included a dependence on 𝑅𝑒𝑘 those scales differently for 𝑅𝑒𝑘 < 1 and 𝑅𝑒𝑘 > 1 due to 

changes in the prevailing exchange mechanisms. 

It should be noticed that this formula was built only from the stirring tank experiments 

with flat beds of Chandler et al. (2016). Here, in addition to these experiments, other flume 

experiments with flat beds were considered to account for a wider range of 𝑎 variations 

over 𝑅𝑒𝑘 (Figure 4.9), and a more accurate predictive formula for 𝑎 𝐿𝑏 was obtained (Eq. 

(4.17)):  

𝑎 𝐿𝑏 = {

10−1.36±0.39𝑅𝑒𝑘
−1.32±0.23, 𝑅𝑒𝑘 < 0.1,  𝑅

2 = 59%, 𝑅𝑀𝑆𝐸 = 0.37  

     0.16 ± 0.06,                            0.1 < 𝑅𝑒𝑘 < 1, 𝑅𝑀𝑆𝐸 = 0.23 

     10−0.001±0.07𝑅𝑒𝑘
−0.79±0.21,      𝑅𝑒𝑘 > 1,  𝑅2 = 78%, 𝑅𝑀𝑆𝐸 = 0.21 

                           (4.17) 

 

Figure 4.9: The variations of the inverse-decay depth over different ranges of the permeability 

Reynolds number in flat bed experiments (A) with vertical dash dotted lines represent the 

log (𝑅𝑒𝑘) values where log (𝑎𝐿𝑏) behaviour changes, the dotted black line represents the 95% 

prediction interval, and the solid line demonstrates the predicted values by Eq. (4.17). A 

comparison between the predicted values by Eq. (4.13), and the fitted values obtained by 

applying the diffusivity model on the flat bed experiments (B) with 1: 1 line (black line), and 

95% prediction interval (dotted lines). The vertical black lines associated with each point 

represents the measurement errors. The long dash dots in (A) represents the 𝑅𝑒𝑘 values of 0.1 and 

1. 
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The regression tree algorithm was then run separately on the ripples and dunes dataset. 

The wavenumber emerged as the discriminative variable that explains most of the variance. 

Therefore, a dimensionless correlation between 𝑎 and 𝑊𝑛 was built (Eq. (4.18)). This 

predictive formula explains reasonably well the observed variations in 𝑎 (𝑅2 = 81%; 

Figure 4.10). This result is in line with one found by Grant et al. (2020b) (Eq.16b in their 

paper) over a similar range of 𝜆  (8.8 ~ 32 cm), with 𝑎 varying linearly with 1/𝜆.    

𝑎 𝐿𝑏 = 10−0.18±0.14(𝑊𝑛𝐿𝑏)
1.02±0.09, 𝑅2 = 81%, 𝑅𝑀𝑆𝐸 = 0.18, 𝐶𝑉. 𝐸𝑟𝑟 = 0.035            (4.18) 

 

Figure 4.10: The predicted values of 𝑎 by Eq. (4.18) versus the fitted values by applying the 

diffusivity model on ripples and dunes experiments. The solid line is the 1: 1 line, while the 

dotted line is the 95% predition interval.   

Finally, the same approach was applied to the experiments with alternate bars. 

Unfortunately, as very few experiments have been performed on this morphology type, no 

reliable predictive formula could be obtained for this morphology type.  

4.3.5 Bed Configuration effect on the Mass Transport Process 

The presence of bedforms on the SWI changes the physics associated with the boundary 

layer at the SWI and the bed roughness, and these changes can enhance the exchange 

process (Elliott & Brooks, 1997b; Grant et al., 2012, 2018; Packman et al., 2004). To 

quantify the additional exchange induced by the bedforms, the flat bed data was used as 

training data to a predictive model that further used to predict the exchange parameters in 

ripples and dunes, and alternate bars dataset (test data). The predicted values from the 

model are compared with the fitted values using the diffusivity model, and the difference 

indicates the adds-on of each bedform type to the exchange process. 
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- Effective Diffusion Coefficient in Flat bed:  

Following the same approach of section 4.2 , a regression tree analysis was first carried out 

to identify the dimensional parameters that most influence the value of  𝐷𝑒𝑓𝑓,0. Then, MLR 

was performed on the dimensional and dimensionless parameters, which indicated that 

𝐷𝑒𝑓𝑓,0 is strongly correlated to 𝑅𝑒𝑘 (Figure 4.11). These results are expressed by the 

following dimensionless formula:  

𝐷𝑒𝑓𝑓,0

𝐷𝑚
= 103.78±0.09𝑅𝑒𝑘

1.58±0.09, 𝑅2 = 85%, 𝑅𝑀𝑆𝐸 = 0.47, 𝐶𝑉. 𝐸𝑟𝑟 = 0.23              (4.19) 

 

Figure 4.11: The predicted values of 𝐷𝑒𝑓𝑓,0 𝐷𝑚⁄  by Eq. (4.19) versus the fitted values by running 

the diffusivity model on the flat bed experiments. The solid line is the 1: 1 line, while the dashed 

line is the 95% predition interval.   

- Exchange added by Bedforms and Alternate Bars. 

Eq. (4.19)  was applied to estimate the value of the diffusion coefficient that is expected in 

absence of bedforms, while Eq. (4.17) was used to determine the penetration depth. As 

shown in Figure 4.12, ripples and dunes, as well as alternate bars, strongly increase the 

exchange process at the SWI as discussed before. Based on median values of 𝐷𝑒𝑓𝑓,0 and 𝑎, 

the presence of dunes increases the surficial exchange and the penetration depth by a factor 

of 1.9 and 2.9, respectively. The larger 3-D morphologic configuration of the alternate bars 
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induces much more surficial exchange (16.7 times) and more penetration of the mixing 

depth (3.2 timⅇs) compared to the flat bed.  

 

Figure 4.12: The predicted diffusivity profile by Eq. (4.19) for 𝐷𝑒𝑓𝑓,0 and Eq. (4.17) for 𝑎 (solid 

lines) vs the fitted ones (filled circles) in (A) (Experiment #B8 in Richardson and Parr (1988), (B) 

Ripples and dunes (Experiment #E15 Flat bed in Elliott and Brooks (1997a)), and (C) Alternate 

bars (Experiment #E7 in Tonina and Buffington (2007)). 

4.4 Discussions 

There are many physical processes that control solute transport across the SWI, e.g., 

molecular diffusion, turbulent diffusion, dispersion, bedform pumping, and many others 

(Grant et al., 2020a; Hester et al., 2021; Kleinhans & Vollmer, 2008; O’Connor & Harvey, 

2008; Roche et al., 2019; Santos et al., 2012; Voermans et al., 2018). The sediment bed 

characteristics affect the mixing process significantly. For example, in flat bed 

experiments, the magnitude of mixing at the SWI is significantly influenced by 𝑅𝑒𝑘 that 

combines the pore length scale (√𝑘𝑝) and the viscous length (𝑣 𝑢∗⁄ ). This quantity can 

delineate the behavior of the sediment layer in relation to the water column, in agreement 

with Voermans et al. (2018). At very low  𝑅𝑒𝑘 (< 0.1), the sediment layer behaves as a 

blocking wall (quasi-impermeable layer), and the effective diffusion (𝐷𝑒𝑓𝑓0) values are 

close to the molecular diffusion values (Figure 4.8A). Increasing the 𝑅𝑒𝑘 implies higher 

turbulent intensity that weakens the wall-blocking effect, the solutes are rapidly mixed 

(Roche et al., 2018) and resulting in deeper penetration into the sediment (Voermans et al., 

2017; Grant et al., 2020a). At high 𝑅𝑒𝑘 > 1, more mixing is induced (Figure 4.8) to deeper 

penetration (Figure 4.9A). Between the low 𝑅𝑒𝑘 (<0.1) and its high values (>1), there is a 

transition zone which, presumably, dominated by dispersion. Within this zone, the 

penetration depth is almost constant with increasing 𝑅𝑒𝑘. As the data points within this 

range came from only one experimental campaign (Chandler et al., 2016), it may be an 
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effect of the experimental setup. Therefore, more experiments within this range are needed 

to demonstrate wither this mixing behavior stems from experimental setup or it reflects the 

true mixing between the sediment domain and the overlying water column. 

The dependence of  𝐷𝑒𝑓𝑓0 on the 𝑅𝑒𝑘 in flat bed see in Eq. (4.19), and Figure 4.11 is 

in agreement with many of previous studies (e.g., Grant et al., 2012, 2018, 2020a; 

Voermans et al., 2018). This correlation between 𝐷𝑒𝑓𝑓0 and 𝑅𝑒𝑘 (Eq. (4.15) and Figure 4.8 

) is found also for bedforms (ripples and dunes) and alternate bars. This is consistent with 

other studies that proved the sediment permeability (𝑘𝑝) role in stream ecosystem (Battin 

et al., 2016). In addition, the bed shear stress (correlated to 𝑢∗) is an important quantity for 

sediment-water interaction, as it is correlated to stream water levels, and sediment transport 

and resuspension (Horritt & Bates, 2002). 

The mixing depth in ripples and dunes is significantly correlated to the bedform 

wavelength (Eq. (4.18)). This is coherent with what was found by Elliott & Brooks (1997b) 

and Grant et al. (2020b). In comparison with flat bed, this implies the dominance of bed 

configuration, and its induced advective (bedform) pumping effect in delineating the 

mixing depth (Hester et al., 2021). This mixing depth is on the order of centimeters, as 

shown in experimental (e.g., Hester & Gooseff, 2010; Santizo et al., 2020) and modeling 

(Grant et al., 2020a, 2020b) studies. 

For alternate bars, given the small number of available experiments, it was not possible 

to provide a robust predictive formula for the exchange parameters separately from the 

other morphology types. Further experimental studies on this morphology type are hence 

required. 

Generally, the presence of bedforms on the streambed causes additional exchange 

compared to the flat bed configuration. When a depth-invariant effective diffusion 

coefficient is employed, dunes have been reported to increase it by a factor of 3~6 

(Packman et al., 2004) and ~ 3.5 (Grant et al., 2018) compared to flat beds. Our results are 

in line with these findings; ripples and dunes increase  𝐷𝑒𝑓𝑓,0 and penetration depth by a 

factor of 1.9 and 2.9, respectively. This increased exchange magnitude is essentially caused 

by the advective pumping due to the bedform shape (Azizian et al., 2017; Elliott & Brooks, 

1997a, 1997b; Grant et al., 2014; Hester et al., 2021). For alternate bars, the lateral and 

longitudinal pattern of pressure variations (e.g., Monofy & Boano, 2021) induces a 

significant increase in effective diffusion (16.7 times) and deeper exchange depth into the 
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sediment (3.2 times) compared to the flat beds. These results agree with the experimental 

results by Santizo et al. (2020) and Hester and Gooseff (2010) who proved that larger 

bedforms induce more mixing depth. 

Despite the relaxation of some constraints of previous modeling approaches (i.e., 

accounting for the negative feedback, and the exponential diffusion decay with depth), 

some simplifications have been made to develop the present model, e.g., assuming that 

porosity and hydraulic conductivity to be spatially constant over sediment depth. 

Furthermore, the choice of including the stirring tank experiments by Chandler et al. (2016) 

forced us to dismiss flow velocity from the analysis, focusing only on 𝑢∗ to describe the 

hydrodynamics of surface flow. 

4.5 Conclusion Marks and Future research 

The novelty of our new mathematical framework lies in its relaxation for some constraints 

that were considered in previous studies, as well as its parsimony. The model accounts for 

the two-way feedback between the solute concentration in the interstitial fluid and its 

concentration in the water column. In addition, different spatial variation of solute 

concentration within the sediment can be assumed. Sediment characteristics and flow 

velocity within the shear layer (permeability and shear velocity) are the most influencing 

parameters in determining the magnitude of the mixing process at the SWI. However, the 

bed configuration significantly affects solute penetration into the sediment. In general, 

alternate bars induce more mixing than bedforms (ripples and dunes) and flat bed. In 

addition, bedforms induces more mixing magnitude and penetration than in flat bed. The 

surficial effective diffusion varies over 6 orders of magnitudes between different bed 

configurations, while the mixing (penetration depth) varies over a smaller range (~3 orders 

of magnitudes). A unique predictive formula can be introduced to estimate the effective 

diffusion at the SWI over all types of morphology depending on the permeability Reynolds 

number. While for the mixing depth, it is better predicted separately for different types of 

morphologies. It depends on the permeability Reynolds number in flat bed and on bedform 

wavelength in ripples and dunes.  

This diffusivity model was applied to flume experiments with stationary bedforms and 

steady flow that resulted in the predictive formulae introduced in this chapter. The 

application of this model to stream environments (networks), experiments with bedform 

turnover, unsteady flow, and sediment beds with reactive solutes (APPENDIX B) is 
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important to test its validity, and the applicability of its derived predictive formulae for 

different morphologies on versatile conditions.   
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Chapter 5                           

Geostatistical Method Application to 

Estimate the Response Time to Flow 

Waves, Salt Concentration and Load in 

the Occoquan Watershed in Northern 

Virginia 

5.1 Introduction 

The freshwater salinization induced by climatic conditions is common in arid and semi-

arid areas (Kaushal et al., 2022; Schulz & Cañedo-Argüelles, 2019; Williams, 2001). 

However, in recent years, this issue is rising in many places with cold weather (i.e., USA 

and Canada) (Dugan et al., 2017; Kaushal, Likens, et al., 2018). This trend is mainly caused 

by human activities, including the use of household products, road deicers and many other 

sources (see section 1.2 for more details). These activities drive the Freshwater Salinity 

Syndrome (FSS) that can lead to harmful conditions for the environment and human health 

(Bhide et al., 2021). 

This issue of freshwater salinization is evident of the Occoquan watershed, where the 

recorded data of more than 25 years shows elevated salt concentration and loads, and more 

frequent spikes, in recent years. The problem of salt load and concentration rise has 

currently reached the attention of the local authorities who decided to further investigate 

the problem. The Fairfax water treatment plant is placed just downstream the Occoquan 

reservoir and provides freshwater for most of the population in northern Virginia (see the 

study of Bhide et al. (2021) for a thorough discussion of the salt load problem in the 

Occoquan reservoir). In this chapter, we predict the response time of the Occoquan 

reservoir due to variations in input water flow, salt concentration and salt load at the 
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upstream parts of the Occoquan watershed (Occoquan and Bull Run Rivers, see Figure 

5.1A). Understanding the salt dynamics and residence times in the reservoir can help the 

authorities in determining specific operational procedures for the Occoquan reservoir and 

dam. 

5.2 Methodology 

5.2.1 Data Collection  

The considered study area here is the Occoquan reservoir which is located around 30 km 

southwest of Washington DC in northern Virginia (USA). It is the main source of fresh 

water for around 2 million people in its surrounding region (Bhide et al., 2021). This 

reservoir collects water from two main tributaries: the Occoquan, and the Bull Run Rivers 

where there is an effluent of a wastewater treatment plant (UOSA) on the later. Just 

downstream of the Occoquan dam there is the intake for Fairfax water station (see Figure 

5.1A). In the present analysis, we employed values of salt concentrations (Figure 5.1B) and 

load, and the measured flow values that were available from previous monitoring 

campaigns in the Occoquan reservoir. Samples from the Occoquan River and Bull Run 

River were collected at ST10, ST45, UOSA and the Fairfax water intake (see Figure 5.1A 

for the samples locations and B for the data demonstration). ST10 and ST45 measuring 

stations were considered as input for the Occoquan reservoir. To measure the salt 

concentration at the reservoir, samples were taken at ST01 which is a station placed 

downstream of the Occoquan dam at the Fairfax water treatment plant intake. The time 

series used by Bhide et al. (2021) for the three measuring stations were utilized in this 

study. 
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Figure 5.1: (A) the map of the Occoquan reservoir and its tributaries, in addition to the data 

measurement locations, the purple star is the Fairfax Water intake (ST01), while (B) represents 

Forty years of sodium concentration measurements at the Fairfax Water intake and the upstream 

stations (ST10, ST45), and the final reclaimed water discharged by UOSA (Bhide et al., 2021). 

5.2.3 The Geostatistical Method 

Here, we used the geostatistical method (Boano et al., 2005; Kitanidis, 1995, 1996; 

Snodgrass & Kitanidis, 1997) to determine the response time distribution of sodium in the 

Occoquan reservoir, which is denoted as 𝑓(𝑡) (the method is described in detail in 

APPENDIX C). In this approach, a probabilistic description of the involved quantities is 

adopted. For the problem dealt with here, 𝑓(𝑡) is interpreted as a stochastic process and it 

represents many associated functions (possible distributions of response times). The most 

probable one is chosen based on the consistence between the predictions and the 

observations. Here, we adopt the solution of this approach with single measurement point 

(Boano et al., 2005) with the nonnegativity constraint for 𝑓(𝑡).  

The data from ST10 and ST45 were combined to form a single source point. 

According to the geometry of the area (Bull Run and the Occoquan Rivers distances from 

the reservoir), the flow and load arrive at the confluence C (Figure 5.1A) with difference 

of 2 hours between them, assuming similar velocity in both reaches. This combination 

between ST10 and ST45 was considered to build the transfer matrix 𝐻 (APPENDIX C). 

ST01 was considered as the output measuring point; therefore, the data from this station 

was used to build the output vector 𝑧. The method was applied to calculate response times 

of flow 𝑄(𝑡), salt concentration 𝐶(𝑡), and salt load 𝐿(𝑡) = 𝑄(𝑡) ∙ 𝐶(𝑡), as these signals can 

provide different information on the behavior of the reservoir. Hourly data were used to 

estimate the transfer matrix for the flow analysis, while daily data were used for the 

analyses of concentration and load. This difference in temporal resolution is because the 

concentration and load pulses at the source points (ST10 and ST40) impact the output 

point (ST01) after a time of an order of magnitude of days. Instead, for flow, the impact is 

observed from the data after some hours. The events considered for our analysis are listed 

in Table 5.1 for flow and salt concentration and load. In order to explore the system 

response time for different events, as in Table 5.1, three different events were considered 

for the flow data (Figure 5.2), other two events were adopted for the concentration data 

(Figure 5.3), and five events were chosen for the load data (Figure 5.4). The geostatistical 

method predicts the output values based on the input values of the input matrix (𝐻), the 
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error variance of the source measurement, the nonnegativity parameter, and the initial 

values of the structure parameters (see Boano et al. (2005)  and APPENDIX C for more 

explanation). 

Table 5.1: A list of the considered events to estimate the transfer function for flow, load, and 

concentration. 

5.3 Results and Discussion 

5.3.1 Response Time for Flow 

After applying the geostatistical method to the flow events, we can obtain the system 

response corresponding to each event. We found that the system response time at the output 

to a flow wave at the input is of the order of a few hours. For event #1, the flow at the 

reservoir outlet predicted with the response time distribution 𝑓(𝑡) is comparable with the 

observed one (Figure 5.5), which demonstrates the correctness of 𝑓(𝑡). The peak response 

time is 4 hours (hrs) for event #1 (Figure 5.6A), 5 hrs for event #2 (first peak in Figure 

5.6B), and 7 hrs for event #3 (Figure 5.6C). For the three events, the distributions of 

response times range between 10 and 20 hours, indicating that the system outflow reacts 

to variation in inflow discharge in less than one day. 

Flow 

Event #1: From 2010/10/22 23: 00: 00 to 2010/10/30 11: 00: 00 
Event #2: From 2013/01/10 19: 00: 00 to 2013/01/20 19: 00: 00 
Event #3: From 2016/09/15 02: 00: 00 to 2016/10/10 02: 00: 00 

 

Concentration 

Event #1: From 2014/08/27 to 2015/06/23 
Event #2: From 2015/01/13 to 2015/05/05 

 

Load 

Event #1: From 2010/07/02 11: 00: 00 to 2010/07/23 07: 00: 00 
Event #2: From 2010/11/19 06: 00: 00 to 2010/12/11 23: 00: 00 
Event #3: From 2012/11/02 15: 00: 00 to 2012/11/19 07: 00: 00 
Event #4: From 2015/10/17 18: 00: 00 to 2015/11/01 08: 00: 00 
Event #5: From 2020/09/16 14: 00: 00 to 2020/10/07 10: 00: 00 
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Figure 5.2: The considered events for the water flow data; A) event #1, B) event #2, and C) event 

#3. 

 

Figure 5.3: The considered events for the salt concentration data; A) event#1, and B) event#2. 
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Figure 5.4:The considered events for the salt load data; A) event #1, B) event #2, C) event #3, D) 

event #4, and E) event #5. 

 

Figure 5.5: A comparison between the predicted outflow by the geostatistical method and the 

observed outflow at station ST01 for events #1 (A),  #2 (B), and  #3 (C).  
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Figure 5.6: The results for the system response time for the outflow pulses for events #1 (A),  #2 

(B), and  #3 (C).  

5.3.2 Response Time for salt Concentration and load 

For the two concentration events considered here in the Occoquan reservoir (Table 5.1), 

the predicted concentration pulses at the output coincide with the observed ones for both 

events (Figure 5.7) although the modeled peak value is slightly smoothed compared to the 

observed one, suggesting that the faster variations are not perfectly reproduced. The peak 

response time for the system to a variation in the concentration of salt is 8 and 9 days for 

event #1 (Figure 5.8A) and #2 (Figure 5.8B), respectively. These response times are much 

longer than those estimated for flow events, reflecting the fact that salt behaves as a tracer 

that requires days to months to travel through the reservoir and its response times represent 

actual travel times in the system. On the other hand, response to flow events is much faster 
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as system outflow is controlled by the water level in the reservoir, which adjusts relatively 

quickly to variations in inflow spikes. Figure 5.7 also shows that the whole range of 

response times of 𝑓(𝑡) is around 40-50 days, hence indicating that the system is influenced 

by changes in inflow concentrations for more than one month because of slow salt mixing 

in the reservoir. 

 

Figure 5.7: A comparison between the predicted concentration by the geostatistical method and 

the observed concentration at the output station for event #1 (A) and event #2 (B). 

 

Figure 5.8: The results for the system response time for concentration spikes for events #1 (A) 

and #2 (B). 

For the chosen 5 events to determine the response time for load, Figure 5.9 shows that 

the geostatistical method can precisely predict the load at the output station, as shown by 
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the comparison between the predicted and observed data. The response time of the system 

for a load spike at the input varies from 5 to 14 hours (Figure 5.10). These timescales are 

comparable with those evaluated from the flow data, which indicates that variation in salt 

load at the system outflow is mainly governed by flow variations. 

5.4 Conclusion Remarks and Future research 

Freshwater salinization has become an issue of concerns in many areas of the world. The 

management of the Occoquan reservoir and of the intake for Fairfax water treatment plant 

may require specific operation procedures because of freshwater salinization. The results 

presented in this chapter improve the understanding of water and solute transport in the 

Occoquan reservoir. 

 Detecting the travel (response) time for salt concentration and load spikes at the 

reservoir upstream to arrive at the Fairfax water intake can help in operating the treatment 

plant to avoid high concentration of salt ions in drinking water, especially because salt is 

added during water treatment (e.g., 𝑁𝑎+,𝐴𝑙3+, 𝐹𝑒3+, 𝐶𝑙−, 𝐹−, 𝑃𝑂4
3−) for flocculation, 

disinfection, and corrosion control (Letterman, 1999; Shammas & Wang, 2015). As most 

ions are not fully removed by conventional treatment methods, they pass directly to the 

drinking water distribution system, and consequently, contributing to FSS (Kaushal et al., 

2022). 

A flow wave at the upstream section of the reservoir can influence the discharge 

through the dam within a few hours (4 − 7 hours), while a spike of salt concentration can 

take days (8 − 9 days) to arrive at the Fairfax water intake.  Further investigation must be 

done to discover how to deal with such rising issue worldwide. As the sources of salt ions 

added to urban water systems result from different drivers, different community sectors 

must be involved including businesses, industry, government, and individual homeowners 

to reduce salt loads discharged to receiving waters, and thus the Freshwater Salinization 

Syndrome. 
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Figure 5.9: A comparison between the predicted salt load by the geostatistical method and the 

observed load at the output station for events #1 (A), #2 (B), #3 (C), #4 (D), and #5 (E). 
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Figure 5.10: The results for the system response time for loads for events #1 (A), #2 (B), #3 (C), 

#4 (D), and #5 (E). 
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APPENDIX A                            

Deriving The Diffusivity Model for 

conservative solute. 

1. Duhamel’s Theorem Solution for Turbulent mixing in the Benthic 

Biolayer. 

The Duhamel’s theorem version adopted here has three requirements that must be met 

(Myers, 1971): (1) the system must have zero initial state; (2) the differential equation 

and boundary conditions must be homogeneous except for single time-dependent 

boundary condition or source/sink term in the differential equation; and (3) the single 

nonhomogeneous term should be initially equal to zero. 

By adapting the Duhamel’s theorem to our system (Grant et al., 2020a), the interstitial 

solute concentration in the sediment can be expressed as a convolution of the time 

derivative of the water column concentration 𝑐𝑤(𝑡)̅ and a so-called auxiliary function 

𝑐𝑠
𝐴(�̅�, 𝑡̅) where 𝑣 is a dummy integration variable (Myers, 1971). 

𝑐𝑠(�̅�, 𝑡̅) = ∫ 𝑐𝑠
𝐴(�̅�, 𝑡̅ − 𝑣)

𝑡̅

0

𝑑

𝑑𝑣
[𝑐𝑤(𝑣)𝐻(𝑣)]𝑑𝑣 = ∫ 𝑐𝑠

𝐴(�̅�, 𝑡̅ − 𝑣)
𝑡̅

0

𝑑𝑐𝑤

𝑑𝑣
 𝑑𝑣 + 𝑐𝑠

𝐴(�̅�, 𝑡̅)     (A.1) 

The mass conservation for a conservative solute in a horizontally uniform systems, 

averaging over the turbulence timescale and assuming a constant porosity can be 

represented in dimensionless form: 

𝜕𝑐𝑠(�̅�,𝑡̅)

𝜕𝑡̅
= 

𝜕

𝜕�̅�
 (𝐷𝑒𝑓𝑓(�̅�)

𝜕𝑐𝑠(�̅�,𝑡̅)

𝜕�̅�
)            (A.2) 

𝑐𝑠(�̅�, 𝑡̅) =
𝐶𝑠(�̅�,𝑡̅)− 𝐶𝑆0

𝐶𝑤0−𝐶𝑆0
          (A.3) 

Where 𝐶𝑠(�̅�, 𝑡̅) is the solute concentration of solute at different time and at different 

vertical depths, 𝐶𝑆0 is the initial solute concentration in sediment and 𝐶𝑤0 is the initial 

concentration in the water column.  

𝑡̅ = 𝑡 𝑡𝑇 ≥ 0, 𝑡𝑇 = 1 (𝐷𝑒𝑓𝑓0𝑎
2), �̅� = 𝑎𝑦 > 0⁄⁄          (A.4) 



98                                                                                            Chapter 5    

 

Where 𝑎(𝐿−1) is the inverse depth scale, and its definition depends on the diffusivity 

profile. 

𝐷𝑒𝑓𝑓(�̅�) representing the variation of effective diffusion over depth.  

𝐷𝑒𝑓𝑓(�̅�) = 𝐷𝑒𝑓𝑓0 𝑓(�̅�)         (A.5) 

Where 𝐷𝑒𝑓𝑓0 is the diffusion at the sediment water interface, and 𝑓(�̅�) is a function 

represents the vertical variation of diffusion.  

The initial condition for Eq. (A.1) is 

𝑐𝑠(�̅�, 𝑡̅ = 0) = 0               (A.6) 

The upper boundary condition of the sediment layer (at SWI; �̅� = 0) is correlated to 

the solute concentration in the water column (𝑐𝑤(𝑡)̅).  

𝑐𝑠(�̅� = 0, 𝑡̅) =
𝐶𝑤(𝑡̅)−𝐶𝑠0

𝐶𝑤0−𝐶𝑠0
 𝐻(𝑡̅) = 𝑐𝑤(𝑡̅)𝐻(𝑡̅)         (A.7) 

𝑐𝑤(𝑡̅) =
𝐶𝑤(𝑡̅)−𝐶𝑠0

𝐶𝑤0−𝐶𝑠0
 , 𝑐𝑤(𝑡̅) ∈  [0,1]              (A.8) 

𝐻(𝑡̅) is the Heaviside step function which ensures that the upper boundary condition 

equals 0 at 𝑡̅ ≤ 0, and otherwise at 𝑡̅ ˃ 0. This function is used to satisfy one of the 

restrictions of the Duhamel’s Theorem that requires the forcing Eq. (A.6) to be zero at 𝑡̅ =

0. 

The sediment bed is assumed to be infinite; therefore, the lower boundary condition is 

𝑐𝑠(�̅� → ∞, 𝑡̅) = 0      (A.9). 

By moving the system of equations into the Laplace domain (Eqs. (A.10a) to (A.10c)) 

and its auxiliary function (Eqs. (A.11a) to (A.11c)), where �̅� = 𝑠𝑡𝑇  is a scaled form of the 

Laplace transform variable s [𝑇−1]: 

�̅� �̃�𝑠(�̅�, 𝑡̅) −  
𝑑

𝑑�̅�
(𝑓(�̅�) 

𝑑𝑐�̃�

𝑑�̅�
) = 0      (A.10a) 

�̃�𝑠(�̅� = 0, �̅�) = �̃�𝑤(�̅�)           (A.10b) 

�̃�𝑠(�̅� → ∞, �̅�) = 0           (A.10c) 

�̅� �̃�𝑠
𝐴(�̅�, �̅�) − 

𝑑

𝑑�̅�
(𝑓(�̅�) 

𝑑𝑐�̃�
𝐴

𝑑�̅�
) = 0      (A.11a) 
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�̃�𝑠
𝐴(�̅� = 0, �̅�) =

1

�̅�
          (A.11b) 

�̃�𝑠
𝐴(�̅� → ∞, �̅�) = 0          (A.11c) 

The Duhamel’s Theorem (A.1) can be written in the Laplace domain in the following 

form: 

�̃�𝑠(�̅�, �̅�) = �̃�𝑠
𝐴(�̅�, �̅�) [�̅� �̃�𝑤  (�̅�) − 𝑐𝑤(0)] + �̃�𝑠

𝐴(�̅�, �̅�), 𝑐𝑤(0) = 1    (A.12a) 

�̃�𝑠(�̅�, �̅�) = �̅� �̃�𝑤  (�̅�) �̃�𝑠
𝐴(�̅�, �̅�)          (A.12b) 

By checking if the boundary conditions are satisfied for the Laplaced version of the  

system of equations ((A.10a) to (A.12b)). The upper boundary condition is satisfied as 

following: 

�̃�𝑠(�̅� = 0, �̅�) = �̅� �̃�𝑤(�̅�)�̃�𝑠 
𝐴(�̅� = 0, �̅�) = �̅��̃�𝑤(�̅�)(1 �̅�⁄ ) = �̃�𝑤(�̅�)    (A.13a) 

As well as for the lower boundary condition:  

�̃�𝑠(�̅� → ∞, �̅�) = �̅� �̃�𝑤(�̅�) �̃�𝑠
𝐴(�̅� → ∞, �̅�) = 0     (A.13b) 

Using the so-called Green function, and its correlation to the auxiliary function is as 

following: 

�̅�(�̅�, 𝑡̅) = 𝑡𝑇 𝐺(�̅�, 𝑡̅) =
𝜕𝑐𝑠

𝐴

𝜕𝑡̅
         (A.14) 

Therefore, Eq. (A.12b) takes on the following form using the Green function:  

�̃�𝑠(�̅�, �̅�) =  �̃�𝑤  (�̅�) �̅�(�̅�, �̅�)          (A.15) 

2. Developing a General Solution accounting for the Two-way 

Feedback. 

As in our system, the water and sediment concentrations are fully coupled through the mass 

flux across the SWI. Thus, the change of solute mass in the water column is equal to the 

rate of mass transfer across the SWI by dispersive mixing and turbulent diffusion:  

𝐴𝑏ℎ𝑤
𝑑𝐶𝑤

𝑑𝑡
= 𝐴𝑏Ѳ𝐷𝑒𝑓𝑓0

𝜕𝐶𝑠

𝜕𝑦
|
𝑦=0,𝑡

     (A.16a) 

In dimensionless form:  
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𝑑𝑐𝑤

𝑑𝑡̅
=

1

ℎ̅𝑤

𝜕𝐶𝑠

𝜕�̅�
|
�̅�=0,𝑡̅

     (A.16b) 

ℎ̅𝑤 =
𝑎ℎ𝑤

Ѳ
          (A.16c) 

In Laplace form: 

�̅� �̃�𝑤(�̅�) − 1 =
1

ℎ̅𝑤
 
𝜕𝑐�̃�

𝜕�̅�
|
�̅�=0,�̅�

   (A.16d) 

Taking the derivative of Eq. (A.15) with respect to �̅� and evaluating the expression at 

�̅� = 0:  

𝜕𝑐�̃�

𝜕�̅�
= �̃�𝑤(�̅�)

𝜕�̃�

𝜕�̅�
|
�̅�=0,𝑠̅

  (A.17) 

Substituting Eq.  (A.17) into  (A.16d) and solving for the concentration in the water 

column, we obtain the following result: 

�̃�𝑤(�̅�) =  
1 �̅�⁄

1− 
1

�̅� ℎ̅𝑤
(
𝜕�̃�

𝜕�̅�
)
�̅�=0,�̅�

    (A.18) 

The corresponding Laplace domain solution for the solute concentration in the 

sediment column follows by substituting Eq. (A.18)  into (A.15): 

�̃�𝑠(�̅�, �̅�) =  
�̃�(�̅�,�̅�) �̅�⁄

1− 
1

�̅� ℎ̅𝑤
(
𝜕�̃�

𝜕�̅�
)
�̅�=0,�̅�

   (A.19) 

The time-domain solution for solute concentration in the water column (Eq. (4.3)) and 

sediment bed (Eq. (4.4)) in Chapter 4 follows by taking the inverse Laplace of Eqs. (A.18) 

and (A.19) solving for the water column and sediment concentration, respectively. 

3. Deriving the Green’s Functions for the Constant and Exponential 

profiles. 

Here, we are deriving the Green’s functions for the constant (Eq. (4.1)) and the Exponential 

(Eq. (4.2)) profiles. The Green function 𝐺 is derived from the auxiliary function (Eq. 

(A.14)). As it is plugged into Eqs. (4.3) and (4.4)  in the Laplace form, we begin by taking 

the Laplace transform for both sides of Eq. (A.14)): 

�̃�(�̅�, �̅�) = �̅� �̃�𝑠
𝐴(�̅�, �̅�) − 𝑐𝑠

𝐴(�̅�, 𝑡̅ = 0)  (A.20a) 

After applying the initial condition (𝑐𝑠
𝐴(�̅�, 𝑡̅ = 0) = 0): 
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�̃�(�̅�, �̅�) = �̅� �̃�𝑠
𝐴(�̅�, �̅�)         (A.20b) 

For the C profile:  

For the C profile, the depth profile function is, 𝑓𝑐(�̅�) = 1, which simplifies the auxiliary 

function’s diffusion equation:  

𝑠 ̅�̃�𝑠
𝐴(�̅�, �̅�) −

𝑑2𝑐�̃�
𝐴

𝑑 �̅�2
= 0        (A.21a) 

Solving this equation in semi-infinite sediment depth, we obtain the following 

expression:  

�̃�𝑠
𝐴(�̅�, �̅�) =

𝑒−�̅�√�̅�

�̅�
        (A.21b) 

Substituting Eq. (A.21b) in (A.21a), we obtain Eq. (4.1). 

For the E profile: For the choice of 𝑓𝐸(�̅�) = 𝑒
−𝑦, the diffusion equation for the auxiliary 

function can be written as follows: 

𝜕𝑐𝑠
𝐴

𝜕𝑡̅
=

𝜕

𝜕�̅�
[𝑒−�̅�

𝜕𝑐𝑠
𝐴

𝜕�̅�
] = 𝑒−�̅�

𝜕2𝑐𝑠
𝐴

𝜕�̅�2
− 𝑒−�̅�

𝜕𝑐𝑠
𝐴

𝜕�̅�
      (A.22a) 

Following the approach outlined by Yates (1992) Eq. (A.22a) can simplified by a 

change of the depth-coordinate, 𝜉 = 𝑒�̅�:  

𝜕𝑐𝑠
𝐴

𝜕�̅�
= 𝜉′

𝜕

𝜕𝜉
[𝑒−�̅� ∗ 𝜉′

𝜕𝑐𝑠
𝐴

𝜕𝜉
] = 𝜉 

𝜕2𝑐𝑠
𝐴

𝜕𝜉2
, 𝜉 = 𝑒�̅�, 𝜉′ =

𝜕𝜉

𝜕�̅�
, �̅� ≥ 0     (A.22b) 

The transformed initial condition and upper and lower boundary conditions are as 

follow: 

𝑐𝑠
𝐴(𝜉, 𝑡̅ = 0) = 0, 𝜉 ≥ 1  (A.22c) 

𝑐𝑠
𝐴(𝜉 = 1, 𝑡̅) = 𝐻(𝑡̅)   (A.22d) 

𝑐𝑠
𝐴(𝜉 → ∞, 𝑡)̅ = 0   (A.22e) 
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where 𝐻(𝑡)̅ is the Heaviside function {
0  𝑡̅ ≤ 0
1   𝑡̅ > 0

. 

Moving Eqs. (A.22b) to (A.22e) into the Laplace domain results in following 

equations: 

�̅��̃�𝑠
𝐴(𝜉, �̅�) = 𝜉 

𝜕2𝑐𝑠
𝐴

𝜕�̅�2
, 𝜉 ≥ 1    (A.23a) 

�̃�𝑠
𝐴(𝜉 = 1, �̅�) = 1 �̅�⁄        (A.23b) 

�̃�𝑠
𝐴(𝜉 → ∞, �̅�) = 0   (A.23c)   

The system of Eqs. (A.23a) to (A.23c) can be solved and results in the following 

Laplace transformed auxiliary function:  

�̃�𝑠
𝐴(𝜉, �̅�) =

√𝜉𝐾1(2√�̅�𝜉)

�̅�𝐾1(2√�̅�)
, �̅� ≥ 0   (A.24a) 

Back substituting the depth-coordinate transformation, we obtain the final result of the 

auxiliary function as following:  

�̃�𝑠
𝐴(�̅�, �̅�) =

√𝑒�̅�𝐾1(2√�̅�𝑒�̅�)

�̅�𝐾1(2√�̅�)
, �̅� ≥ 0   (A.24b) 

By substituting equation  (A.24b) into (A.20b) results in Eq. (4.3). 

 

  

 



 103 

 

103 

 

 

APPENDIX B                             

Deriving the Diffusivity Model for 

Reactive Solute. 
1. General Equation for Reactive Solute.  

The mass conservation for a reactive solute in a horizontally uniform systems, averaging 

over the turbulence time scale and assuming a constant porosity and a constant reaction 

(sink) rate, and in dimensionless form: 

𝜕𝑐𝑠(�̅�,�̅�)

𝜕𝑡̅
= 

𝜕

𝜕�̅�
 (𝐷𝑒𝑓𝑓(𝑦)

𝜕𝑐𝑠(�̅�,�̅�)

𝜕�̅�
) − �̅� 𝑐𝑠(�̅�, 𝑡̅)                    (B.1) 

where �̅� = 𝜇 𝑎2𝐷𝑒𝑓𝑓,0⁄ , and 𝜇 represents the solute reaction/degradation/sink rate [𝑇−1]. 

Eq. (B.1) can take on the following form: 

𝜕𝑐𝑠(�̅�,�̅�)

𝜕�̅�
= 𝐿 𝑐𝑠(�̅�, 𝑡̅)                  (B.2) 

where: 

𝐿 =
𝜕

𝜕�̅�
(𝑓(�̅�)

𝜕

𝜕�̅�
) − �̅�                        (B.3) 

The boundary conditions for this system is the same as in Eqs. (A.6), (A.7) and (A.9).  

By moving the system of equations into the Laplace domain (Eqs. (B.4a) to (B.4c)) 

and its auxiliary function (Eqs. (B.5a) to (B.5c)): 

�̅� �̃�𝑠(�̅�, 𝑠) − 0 =  𝐿 �̃�𝑠(�̅�, 𝑠)     (B.4a) 

�̃�𝑠(�̅� = 0, �̅�) = �̃�𝑤(�̃�)          (B.4b) 

�̃�𝑠(�̅� → ∞, �̅�) = 0          (B.4c) 

�̅� �̃�𝑠
𝐴(�̅�, �̅�) −  0 = 𝐿 �̃�𝑠

𝐴(�̅�, �̅�)     (B.5a) 
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�̃�𝑠
𝐴(�̅� = 0, �̅�) =

1

�̅�
          (B.5b) 

�̃�𝑠
𝐴(�̅� → ∞, �̅�) = 0          (B.5c) 

The Duhamel’s Theorem for the system can be written in the Laplace domain as in 

APPENDIX A for the conservative solute:  

�̃�𝑠(�̅�, �̅�) = �̅� �̃�𝑤 (�̅�) �̃�𝑠
𝐴(�̅�, �̅�)         (B.6) 

2. Developing a General Solution accounting for the Two-way 

feedback. 

Similar to the conservative solute, here we account for the two-way feedback between the 

water column and the sediment. Thus, the change of solute mass in the water column is 

equal to the rate of mass transfer across the SWI by dispersive mixing and turbulent 

diffusion:  

𝐴𝑏ℎ𝑤
𝑑𝐶𝑤

𝑑𝑡
= 𝐴𝑏Ѳ𝐷𝑒𝑓𝑓0

𝜕𝐶𝑠

𝜕𝑦
|
𝑦=0,𝑡

     (B.7) 

Following the same procedures as in APPENDIX A, general solutions for the solute 

concentration in the water column and in the sediment can be derived to be as following, 

in the time domain:  

- For the water column: 

�̃�𝑤(𝑡̅) =  𝐿
−1 [

1 �̅�⁄

1− 
1

�̅� ℎ̅𝑤
(
𝜕�̃�

𝜕�̅�
)
�̅�=0,�̅�

]   (B.8) 

- For the sediment: 

�̃�𝑠(�̅�, 𝑡̅) =  𝐿
−1 [

�̃�(�̅�,�̅�) �̅�⁄

1− 
1

�̅� ℎ̅𝑤
(
𝜕�̃�

𝜕�̅�
)
�̅�=0,�̅�

]   (B.9) 

The time-domain solution for solute concentration in the water column (Eq. (4.3)) and 

sediment bed (Eq. (4.4)) in Chapter 4 follows by taking the inverse Laplace of  Eqs. 
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 (B.8) and  (B.9) and solving for the water column and sediment concentration, 

respectively. 

3. Deriving the Green’s Functions for the Constant and Exponential 

profiles for the reactive solute. 

Here, we are deriving the Green’s functions for the constant (Eq. (4.1)) and the Exponential 

(Eq. (4.2)) profiles in order to be plugged in Eqs.  (B.8) and  (B.9) for reactive 

solutes. The Green function 𝐺 is derived from the auxiliary function as following:  

�̃�(�̅�, �̅�) = �̅� �̃�𝑠
𝐴(�̅�, �̅�) − 𝑐𝑠

𝐴(�̅�, 𝑡̅ = 0)  (B.10a) 

After applying the initial condition (𝑐𝑠
𝐴(�̅�, 𝑡̅ = 0) = 0): 

�̃�(�̅�, �̅�) = �̅� �̃�𝑠
𝐴(�̅�, �̅�)  (B.10b) 

For the C profile: 

For the C profile, the depth profile function is, 𝑓𝑐(�̅�) = 1, which simplifies Eq. (B.3) to:  

𝐿 =
𝜕2

𝜕�̅�2
− �̅�    (B.11a) 

and therefore, the Auxiliary function can be written as following:  

 

�̅� �̃�𝑠
𝐴(�̅�, �̅�) = (

𝜕2

𝜕�̅�2
− �̅� ) �̃�𝑠

𝐴(�̅�, �̅�)        (B.11b) 

�̅� �̃�𝑠
𝐴(�̅�, �̅�) −

𝜕2

𝜕�̅�2
�̃�𝑠
𝐴(�̅�, �̅�) − �̅� �̃�𝑠

𝐴(�̅�, �̅�) = 0       (B.11c) 

 

Solving this equation in semi-infinite sediment depth, we obtain the following 

expression for the Auxiliary function:  

�̃�𝑠
𝐴(�̅�, �̅�) =

𝑒−�̅�√�̅�+�̅�

�̅�
         (B.12a), 
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and therefore, the Green function is as following:  

�̃�(�̅�, �̅�) = �̅� �̃�𝑠
𝐴(�̅�, �̅�) = 𝑒−�̅�√�̅�+�̅�   (B.12b) 

For the E profile:  

For the choice of 𝑓𝐸(�̅�) = 𝑒−𝑦, the diffusion equation for the auxiliary function can be 

written as follows: 

�̅� �̃�𝑠
𝐴(�̅�, �̅�) =

𝜕

𝜕�̅�
(𝑒−�̅�

𝜕

𝜕�̅�
) �̃�𝑠

𝐴(�̅�, �̅�) − �̅� �̃�𝑠
𝐴(�̅�, �̅�)     (B.13a) 

Similarly to Eq. (A.22b), Eq. (B.13a) can simplified by a change of the depth-

coordinate, 𝜉 = 𝑒�̅�:  

(𝑠̅ + �̅� )�̃�𝑠
𝐴(𝜉̅, �̅�) = 𝜉 

𝜕2𝑐𝑠
𝐴(�̅�,�̅�)

𝜕�̅�2
, 𝜉 = 𝑒�̅�, �̅� ≥ 0     (B.13b) 

The transformed initial condition and upper and lower boundary conditions in are as 

following: 

𝑐𝑠
𝐴(𝜉, 𝑡̅ = 0) = 0, 𝜉 ≥ 1   (B.13c) 

𝑐𝑠
𝐴(𝜉 = 1, 𝑡̅) = 𝐻(𝑡̅)   (B.13d) 

𝑐𝑠
𝐴(𝜉 → ∞, 𝑡)̅ = 0   (B.13e) 

where 𝐻(𝑡)̅ is the Heaviside function {
0  𝑡̅ ≤ 0
1   𝑡̅ > 0

. 

Moving Eqs. (B.13d) and (B.13e) into the Laplace domain results in following 

equations: 

�̃�𝑠
𝐴(𝜉 = 1, �̅�) = 1 �̅�⁄        (B.14a) 

�̃�𝑠
𝐴(𝜉 → ∞, �̅�) = 0   (B.14b)     

The previous system of equations can be solved and results in the following Laplace 

transformed auxiliary function:  
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�̃�𝑠
𝐴(𝜉, �̅�) =

√𝜉𝐾1(2√(�̅�+�̅�)𝜉 )

�̅�𝐾1(2√(�̅�+�̅�) )
, �̅� ≥ 0   (B.15a) 

Back substituting the depth-coordinate transformation, we obtain the final result of the 

auxiliary function as following:  

�̃�𝑠
𝐴(�̅�, �̅�) =

√𝑒�̅�𝐾1(2√(�̅�+�̅�)𝑒�̅�)

�̅�𝐾1(2√(�̅�+�̅�))
, �̅� ≥ 0   (B.15b), 

and therefore, the Green function is as following:  

�̃�(�̅�, �̅�) = �̅� �̃�𝑠
𝐴(�̅�, �̅�) =

√𝑒�̅�𝐾1(2√(�̅�+�̅�)𝑒�̅�)

𝐾1(2√(�̅�+�̅�))
   (B.15c) 
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APPENDIX C                                     

The Geostatistical Method. 
 

The objective is to estimate an unknown function, in this case the release history (𝑓(𝑡)) 

from a point source in reservoir upstream to an observation point in the downstream, which 

is a function of time. The unknown function is represented as a random process because 

there is uncertainty associated with the function and its true value may never be found. 

However, we can imagine the set of all possible functions/solutions that fit the data, and 

are consistent with additional information. In a Bayesian approach, each of these functions 

is assigned a probability that is a solution. The best solution is the one with highest 

probability along with its covariance as a measure of the estimation uncertainty. 

If the time domain is discretized in 𝑛 instants 𝑡𝑗 , the observations can be related to the 

source by the general expression: 

𝑍𝑖 = 𝐻𝑖𝑗 . 𝑓𝑖 + 𝑣𝑖         (C.1) 

𝑍𝑖 is an [𝑚𝑥1] vector contains the observations at 𝑡𝑗,  𝐻𝑖𝑗 is a [𝑚𝑥𝑛] matrix represents 

the model function, 𝑓𝑖 is [𝑛𝑥1] vector represents the discretized release history, and 𝑣𝑖 is 

an [𝑚𝑥1] vector represents the measurement errors.  

𝐻𝑖𝑗 is expressed as following:  

𝐻𝑖𝑗 = 𝑀𝑖𝑛(𝑡𝑖 − 𝑡𝑗)   (C.2) 

where 𝑀𝑖𝑛(𝑡𝑖 − 𝑡𝑗) corresponds to the source value at  𝑡 = 𝑡𝑖 − 𝑡𝑗. When the value 𝑡𝑖 − 𝑡𝑗  

is less than Zero, it accounts the legacy effect. For example, a concentration spike measured 

at time Zero at the output corresponds to a previous spike recorded at the model source. In 

our case, 𝑀𝑖𝑛 represents salt concentration, load, or water flow.  

As the problem dealt with here is an ill-posed problem (Boano et al., 2005), it is 

necessary to remove this ill-posedness. 𝑓𝑖 is assumed to be a gaussian joint distribution 

with mean (Eq. (C.3a)) and covariance (Eq. (C.3b)):  
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𝐸[𝑓] = 𝑋𝐵               (C.3a) 

𝐸[(𝑓 − 𝑋𝐵)(𝑓 − 𝑋𝐵)𝑇] = 𝑄(Ѳ)            (C.3b) 

where 𝑋 is an [𝑛𝑥1] unit vector, 𝐵 is the unknown mean, and Ѳ is a vector of unknown 

structural parameters.  

 

The error 𝑣 is also Gaussian, with a zero mean and covariance matrix 𝑅 = 𝜎𝑥𝐼, where 

𝐼 is the [𝑚𝑥𝑚] identity matrix. 

Two models are proposed to represent the covariance (Eq. (C.3b)): Linear (Eq. (C.4a)), 

and Gaussian (Eq. (C.4b)): 

𝑄(𝑡𝑖 − 𝑡𝑗|Ѳ) = 𝜎
2 − 𝐵2|𝑡𝑖 − 𝑡𝑗| , Ѳ

𝑇 = [𝜎, 𝐵]          (C.4a) 

 

𝑄(𝑡𝑖 − 𝑡𝑗|Ѳ) = 𝜎
2𝑒𝑥𝑝 [−

(𝑡𝑖−𝑡𝑗)
2

𝑙2
] , Ѳ𝑇 = [𝜎, 𝑙]         (C.4b) 

Then the pdf’s can be written as following:  

𝑝(𝑓|𝐵, Ѳ)  𝛼  |𝑄|−1 2⁄ 𝑒𝑥𝑝 [
−1

2
(𝑓 − 𝑋𝐵)𝑇𝑄−1(𝑓 − 𝑋𝐵)]        (C.5a) 

𝑝(𝑧|𝑓)  𝛼  |𝑅|−1 2⁄ 𝑒𝑥𝑝 [
−1

2
(𝑧 − 𝐻𝑓)𝑇𝑅−1(𝑧 − 𝐻𝑓)]              (C.5b) 

The geostatistical method consists of two steps: fist, estimating the structural 

parameters Ѳ (structural analysis) using the principle of maximum likelihood, then 

determining the release history 𝑓(𝑡) by the kriging estimator. 

- First step: The Structural Analysis.  

The observational pdf conditional on Ѳ is determined as  

𝑝(𝑧|Ѳ) = ∫ 𝑝(𝑧|𝐵, Ѳ) 𝑑𝐵
.

𝐵
= ∫ ∫ 𝑝(𝑧, 𝑓|𝐵, Ѳ)𝑑𝑓 𝑑𝐵

.

𝑓
= ∫ ∫ 𝑝(𝑧|𝑓)𝑝(𝑓|𝐵, Ѳ)𝑑𝑓 𝑑𝐵

.

𝑓

.

𝐵

.

𝐵
 

(C.6) 

The previous expression is maximized with respect to Ѳ, which is equivalent to 

minimizing 
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𝐿(Ѳ) = − ln[𝑝(𝑧|Ѳ)] 𝛼
1

2
ln(|∑|. |𝑋𝑇𝐻𝑇∑−1𝐻𝑋|) +

1

2
𝑧𝑇Ξ 𝑧         (C.7a) 

∑ = 𝐻𝑄𝐻𝑇 + 𝑅                           (C.7b) 

Ξ = ∑−1 − ∑−1𝐻𝑋(𝑋𝑇𝐻𝑇∑−1𝐻𝑋)−1𝑋𝑇𝐻𝑇∑−1                 (C.7c) 

The problem can be solved iteratively using the Gauss-Newton method, with the 

addition of a line search (Press, 1992) to improve the convergence rate. If the 𝑙th estimate 

Ѳ̂𝑙 is known, the next estimate can be found as 

Ѳ̂𝑙+1 = Ѳ̂𝑙 − 𝜌𝐹
−1𝑔                    (C.8) 

 

where ρ is a multiplicative factor for the line search. 

𝑔𝑖 =
𝜕𝐿

𝜕Ѳ𝑖
=

1

2
 𝑇𝑟 [Ξ 

∂∑

∂Ѳ𝑖
] −

1

2
𝑧𝑇 [Ξ 

∂∑

∂Ѳ𝑖
Ξ] 𝑧              (C.8a) 

𝐹𝑖𝑗 = 𝐸 [
𝜕2𝐿

𝜕Ѳ𝑖𝜕Ѳ𝑖
] =

1

2
 𝑇𝑟 [Ξ 

∂∑

∂Ѳ𝑖
Ξ 

∂∑

∂Ѳ𝑗
]                      (C.8b) 

 

The routine eventually converges to the final estimate Ѳ̂ of the structural parameters. 

The matrix 𝐹−1 also represents an estimate of the covariance matrix of Ѳ. 

 

- Second step: Kriging Estimator for 𝒇(𝒕). 

A linear estimator of kriging is  

 

𝑓 = ⋀z        (C.9a) 

 

which is unbiased and minimizes the estimate error variance, that is, 

𝐸 [�̂�− 𝑓] = 0                              (C.9b) 

min
�̂�
𝐸[(�̂�− 𝑓)(�̂�− 𝑓)𝑇]             (C.9c) 

 

After updating the matrices 𝑄 and ∑ with the estimated structural parameters Ѳ̂, the 

following system has to be solved  

 

[
∑ 𝐻𝑋

(𝐻𝑋)𝑇 0
] [⋀

𝑇

𝑀
] = [

𝐻𝑄

𝑋𝑇
]             (C.10) 
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where ⋀ is an [𝑛𝑥𝑚] matrix of coefficients and 𝑀 is a [1𝑥𝑛] vector of multipliers. This 

system is equivalent to Eqs. (C.9b) and (C.9c).  

 

After solving Eq. (C.10), the value of ⋀ can be substituted in Eq. (C.9a) and the value 

of 𝑓(𝑡) is found.  

The application of the kriging Eq. (C.10) corresponds to discarding, from the ensemble 

of the release histories, those that are not consistent with the observations 𝑧 (Boano et al., 

2015). The mean of the release history is then estimated by Eq. (C.9a), while its covariance 

matrix 𝑉 can be evaluated as 

 

𝑉 = −𝑋𝑀 + 𝑄 − 𝑄𝐻𝑇⋀𝑇           (C.11) 

 

The disadvantage of the usage of Eq. (C.1) is that the application of the geostatistical 

method on a linear model, as in the case here, allows the solution to present negative values. 

This is a numerical problem due to the 𝑓(𝑡) oscilations around the Zero; however, 

physically, this is not acceptable.  

To avoid this problem in the code, the following function is considered to avoid the 

negativity: 

𝑓 = 𝛼(𝑓1 𝛼⁄ − 1)           (C.12a) 

 

where 𝛼 is prior defined parameters that constrain 𝑓 to not be negative  

 

 

𝑓 + 𝛼 > 0                    (C.12b) 

 

Provided this condition is respected, it is a good choice to adopt a small value for a, 

since this will improve the convergence rate. Other transformations for the variable can 

also be chosen. 
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Nomenclature 

Abbreviation: 

AB Alternate Bars 

AD test Anderson Darling test 

AICc Corrected Akaike Information Criterion 

BIC Bayesian Information Criterion 

CDF Cumulative Distribution Function 

𝐶𝑉. 𝐸𝑟𝑟 Cross-validation prediction error 

D Dunes 

Da Damköhler number 

DBL Diffusive Boundary Layer 

EXP Exponential Distribution 

FB Flat Bed 

FR Fréchet Distribution 

FSS Freshwater Salinity Syndrome 

GAM Gamma Distribution 

Hrs Hours 

HZ Hyporheic Zone 

LN Lognormal Distribution 

MLE Maximum Likelihood Estimation 

MLR Multiple Linear Regression 

pdf Probability Density Function 

RE Relative Error 

𝑅2 

RMSE 

Coefficient of Determination 
Root Mean Square Error 
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RSF Reaction Significance Factor 

RTDs Residence Times Distributions 

RTs Hyporheic Residence times 

SE Standard Error 

SWE Surface Water Elevation 

SWI Sediment Water Interface 
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