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Abstract

Extreme rainfall is one of the most critical hazards worldwide, and Italy makes no
exception: the vulnerability is particularly high due to a high population density
associated with complex topography, extended coastlines, and high climate variability.
The statistical investigation of short-duration rainfall extremes is thus a challenging
and evolving topic.

In this work, the first national-scale quality-controlled dataset of rainfall extremes
is presented, together with simple but effective methods for the detection of errors
and inconsistencies. The so-called Improved Italian - Rainfall Extreme Dataset
(I2-RED) is a collection of short-duration (1, 3, 6, 12 and 24 hours) annual maximum
rainfall depths measured by more than 5200 rain gauges from 1916 to the present.
An exploratory statistical analysis carried out to identify extremes that could be
considered "critical" in relation to the local climatology is here reported. This work
highlighted that particularly intense rainfall events (in relation to the mean annual
rainfall depth) are generally concentrated near the coastline. However, the work also
shows a uniform spatial distribution of time series that contains a maximum value
twice as large as the second highest one, suggesting that these “Super-Extremes”
can be recorded almost everywhere. The analysis was then further expanded by
investigating the possible presence of temporal trends in the time series. The results
confirmed that rainfall extremes of different durations are not increasing uniformly
over Italy and that separate tendencies emerge in different sectors, even at close
distances.

A second dataset was thus created: it represents a collection of daily maxima
recorded over a domain that coincides with the Po river basin and Liguria region.
This second dataset was used to compute the Hershfield factor, that is a coefficient
used to retrieved 24 h sliding maxima starting from fixed daily maxima, allowing to
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take advantage of the relevant amount of information included in historical records
of daily extremes.

The investigation of the influence of elevation and other geomorphological and
climatological parameters on the index rainfall (computed using the data of I2-
RED) was also performed. The results of the national-scale regression analysis did
not confirm the assumption of elevation being the sole driver of the variability of
the index rainfall. However, when comparing the results of the best multivariate
regression models with univariate regressions applied to small areas, it clearly
emerged that “local” rainfall–topography relationships outperform the country-wide
multiple regressions, offer a uniform error spatial distribution and allow the effect of
morphology on rainfall extremes to be better reproduced.

Finally, a sequential application of interpolation to the annual maxima (patched
kriging) is performed to provide reconstructed time series that are consistent with
the measured values. Different configurations of the patched kriging incorporating
the main results achieved in the overall work are applied and discussed. A first
application over an area (Piedmont, Aosta Valley and Liguria) that is both bigger
and more complex than the one used in the original methodology (Piedmont) is
here presented and an improved methodology that handles the local-scale influence
of elevation on the extremes is proposed. The application serves also to highlight
the possible influence of a record-breaking event in the rainfall frequency analysis.
Then, a comparison with other established approaches is performed over Sardinia
and Thessaly (Greece).

The results summarized in this dissertation provide quantitative information for
improving the rainfall frequency analysis for a future provision of maps of design
rainfall for different return periods at the national scale, with potential impacts also
in the flood risk assessment and reduction field.
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Chapter 1

Introduction

1.1 Rationale of the Work

The investigation of the spatial variability of precipitation is the object of considerable
research efforts and is still an evolving topic. The complexity linked to precipitation
is induced by an unpredictable space-time variability and discontinuities both in
space and time. Moreover, the time scale is a relevant variable: different behaviours
and thus different problems emerge with increasing time windows.

Despite these shortcomings, the mechanisms that led to the genesis and devel-
opment of rainfall events are quite well described in the literature (see e.g., Dayan
et al. (2015)). Also the influence of reliefs on the spatial variability of rainfall depths,
mainly in terms of variation of rainfall depth with increasing elevation, is relatively
well understood (Smith (1979)). However, this is particularly true when dealing with
multi-daily, monthly or annual precipitations. Extremes are instead more complex,
and the number of studies performed to understand this complexity is lower.

The dependence of rainfall on elevation may be relevant in Italy (Avanzi et al.
(2015)), that is the area investigated in this dissertation, due to the high degree of
geographical and morphological heterogeneity of the country. However, a detailed
analysis of the spatial variability of short-duration annual maximum rainfall depths
and their connection to the landforms do not exist. Detailed studies are often compli-
cated by the lack of dense and evenly distributed measuring networks and continuous
time series (Libertino et al. (2018b)), posing major problems especially when dealing
with the understanding of unpredictable events like convective storms. Possible
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improvements in terms of spatial coverage could be secured by including remote
precipitation measurements performed by satellites or weather radars. However,
these sensors do not provide a direct measure of the rainfall intensity and are affected
by errors and high uncertainty. Considering all these drawbacks, we can still consider
the rain gauge measurements as the source of information with the highest accuracy.

Further complexity is introduced by the rare occurrence of "Extraordinary Ex-
treme Events" (EEEs) (Pelosi et al. (2020)) or "Super-Extremes" (Libertino et al.
(2016)) or "Black Swans" (Taleb (2007)), that are weather phenomena that can
persist for hours over a small area producing rainfall amounts in the same orders of
magnitude of the mean annual precipitation of that site. These high-impact events
can often be easily explained once they occurred but could not have been predicted
a priori. The rarity of these events can undermine the robustness of statistical ap-
proaches used for rainfall frequency analysis (see e.g. Laio et al. (2010)) and the
assessment of the probability of occurrence of similar events (see e.g. Viglione et al.
(2013)).

When writing this thesis, a major rainfall event affected the Marche region. This
very intense quasi-stationary convective event developed since the afternoon of 15th
September 2022 and, in about 8 hours, more than 300 mm of rainfall was recorded
by a few rain gauges. Among all, the Cantiano rain gauge measured the highest
values in the entire region (101.4 mm in 1 hour, 256.6 mm in 3 hours, 384 mm in 6
hours, 419 mm in 12 hours and 419 mm in 24 hours). Thanks to the data collected
by the Regional Functional Center of Civil Protection of the Marche region it was
possible to obtain some information about the rarity of the event.

To quantify the "extremeness" of this event, we can somehow compare these
values with the climatology of the location. It is worth recognizing that the impact of
the same amount of rainfall can produce significantly different damages depending
on the area. As an example, we can consider a 170 mm rainfall falling in 24 hours
over the city of Catania (Sicily). Here, the mean annual precipitation is about 650
mm (Braca et al. (2021)) and thus this extreme event that corresponds to the 26%
of the expected yearly rainfall would certainly produce significant damages. The
same amounts would instead be less problematic in other areas, such as the city of
Verbania (Piedmont), located in an area characterized by 1800 mm mean annual
rainfall (Braca et al. (2021)), thanks to infrastructures more prepared and designed
to face similar extremes.
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For the Marche region case study, the mean annual precipitation is about 1300
mm (Braca et al. (2021)) and, thus, the ratio is about 30%. Is this a particularly
significant value? From a quick check of some of the main websites about historical
meteorological records, it is possible to affirm that significantly higher historical
values in relation to the mean annual precipitation have occurred in the past. So,
which indicators effectively represent the rarity of the event?

We can start with the computation of the observed Severity Index (SI) of a rainfall
event. Having established a reference duration, for example 3 hours, this index is
computed as the ratio between the maximum rainfall depth observed in 3 hours
during the event and the average of the maximum annual values historically observed
in 3 hours. In the case of the event observed in Cantiano, this ratio is equal to 256.6
mm / 37.7 mm = 6.81.

How can we estimate the denominator of this equation? It is extracted from the
historical series of the measurements of the Cantiano rain gauge, a series that has a
length of more than 70 years, therefore very long and reliable in the Italian context.
Repeating this operation for all the durations, the results that were obtain are:

• for the duration of 1 hour, SI = 3.82;

• for the duration of 3 hours, SI = 6.81;

• for the duration of 6 hours, SI = 7.87;

• for the duration of 12 hours, SI = 6.29;

• for the duration of 24 hours, SI = 4.72.

Are these indexes exceptionally high? To get an idea of the entity of these values,
the same operation have to be repeated for the all-time Italian rainfall records, re-
trieved from https://www.arpal.liguria.it/files/HOME/massimiliguria20211004.jpeg
(accessed on 27th September 2022).

For the 1 h duration, the record rainfall (181 mm) occurred in Vicomorasso in
2011. The average 1 hour extreme of that location, computed from the historical
records, is 52.8 mm, corresponding to SI = 3.43.

For the 3 h duration we have to refer to the 377.8 mm fallen in Urbe - Vara
Superiore in 2021, an area characterized by a mean rainfall depth of 144 mm, that
allows to estimate a SI equal to 3.31.

https://www.arpal.liguria.it/files/HOME/massimiliguria20211004.jpeg
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Finally, the 6 h record of 496 mm of Montenotte Inferiore (year 2021) occurred
in an area of 93.4 mm average rainfall, allowing to estimate a SI of 5.3.

From a quick look at Figure 1.1, which compares the Severity Indexes of the
Cantiano event with those of the three Italian records of 1, 3 and 6 hours, the rarity
of the characteristics of the Marche event clearly emerge.

Fig. 1.1 Severity Index of the Cantiano, Vicomorasso, Urbe - Vara Superiore and Montenotte
Inferiore case studies.

However, some open questions still remain. Should we expect another event
of a similar entity in the near future in the same area? And what about other areas
close by? Did this event happen in a place where such a large amount of rainfall
would never have been expected? Did the geography and the morphology of that area
contributed to enhance the rainfall quantity? Can we systematically map the spatial
distribution of these Super-Extremes? Is the frequency of these Super-Extremes
increasing over time? If yes, is this increase uniform over Italy? How can we cope
with these records when performing a statistical investigation of these time series?

A considerable amount of meteorological measurements are potentially available
in Italy for the investigation of these Super-Extremes but an easy and straightforward
use of all of these information is not possible due to the very complex historical
evolution of the national monitoring networks, that is managed by 21 different
regional hydrological agencies since late ’80 (Libertino et al. (2018b)). Each shift
was often accompanied by changes in the network configuration and instrument
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upgrade, which were not always properly documented. Moreover, the changes were
not performed simultaneously in all the Italian regions, posing major problems when
dealing with instruments located along the borders, often included in the databases of
both regions with different values induced by different validation procedures. More
details about the complexity of the Italian rain gauge network is provided in this
dissertation. This work can be viewed as a first, massive effort to recover all the
available information about extreme events that occurred starting from early ’900
and transform them into a digital quality-controlled database that can be used to
address the open points previously highlighted.

Independently from the problems related to data availability, considerable re-
search is still needed to transform the established knowledge into concrete and robust
tools for the assessment and management of the risk associated with extreme rainfall
events, especially in a territory with a complex morphology and climate such as Italy.

1.2 Thesis Outline

The aims of this dissertation stem from the considerations mentioned above. Here,
the meteorological aspects that lead to such extreme phenomena are only briefly
mentioned. Instead, the main focus is the data-driven investigation of pieces of
evidence and the development of operational tools for improving the prediction of
extreme rainfalls over large areas, even in the case of extraordinary rainfall amounts.

The thesis is structured as follows.

Chapter 2 introduces the main concepts behind the regional rainfall frequency
analysis approach, highlighting problems in the availability of complete and homo-
geneous data for the whole Italian country. The pros and cons of the approaches
mentioned in this chapter are discussed.

In Chapter 3, the methodological approach adopted to build an improved and
quality-controlled version of a database of annual maxima (in terms of both the
rainfall depth values and the position of the rain gauges) is presented. The new
database can be used as a more reliable research support for the frequency analysis of
the rainfall extremes. A descriptive analysis of the maximum values of the stations,
which provides an additional quality check and reveals different intriguing spatial
features of Super-Extreme rainfall events, is also presented.
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Chapter 4 deals with the reconstruction of a database of daily annual maximum
rainfall depths, which is the time scale at which the majority of rainfall measurements
in the world is available, especially in early ’900. These records have been used for
the computation of the Hershfield factor, a well-established index equal to the ratio
between the 24 h and the daily extremes, widely used to recover the equivalent 24 h
extremes from the historical daily records.

Chapter 5 investigates the spatio-temporal trends of sub-daily extremes in Italy.
The investigation is performed both at the national and at the regional level using
time series of at least 30 years using the record-breaking analysis, the Mann-Kendall
test, the Regional Kendall test and the Sen’s slope estimates.

Chapter 6 presents a systematic study of the relationship between geomorpholog-
ical parameters and the average annual maxima (index rainfall) across the whole of
Italy, with a specific focus on the influence of elevation.

Chapter 7 deals with the geographically-based analysis of rainfall quantiles,
starting from the implementation of the patched kriging methodology over two areas
that are more complex (from a geomorphological and climatological point of view)
than the one used for the first application. Then, the concept of regional ombrian
model is introduced, and a first comparison with the patched kriging is performed.

Chapter 8 concludes the dissertation. The main results achieved and the open
points are here discussed.



Chapter 2

Regional Rainfall Frequency Analysis

The work described in this chapter has been partially derived from Claps et al.
(2022b).

2.1 Introduction

Environmental engineers, hydrogeologists and, more generally, practitioners need
a high number of field observations to answer engineering questions and design
water management infrastructures. The collection of such information is often
expensive and challenging, and its management and integration with historical data
are complicated by the lack of homogeneous databases of measurements over large
areas.

Suppose a long and complete rainfall depth time series is available at the site
of interest. In this case, the application of standard frequency analysis techniques
allows to build reliable intensity – duration – frequency (IDF) relationships for the
estimation of the design rainfall for a given return period (Claps et al. (2022b);
Koutsoyiannis and Iliopoulou (2022)). This application, which dates back decades
(Sherman (1931); Bernard (1932)), generally requires annual maximum rainfall
depths computed over time intervals from 1 to 24 hours. However, in some cases,
annual maxima of sub-hourly or daily durations are also considered, especially when
dealing with very small (in the first case) or large (in the second case) river basins.
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Unfortunately, long and complete time series are available only for a limited
part of Earth’s surface (Kidd et al. (2017); Libertino et al. (2018a)). The increasing
number of rain gauges installed annually by the various monitoring agencies allows
an increase in the spatial details but further exacerbates the problem of working with
records that are too short compared to historical ones. Thus, in ungauged locations
and data-scarce regions, the design rainfall estimation is performed using techniques
based on the concept of hydrologic similarity (Hosking and Wallis (1997)) that
transfer the information of other gauged sites with similar characteristics. In other
words, regionalization techniques rely on the “space-for-time substitution”: the
missing time series of the ungauged location is reconstructed by filling the gap with
measurements coming from “spatially close” gauged sites (Blöschl (2011); Grimaldi
et al. (2011)). The same approach can be applied in gauged locations with short time
series compared to the return period under investigation (Faulkner (1999); Naghettini
and Pinto (2017)).

Most of the regionalization methods rely on the “index flood approach” (Dalrym-
ple (1960)) for the estimation of the design rainfall: the rainfall quantile hd,T related
to duration d and return period T can be computed by multiplying the index variable
hd (that is generally computed as the mean or the median of the measurements
distribution) with a dimensionless frequency quantile Kd,T named "growth factor"
(Equation 2.1):

hd,T = hd ·Kd,T (2.1)

The index variable hd is usually modelled with an average depth-duration curve
which follows the power law

hd = a ·dn (2.2)

where a is the scale factor (representing the best unbiased linear estimation of mean
1 h rainfall annual extreme) and n is the scaling exponent.

The estimation of rainfall quantiles is usually performed following the “simple-
scaling approach” (Burlando and Rosso (1996)): the growth curve is considered as
extracted from the same probability distribution for all the durations. Thus, a single
growth factor is computed for the entire region, independently from the duration,
leading to a compacted fan of IDF curves that follow the equation

hd,T = hd ·KT (2.3)
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Limitations and exceptions to this approach, such as those highlighted e.g. in
Marani (2003), are not discussed here because Svensson and Jones (2010) pointed out
that this hypothesis is widely used in regional analyses adopted in various countries.

Traditional regional frequency analyses (RFA) are based on three steps:

• the data availability check;

• the definition of a homogeneous region and its growth curve KT;

• the computation of the index rainfall curve hd for the ungauged site using
locally-available direct measure or through various spatial interpolation ap-
proaches.

In the last decades, statistical techniques that fall under the umbrella of “regional
frequency analysis” have been developed to cope with data scarcity and fragmen-
tation. This chapter explains the regional rainfall frequency analysis concept and
summarizes the main techniques that can be used to address this problem. The three
steps mentioned above will form the structure of this chapter, which represents an
updated version of Claps et al. (2022b).

2.2 Variables to be Regionalized, Data Preparation,
and Data Scarcity

2.2.1 Regionalized Variables

The selection of the proper variable to be regionalized represents a key point of the
rainfall frequency analysis approach. Suppose that continuous rainfall measurements
at high resolution (1-2 minutes for electronic, modern devices, or a continuous line
for analogic, historical devices) are available. In this case, the “complete duration
series” (CDS) can be computed using a moving average window of width d to
process the series. The so-computed CDS includes all the rainfall measurements of a
specific year aggregated using different durations and can be used to extract the peak
values.

Partial duration series or peak-over-threshold (POT) series can be computed by
extracting only those values that exceed a fixed threshold. Block maxima series are
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instead computed by extracting only the highest values that occur within a fixed
interval: if the period coincides with a calendar year, the extraction allows obtaining
the annual maximum series (AMS).

Both approaches have their pros and cons, but the latter is the most common one,
following the suggestion of Gumbel (1954). Moreover, one must consider that only
AMS records are available for older time series, limiting the possibility of applying
a POT-based method. POT is mainly preferred when it is necessary to increase the
length of the time series for the estimation of critical high-return period and can
provide valuable results when dealing with heavy-tailed distribution (Madsen et al.
(1997); Marani and Zanetti (2015)). However, it should be noted that Claps and Laio
(2003) pointed out that this approach is highly sensitive to the identification of the
threshold.

The following step is related to the definition of the variable needed to compute
the growth factor. Different alternatives are reported in the literature. Possible
options are the regionalization of rainfall quantiles (Svensson and Jones (2010))
for a specific duration considering the simple scaling assumption (Soltani et al.
(2017)) or for multiple durations considering the multiscaling approach (i.e., using a
growth factor that varies both with the duration and with the return period; Burlando
and Rosso (1996)). Other authors, instead, suggest that the regionalization of other
variables must be preferred, such as the parameters of the probability distribution (see
Svensson and Jones (2010) and reference therein) or the sample ordinary moments,
or the L-moments (Smithers and Schulze (2001); Modarres and Sarhadi (2011);
Ngongondo et al. (2011)).

The proper selection of the variable to be regionalized and the dependence of
the variance of the regionalized parameters on the record length requires a deep
understanding of the spatio-temporal variability for a proper estimation of high return
period quantiles. An average practitioner can thus encounter some problems in distin-
guishing and understanding the different outcomes obtained when different variables
are chosen. The production of precise regional guidelines is thus recommended to
avoid severe inconsistencies during “critical application”, e.g. in areas with few data
and high hydroclimatic or geomorphological variability (Libertino et al. (2018a)).
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2.2.2 Data Preparation and Data Scarcity

Recent approaches tend to focus on the correct estimation of the return period of new
record-breaking rainfall events that sometimes are recorded by rain gauges recently
installed and thus with short time series. These measurements are often included
in databases of other time series that are affected by sensor replacements, station
relocations and gaps.

Two different approaches can be used to deal with data fragmentation.

The first one is based on the definition of a record length threshold: in this
approach only time series longer than the threshold are considered in the RFA.
Even if this approach can be considered precautionary, it also discards essential
information included in short records and thus can affect the reliability of the overall
RFA (Ouali et al. (2016); Libertino et al. (2018a)).

The second approach tries to conserve all the available information in relation to
its influence on each parameter that must be estimated (Laio et al. (2011)): despite
short records cannot be considered for the computation of the higher-order moments,
they can still be relevant to improve the first order parameter estimation. In this
case, robust assumptions are needed to avoid errors (Teegavarapu and Nayak (2017)).
Numerous data augmentation techniques based on interpolation, data reconstruction
or ancillary data have been developed recently to solve this problem. Pappas et al.
(2014) used the correlation of the time series to deal with the gaps, highlighting
that low autocorrelation or frequent/systematic missing data can undermine the
methodology. Libertino et al. (2018a) developed the patched kriging to reconstruct
missing information through a sequential application of the ordinary kriging to the
measured annual maxima. Uboldi et al. (2014) suggested a bootstrap procedure that
accounts for all the measurements in nearby gauged sites to obtain homogeneous
annual maxima time series. However, this application is susceptible to outliers and
can provide quantiles that significantly deviate from the ones computed using only
the measured series. Finally, Ouali et al. (2016) proposed a conditional quantile
regression to cope with data fragmentation. Ancillary data such as rainfall estimates
provided by weather radars (Goudenhoofdt et al. (2017); Ochoa-Rodriguez et al.
(2019); Kašpar et al. (2021)) and by satellite missions (Qamar et al. (2017)) can
also be used in areas affected by data scarcity for data augmentation. However,
considerable efforts have still to be spent on this topic to take advantage of such



12 Regional Rainfall Frequency Analysis

information due to the low spatio-temporal resolution of satellite data (Zorzetto and
Marani (2020)).

2.3 Regional Methods

2.3.1 Fixed Region and Region-Of-Influence Methods

In the RFA context, a homogeneous region is a domain where the statistical properties
of the investigated variable can be considered constant. These regions are used to
pool together all the data that fall inside them for the computation of a unique growth
factor curve. The so-computed growth factor is kept constant for every point of the
region.

A nondimensional sample can be obtained by normalizing all the time series that
fall inside the region with the index value. If the curve is computed directly from
the nondimensional sample, the method is named “station-year”. The definition of a
unique growth factor on the basis of this methodology is practical. Still, it does not
allow us to properly take into account the different uncertainty that derives from the
different lengths of the pooled series. A weighted average can be used to address
this problem.

Moments of different order can be devised from different pooled sample using
a hierarchical scheme, when a specific probability distribution is selected (e.g., the
TCEV; Rossi and Villani (1994a)). More in general, regional L-moments of different
order (Hosking and Wallis (1997)) coming from the same or from different samples
can be regionalized (Alila (1999)).

The delineation of such homogeneous region is based on procedures that evolved
over time (Reed et al. (1999)). The first approaches were based on fixed and non-
overlapping geographical regions defined by splitting the study area into smaller
regions that can be considered as similar in the geographic space from a climatologi-
cal or morphological point of view (Cole (1966); see Figure 2.1). In the following
years, some authors (e.g., Acreman and Wiltshire (1989)) suggested new methods
for the delineation of fixed homogeneous region in the non-geographic spaces to
minimize the usage of subjective delineation criteria. Relevant examples are regions
defined in the space of the geomorphological descriptors, such as latitude, longitude,
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elevation or distance from the sea (Le Gall et al. (2022)). Operational difficulties can
emerge when the estimation point is in proximity of the boundaries of two adjacent
regions. In this case, different delineation algorithms or subjective choices would
potentially cause the point to fall in different regions that could be characterized by
significantly different parameters, leading thus to different estimates, and hampering
the overall robustness of the approach.

Fig. 2.1 Visual representation of the main differences among the geographical contiguity
(fixed and non-overlapping regions), cluster analysis and region of influence approaches.
Source: Claps et al. (2022b). Copyright holder: Elsevier.

Cluster analysis was then introduced to classify groups with similar behaviour
within large collection of measurements or parameters (Satyanarayana and Srinivas
(2008); Modarres and Sarhadi (2011); Ngongondo et al. (2011); Naghettini and Pinto
(2017), Le Gall et al. (2022)). All these methods organize measurements into fixed
and non-overlapping clusters (into the parameter space) with high internal similarity
and with evident dissimilarities with all the others (Figure 2.1). However, Ganora
and Laio (2016) suggested that, after the delineation, further adjustment may be
required to ensure the internal homogeneity of all the regions.
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To solve the shortcomings of these two approaches, the region-of-influence (ROI)
approach (Burn (1990)) was proposed. This method has been progressively refined
over the past years and represents the base of several national-scale applications, as
highlighted by Svensson and Jones (2010). Into the ROI approach, the regions are no
longer fixed (in whatever space) because a specific and individual region is defined
for each ungauged sites of the study area (Figure 2.1). This method grants a good
level of continuity of the estimates while moving in all the ungauged sites.

For all the three methods summarized before, the regionalized curve can be
extended to ungauged sites only if the pooled sample is statistically homogeneous.
Specific tests, as those mentioned in Hosking and Wallis (1997), can verify the
statistical homogeneity (or the heterogeneity and thus outliers and discordant data)
by comparing the sample L-moment ratios (dimensionless L-variance, L-skewness
and L-kurtosis) of the different stations. Samples with statistical characteristics that
are too different from those of the whole group are identified using discordancy
measures (Hosking and Wallis (1997); Naghettini and Pinto (2017)). This approach
requires the continuous application of these tests: large regions generally produce
large samples that are less homogeneous, while small regions pool a little amount
of data that generally cannot satisfy a minimum data requirement (see the UK
FORGEX method reviewed in Svensson and Jones (2010)). The main drawback of
this interactive process is that it converges to different but equally likely solutions.

Delineation processes aided by ancillary climatological information have been
successfully suggested to limit such subjectivity, and possibly underline that the rain-
fall extremes are produced by similar weather mechanisms (Persiano et al. (2020)).
Relevant examples of the definition of homogeneous regions performed using the
mean annual precipitation are reported in Schaefer (1990), Alila (1999) and Gaál
et al. (2008).

2.3.2 Regionless Methods

The name “regional frequency analysis” suggests that the definition of a region is
necessary to pool a “critical mass” of data. However, if the return period that we
want to investigate is small or if we want to estimate only lower order moments,
the number of pooled information can significantly decrease (Rossi and Villani
(1994a)). Similarly, if we want to investigate a highly variable quantity as the
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index rainfall, the definition of homogeneous regions loses its significance. For this
reason, interpolation and geostatistical methods (or, equivalently, non-geostatistical
and geostatistical methods) have been suggested to estimate the index rainfall in
ungauged sites (Trefry et al. (2005); Faulkner and Prudhomme (1998)). In recent
years, recent advances in GIS techniques led to increased interest in these methods,
not only for the index rainfall but also for higher order parameters.

The simplest interpolation techniques that can be used is based on Thiessen
polygons: in essence, in every ungauged location, the record of the closest rain gauge
is assigned (Goovaerts (2000)). This methodology, mostly used for the estimation
of the areal rainfall, has been applied in several case studies, such as in the south
of France (Creutin and Obled (1982)), in the central Continental United States
(Tabios III and Salas (1985)) and in the south of Portugal (Goovaerts (2000)).

The spatial variability of low order moments can be assessed using regression
methods than include geographical, geomorphological, and climatological covari-
ates, especially in areas with complex topography that can play a significant role
(Prudhomme and Reed (1998); Prudhomme and Reed (1999); Beguería and Vicente-
Serrano (2006); Van de Vyver (2012); Carreau et al. (2013)). In all the cited work,
however, a geographic-based investigation and explanation of possible model inade-
quacies are lacking.

Other possible approaches are those based on splines, thin plate splines (Carey-
Smith et al. (2018)) or bilinear surface smoothings (Malamos and Koutsoyiannis
(2016a); Malamos and Koutsoyiannis (2016b); Iliopoulou et al. (2022)).

By applying the inverse distance weighting (IDW) method, in each ungauged site
it is possible to compute an estimate using a weighted average of the measurements
collected in nearby gauged locations (Tabios III and Salas (1985); Goovaerts (2000)).
This method considers the distance as the only relevant prediction criterion: in
other words, the influence of each measurement on the site of interest decreases
quadratically with its distance. The main drawback of this methods is the “bull’s eye
effect”, an artifact that consists in an overweight of the measurements around the
gauged locations. This artifact can be softened using geostatistical approaches like
kriging. Considered the high recent interest in using geostatistical techniques into
regionless methods, a separate section will be dedicated to this topic.
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2.3.3 Geostatistical Techniques

A good estimate of the unknown variable, possibly free of artifact, and a measure of
the estimation error is needed in most applications. Several geostatistical techniques,
also referred to as kriging interpolations, were developed to fill these gaps in the past
years.

The kriging technique was initially developed by Krige and Matheron (Matheron
(1963)) and its application is becoming widely used in hydrology because of the
characteristics of the rainfall fields. The spatial variability of rainfall is not a random
process: given two measures in two different positions, the closer they are, the more
similar they will be. Geostatistics takes advantage of the spatial correlation between
neighboring stations to perform an estimate in an ungauged position (Goovaerts
(1999)). Thus, the spatial dependence of rainfall measurements, which was usually
considered a problem in the past approaches, can now be an advantage. In these
past RFA methods, the target is the definition of homogeneous regions. The intersite
dependence, that is quantifiable with the spatial correlation, acts like a reduction of
the number of independent values available in such region because correlated time
series merely duplicates the information content, reducing the added value of the
inclusion of new stations (Svensson and Jones (2010)).

In kriging, the variogram defines the spatial variability of the estimates. It can be
defined as the half of the spatial variance of the variable Z in two points spaced h,
using the equation

γ(h) =
1
2

E{[Z(x+h)−Z(x)]2} (2.4)

where x is the location and E is the expected value (Blöschl (2011)). The kriging
technique is a best linear unbiased estimator (BLUE). The estimator is called “best”
when it leads to the minimum variance and “unbiased” when the expected value
of the estimation error is zero (Kitanidis (1997)). The linear condition allows the
evaluation of the unknown value ẑ0 in position x0 as a weighted average of nearby
measurements, using the equation

ẑ(x0) =
n

∑
i=1

λiz(xi) (2.5)

where λi is the interpolation weight in position xi and n is the number of measure-
ments used in the interpolation.
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The application of the ordinary kriging (OK) is based on the assumption that the
mean values is constant but unknown. The spatio-temporal complexity of rainfall
fields as a result of orographic effects can lead to heterogeneity and anisotropy that
are not adequately handled by applying the ordinary kriging (Prudhomme and Reed
(1999)). The local mean may not be representative of the local value in the presence
of strong trends and thus, the ordinary kriging should not be applied over the entire
domain. A possible solution consists in restricting the analysis using smaller moving
windows around the estimation location to apply an ordinary kriging using only the
data within the windows. The window size should be small enough to consider the
sub-areas as stationary and large enough to include enough measurements (Grimes
and Pardo-Igúzquiza (2010); Fouedjio (2017)).

The presence of significant trends can be adequately handled by using other
approaches. As an example, the trend can be removed for a safer application of
the ordinary kriging on the detrended values (Prudhomme and Reed (1999)). This
methodology is named detrended kriging or regression kriging (RK) and can be
successfully applied if the correlation coefficient of the trend is high and if the
variables have a significant number of common data point to build the regression
model (Ahmed and De Marsily (1987)). Consequently, regression kriging might
perform poorly if the sample is small and non-representative, if the points do not
represent the entire domain or if they are concentrated only in the central part and if a
non-linear relation links the target variable and predictors (Hengl (2007)). Moreover,
bad performances can also be achieved if the data come from different sources and if
the data have been sampled with a biased design (Hengl (2007)).

The correlation between the observed variable and an additional information,
also named “drift” or “external drift”, can be handled using kriging with external
drift (KED) (Varentsov et al. (2020)). The drift is not likely to be constant in
all the directions (Hudson and Wackernagel (1994)). When dealing with rainfall
measurements, the elevation is often considered as the drift. Only in recent years,
weather radar data have been used as well (Berndt et al. (2014)). While in regression
kriging the deterministic (i.e., the regression model) and the stochastic (i.e., the
kriging) prediction are performed separately, in KED both components are predicted
simultaneously, i.e. the drift is modelled together with the variable (Hengl (2007)).
Measurements of the second variable should be available at many locations and
should be able to represent the underlying structure of the first, low-sampled variable
(Ahmed and De Marsily (1987)). Moreover, the two variables should be highly
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correlated (Ahmed and De Marsily (1987)). If this correlation is high, the RK and
KED prediction error will be lower than OK error (Hengl et al. (2003)).

The cokriging has been developed to improve the estimation of a variable by
using another spatially correlated variable with better spatio-temporal availability
(Ahmed and De Marsily (1987)). It represents an extension of the classical kriging
approach that handles multivariate data and a multivariate variogram or a covariance
model (Wackernagel (1998)). With this approach, measurements may not cover all
the sample locations: the data can be available either at the same or at different
points for each variable, leading to isotopic (in the first case) or heterotopic (in the
second case) datasets (Ahmed and De Marsily (1987); Wackernagel (1998)). More
specifically, if the variables are available at different points and have no sample
location in common, we can refer to heterotopic data, while if variables share some
locations, we can refer to partial heterotopic data. If data of all variables are available
at all sample point, an isotopic condition occurs. Cokriging should be used to
improve the prediction if the number of secondary variables is low and if they are not
available at all sample locations (Hengl et al. (2003)). If the secondary variables are
available in all the locations and are correlated with the main variable, KED should
be used (Hudson and Wackernagel (1994); Hengl et al. (2003)). A strong correlation
between the primary and the secondary variables is fundamental to obtaining a stable
cross-variogram (Prudhomme and Reed (1999); Grimes and Pardo-Igúzquiza (2010)).
If the data have spatially correlated residuals and the correlation coefficient is high
(> 0.7), cokriging is, in general, a better estimation compared to other techniques
(Ahmed and De Marsily (1987)). Conversely, cokriging provides results like those
obtained with kriging with external drift or regression kriging. In the case of spatially
uncorrelated residual of the estimation, cokriging introduces less bias but does not
give the best estimates: in this case, regression kriging is a better estimator for all
values of the correlation coefficient, but with a slightly higher bias compared to KED
(Ahmed and De Marsily (1987)).

Independently from the techniques, kriging is used to interpolate the distribution
parameters or the rainfall quantiles (Das (2019)). Ordinary kriging is a quick and
reasonably accurate predictor if the spatial interpolation is the only desired result.
However, the presence of noise induced by measurement or sampling errors can
affect the optimal nature of the ordinary kriging. As a consequence, when the data
to be interpolated are statistical values (e.g. the parameters of a distribution), the
results can be affected by the noise of the data. The kriging for uncertain data (KUD)
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has been proposed to provide an answer (De Marsily (1986); Furcolo et al. (1995);
Deidda et al. (2021)). Considering that measurements are assumed to be known
with an uncertainty, in KUD the interpolation is less sensitive to the local sample,
compared to the ordinary kriging. Consequently, values obtained from considerable
record lengths are typically characterized by less variance and, thus, the sample
values are confirmed by the kriging.

Geostatistical techniques generally outperform all the other interpolation meth-
ods described in Section 2.3.2 (Tabios III and Salas (1985); Goovaerts (2000); Das
(2019)). The improvement became relevant when dealing with a low or uneven data
density. This positive behavior is particularly important when dealing with rainfall
measurements because the agencies in charge of the maintenance of the rain gauge
network usually install new devices mainly considering the spatial variability of the
rainfall phenomena and the accessibility of the observation sites, instead of guaran-
teeing a uniform data density. However, even sophisticated techniques such as the
kriging can suffer from the lack of data, uneven density, or low data representativity
in a complex environment as the mountainous regions, especially considering that
the spatial structure of rainfall is highly influenced by the accumulation time of the
rainfall amount (Prudhomme and Reed (1999); Grimes and Pardo-Igúzquiza (2010)).

2.4 Methods Adopted in the Practice: the Italian Ex-
ample

A detailed review of the RFA approaches used in Canada, United States, Sweden,
France, Germany, United Kingdom, South Africa, New Zealand, and Australia is
reported in Svensson and Jones (2010) and references therein. In several nations,
rainfall or hydrological atlases support the practitioners, that can take advantage of
already computed precipitation estimates for different durations and return periods.
It is interesting to notice that in many nations, more established methods developed
in the past are still preferred to new ones. The Italian case is not mentioned in
such revision. This section describes the main techniques currently in use in Italy,
reviewing them in an international context.

The methodology developed in the Valutazione delle Piene (VAPI) project repre-
sents the main national method. The VAPI methodology (Rossi and Villani (1994a))
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is based on a hierarchical approach in selecting homogeneous regions, where higher-
order parameters are considered uniform in areas larger than the homogeneous
regions of mid and low-order parameters. It is also one of the few methods based on
a four-parameter distribution, the two-component extreme value (TCEV) distribution,
and the parameter combinations allow three levels of fixed and non-overlapping
regions (Rossi and Villani (1994a)).

During this project, the Italian territory was divided into macro-regions (named
“compartments”): for each compartment, a detailed analysis was performed, and the
recommended RFA methodology is described in a series of publications referred
to each region. The full list of reports and relevant maps are available on http:
//www.idrologia.polito.it/gndci/Vapi.htm (accessed on 25th August 2022). The
different compartments (also visible in Figure 2.2) are:

• North-West Italy, including the areas of Torino, Milano and Genova (corre-
sponding to Aosta Valley, Liguria, Piedmont, Lombardy and some areas of
Emilia-Romagna and Trento province);

• Triveneto, including the areas of Bolzano and Venezia (mainly Trentino-Alto
Adige, Veneto and Friuli Venezia Giulia regions);

• compartment of Bologna, Pisa, Rome and Emilian areas of the Po river basins
(corresponding to the regions of Tuscany, Emilia-Romagna and Marche);

• compartment of Rome and Pescara (mainly Lazio, Umbria, Abruzzo and
Marche regions);

• compartment of Napoli (Campania region);

• Basilicata;

• compartment of Catanzaro (corresponding to Calabria region);

• Palermo (corresponding to Sicily region);

• Cagliari (corresponding to Sardinia region).

http://www.idrologia.polito.it/gndci/Vapi.htm
http://www.idrologia.polito.it/gndci/Vapi.htm
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Fig. 2.2 Screenshot of the http://www.idrologia.polito.it/gndci/Vapi.htm website (ac-
cessed on 18th November 2022).

An evolution of the VAPI procedure has been developed for Piedmont (Furcolo
et al. (1995)): a TCEV distribution is applied within a regionless approach based
on kriging for uncertain data (KUD). Similarly, a dedicated regionalization was
developed for Aosta Valley (Centro Funzionale Regione Autonoma Valle d’Aosta
and Fondazione CIMA (2009)).

One of the main limitations of the VAPI is the lack of computer tools that
can be used for its application: the mathematical formulation is described inside
several regional reports. The second main limitation of this methodology is the lack
of updates: the database used for its development has never been updated; thus,
the procedure does not consider recent record-breaking events. To overcome this
problem, new methods have been developed in smaller areas.

http://www.idrologia.polito.it/gndci/Vapi.htm
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As an example, in Sardinia a geostatical methods based on KUD has recently
been released (Deidda et al. (2021)). An application of this methodology is reported
in this dissertation (Chapter 7 and Appendix D). In recent years, the patched kriging
(PK) methodology (Claps et al. (2015); Libertino (2017); Libertino et al. (2018a))
has been developed as a data augmentation technique that can properly manage
fragmented annual maxima time series of different lengths. The technique has
been applied in Piedmont (North-West of Italy) and represents the operational
regionalization technique recommended by ARPA Piemonte (i.e., the Regional
Agency for Environmental Protection). The PK is one of the few RFA approaches
developed to take advantage of all the available measurements, regardless of the
length of the time series and the station relocation. Moreover, it is one of the
few methodologies that considers the possible influence of elevation on the spatial
variability of rainfall extremes (i.e., the orographic effect). Several studies proved
that better predictions could be obtained when considering the relations between
rainfall depth and elevation and explicitly include adjustment factors for specific
topographic conditions (Svensson and Jones (2010)). As an example, in Canada
adjustment factors depending on the type of relief are applied in mountainous regions
(Svensson and Jones (2010)); in Germany, the KOSTRA model used for the spatial
interpolation considers the gradient and the orientation of the slope of the terrain
(Svensson and Jones (2010)); in the United States, the PRISM model includes
several coefficients that depend on the geomorphology and allows the reconstruction
of missing data (Daly et al. (2002)).

However, the availability of different regionalization methods for the same
areas can pose a problem to non-expert users that need to choose among different
probability distributions and different regionalization methods (Svensson and Jones
(2010)). Model selection criteria, like the Akaike information criterion, the Anderson-
Darling criterion and the Bayesian information criterion can support the evaluation
of the model performances, even if the identification of the “best model” is a difficult
task (Di Baldassarre et al. (2009); Velázquez et al. (2011)). Conversely, a model-
averaging approach can reduce the uncertainties in the estimation of large return
period quantiles. The possibility of having simple GIS-based softwares for a multi-
model RFA can facilitate their applicability. A recent example is the MultiRain tool
that has been developed for Piedmont region (Grasso et al. (2020)).
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2.5 Conclusions

The state of the art of rainfall regional frequency analysis, developed to estimate
the design rainfall in ungauged sites, has been reviewed in this chapter. While for
many years the definition of homogeneous regions has been highly debated, now
the attention is focused on regionless methods. However, it is worth highlighting
that most of the national approaches are still based on the definition of homogeneous
regions, while most advanced techniques as those based on geostatistics are still not
used, even if widely documented into the literature.

Every approach mentioned in this chapter has its pros and cons, thus not allowing
to define the “best” way to perform a regionalization (Svensson and Jones (2010);
Blöschl (2011)). The following parts of this thesis will address the main shortcom-
ings previously mentioned, suggesting new possible improvements applicable to
established methodologies.



Chapter 3

Sub-daily Rainfall Extremes: the
Improved Italian – Rainfall Extreme
Dataset (I2-RED)

The work described in this chapter has been partially derived from Mazzoglio et al.
(2020).

3.1 Introduction

The frequent recurrence of intense rainfall events that trigger catastrophic flash floods
is a climatic signature of Italy, and is one of the causes of the high vulnerability of
the Italian territory, where a high population density is associated with a complex
topography, extended coastlines and high climate variability. According to the Istituto
Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 4.1% of the Italian
territory is characterized by a high probability of inundation scenario (return period
of 20–50 years), 8.4% by a medium-probability scenario (return period of 100–200
years) and 10.9% by a low-probability scenario (Trigila et al. (2018)). An accurate
estimation of extreme rainfall (in terms of magnitude, duration and frequency) is
urgently needed for such a complex and vulnerable territory for planning, design and
management purposes. The need to build a uniform dataset of rainfall extremes for
Italy is evident, due to its position in the middle of the Mediterranean Sea, to integrate
meteorological and climate data from the past, and to better discriminate the hazard
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of rainfall deriving from Synoptic Systems, Convective Systems or Mediterranean
Hurricanes (“Medicanes”) (Cavicchia et al. (2014); Libertino et al. (2018b); Greco
et al. (2020); Pelosi et al. (2020); Zhang et al. (2021)).

Rainfall frequency and large-scale trend analyses require a complete, updated
and quality-controlled dataset of extreme rainfall depths, which are usually avail-
able in the form of annual maxima records. Unfortunately, this type of informa-
tion still requires efforts to increase the uniformity of the data: such information
is fragmented in Italy (each Italian Region collects a subset of this information)
and processed/stored in different formats (Libertino et al. (2018b)). The most re-
cent effort made to complete a uniform Italian database of rainfall extremes is
the Italian–Rainfall Extreme Dataset (I-RED; Libertino et al. (2018b)), which is
an upgrade of the first database, created as part of the Characterisation of Un-
gauged Basins by Integrated uSe of hydrological Techniques (CUBIST) project
(Claps et al. (2008)). The latter was mainly based on the digitalization of the
Hydrological Yearbooks of the National Hydrological and Mareographic Service
(SIMN) and on some additions resulting from the Valutazione delle Piene (VAPI)
project (Rossi and Villani (1994b)). Among other databases, it is worth men-
tioning the one available for extreme daily rainfall (Pelosi et al. (2020)) and the
one created by the Italian National Research Council (CNR) Research Institute of
the Geo-Hydrological Protection (IRPI), which made reference to approximately
800 rain gauges in north-eastern Italy, in Trentino-Alto Adige, Veneto and Friuli
Venezia Giulia regions (data available in digital format on https://www.irpi.cnr.it/
en/product-service/dati-sulle-piogge-massime-annuali-nellitalia-nord-orientale/ (ac-
cessed on 18th November 2022)). As far as daily observational precipitation datasets
are concerned, the ARchivio Climatologico per l’Italia centro-Settentrionale (AR-
CIS) database (Pavan et al. (2019)) is also interesting, as it was created using 1762
stations in north and central Italy, and interpolated them to produce a high-resolution
(5 × 5 km) daily gridded dataset from 1961 to 2015. Other datasets that cover the Ital-
ian domain are reanalysis datasets, such as ERA5-Land (1950–present, 0.1° spatial
resolution) (Muñoz Sabater (2019)), NOAA 20th-century reanalysis V3 (1836–2015,
1° spatial resolution) (Slivinski et al. (2019)) and MERIDA (1990-present, 7 km
spatial resolution) (Bonanno et al. (2019)). The advantages of working with a rain-
gauges-based dataset, like I-RED, emerge both as regards to the greater spatial
resolution and in consideration that its annual maxima reflect the actual highest

https://www.irpi.cnr.it/en/product-service/dati-sulle-piogge-massime-annuali-nellitalia-nord-orientale/
https://www.irpi.cnr.it/en/product-service/dati-sulle-piogge-massime-annuali-nellitalia-nord-orientale/


26
Sub-daily Rainfall Extremes: the Improved Italian – Rainfall Extreme Dataset

(I2-RED)

rainfall in moving windows with length from 1 to 24 h. This is not the case for the
reanalysis datasets.

The original I-RED database has been already used in a few investigations (see,
e.g., Libertino et al. (2019)), but its coverage is limited to 2010, which does not
allow, e.g., answering technical questions about recent and very severe weather
events in Italy (e.g., the 2018 “Vaia Storm”, Davolio et al. (2020)). It was therefore
decided to update the available sources of data and to proceed with an advanced
data quality control, in terms of consistency, redundancy, gap-filling of records and
systematic geographical checks, to ensure that the corrected position and elevation
of the stations could be of help in investigations on the spatial distribution of extreme
statistics. The elevation of the Italian territory is quite variable, and it is therefore
very important to deal with correct data about the geographic positions of the rain
gauges in view of, for example, a geostatistical analysis, where the elevation provides
additional information as a secondary variable (Goovaerts (1999); Prudhomme and
Reed (1998)).

Such an effort has led to the production of a newly compiled first version of the
Improved I-RED (I2-RED) database, which includes, in the first release, the annual
maximum rainfall depths for 1, 3, 6, 12 and 24 consecutive hours from 5265 weather
stations across Italy, recorded between 1916 and 2019. Further inclusions were
performed in subsequent steps: each chapter of this dissertation is therefore related
to the most recent and updated version of the database at the time of the analysis.
Details about the quality-control procedures applied to correct inconsistencies and
errors are presented in the following sections, as well as details about the automatic
and non-automatic quality checks applied by the agencies involved in the data
collection before the data can be released.

The database shows a high level of uniformity: all the rainfall measurements are
expressed in mm, while the positions of all the rain gauges are converted into a single,
uniform reference system. Metadata are included in the database in pdf file format.
The final version of the I2-RED database is available on Zenodo, albeit with restricted
access, due to the data policies of the regional hydrological agencies. Information
about the data policies is reported at the end of this manuscript. A Digital Object
Identifier (https://doi.org/10.5281/zenodo.4065266) and relevant keywords have also
been assigned. Data are stored in both mat and in csv format (to make it accessible
to all open-source programs). No specific code is required to access or work with the

https://doi.org/10.5281/zenodo.4065266
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data. The volume of the final database is less than 10 MB, thus making the database
easily transferable and storable.

This chapter is structured as follows: Section 3.2 deals with the details of the data
collection; the data updating and gap filling are described in Section 3.3, while the
applied quality control procedures, e.g., to recover station elevations, are described
in Section 3.4. A description of the quality-controlled database is given in Section
3.5, together with climatological information. An extreme value analysis and an
additional error detection procedure are reported in Section 3.6. The discussion and
conclusions are reported in Section 3.7, while the data policy is reported in Appendix
A.

3.2 Data Collection and Data Policy

The historical data (i.e., data acquired before the dismantlement of SIMN) included in
I-RED are freely available in the SIMN Hydrological Yearbooks. The dismantlement
of SIMN, which was planned with Legislation Decree 112/1998, resulted in the
data collection and management tasks being transferred to a regional level, that is,
to 19 Regions and 2 Autonomous Provinces. Once the regional services had been
set-up, the local authorities adopted different data distribution policies, even though,
according to the Italian law, an Open Data policy should be applied to public data
for research and no-profit purposes. The most important laws regarding Open Data
in Italy are Legislative Decree 82/2005, Legislative Decree 36/2006, Law 221/2012,
Legislative Decree 179/2012 and Law 114/2014 (Libertino et al. (2018b)).

As of 2022, some agencies have not published the data (raw or validated) on
their website, and only make them available upon request, to track data usage and
prevent them from being used for commercial purpose. Access to the data is granted
after either sending a request or filling a request form that users can find on the
agency’s website. Those who have received authorization are then granted access
to a database, the delivery of digitized tables or, on occasion, the delivery of pdf
files. Information about the validation criteria applied by the regional agencies and
measurement accuracy are, unfortunately, not provided together with the data. In
early 1900, most of the instruments were mechanical ones. Starting from about 1980,
all old mechanical stations were replaced with mechanical and digital ones. This led
to data with different accuracies within the same dataset.
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A list of the hydrological agencies that conduct the data collection and manage-
ment after the dismantlement of SIMN are reported in Appendix A. The Provinces
of Trento and Bolzano are located in the same Region, but are handled separately,
because they have different data providers. To include them in the list, we generically
refer to Italian “regions”. Figure 3.1 summarizes the data policies of the original
data, as reported in Appendix A. Information about the data policies and how raw
data can be accessed is also included. In the new database, I2-RED, each Italian
“region” has a specific progressive number that ranges from 1 to 21, and this number
is reported in the rainfall station ID assigned to I2-RED.

Fig. 3.1 Data policy of the data reported in I2-RED for the 21 Italian “regions”. The provinces
of Trento and Bolzano, despite being located in the same Region, are shown separately in
the map as the data providers and the policies are different. Modified figure from Mazzoglio
et al. (2020).
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Because of the complexity of the data-merging operations, most of the work
requested to build the new I2-RED database was performed manually, by visually
inspecting the data. Data merging was of fundamental importance, particularly as
some “regions” did not have an editable, easily accessible and complete version of
the database (most of them store the data in pdf files, on a yearly basis). Only some
“regions” have carried out activities to merge historical and new data in an easily
accessible format. Different geographic coordinate systems are used by the regional
agencies. In some cases, historical and new data are even geo-referenced within
the same “region” using different systems. In the I2-RED database, all the station
coordinates were made available in the Universal Transverse Mercator coordinate
system (that is, WGS 84 UTM 32 N, EPSG 32632) to guarantee uniformity at the
national level.

Like the I-RED database, which was created following four different procedures,
depending on the data availability (Libertino et al. (2018b)), the creation of I2-RED
required the application of different methods that would be able to allow a rigorous
quality check to be made, as described in detail in Section 3.3. Other quality checks
are also described in Section 3.4 and Section 3.6. The entire workflow is summarized
in Figure 3.2.
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Fig. 3.2 Quality control workflow applied during the creation of I2-RED. Modified figure
from Mazzoglio et al. (2020).

The newly compiled first version of the I2-RED database consists of 5265 stations,
and the data covers the 1916–2019 period (the number of available stations can be
seen in Figure 3.3). The lack of a considerable number of measurements between
1940 and 1950 is due to the Second World War, while the apparent reduction in the
number of rain gauges between 1996 and 2000 was mainly induced by the effect of
the dismissing of SIMN: in those years, some “regions” decided not to upgrade or
repair the old rainfall stations, and most of the old mechanical tipping-bucket rain
gauges were progressively substituted by automatic ones. Finally, the decreasing
number of stations that emerges in recent years is due to the fact that, for the most
recent years, validated data were not yet available in some “regions” at the time of
the data collection.
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Fig. 3.3 Number of stations included in the two I-RED databases year by year. The green
line refers to I-RED, while the red line refers to the version of I2-RED used in Mazzoglio
et al. (2020) and in this chapter. The blue line refers to the most recent and updated version
of I2-RED.

3.3 Data Update and Quality Control

As reported in Section 3.2, the data updating was accompanied by a robust and
ad-hoc quality check that has taken into account how I-RED was originally created.
In particular, in “regions” where the data provider had already digitized their part
of the SIMN database, the CUBIST database was not used. In this case, the data
updating performed in I2-RED involved updating I-RED with the most recent data.
In the other cases (i.e., in “regions” where the agencies only had partial coverage
of historical data), the remaining historical measurements were extracted from the
CUBIST database, and the data updating performed in I2-RED was carried out
manually in three steps, to maximize the available data and avoid duplicates. First,
the I2-RED database was updated to include the data for the most recent years that
was not included in I-RED. Second, any data that were missing were extracted from
CUBIST and then included. Third, because of the low number of digitized data
for some years, a manual data input from the Hydrological Yearbooks proved to be
necessary to fill the gaps in both the CUBIST database and in the digitized versions
of the historical data received from the local authorities. To do so, the Hydrological
Yearbooks (available as a scanned copy in pdf format) were digitized using optical
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Table 3.1 Missing transcription in I-RED and I2-RED for the different durations. The
percentages were evaluated by comparing the total number of records related to each duration
(i.e., 105,940 for I-RED and 122,217 for I2-RED). Source: Mazzoglio et al. (2020).

Database 1 h 3 h 6 h 12 h 24 h

I-RED 0.98% 1.23% 1.12% 1.19% 0.88%
I2-RED 0.87% 1.06% 1.01% 1.06% 0.78%

character recognition (OCR) software and compared with the already available data
to detect values that had not been included.

Thanks to the previously mentioned gap-filling procedures in I2-RED, it was
possible to reduce the percentage of missing transcriptions. However, some incon-
sistencies in the series still persisted, e.g., cases in which a rainfall measurement
was not available for a specific duration but was available for others. This could be
due to transcription mistakes in the Hydrological Yearbooks. Table 3.1 shows the
percentage of these missing transcription within both databases, and also highlights
the greater completeness reached with I2-RED.

A first algorithm-based analysis was performed to verify that rainfall values
corresponding to increasing durations were consistent (i.e., the annual maxima
related to a 1 h interval had to be lower or at least equal to the 3 h one). Several
errors emerged within the database, thus highlighting the necessity of checking the
value of the raw data to substitute it with the correct one or with a “Not a Number”.

For a complete description of the first raw data quality improvement achieved
in I2-RED, it is important to highlight that almost every hydrological agency also
has rainfall stations in nearby “regions”, as a result of the joint management of
interregional basins. The values reported in the I2-RED database were therefore
checked by comparing the time series of each rain gauge with all the other ones: this
check allowed us to identify some stations located along the regional boundaries
that had been included twice (sometimes with the same station name, sometimes
not) with similar positions and the same rainfall values. As some “regions” shared
their data with other agencies before applying a validation procedure, the visual
data check was of fundamental importance to avoid data duplication. Stations with
the same name, similar coordinates and with a time overlap were merged if the
rainfall measurements were the same, otherwise they were considered as different
stations in the presence of geographic or record length discrepancies. A few cases
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of station-overlapping were also found in the case of stations with almost the same
latitude/longitude (i.e., at a distance of less than 200 m).

A brief mention should also be made of the thorny problem of station relocation.
Unfortunately, some “regions” did not track the relocation of some stations by
changing the name, the position, or the instrument code in their databases. When it
was possible to recognize that new and historical data had been collected by different
weather stations (e.g., thanks to some years of missing data or to the information
collected by regional authorities, reports), the data were handled separately, and two
different stations were reported in I2-RED. When it was not possible to obtain such
information, the time series were merged and only one rain gauge was considered.

3.4 Quality Control on the Station Elevation

As mentioned in Section 3.1, one of the main innovations of the I2-RED database,
with respect to I-RED, is the extensive application of quality controls, both through
manual and automated methods. We used the European Digital Elevation Model
(EU—DEM), version 1.1 (European Environment Agency (2016)), a Digital Surface
Model (DSM) with European coverage, a 25 m resolution and a relatively unbiased
(-0.56 meters) overall vertical accuracy of 2.9 meters RMSE to check the reliability
of each station elevation.

The planimetric position of each rain gauge was used to extract the corresponding
elevation values from EU-DEM. After a comparison between the elevations obtained
from EU-DEM and those reported in I-RED, several errors emerged in the original
database. The relative difference between these two measurements was evaluated,
and a threshold value equal to 150 m was used to identify rain gauges that needed to
be checked and corrected before using the data for further analyses. As reported in
Figure 3.4a, 790 stations out of a total of 5265 were affected by significant elevation
errors, which varied from 150 to more than 2000 m.
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Fig. 3.4 Comparison between the elevation values before (a) and after (b) the quality control.
The red dots in (a) identify the rain gauges included in I-RED that are characterized by an
elevation discrepancy greater than 150 m, while the green ones identify rain gauges with
a discrepancy lower than 150 m. Panel (b) refers to the same information for the I2-RED
database. Modified figure from Mazzoglio et al. (2020).

During this geographic analysis, it emerged that there were three types of ele-
vation errors: (i) only an incorrect elevation, (ii) an incorrect position but correct
elevation, (iii) both an incorrect position and an incorrect elevation. To understand
the reasons for this variety of errors, it is important to note that the accuracy of
the coordinates is not uniform in either the I-RED database or in the I2-RED one.
The coordinates of the rain gauges installed in recent years are characterized by
metric or sub-metric precision, while the old ones have kilometric precision (i.e.,
in the Hydrological Yearbooks, they are expressed in degrees and in minutes, and
no information is reported about seconds). Such a low positional accuracy explains
why considerable errors could arise in the position and, more importantly, in the
elevation, especially in mountainous areas.

A manual correction was applied to each of the points highlighted with a red dot
in Figure 3.4a. In particular, information about the correct position was collected
from other sources available online (e.g., reports, scientific publications). In some
cases, the agencies involved in the data collection were contacted directly to discuss
the issue. In the case of the Autonomous Province of Bolzano-Alto Adige, it was
possible to partially substitute the positions derived from the Hydrological Yearbooks
with more accurate ones, thanks to detailed information received from the competent
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Table 3.2 Distribution of the rain gauges included in I2-RED over different elevations. Source:
Mazzoglio et al. (2020).

Elevation (m) Number of station Percentage

≤ 200 m 1782 34%
200 m < x ≤ 500 m 1499 28%

500 m < x ≤ 1000 m 1314 25%
1000 m < x ≤ 1500 m 401 8%

>1500 m 269 5%

regional agency. When possible (i.e., for the most recent stations), Google Earth was
used to visually check whether a rain gauge was present in the position reported in
the database, taking advantage of the Street View mode. In a few cases, when it was
not possible to obtain further information about the position (e.g., for stations that
were active in the early 1900s), a rain gauge was not relocated, and the elevation
extracted for EU-DEM was confirmed. The results of the elevation quality control
are shown in Figure 3.4b, which shows that all the rain gauges previously affected
by an elevation error greater than 150 m have now been corrected in the I2-RED
database.

The distribution of the rain gauges over the different elevations in Italy is reported
in Table 3.2. As can be seen, 34% of the rain gauges are located in sites with a lower
elevation than 200 m a.s.l., while 62% of the rain gauges are located in sites with a
lower elevation than 500 m a.s.l. Only 5% of the rain gauges are located in areas
with a high elevation (i.e., > 1500 m a.s.l.).

3.5 Time and Space Uniformity of the Database

After the operations described in the previous sections, a new and reliable data
source was compiled for the extreme rainfall in Italy. The main features of the data
collection and of the update are presented in this section.

I-RED (Libertino et al. (2018b) was made up of 105,940 different records for
every duration. The new I2-RED database presents 122,217 records. By dividing
the number of records by the number of stations (5265), it is possible to obtain the
average length of the time series: 22.5 years for I-RED and 23.2 years for I2-RED.
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Some features of the rainfall stations are mapped in Figure 3.5. Figure 3.5a, in
particular, maps the length of the time series of each rain gauge included in I2-RED.
Out of a total of 5265 rain gauges, only 3782 rain gauges have a time series equal to
or longer than 10 years, 2283 rain gauges have a time series equal to or longer than
20 years, 1436 rain gauges have a time series equal to or longer than 30 years, 693
rain gauges have a time series equal to or longer than 50 years and 52 rain gauges
have a time series equal to or longer than 80 years.

Fig. 3.5 (a) Position of the rain gauges in I2-RED. The color refers to the length of the time
series. (b) Spatial distribution of the rain gauges with a time series longer than 30 years.
Modified figure from Mazzoglio et al. (2020).

The evolution in the management of the rain gauge network is one of the main
factors that has led to a short and fragmented dataset in Italy. It is important to
highlight that, although the database consists of 5265 rain gauges, only 1436 of these
are characterized by a time series of at least 30 years, which is the standard length
for climatological analyses (Li et al. (2018)) (Figure 3.5b). Although the most recent
stations were installed to locally increase the network density, they unfortunately still
provide little suitable information for these types of analysis. The inhomogeneity of
the record length is also influenced by the different degrees of accuracy adopted by
each regional agency. In fact, some agencies recorded small relocations of the station
position, which do not break the series, while others did not (as already pointed
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out in Section 3.3). To become aware of the spatial and temporal evolution of the
Italian rain gauge network, it may be useful to watch a stop-motion video that shows
a map of the active rainfall stations for each year of the whole observation period
(https://www.mdpi.com/2073-4441/12/12/3308/s1 (accessed on 26th August 2022)).

The geographical uniformity and density of the stations throughout Italy are also
worth considering. Observing the map in Figure 3.5b, it is possible to observe that
Umbria, Lazio, Sardinia, Campania and Lombardy are characterized by the lowest
densities (for named “regions” see Figure 3.1). In particular, the coastal area of
Campania shows a very low number of rain gauges, even though it is known to be an
area that is affected by a high number of extreme events. A general picture of the
network density in the different “regions” in Italy is reported in Table 3.3.

However, more detailed information about the station density is still needed, due
to the particular form of the Italian peninsula, and to an apparent proliferation of
stations in highly urbanized areas. A clear variation in station density can, in fact,
affect the spatial analyses of extreme rainfall quantiles, or evaluations related to
the areal persistence of trends, as pointed out by Libertino et al. (2019). Figure 3.6
shows two density maps built with the I2-RED database, using a spatial grid of 2 × 2
km. The number of rain gauges available within a 10 km radius, centered in the cell,
was computed for each pixel of the grid (Figure 3.6a). Dense spots may be observed
in correspondence to the cities of Rome, Turin, Bologna, etc. The sum of all the
observations pertaining to the stations contained in the circle was systematically
computed to take into account the density of observations (Figure 3.6b), thereby
allowing any evident non-uniformity in the data density to emerge. High-density
values can be observed for Northern Italy, especially over Liguria, southern areas of
Piedmont, Tuscany and Friuli Venezia Giulia.

https://www.mdpi.com/2073-4441/12/12/3308/s1
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Table 3.3 Number of rain gauges with at least 30 years of measurements. The areas of
the 21 "regions" were derived from ISTAT data (https://www.istat.it/it/files//2013/02/
Superfici-dei-comuni.pdf (accessed on 26th August 2022)). Modified table from Maz-
zoglio et al. (2020).

"Region" Number of Area Average
rain gauges (km2) contributing area

(km2/rain gauge)

Abruzzo 69 10,832 157
Basilicata 37 10,073 272
Calabria 69 15,222 221

Campania 36 13,671 380
Emilia-Romagna 125 22,453 180

Friuli Venezia Giulia 64 7,862 123
Lazio 28 17,232 615

Liguria 94 5,416 58
Lombardy 64 23,864 373

Marche 47 9,401 200
Molise 26 4,461 172

Piedmont 106 25,387 240
Apulia 98 19,541 199

Sardinia 58 24,100 416
Sicily 143 25,832 181

Tuscany 152 22,987 151
Autonomous Prov. of Trento 39 6,207 159

Autonomous Prov. of Bolzano 46 7,398 161
Umbria 13 8,464 651

Aosta Valley 14 3,261 233
Veneto 108 18,407 170

https://www.istat.it/it/files//2013/02/Superfici-dei-comuni.pdf
https://www.istat.it/it/files//2013/02/Superfici-dei-comuni.pdf
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Fig. 3.6 (a) Kernel density map (obtained using QGIS Heatmap Plugin) with a spatial
resolution of 2 × 2 km. The colors refer to the number of rain gauges available within a 10
km radius centered in each cell. (b) Kernel density map obtained with a distance equal to
10 km, spatial resolution of 2 × 2 km, and weighted with the length of the time series. The
colors refer to the number of measurements (i.e., the sum of the lengths of all the time series
available within a 10 km radius centered in each cell). Modified figure from Mazzoglio et al.
(2020).

To explore the potential of the database to map the climatology of extreme rainfall
at the national scale, a first preliminary analysis was conducted over the entire domain,
starting with the representation of the parameters of the intensity–duration–frequency
curves (IDF). As introduced in Chapter 2, the mean depth–duration curve is often
expressed in the form of a power law relationship (Burlando and Rosso (1996))

hd = a ·dn (3.1)

where hd is the average of the annual maximum precipitation depth for the duration
d, and a and n are site parameters estimated by means of linear regression between d
and the available values of hd. If a rainfall quantile hd is required for a given return
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period T, the above expression can be multiplied with a growth factor KT, according
to the index value approach (Svensson and Jones (2010)).

Rain gauges with at least 10 years of data were used to estimate both a and n for
all the gauge sites. Kriged maps were then produced by applying an ordinary kriging
with a spherical variogram and variable windows (a maximum value of 30 km was
set to find at least five rain gauges). To avoid the smoothing effect of kriging induced
by the fact that a station grid may not have coincided with the interpolation grid,
pixels that contained one or more rain gauges were forced to have the IDF parameters
equal to the maximum ones obtained within the pixel. The mapped values for a and
n are shown in Figure 3.7a-b.
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Fig. 3.7 Parameters a (a) and n (b) of the IDF curves evaluated on the basis of the data
contained in I2-RED. The maps are characterized by a 1 × 1 km spatial resolution. (c) Mean
annual precipitation as mapped by Crespi et al. (2018). (d) Elevation data, Shuttle Radar
Topography Mission (SRTM) digital elevation model. Modified figure from Mazzoglio et al.
(2020).
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The parameter a is approximately the average maximum rainfall recorded for a
1 h interval, and it shows higher values in Liguria, Friuli Venezia Giulia and in the
northern part of Piedmont (Figure 3.7a). This parameter shows some similarities
with the spatial distribution of the mean annual rainfall (Figure 3.7c) that is used
here for climatic comparisons. This last map was compiled by Crespi et al. (2018)
at a 30-arc-second resolution using rainfall measurements related to the 1961–1990
period. The parameter n (Figure 3.7b) shows higher values for high-altitude areas,
such as in the alpine region.

To show to which extent the spatial distribution of these parameters can agree
with known phenomena, a Digital Elevation Model of Italy was reported in Figure
3.7d. Local factors, such as the steepness of the terrain, slope orientation, aerosol
content and stability of the atmosphere, can influence the orographic enhancement
of precipitation, especially for long aggregation intervals (Napoli et al. (2019)). This
can be recognized in the map of the exponent n (Figure 3.7b) as the higher n, the
higher the increase in h24 with respect to the corresponding value h1 (parameter a).
On the other hand, short aggregation intervals (e.g., 1 h) show a different behavior,
which leads to decreasing rainfall amounts as the altitude increases, especially over
Northern Italy, as already shown in Allamano et al. (2009) and in Avanzi et al. (2015).

Similar results in terms of IDF parameters were obtained in regional-scale studies
over Piedmont (Libertino et al. (2018a)), the Trento province (Borga et al. (2005))
and Sicily (Forestieri et al. (2018)), thus confirming the importance of working with
a complete and updated dataset to avoid problems along the regional boundaries.
The maps presented here can help showing the influence of the terrain morphology
on the spatial variability of the averages of the rainfall extremes and point out
the importance of having reliable information for the plano-altimetric position of
stations.

3.6 Super-Extreme Quality Control

The highest values measured in each station, which were defined as "Super-Extremes"
(Libertino et al. (2016)), have a particular importance in relation to the occurrence of
the highest rainstorms in the Mediterranean area, and are worth emphasizing. These
“station maxima”, computed for all the stations and all the durations, were analyzed
to possibly identify further errors in the data, which had not been detected in the data
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digitization and in the record upgrade process. By examining these values, it was
indeed possible to detect unrealistically high annual extremes, after dividing them by
the local mean annual precipitation depth (shown in Figure 3.7c).

This ratio, called “Normalized” Maximum Value (NMV), has helped to detect
very high rainfall amounts relative to the climatology of the site. The NMV index
was built as

NMV =
Xn

MAP
(3.2)

where Xn is the station maximum value, while the mean annual precipitation (MAP)
comes from an existing digital map (Crespi et al. (2018)). This index was introduced
to highlight truly “extreme” events, that is, to distinguish them from other events,
albeit very intense, which occurred in locations characterized by high annual rainfall
amounts. Using various thresholds for NMV and considering the related frequency of
occurrence, the aim was to provide an empirical, yet objective, representation of the
spatial distribution of the highest relative extreme rainfall events in Italy, and to obtain
clues about any local anomalies. In this regard, Figure 3.8 shows, as an example, the
positions where NMV exceeds 0.5 for the 24 h aggregation interval. In comparison
to Pelosi et al. (2020), and to some other well-known hydrometeorological disasters
that had happened in Italy, the presence of some clusters was predictable, e.g., in
Sicily, in Sardinia and in the Calabria Regions.

Fig. 3.8 Rain gauges characterized by greater “Normalized” Maximum Values (NMV) than
0.5 for the 24 h interval. The red circles indicate anomalous values. Modified figure from
Mazzoglio et al. (2020).
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However, some anomalies emerged for some very isolated values (circled dots
in Figure 3.8). These values were checked by verifying the hourly or daily rainfall
measurements acquired by the same and by nearby stations (when available) and
by looking for evidence of a relevant heavy rainfall event in the news, in scientific
articles and/or in disaster reports. After all these controls, all of these exceptional
values proved to be the results of errors, and in all cases were attributable to a
misplaced decimal separator in the original printed figures; the corresponding data
were therefore adjusted in the dataset.

Figure 3.9a shows the highest NMV values of the corrected dataset for the 24
h aggregation interval, after lowering the threshold to 0.35. The map shows that
most of the values are concentrated in areas with low mean annual precipitation (see
Figure 3.7c as a reference). This may imply that the flooding impact in those areas
may be higher, as infrastructures and the populations are not accustomed to frequent
and intensive rainfall events in a dry climate.

Fig. 3.9 (a) NMV of the corrected 24 h dataset. Values lower than 0.35 were removed from
the figure to highlight the localities where the most extreme rainfall events occurred. (b)
Rain gauges characterized by greater OSR than 2 for the 24 h interval. Modified figure from
Mazzoglio et al. (2020).

A different empirical index was applied to station maxima considering the highest
kth sample values. In a record of size n, the nth order statistic is the maximum value
of the record (Xn), while the n-1th order statistic is the second-highest value (Xn-1)
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and so on (Kottegoda and Rosso (2008)). By extracting the nth and the n-1th order
statistics of the annual maxima for each rain gauge, a non-dimensional index, named
the “Order Statistic Ratio”, was computed as

OSR =
Xn

Xn−1
(3.3)

In Adler (2015), one can find some results on the distribution of the ratio of
two smallest order statistics from an exponential variate. Even though no available
results were found in the literature about finite-sample distribution of the ratio of the
two highest-order statistics from extreme-value distributions, we assume that can be
of interest to observe its spatial variability. This empirical ratio can be considered
as an “outlier index” and has the advantage of being independent of preliminary
assumptions about the probability distribution of the various samples.

The spatial distribution of the higher OSR values, computed for the 24 h maxima,
can be observed in Figure 3.9b, where only rain gauges characterized by a greater
OSR than 2 are reported. Counter-intuitively to the outcomes of previous analyses,
the spatial distribution of these points is rather uniform, thus showing that high
OSR values occur (and may occur in the future) at almost every site: even the areas
with the lowest data density show these events. However, the Liguria Region is an
exception, as it presents a significant concentration of high OSR values.

An attempt was made to find NMV and OSR threshold values that would allow a
few but significant extreme events to be identified. In this regard, applying greater
NMV thresholds than 0.35 and OSR ones greater than 2 allowed us to identify almost
the same number of “Super-Extremes” (176 in the first case, 172 in the second one).
These maps show that, with almost the same number of points, different selection
criteria produce significantly different spatial distributions of these “severity” indexes.
In both cases, the applied normalizations make the relevance of the selected events
somewhat “relative”, while absolute criteria (i.e., a threshold value of 250 mm/day)
are applied in other cases, such as Pelosi et al. (2020).
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3.7 Conclusions

Despite the high rain gauge network density throughout the Italian territory, an
updated and quality-controlled dataset of annual maxima rainfall events over the
entire Italian territory was not available before this work. The availability of only
short and fragmented series of rainfall measurements, combined with the reduced
spatial domains covered by each regional agency, had led to a somewhat limited
representativeness of the results used to represent the climatology of extreme events
in Italy, as shown, e.g., by Libertino et al. (2019).

In the present study, a new, updated and quality-controlled dataset of the annual
maxima rainfall events was proposed, together with a representation of descriptive
statistics that may be used to highlight the areas that are more vulnerable to extreme
rainfall. More than 2000 different errors (in terms of incorrect planimetric/altimetric
positions of the rain gauge or rainfall values) were detected in the original data and
subsequently adjusted to improve the accuracy of a previous version of the database
(I-RED), and this in turn led the release of I2-RED.

The study shows simple but effective methods for the detection of errors in both
the rainfall records and in the station positions. These methods are mainly based on
the use of a digital elevation model to identify any position/elevation errors, and on
the analysis of the severity of the most relevant extreme rainfall events.

Finally, analyses of the 24 h maxima of the stations were performed to prelimi-
narily exploit the potential of the proposed database and to fine-tune the selection of
the possible data errors. The maps of these Super-Extremes indices suggested that a
high spatial persistence of particularly extreme rainfall events is concentrated in the
coastal areas of the Italian territory, possibly due to the effects induced by a steep
and complex orography near the sea (Fiori et al. (2014)). Further studies, based on
the new database presented here, can suggest methods that can be used to objectively
identify a coherent selection of Super-Extreme events, with the aim of contributing
to the knowledge on the spatial distribution of this particular hazard.



Chapter 4

Spatial Variability of Empirical
Indices: The Hershfield Factor

The work described in this chapter has been submitted and is currently under review.

4.1 Introduction

For decades, several hydrological variables as the rainfall depths were measured on
a calendar day basis, usually at 9 a.m. local time (Morbidelli et al. (2021)). In Italy,
those daily measurements are published in the Hydrological Yearbooks, a collection
of data usually available only in printed format. The availability of shorter duration
records as those described in the previous chapter was limited by the requirement of
continuous monitoring rainfall gauges. After the replacement of the mechanical rain
gauges with the automatic ones in the last decades of the 20th century, the reference
time for the calendar day rainfall measure was shifted to 00 a.m. However, the
daily measurement approach was never ended, even if it is widely known that such
discretization in time leads to bias when dealing with extreme events (Papalexiou
et al. (2016)). Considering the vast heritage of measurements and its simplicity, the
majority of annual maximum rainfall depths in the world are at the daily scale, i.e.
expressed over fixed 24 h (F-maxima).

It is clear, however, that sliding 24 h maxima obtained from continuous measure-
ments (S-maxima) are more useful values. They refer to 24 h periods starting at any
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instant and cannot be less than the F-maxima (Figure 4.1). An analysis conducted
over the United States proved that the S-maxima statistics like the median, the mean
and the standard deviation are higher than those of F-maxima and have a greater
dispersion; the difference between the F- and S-maxima statistics increases as the
time interval increases and appears to become constant for time scales larger than 36
hours (Papalexiou et al. (2016)).

Fig. 4.1 Moving windows used to compute S-maxima (a) and F-maxima (b).

The ratio between F- and S-maxima, named Hershfield factor (H), has been
suggested to correct the incongruences induced by the different time discretization,
allowing to take advantage of the relevant amount of information included in histori-
cal records of F-maxima (Hershfield (1961); Harihara Ayyar and Tripathi (1973);
van Montfort (1990); Dwyer and Reed (1995); van Montfort (1997); Papalexiou et al.
(2016); Llabrés-Brustenga et al. (2020)).

H acts as a multiplier that aims at correcting the underestimation caused by the
daily time sampling. Hershfield himself suggested to use a value equal to 1.13 after
an analysis carried out using data covering the United States (Hershfield (1961)). In a
recent analysis in the United States, Papalexiou et al. (2016) obtained a value equal to
1.14. An application over India suggested a value equal to 1.15 (Harihara Ayyar and
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Tripathi (1973)). Over China, van Montfort (1997) obtained values in the range 1.04
– 1.17. Dwyer and Reed (1995) suggested a mean value of 1.16, while proposing
differences according to different regimes: a correction factor of 1.15 for rainfall
regimes with more frequent short-duration concentrated events, and 1.17 for sites
with rainfall regimes with more frequent longer events, such as those produced by
large frontal systems. Llabrés-Brustenga et al. (2020) obtained a mean value of
1.125 over Catalonia (Spain) and highlighted considerable variations within the year:
summer is the season in which lower H (1.093) was obtained, justified by the fact
that rainfall is often raised by the influence of the diurnal cycle and the S-maxima
are not usually split by daily measuring in the morning; in spring, a higher H (1.161)
was obtained, possibly determined by the fact that rainfall events are more often split
when F-maxima measurements are taken at 8 a.m.

All these studies (except Papalexiou et al. (2016) and Llabrés-Brustenga et al.
(2020)) are based on short and mostly obsolete records. In our study, we investigated
the possibility of using ≈ 1000 stations with at least 10 years of both F- and S-
maxima for the same years, covering the period from early 1900 until today, to
enrich the availability of S-maxima rainfall measurements, by selecting the data-rich
Po river basin and the Liguria region (North of Italy) as a case study. The objective
is to obtain mean values of H for the stations where both F- and S-maxima data are
available and make these value available, through spatial interpolation, to F-maxima
stations where S-maxima data are unavailable.

4.2 Data Management and Quality-control

In this study, an area of about 90,000 km2 extent located in the North of Italy that
coincides with the Po river basin and the Liguria region was analyzed. The different
administrative regions included in this area and the elevation data are represented in
Figure 4.2.
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Fig. 4.2 Elevation data with borders and names of the administrative regions. Source: Shuttle
Radar Topography Mission (Farr et al. (2007)).

Annual maximum rainfall depths related to a 24 h time interval (i.e., the S-
maxima) are derived from the Improved Italian – Rainfall Extreme Dataset (I2-RED;
Mazzoglio et al. (2020)), a collection of rainfall extremes recorded since 1916 by
more than 5200 rain gauges installed all over Italy. In this analysis only the time
series of the 1713 rain gauges installed in the study area were used.

A set of validated F-maxima (i.e., quality-controlled daily annual maxima pub-
lished in a dedicated table of annual maxima) is available in digital format on
the websites of some regional hydrological agencies, such as ARPA Piemonte for
the years 1988 – 2018 (http://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/
annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html, accessed
on 1st October 2022), the Functional Center of the Autonomous Aosta Valley Region
for the years 1994 – 2016 (https://presidi2.regione.vda.it/str_dataview_download,
accessed on 1st October 2022), the VAPI Piemonte project for the years 1913
– 1986 (Villani (2003)), Meteotrentino for the years 1921 – 2009 (https://www.
meteotrentino.it/#!/content?menuItemDesktop=111, accessed on 1st October 2022)
and ARPA Veneto for the years 1984 – 2021 (https://www.arpa.veneto.it/bollettini/
storico/precmax/, accessed on 1st October 2022). The spatio-temporal coverage of
these datasets (Figure 4.3) is indeed very limited with respect to the printed version

http://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html
http://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html
https://presidi2.regione.vda.it/str_dataview_download
https://www.meteotrentino.it/#!/content?menuItemDesktop=111
https://www.meteotrentino.it/#!/content?menuItemDesktop=111
https://www.arpa.veneto.it/bollettini/storico/precmax/
https://www.arpa.veneto.it/bollettini/storico/precmax/
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of the Hydrological Yearbooks. The digitization of the Yearbooks tables containing
validated F-maxima would require a massive effort, out of the scope of this work.
To fill the spatio-temporal gaps caused by missing validated data, we resorted to
available historical continuous daily rainfall time series, available in digital format,
that are partially uncontrolled. The main data source that we used is the SCIA
database (http://www.scia.isprambiente.it/wwwrootscia/Home_new.html, accessed
on 1st October 2022). It has been integrated with few daily time series, coming
from: ARPA Piemonte for 1988 onwards (http://www.arpa.piemonte.it/rischinaturali/
accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.
html, accessed on 1st October 2022), the “Banca dati meteoclimatica” of Liguria
region (https://www.regione.liguria.it/servizi/item/14279-banca-dati-meteoclimatica.
html, accessed on 1st October 2022), the “Atlante climatico della Liguria” for
the years 1960 – 2010 (Agrillo and Bonati (2013)) and the Dext3r webapp (https:
//simc.arpae.it/dext3r/, accessed on 1st October 2022).

Fig. 4.3 Spatio-temporal availability of the validated F-maxima. Grey colour indicates areas
where a database of daily annual maxima in digital format is not available.

In this study the influence of the change of the time of the daily measurements
was not considered, because precise and extensive information on the years in which
the hydrological agencies started to record the daily measurement at 00 a.m. is not
available. However, it should be noted that Llabrés-Brustenga et al. (2020) pointed
out that very high H is obtained only in the case of F-maxima taken with starting
time in the afternoon. They also argue that F-maxima is usually more precise if
sampled at 0 a.m., even though 8 a.m. can be considered as a good sampling time.

http://www.scia.isprambiente.it/wwwrootscia/Home_new.html
http://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html
http://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html
http://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html
https://www.regione.liguria.it/servizi/item/14279-banca-dati-meteoclimatica.html
https://www.regione.liguria.it/servizi/item/14279-banca-dati-meteoclimatica.html
https://simc.arpae.it/dext3r/
https://simc.arpae.it/dext3r/
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All the continuous daily time series of the datasets mentioned before were
merged into a unique dataset. The SCIA database was found lacking some of the
most relevant F-maxima recorded in recent years in the Liguria region: a manual gap-
filling procedure was thus performed through comparison with the printed version of
the Hydrological Yearbooks. Afterwards, to verify the correctness of the continuous
daily data, high precipitation values (greater than 500 mm) were manually controlled,
to verify if they were realistic. In a few cases, these high values were removed,
because caused by a mistake with decimals in the table.

After this merging and control operations, only continuous time series with at
least 330 out of 365 daily measurements were used to compute the annual F-maxima.
These were integrated with the already validated F-maxima.

The data merging procedure allowed us to reach a total of about 1000 stations
with at least 10 years of both F- and S-maxima for the same years. Nevertheless, the
total number of F-stations is significantly higher: in this region, 2149 stations with
F-maxima are available, allowing to have a data density of 1 rain gauge every 42
km2 (the data density of the sub-daily time series is of 1 rain gauge every 53 km2).
In Figure 4.4 it is possible to observe the spatial distribution of the F- and S-maxima.
From this figure one can realize that the data density is not uniform: even including
the F-maxima, several locations in the lowlands or at high elevations are still poorly
sampled.

Fig. 4.4 Spatial distribution of the sub-daily and daily records.
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In Figure 4.5 it is possible to see the time history of the available stations. From
this figure it clearly emerges that, for instance, before 1980 only a subset (< 50%) of
the rain gauges was equipped with a continuous recording device.

Fig. 4.5 Time history of the number of active rain gauges.

4.3 Evaluation of the Hershfield Factor

For all the stations and all the years where both the F-maxima and S-maxima are
available, the Hershfield factor was computed according to its definition:

H =
h24

hg
(4.1)

where h24 is the 24 h annual maximum and hg is the daily maximum in a given year.

As a general rule, 1 ≤ H ≤ 2 (van Montfort (1997)). It can be equal to 1 if the
S-maxima occurred inside the same calendar day, while it can be equal to 2 if the
extreme event is equally divided into two days.

In a first step, we analysed H using only the validated data, whatever the record
length, to obtain reliable results that would be compared to those obtained using the
entire dataset.

Even in validated data we found cases in which F-maxima were higher than
S-maxima. This inconsistency is not unusual, and can be attributed to errors in the
digitization, due to the manual daily recording. These occurrences, and the others in
which we found H > 2, were manually corrected. Figure 4.6a shows the box plot of
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the individual H values obtained year by year: the overall median H is 1.112, while
the whiskers ends are, respectively, 1 and 1.585. The overall mean value obtained
for H is 1.170, somewhat higher than those in the literature.

Fig. 4.6 Box plot of the yearly Hershfield factors computed using the validated data (a) and
from the merged dataset (b). Each box plot displays the following information: the median,
the lower and upper quartiles (blue box), any outliers (computed using the interquartile range,
depicted as a blue dot), and the minimum and maximum values that are not outliers (black
whiskers).

Having removed only the undeniable anomalies does not exclude the possibility
that other anomalies may have occurred. The limits of the box plot were used to
filter out possible outliers in the process of extending the computation to the entire
dataset. Therefore, when computing the H values for all the stations using the entire
dataset, made of validated and not validated data, we used series with at least 10
years of data and we used the whiskers ends of the validated data (1 and 1.585) as
thresholds to remove the outliers. After this computation, the median H resulted of
1.144 and the mean resulted equal to 1.146, which are in line with the values reported
in the literature. By increasing the minimum record length to 20 years we obtained
an average of H equal to 1.142, and a median equal to 1.141, suggesting that even a
time series of only 10 years could provide reliable estimates.

Examinig the box plots in Figure 4.6 one can recognize that the variability of the
H computed from the entire dataset turns out to be similar to the one of the validated
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data, despite a higher number of outliers. This evidence confirms the suitability of
using also non-validated data to guarantee an higher spatio-temporal coverage of
F-maxima.

After the computation and validation of the H values in the so-reached ≈ 1000
stations, a spatial interpolation at 1 km resolution of the mean H was performed.
This procedure was realized using the ordinary kriging (Figure 4.7). By analyzing
the spatial distribution of the interpolated Hershfield factor within the study area, we
found variability patterns similar to those available in the literature, i.e. the mean (at
station) H values turn out to be non uniform over the space. They seem influenced
by the geographic position of the stations, and the patterns entail the possibility
to identify some distinct areas with a positive or negative anomaly with respect to
the spatial average. More specifically, higher values emerge in the Northern part
of the examined region, mainly in Piedmont and Lombardy. The Aosta Valley,
despite its location in the northern parts, shows different anomalies. This difference
could probably be attributed to different prevailing rainfall mechanisms occurring
in the Aosta Valley, possibly due to the presence of high peaks at the borders
between Piedmont and the Aosta Valley, which act as a barrier. An influence of
the geographic position was also pointed out over Catalonia (Spain) by Llabrés-
Brustenga et al. (2020), and over China, where van Montfort (1997) analyzed
monthly H values in relation to the location of the station, the autocorrelation within
its daily measurements and the fraction of wet days.
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Fig. 4.7 Spatial distribution of the Hershfield factor obtained by applying and ordinary
kriging with spherical variogram.

The exam of the spatial distribution of H has suggested the necessity to perform
an additional data control, as some suspicious isolated anomalies clearly emerged
(Figure 4.8a). This happened especially in areas where official and quality-controlled
annual maxima were not available, so that F-maxima were computed from continuous
daily records. For these isolated "peaks" of H, the time series of the rain gauges have
been checked and the incorrect data have been replaced using the values reported in
the printed version of the Hydrological Yearbooks, as depicted in Figure 4.8b. Note
that Figure 4.7 already report the fully corrected version of the map.



4.4 Discussion 57

Fig. 4.8 Spatial distribution of the Hershfield factor before (a) and after (b) the site-specific
data-cleaning operation. Focus over the Eastern part of Lombardy region.

4.4 Discussion

To increase the spatial detail of the extremes of precipitation over the North of Italy,
a consistent database including daily precipitation (F-maxima) can be used. The
analysis of ratio between 24 h and daily extremes (Hershfield factor) throughout
the investigated area can allow to estimate annual S-maxima (i.e. over 24 h) in
the stations that lack this information. In some areas (mountain regions and the
lowlands between Piedmont and Lombardy) the increase in detail is noteworthy, and
can provide important improvement over the spatial analysis of 24 h extremes.

Before proceeding with the use of these reconstructed data, some care must be
exerted about the reliability of these newly-computed maxima. In these terms, it is
worth mentioning that Koutsoyiannis and Iliopoulou (2022) pointed out that there
is no theoretical basis behind the “inflation” through the Hershfield factor, even
though it can represent an acceptable estimate from an engineering point of view.
The authors pointed out that all realizations are stochastically equivalent and there
is no theoretical basis for their correction. By correcting the series, its stochastic
properties can be distorted.
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In terms of series properties, indeed, Papalexiou et al. (2016) had previously
noted that the ratios between the mean values of F- and S-maxima deviate from the
standard deviation ratios: this implies that the application of the H factor cannot
appropriately preserve the standard deviation of the F-maxima. These authors have
then introduced an approach that simultaneously corrects both the mean and the
standard deviation errors.

Despite the caveats, however, we cannot ignore that the possibility to include
data recorded in decades at the beginning of the past century (see Figure 4.5) can
produce relevant benefit in the spatial detail of the process. This suggests to us to
proceed with the application of the H factor to include the F-maxima in the existing
24 h records.

On the other hand, when looking for trends in the data, to protect the reconstructed
data from the distortion mentioned by Koutsoyiannis and Iliopoulou (2022) robust
methods can be used, as Sen’s method, the non-parametric Mann-Kendall test and the
Spearman rank correlation test that all exhibit negligible sensitivity to data distortion
(Morbidelli et al. (2021)).

4.5 Conclusions

In this study a complex data merging operation was performed to recover all the
F-maxima recorded starting from the 20th century by 2149 stations. This dataset was
then used to evaluate the Hershfield factor, that is a coefficient computed as the ratio
between the S-maxima and the F-maxima that can be relevant for the reconstruction
of missing sub-daily annual maxima. The interpolation realized, reported with a
map in Figure 4.7, allows to reconstruct the missing S-maxima in stations with only
F-maxima, and improves the knowledge of the spatial variability of sub-daily rainfall
extremes.

In view of the extension of this data-recovering procedure to the entire Italy,
further investigations are to be directed to the correction of distortion effects noted
in the statistical properties of the reconstructed series. In that sense, it is important
to consider the trade-off between the increase of uncertainty on the 24 h series
properties and the increase in the spatial detail of S maxima in data-scarce regions.



Chapter 5

Spatial Issues of Trend Analysis of
Rainfall Extremes in Italy

The work described in this chapter has been partially derived from Mazzoglio et al.
(2022c).

5.1 Introduction

The impact of climate change on extreme rainfall regimes is a debated topic: recent
works do not seem to support the perception of an increase in rainfall frequency and
severity over the entire globe (IPCC (2021), Fowler et al. (2021a)). The different
time scales used in such studies complicate the comparison. While most of them are
performed at a daily scale, a limited number are focused on sub-daily durations. The
lack of studies at sub-daily scales is exacerbated by less available, more fragmented
and unevenly distributed short-duration (1 to 24 h) rainfall records.

Thanks to the recently released Improved Italian – Rainfall Extreme Dataset
(I2-RED) (Mazzoglio et al. (2020)) we performed both national and regional-scale
analyses of short duration (1, 3, 6, 12 and 24 h) rainfall depth trends, covering the
period from early 1900 to the present. The inclusion of more than 10 years of recent
data in most of the Italian regions as compared to Libertino et al. (2018b) allowed us
to obtain an up-to-date picture of changes compared with Libertino et al. (2019) and
to propose a comparison with analyses published in the past years.
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Similar to Libertino et al. (2019), the frequency of occurrences of the "extremes
of the extremes" was analyzed using a record-breaking (RB) test, while the possible
trend in intensity has been investigated using Mann-Kendall test and Sen’s slope
estimator. The comparison of results can provide new elements of assessment
regarding the "speed" of change of some rainfall characteristics over Italy.

5.2 Data and Methods

5.2.1 Rainfall Data

The rainfall data used in this paper come from the Improved Italian – Rainfall
Extreme Dataset (I2-RED). It represents an updated and quality-controlled version
of the dataset used in Libertino et al. (2019). The increase in the number of stations
is reported in Figure 5.1: the new database presents a significant improvement in
terms of data availability, especially from 2005 onward. Like Libertino et al. (2019),
in this work only time series with at least 30 years of data (either continuous or
discontinuous) were considered, regardless of the year in which the time series start.

Fig. 5.1 Number of stations active in each year used in Libertino et al. (2019) and in this
work. Modified figure from Mazzoglio et al. (2022c).

The area under investigation corresponds to the whole of Italy, where the complex
shape, marked mountainous characteristics (Figure 5.2a) and peculiarly varied cli-
matic conditions determine significant variability of the spatial context analyzed. The
methods described below are applied both at the national scale and over limited-area
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regions, selected as pilot cases (Figure 5.2b). These are: the upper Po basin (UP-PO),
the Dolomites (DOL), the coastal areas between Liguria and Tuscany (LIG), the
Calabria region (CAL) and the Sardinia region (SAR). These areas are hot-spots
emerging from the previous analysis of Libertino et al. (2019).

Fig. 5.2 Elevation data from NASA Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model (DEM) of Italy with the boundaries of the 20 administrative Italian regions
(a). Geographic extent of the 5 pilot cases used in Libertino et al. (2019) and indication of
the regions covered by the literature studies mentioned in Section 5.3 (b). Modified figure
from Mazzoglio et al. (2022c).

5.2.2 Record-breaking (RB) Analysis

A rainfall measurement is considered as RB if it is higher than all the previous values
in the time series (Lehmann et al. (2015)). The aim of the RB analysis (Glick (1978))
is thus the investigation of a possible increase or decrease in time of the frequency of
occurrence of RB values.
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Following what has been done in Libertino et al. (2019) and in Lehmann et al.
(2015), annual maxima for each duration were used to create a matrix Mg with size
ng x Y (where ng is the number of rain gauges and Y is the number of years). For
each row of the Mg matrix, if the annual maximum is a RB value we set to 1 the
corresponding value in the MRB matrix; otherwise, we set it to 0. The vector of the
observed annual RBs (Vobs) was obtained by summing along the columns of MRB

and then compared with the number of expected RBs in a stationary climate (Vexp).
The vector Vexp was obtained by summing the values along the columns of Mexp,
which is defined by assigning to each non-null value of each time series the expected
RB probability under independent and identically distributed (iid) conditions. The
annual RB anomaly (Lehmann et al. (2015)) is then evaluated at each time step by
computing the normalized difference between Vobs and Vexp using

Vanom =
Vobs −Vexp

Vexp
·100 (5.1)

The entire workflow is summarized in Figure 5.3.

Fig. 5.3 Workflow of the RB analysis, applied separately for each duration (1 to 24 h) and
for each region (ITA, UP-PO, LIG, DOL, CAL and SAR).
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We tested the significance of the observed trends using a "field significance"
bootstrap-based procedure (Libertino et al. (2019)). We estimated the test statistics
(in our case, the regional normalized annual RB anomaly) considering both the
observed time series and 1000 replicates that we obtained by bootstrapping along
the time axis. If the observed statistic falls inside the 95% confidence bound of the
bootstrapped distribution, we can consider it compatible with the iid hypothesis.

5.2.3 Mann-Kendall Test, Regional Kendall Test and Sen’s Slope
Estimator

The Mann-Kendall (MK) test (Mann (1945)) and the computation of the Sen’s slope
estimator have been first applied to each individual station to investigate at-site
statistically-significant trends.

The MK test assesses if there is a monotonic upward or downward trend of
the variable of interest over time and is based on the ranking of observations, and
not on their absolute values; being nonparametric it does not require assumptions
on the distribution of observations. However, when the interest is on a region, the
spatial correlation of the series of neighbor stations can be relevant. For this reason,
the Regional Kendall test (RKT) is adopted to correct the site-specific MK results
within a region by accounting for the cross-correlation between the series (Helsel
and Frans (2006)). The RKT provides one test statistic for each region (UP-PO,
DOL, LIG, SAR, CAL and ITA) and for each time interval (1 to 24 h durations)
that we considered. Then, the van Bell and Hughes test (van Belle and Hughes
(1984)) was applied to quantify the reliability of the RKT results by assessing
the homogeneity among the different trends of the stations included in a specific
region. If the stations of the same region have different trend directions, the regional
trend is not meaningful. In this case, while the single-station MK results can still
be considered for a local trend analysis, their values are not representative of any
large-scale spatial behavior.

The Sen’s slope estimator was instead included as a method that can be robustly
fit a linear trend to a sample without being sensitive to outliers. This approach is
thus preferred to more classical simple linear regression.
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5.3 National and Regional Trend Analyses

Most of the results that were obtained with the updated record-breaking analysis
(Figure 5.4) and the RKT test (Table 5.1) are similar to the ones presented in Libertino
et al. (2019), despite the inclusion of data in the most recent years (about +10% of
new data for each duration).

Fig. 5.4 Record-breaking analysis. Each row refers to a different region (ITA, UP-PO, DOL,
LIG, CAL and SAR) while each column presents a different duration (1, 3, 6, 12 and 24
hours). Light blue bars represent the annual RB anomalies and the blue line represents the
long-term RB anomalies (obtained by smoothing using a 10-year moving average filter the
annual RB anomalies). For comparison purposes, the long-term RB anomalies obtained in
Libertino et al. (2019) were inserted in red. The 95% confidence interval for the iid model
are also included (black dashed lines). Modified figure from Mazzoglio et al. (2022c).

For the whole of Italy (first row of Table 5.1) the results that we obtained by
applying the RKT are very similar to the ones reported in Libertino et al. (2019):
positive Sen’s slopes were obtained for all the durations but the regional trend is
neither homogeneous nor statistically significant. Moving from a national to a
limited-area analysis, we can mention also that in the Upper Po basin (second row
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Table 5.1 RKT analysis. The sign of the values indicates increasing/decreasing Sen’s
slopes provided by the RKT. The values reported in bold represent a significant trend
under a 5% significance level while the * indicates that the trend in the region is not
homogeneous according to the van Belle and Hughes test (van Belle and Hughes (1984)).
Source: Mazzoglio et al. (2022c).

Region 1 h 3 h 6 h 12 h 24 h

ITA 0.014 * 0.024 * 0.029 * 0.033 * 0.024 *
UP-PO -0.093 -0.042 -0.033 -0.024 * 0.010
DOL 0.053 * 0.069 * 0.080 0.115 * 0.152
LIG 0.017 * 0.043 0.071 * 0.106 * 0.113
CAL -0.028 * -0.035 -0.050* -0.083 * -0.200 *
SAR 0 * -0.021 -0.036 -0.050 * -0.058

of Table 5.1) the situation is quite similar to Libertino et al. (2019): negative slopes
characterize the 1 to 12 h durations, while the 24 h slope is positive. However, in our
case, only the 1 h trend is statistically significant, even if the trend is homogeneous for
all durations (except for the 12 h duration). The massive inclusion of new data also in
the DOL region (about +45% of new data) allowed us to cover a longer period. Like
in Libertino et al. (2019), all the durations show a positive homogeneous statistically-
significant trend, but the new analysis shows higher slope coefficients (third row of
Table 5.1). Results comparable with Libertino et al. (2019) were obtained also for
the LIG, CAL and SAR regions (fourth, fifth and sixth rows of Table 5.1). It is worth
mentioning that the inclusion of the most recent data in the LIG region allowed us to
significantly expand the period that we covered with the RB analysis.

In Figure 5.4 the results obtained with the at-site Mann-Kendall test are reported
while Figure 5.6 shows the Sen’s slope estimates.
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Fig. 5.5 Position of the rain gauges that present a significant trend at a 5% significance level
in the case of (a) 1, (b) 3, (c) 6, (d) 12 and (e) 24 h durations. The size of the triangle is
inversely proportional to the significance level. The background maps are obtained with a
spatial interpolation of the Mann-Kendall test statistics performed using ordinary kriging.
Modified figure from Mazzoglio et al. (2022c).
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Fig. 5.6 Position of the rain gauges that present a significant trend at a 5% significance level
in the case of (a) 1, (b) 3, (c) 6, (d) 12 and (e) 24 h durations. The color indicates the Sen’s
slope. Modified figure from Mazzoglio et al. (2022c).

Over the North of Italy (Piedmont, Lombardy, Trentino Alto Adige, Veneto,
Friuli Venezia Giulia and Emilia-Romagna) an overall large presence of stations with
increasing trends were detected by Cesarini and Martina (2019), especially in the
North-East. Cesarini and Martina (2019) also highlighted that the difference between
the number of increasing and decreasing statistically significant trends grows with the
duration. In this work we obtained similar results: for the 1 h duration, we obtained
a cluster of decreasing trends in the North-West and a cluster of positive trends in
the North-East. The number of positive trends in the North-West decreases with
increasing durations. The inclusion of a considerable amount of data over Libertino
et al. (2019) allowed us to detect a more pronounced positive rainfall trend in the
North-East.

Over Lombardy, Uboldi and Lussana (2018) found a general decrease of 1 h
rainfall and an increase of longer duration events. The results are confirmed by our
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study. The only exception is the Alta Valtellina (North-East of Lombardy), where an
increasing trend for all the durations is pointed out in Uboldi and Lussana (2018), in
Libertino et al. (2019) and in this study.

In the Emilia-Romagna region, most of the statistically-significant trends are
located in the Apennines, along the borders with Liguria and Tuscany, and in the
North-Eastern area near Veneto. Quite similar results were also obtained by Persiano
et al. (2020). The inclusion of new data, compared with Libertino et al. (2019),
allowed us to detect reinforced positive trends for 3 to 24 h durations.

Over Tuscany, the situation is more complex. In this analysis, we observed a
general increase in the Northern part and a general decrease in the Southern part for
all the durations. The only exception is for the 1 h data, where decreasing trends
emerge in the North-West area near Liguria. Compared with Libertino et al. (2019)
we obtained reinforced increasing trends in North Tuscany. Crisci et al. (2002)
observed a prevalence of decreasing trends in the analysis of all the data acquired in
the XX century and a large number of positive trends in the analysis of the 1970 -
1994 period.

Over the Umbria region, only four rain gauges show a statistically significant
trend (positive in the Northern part, negative in the Southern), even if only for some
durations. The analysis carried out by Cifrodelli et al. (2015) suggests that there is
not a common trend in the area: the analysis of time series of a rain gauge in the
North of the region suggests that variations are reduced, while the analysis of two
rain gauges located in the Central part provided contrasting results: in one location
the averages of the annual maxima generally increase in the recent years, while in
the other a significant reduction is observed.

In Sicily, Bonaccorso et al. (2005), Arnone et al. (2013) and Treppiedi et al.
(2021) saw an increasing trend for short durations (the higher number of positive
statistically-significant trends emerged when analyzing the 1 h duration). Bonaccorso
et al. (2005) and Arnone et al. (2013) obtained a decreasing trend for longer durations.
Arnone et al. (2013) also observed an increasing trend in stations near the coastline,
but they were not able to detect a defined spatial pattern. Our results confirmed
marked increasing trends for the 1 h duration, especially along the North and North-
West coast. For durations longer than 6 h we detected a large number of locations
with negative trends, especially in the central parts of the Island, far from the coastline.
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In contrast with Arnone et al. (2013), thanks to the massive inclusion of new data,
the presence of spatial clusters clearly emerges.

For all the other regions, a comparison is not possible due to the lack of similar
studies.

A comparison with the Sen’s slopes obtained all over Italy shows the need to
further investigate the spatial coherence of trends and the trend type (linear, parabolic,
exponential, etc.). Further work could be addressed to investigate such local trends
and to reconcile the results reported in Figures 5.5 and 5.6, being the Sen’s slope
estimator used to investigate linear variations while the MK test is tailored to assess
something more general than a linear trend.

5.4 Conclusions

In this work we conducted an improved spatio-temporal trend investigation of
short-duration annual maximum rainfall depths, using the most complete collection
of short-duration annual maximum rainfall depths available in Italy. The record-
breaking analysis, the Mann-Kendall test (both at station-level and at a regional level)
and the Sen’s slope estimator are used to investigate if statistically significant trends
are present over Italy.

The results confirmed that the presence of long-term trends cannot be evaluated
by merging all the data collected over Italy and that the segmentation of the territory is
mandatory. Further studies can be conducted to evaluate new possible segmentation
of the Italian territory for the evaluation of the Regional Kendall test.



Chapter 6

Geographically-based Analysis of
Rainfall Statistics in Italy

The work described in this chapter has been partially derived from Mazzoglio et al.
(2022a). Part of this chapter will be submitted to a scientific journal in the upcoming
months.

6.1 The Rationale of Spatial Mapping of Rainfall Statis-
tics

Datasets of rainfall features with large coverage in space and time can be relevant in
a vast range of applications, like hydraulic design, water resources management and
climate change impact assessment. Not many of these datasets refer to the features
of the extremes of precipitation, which are of increasing interest for both scientists
and practitioners because of the evolution of the hydrologic hazard in the recent
years (Fowler et al. (2021a); Fowler et al. (2021b)).

Dataset related to large areas are generally created by spatial interpolation of
irregularly spaced rain gauge data into a regular grid (Daly et al. (1994); Daly et al.
(2002); Crespi et al. (2018); Thornton et al. (2021)). To control the quality of the
interpolation it is necessary to understand the spatial distribution of the rainfall
features, particularly by investigating some geographic factors that can be considered
responsible for the spatial variability of the rainfall amounts.
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In regions with almost flat orography, rainfall variability can be handled with
interpolation techniques (e.g. inverse distance weighting and ordinary kriging)that
do not require to consider other spatial covariates. On the other hand, in regions
with significant elevation variability, the spatial patterns of rainfall depth statistics
are known to be affected by the geomorphological setting (Smith (1979); Basist
et al. (1994); Prudhomme and Reed (1998); Prudhomme and Reed (1999); Faulkner
and Prudhomme (1998)) and the interpolation requires methods that can explicitly
account for the elevation effect (e.g., Prudhomme and Reed (1999); Daly (2006);
Claps et al. (2022b)). Several of the approaches available in the literature consider
the elevation as an explanatory variable, such as: simple and multiple regression
models (Basist et al. (1994); Prudhomme and Reed (1998); Prudhomme and Reed
(1999); Allamano et al. (2009)), local regressions or georegressions (Daly et al.
(1994)), geographically-weighted regressions (Thornton et al. (1997); Brunsdon et al.
(2001); Daly et al. (2002); Di Piazza et al. (2011); Crespi et al. (2018); Thornton et al.
(2021)), residual or regression kriging (Prudhomme and Reed (1999); Di Piazza et al.
(2011); Crespi et al. (2018)), kriging with external drift (Goovaerts (1999); Pellicone
et al. (2018)) and cokriging (Diodato and Ceccarelli (2005); Pellicone et al. (2018)).

The impact of orography on daily, multi-daily and annual precipitation events can
generally be attributed to the so-called “orographic enhancement of precipitation” or
"orographic effect", i.e., an increase in rainfall depth along the windward slope of a
relief and a decrease on the lee side, due to the lifting and the consequent drying of
the air mass (Smith (1979); Daly et al. (1994); Frei and Schär (1998); Napoli et al.
(2019)). In a complex landscape, this effect can also entail significant precipitation
values on the lee side, due to landforms that cause a delay in the hydrometeorological
formation of precipitation and falling raindrops (Smith (1979)).

Some differences emerge when dealing with rainfall extremes. The impact of the
orography on extreme rainfall depths and the complicated atmosphere–orography
interactions for large areas are still not sufficiently understood for sub-daily rainfall
events. In a country like Italy, characterized by a high degree of morphological
heterogeneity (Figure 6.1), these relations assume an evident importance, considering
the significant exposure to Mediterranean storms (Claps and Siccardi (1999)). The
focus of this study is thus the entire Italian territory (≈ 300,000 km2), considered as
a representative case, both in terms of variety of landforms and in terms of variability
of the rainfall extremes, as will be seen in the following.
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Fig. 6.1 Elevation data (Shuttle Radar Topography Mission; Farr et al. (2007)) with the
boundaries of the 20 Italian administrative regions.

Most of the existing studies in Italy have focused on limited areas (Allamano
et al. (2009); Caracciolo et al. (2012); Pelosi and Furcolo (2015); Furcolo et al.
(2016); Furcolo and Pelosi (2018); Libertino et al. (2018a); Formetta et al. (2022)),
and the only attempt to deal with sub-daily data covering the entire nation was made
by Avanzi et al. (2015).

These studies suffered from a lack of a comprehensive and quality-assessed
national database for sub-daily extremes. Several of them analyzed the Italian Alpine
area. For instance, Frei and Schär (1998) focused on the entire European Alps
region and showed that the foothills enhance monthly and seasonal precipitation,
while inner valleys produce an orographic shielding effect on rainfall. Nevertheless,
they did not find a unique precipitation depth–elevation relationship that could be
considered valid for the entire Alps and attributed the observed variability to the
effects of slope and shielding. Allamano et al. (2009) investigated the dependence of
sub-daily annual maximum rainfall depths on elevation over the Italian Alpine region.
They found a significant decreasing trend for increasing elevations and a nonuniform
slope coefficient over the longitude range. The slope of the rainfall depth–elevation
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regression was shown to decrease for event durations that increased from 1 to 24 h.
Libertino et al. (2018a) showed that in the western sector of the Italian Alps (Figure
6.1) shorter durations (1–3 h) are characterized by a negative slope coefficient as a
function of elevation (statistically significant at a 5% level), while longer durations
(12–24 h) show a positive slope and also a significant correlation, and the trend
of the extremes over 6 h loses significance with elevation. Over Trento province,
Formetta et al. (2022) identified a reverse orographic effect for hourly and sub-hourly
durations and an orographic enhancement for a duration of about 8 h (or longer).

Other regional works that attempted to identify orographic effects in the Mediter-
ranean part of Italy are available for Campania and Sicily. Pelosi and Furcolo (2015)
and Furcolo et al. (2016) analyzed the daily annual maximum rainfall depths over
Campania (see Figure 6.1 for the geographical location) and attempted to explain
systematic variations as being the result of the presence of orographic barriers, iden-
tified through the application of an automatic geomorphological procedure (Cuomo
et al. (2011)). Their results showed a link between orographic elements and a local
increase in rainfall depths and allowed orographic elements that produced enhanced
variability of extreme rainfall to be identified. The same group later worked on
sub-daily annual maximum rainfall depths (Furcolo and Pelosi (2018)) and proposed
a power law amplification factor of rainfall over three mountainous systems.

Caracciolo et al. (2012) found that the longitude, latitude, distance from the sea
and a concavity index are the variables that govern the spatial variability of rainfall
depths in Sicily. However, these authors found that no linear relationship between
sub-daily annual maximum rainfall depths and elevation was significant at a 5% level
over the entire island of Sicily.

All of the previously mentioned analyses refer to an analytic relationship that
connects annual maximum rainfall depths of various durations, i.e., the average
depth–duration (ADD) curve of the simple-scaling approach, which is usually repre-
sented by a power law

hd = a ·dn (6.1)

where hd is the average of the annual maximum rainfall depths of duration d, a is a
scale factor and n is a scaling exponent.

Avanzi et al. (2015) analyzed the spatial variability of the ADD curve parame-
ters, a and n, at a national scale, as obtained from measurements of 1494 stations
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distributed throughout Italy. They referred to the so-called “reverse orographic
effect”, i.e., the relationship found between parameter a and elevation, which shows
a decreasing trend. On the other hand, the scaling exponent n appears to increase
nonlinearly with elevation. More details are provided in the following section.

On the basis of the described background and the significant improvements
offered by a new, up-to-date rainfall dataset, i.e., the Improved Italian-Rainfall
Dataset, I2-RED (Mazzoglio et al. (2020)), the present work has considered more
than 3700 stations with at least 10 years of data to relate the average rainfall depths
in all the durations (index rainfall) to several morphological variables and investigate
their dependency on elevation and on other geomorphological and climatological
parameters.

Searching for models that allow the index rainfall to be estimated for various
durations in any location in Italy is the first, important, necessary step toward
addressing the building of depth–duration–frequency curves over the entire country.
For this purpose, simple (Section 6.2) and multiple (Section 6.3) national-scale
regression models were first investigated. Four geomorphological classifications
(Section 6.4) were then introduced to perform local-scale regression analysis to
tackle the evident spatial clustering of the regression residuals (Section 6.5). The
comparisons made between the results obtained from the wide-area and the local
regressions allowed the role of the morphology in rainfall variability to be discussed,
as shown in Section 6.6. Section 6.7 reviews the main studies based on local analyses
of the precipitation vs elevation relationship. Section 6.8 contains a description
of the data and of the methodology, with emphasis on the available options for
the parameter identification and the management of local inconsistencies that can
arise, for instance, where excessive extrapolation is allowed. Section 6.9 shows the
application, over the whole of Italy, of the revised cell-based regression approach. In
the same section, the choice of the parameters and the model constraints are widely
discussed, to provide an understanding of the performances that different variants
of the proposed model configuration can produce. A cross-validation approach and
an accurate check of residual spatial distribution are then used to select the best
model in Section 6.10. The results are shown in terms of maps at 1-km resolution.
In the same section, a discussion of the results, that include maps at 1-km resolution
and the evidence of some orographic effects, complete the analysis. Section 6.11
contains the main conclusions.
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6.2 Simple Linear Regression Analysis

6.2.1 Methods

As the first step of the analysis, the influence of elevation on the spatial distribution
of the average of short-duration (1 to 24 h) annual maximum rainfall depths was
investigated. The ADD curve parameters were calculated for all the stations of the
I2-RED dataset to compare them with previous studies (mainly Avanzi et al. (2015)).
Parameters a and n (see Equation 6.1) were initially obtained by means of a linear
regression of the logarithm of the average of all the available extremes over the 1 to
24 h durations. The median values of these parameters were computed across Italy
to compare them with those of Avanzi et al. (2015), who grouped the stations into
elevation ranges of 50 up to 1000 m a.s.l. and into intervals of 100 m for higher
elevations. Both series of medians (a and n) were then plotted against the median
elevation of each interval (to account for the fact that the distribution of the rain
gauges in each elevation interval was skewed) and fitted regression models. The
differences between the measured and estimated rainfall statistics were studied to
assess the effectiveness of the regression models, considering the observed averages
of the extremes over 1, 3, 6, 12 and 24 h. Performance indices for each station were
obtained using the estimation errors ∆d

∆d = havg(d)− â ·dn̂ (6.2)

where havg(d) is the sample average of the extreme rainfall depth for duration d,
while â and n̂ are the estimates of parameters a and n.

In this chapter, only the results related to the shortest and the longest of the five
durations (1 and 24 h) are shown and discussed, as they can be considered the most
representative of the different classes of rainfall events (convective and stratiform,
respectively). The corresponding dependent variables are called h1 and h24 in the
following.

The error statistics that were computed are the bias, the mean absolute error
(MAE), the root mean square error (RMSE) and the Nash–Sutcliffe model efficiency
(NSE) coefficient (Nash and Sutcliffe (1970); Wasserman (2004)). Among all the
statistics, particular attention was dedicated to spatial bias, i.e., the bias evaluated as
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the difference between the spatial mean of the observations over a generic area, and
the corresponding values predicted by the model.

6.2.2 Results

By applying the procedure described in Section 6.2.1, results that are in agreement
with those of Avanzi et al. (2015) were obtained. Parameter a decreases linearly with
elevation (R2 = 0.89), through the equation

a = 30.61−0.0060 · z (6.3)

which is comparable with the equation obtained in Avanzi et al. (2015)

a = 29.17−0.0062 · z (6.4)

while parameter n increases nonlinearly with elevation, through the following equa-
tion:

n = 0.54− exp[−0.000077 · (z+1650)] (6.5)

For comparison purposes, Avanzi et al. (2015) obtained

n = 0.54− exp[−0.00086 · (z+1452)] (6.6)

for the latter parameter. The variable z of Equations 6.3, 6.4, 6.5 and 6.6 is the station
elevation retrieved from I2-RED data. The fitting of the four models is reported in
Figure 6.2.
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Table 6.1 Comparison of national-scale error statistics related to the estimates performed
in Mazzoglio et al. (2022a) with Equations 6.3 and 6.5 and in Avanzi et al. (2015) with
Equations 6.4 and 6.6. Source: Mazzoglio et al. (2022a).

Error statistic
h1 h1 h24 h24

(Eqs. 6.4, 6.6) (Eqs. 6.3, 6.5) (Eqs. 6.4, 6.6) (Eqs. 6.3, 6.5)

Bias (mm) 2.65 1.07 9.64 6.05
MAE (mm) 5.48 5.29 22.22 22.27
RMSE (mm) 7.39 6.98 32.81 31.99
NSE (-) -0.01 0.10 -0.02 0.03

Fig. 6.2 Fitting of the national-scale simple regression models of Avanzi et al. (2015) (blue
line) and the one proposed in this work (red line) on I2-RED data. Modified figure from
Mazzoglio et al. (2022a).

As already mentioned, parameter a is roughly equivalent to h1. Its overall inverse
dependence on elevation is somewhat counterintuitive, even though other authors
have confirmed this dependence (e.g., Allamano et al. (2009); Marra et al. (2021)).

The error statistics computed on the two sets of residuals (i.e., in this work and
in Avanzi et al. (2015)) are listed in Table 6.1. The results show that the increase
in the number of stations and the recording length achieved in I2-RED have led
to an improvement compared to the results of Avanzi et al. (2015). This result is
not surprising, but more insights can be derived from the observation of the spatial
distribution of the residuals, which were not discussed explicitly in the previous
literature.
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In this regard, we mapped differences ∆1 and ∆24 to investigate where the under-
and overestimations show spatial coherence. The maps, reported in Figure 6.3,
clearly show that clusters of residuals with high residuals of the same sign emerge in
various areas of the country: for instance, many coherent errors larger than 3 times the
MAE are present in the Liguria region (see Figure 6.1 for the geographic position) for
both durations. Therefore, despite the high R2 values, significant spatially correlated
errors can undermine the practical validity of these general relationships.

Fig. 6.3 Residuals of the estimations of the 1 h (a) and 24 h (b) durations performed using
Equations 6.3 and 6.5. Modified figure from Mazzoglio et al. (2022a).

On the basis of these results, the need for a more detailed spatial analysis of these
variables became evident. A set of new analyses, aimed at reducing the local bias
and increasing the reliability of the results, was therefore introduced.
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6.3 National-scale Multiple Linear Regression Analy-
sis

6.3.1 Methods

In an attempt to improve the evaluation of the relationships between rainfall and
topography, an analysis of the relationships between rainfall and several geomor-
phological (and climatological) parameters, which may complement the explanatory
power of elevation, was undertaken. Unlike what was done in Avanzi et al. (2015),
multivariate models were used in the literature to relate rainfall statistics and various
morphological variables, both of which were evaluated at the same location. In these
approaches, no aggregated or median spatial statistics of rainfall were considered.
Prudhomme and Reed (1998) and Prudhomme and Reed (1999), for instance, identi-
fied meaningful geographic and morphological attributes of each location as good
explanatory variables of the daily rainfall maxima in Scotland. They showed that
obstruction indices, derived from the orography, and the distance from the coastline
are able to define how morphological barriers influence the characteristics of the
extremes. These appear to work better than the EXPO variable used by Basist et al.
(1994) and Konrad II (1996).

Basist et al. (1994) defined EXPO as the distance between a rain gauge and an
upwind barrier whose elevation is at least 500 m higher than the station. Konrad II
(1996) suggested an elevation of the barrier at least 150 m higher than the station.
Prudhomme and Reed (1998) also tried to use this variable, setting the elevation
difference at 200 m, but concluded that the definition of EXPO has several drawbacks,
as it is based on arbitrary thresholds and is defined assuming a specific and subjective
direction.

Introducing new variables with omnidirectional meaning, as the distance from the
sea, the obstruction and the barrier, which are evaluated in the eight main directions,
Prudhomme and Reed (1998) were able to explain a much larger percentage of
variability in the annual maximum daily rainfall than that explained by the EXPO
variable.

Caracciolo et al. (2012) applied this latter approach on the island of Sicily (south
of Italy): they found that the longitude, elevation, a barrier obstruction index and the
distance from the coastline are able to represent the spatial variability of parameter a
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for the whole island, while the longitude, elevation, a concavity index and the slope
are able to satisfactorily describe the variability of exponent n. They also noticed
that different descriptors became significant when analyzing smaller portions of the
island.

Based on the above considerations, in this work the approach suggested by
Prudhomme and Reed (1998) and Prudhomme and Reed (1999) was followed,
considering two groups of variables computed for each station location:

1. Geographic and climatic variables. These do not require computation and do
not depend on the landscape forms, that is, longitude (LONG, expressed in
the WGS84 UTM32N reference system, in m), latitude (LAT, expressed in
the WGS84 UTM32N reference system, in m), elevation above sea level (z, in
m), minimum distance from the coastline (C, in km) and mean annual rainfall
(MAR, taken from Braca et al. (2021), in mm); the latter represents a very robust
climatological variable, which is seldom used as ancillary information but
easily available throughout the world thanks to the presence of various rainfall
databases (Schneider et al. (2011); Fick and Hijmans (2017); Muñoz Sabater
(2019)).

2. Morphological variables or descriptors. These are based on a digital elevation
model (DEM), computed for each cell in a square grid. These variables are as
follows:

• slope (S, in degrees), defined as the angle of the inclination of the terrain
to the horizontal, which is evaluated using the eight closest DEM cells;

• obstruction (OBS, in degrees), defined as the maximum angle needed
to overcome the highest orographic obstacles in the eight main cardinal
directions (i.e., the maximum of the angles subtended by the line that
connects the rain gauge with the highest orographic peak within a 15 km
radius in the eight main directions; see Figure 6.4);

• barrier (BAR, in m), defined as the distance between the rain gauge and
the highest orographic obstacle defined in OBS (Prudhomme and Reed
(1998) and Prudhomme and Reed (1999); see Figure 6.4);

• maximum slope angle (MSA, in degrees), i.e., the angle with the greatest
slope needed to overcome obstacles within a 15 km radius in the eight
main directions (see Figure 6.4);
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• maximum slope angle distance (MSAD, in m), defined as the equivalent
of BAR but computed with respect to MSA (see Figure 6.4);

• openness (OP, in radians), defined as a mean angular measurement of
the relationships between the surface of the relief and the horizontal
distances, in the eight main directions (Yokoyama et al. (2002)).

Fig. 6.4 Representation of the MSA, MSAD, OBS and BAR morphological variables. Modified
figure from Mazzoglio et al. (2022a).

The values of all of these variables depend on the landscape forms and can
vary according to the resolution of the used DEM. In this case, after thorough
consideration, the Shuttle Radar Topography Mission (SRTM) DEM, which has
a resolution of 30 m (Farr et al. (2007)), was adopted. However, the openness
required to be evaluated on the SRTM DEM resampled at a resolution of 500 m
due to computational limitations. This computation was conducted with the SAGA
“Topographic openness” module, using a radial limit of 5 km. This value was
obtained after testing different radial limits and selecting the one that presents the
best correlation with the mean rainfall depth.

Multiple linear regression models were built, based on the following relationship:

Y = X ·β +δ =
N

∑
i=1

βiXi +δ (6.7)

where the dependent variable Y is related to the matrix of the independent variables X
or covariates. The vector β in Equation 6.7 contains the regression model coefficients,
and δ is the vector of the residuals.

To select the best model equation, the number i of covariates can be increased as
necessary, according to the criteria of statistical significance of the estimated param-
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eters. Caracciolo et al. (2012), for instance, used a stepwise regression approach. In
this work, a generalized multiple regression approach is preferred, whereby increas-
ing the number of covariates to i + 1 does not necessarily preserve the descriptors
that were the most significant at step i. This approach entails always considering all
the possible combinations of two, three or four covariates until the “best” model is
found. Other tests made using five or more variables did not lead to significantly
higher R2

ad j values.

The best regression model was selected on the basis of an analysis of the regres-
sion residuals, favoring models with the highest adjusted coefficient of determination,
R2

ad j. Student’s t test was used to quantify the significance of the independent vari-
ables. The possible presence of multicollinearity was checked for each model in
which all the covariates passed Student’s t test, as this could lead to the formulation
of an unstable model. Multicollinearity was measured using the variance inflation
factor (VIF), which is determined by placing the jth independent variable as the de-
pendent variable and calculating the coefficient of determination R2

ad j of the multiple
regression performed on the remaining p-1 in dependent variables (Equation 6.8).

V IFj =
1

1−R2
j

(6.8)

Values of VIF greater than 5 were associated with an unacceptable level of
multicollinearity, and the corresponding model was discarded (Montgomery et al.
(2012)).

6.3.2 Results

The equations of the best regression models (built using two to four variables) are
reported in Equations 6.9 to 6.11 for h1 and in Equations 6.12 to 6.14 for h24. The
R2

ad j values in Equations 6.9 to 6.11 are 0.46, 0.52 and 0.54, respectively. The
coefficients of determination are higher for h24, i.e., 0.66, 0.67 and 0.68 (Equations
6.12 to 6.14, respectively).

h1 = 20.3163−0.0080 · z+0.0117 ·MAR (6.9)

h1 =−21.6293−0.0061 · z+0.0134 ·MAR+26.2682 ·OP (6.10)
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h1 =−10.6928−0.0051 · z−0.0273 ·C+0.0131 ·MAR+19.8449 ·OP (6.11)

h24 = 16.1392−0.0937 ·C+0.0712 ·MAR (6.12)

h24 = 33.1529−1.8574 ·10−5 ·LONG−0.1319 ·C+0.0701 ·MAR (6.13)

h24 = 127.2773−2.9498 ·10−5 ·LONG−1.9130 ·10−5 ·LAT+

−0.0971 ·C+0.0735 ·MAR
(6.14)

Considering the three h1 models (Equations 6.9 to 6.11), it is possible to notice
the negative slope coefficient associated with elevation. This confirms what was
discussed in the previous section. On the other hand, it is remarkable that the best
models found for h24 do not include the elevation: this outcome can be explained
by considering the fact that MAR is always significant, regardless of the number of
variables. Models in which MAR was excluded actually present z as a significant
covariate but with less relevance than the regression models for h1.

Regardless of the number of the variables considered, and despite the marked
increase in the corresponding value of R2

ad j, compared to the simple regression, the
residuals of the multivariate regressions appeared to be still characterized by spatial
clustering and high local errors, basically all in the same areas in Figure 6.3. In other
words, resorting to additional variables but keeping a uniform relationship between
each variable and precipitation across Italy does not produce a decisive reduction
in the bias for large areas of the country. Thus, it was decided to deconstruct the
modeling approach and to look for clues of distinct generating mechanisms in distinct
areas of Italy.

6.4 Sub-national-scale Multiple Linear Regression Anal-
ysis

6.4.1 Methods

In this section, an additional paradigm is introduced into the models for the spatial
variability of precipitation to reduce the spatial bias, namely the selection of limited
areas to build sub-national regression models, as an alternative to using data for the
whole of Italy. Such an attempt was already made by Caracciolo et al. (2012), who



84 Geographically-based Analysis of Rainfall Statistics in Italy

Table 6.2 Error statistics of the multiple regression models at a national scale and for the four
macro-regions described in Section 6.4.1, for h1 and h24. Source: Mazzoglio et al. (2022a).

Error statistic
h1 h1 h24 h24

Nation Four regions Nation Four regions

Bias (mm) 0 0 0 0
MAE (mm) 3.83 3.65 13.14 11.71
RMSE (mm) 4.98 4.77 18.43 16.53
NSE (–) 0.54 0.58 0.68 0.74

borrowed the subdivision criterion from previous regional frequency analyses. In
this work, we have focused on the role of geography and morphology in the spatial
variability of annual maximum rainfall depths.

To better understand how to move from national-scale relationships to relation-
ships valid for smaller areas, we started by considering the Alpine area separately
from the Apennine region along the entire peninsula, and from the two main islands
(Sicily and Sardinia; see Figure 6.1 for the geographic positions), as a first approxi-
mation. We then built four different multivariate models: (1) the Alpine region (i.e.,
from Piedmont, including the western part of Liguria, eastward up to Friuli Venezia
Giulia, delineated using the SOIUSA classification, as suggested by Accorsi (2016));
(2) the Apennine region, including peninsular Italy; (3) Sicily; and (4) Sardinia.
The best regression models for these four regions was evaluated using up to four
covariates, as described in Section 6.3.1.

6.4.2 Results

The new set of models built for the four regions were tested by computing the error
statistics over the entire country. The obtained results indicated that they provided
higher R2

ad j than for the national case and better error statistics (see Table 6.2 for a
comparison with the previous multivariate approach). The better results achieved in
terms of RMSE, MAE and NSE at the national scale are due to the improvements
obtained for the two main islands (Sicily and Sardinia). More insights are provided
in Section 6.6.

It is interesting to compare the results obtained for the individual Alpine region
with those of Allamano et al. (2009), who analyzed almost the same area. In that
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case, the ADD curve parameters appeared to be related to elevation and longitude.
For the different durations Allamano et al. (2009) also estimated a regression model
by linear regression between rainfall depth, elevation and longitude. The dependence
of short-duration rainfall on elevation and longitude was found to be statistically
significant for all the time intervals, except for the 1 h duration: in this case, the
longitude was not statistically significant. In our application, the best relationships
found for h1 and h24 are those of Equations 6.15 and 6.16 (characterized by R2

ad j =
0.75 and 0.76, respectively):

h1 = 60.9365−1.6664 ·10−5 ·LAT −0.0046 · z+0.0148 ·MAR+25.1825 ·OP
(6.15)

h24 = 59.0632−7.2955 ·10−5 ·LONG−0.2223 ·C+0.4306 ·OBS+0.0822 ·MAR
(6.16)

As expected, the h1 - z relationship has a negative slope, and the Equation 6.15
does not include the longitude as covariate, in agreement with Allamano et al. (2009).
The same negative relationship is found in a 24 h equation that includes z (which
produces an R2

ad j = 0.74, that is, lower than that of Equation 6.16). These findings
confirm the results of Allamano et al. (2009), who found a general decrease in rainfall
depth for increases in elevation for all the durations (up to 24 h). Equation 6.16 also
confirms that, although h1 decreases systematically with elevation over the whole
alpine region, the dependence of h24 on z decreases as the longitude increases, i.e.,
moving westward.

The full set of equations used for the four regions is provided in Appendix B,
together with the R2

ad j.

Although the improvements achieved with multivariate models over the simple
regressions are evident, they were not decisive in providing a homogeneous spatial
distribution of the errors. Even with the best model, it was not possible to reduce the
clustering effect shown in Figure 6.3 for the peninsular region (see Figure 6.5). We
believe that a model capable of describing the observed spatial variability of the index
rainfall simultaneously at a national and a local level requires additional insights,
which can be obtained using a finer spatial segmentation of Italy into geographical
zones.
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Fig. 6.5 Maps of the residual for the 1 h national-scale multiple linear regression model (a), 1 h
four-region multiple linear regression model (b), 24 h national-scale multiple linear regression
model (c) and 24 h four-region multiple linear regression model (d). Marked improvements
can now be achieved in some areas adopting a sub-national approach, especially for Sardinia.
However, these models are not able to reduce the clustering effect in the peninsular region.
Source: Mazzoglio et al. (2022a).
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6.5 Zonal-scale Simple Linear Regression Over Geo-
morphological Regions

6.5.1 Methods

On the basis of the considerations presented above pertaining to the spatial clustering
of residuals, the possibility of obtaining a meaningful segmentation of large areas
in subdomains that could be used to obtain “zonal” relationships between annual
maximum rainfall depths and terrain properties was examamined. The main reason-
ing behind the segmentation is that some macroscopic morphological differences
can determine markedly different behaviors of the relationships between rainfall
and elevation (or other local variables). One example concerns what happens in
the windward and leeward sides of mountain ridges, which represent transversal
obstacles to the humid masses coming from the sea. Accordingly, some general
geomorphological classifications of the landscape that delineate homogeneous areas
based on the homogeneity of the macroscopic land properties, such as convexity and
texture, were considered.

Four geomorphological classifications (GCs), named here as GC1 to GC4, were
considered according to their diversity and success in the geomorphological literature.

The first classification, called GC1, was proposed by Iwahashi and Pike (2007);
they classified the Earth’s surface into 16 topographic types, at a 1 km resolution,
based on slope gradient, local convexity and surface texture. The raster map, which
is available on the European Soil Data Centre website (https://esdac.jrc.ec.europa.
eu/content/global-landform-classification, accessed on 7th September 2022), was
here vectorized and then, to reduce the presence of small areas, which could have
an extent of just a few square kilometers, all the areas covered by fewer than 10
pixels (10 km2) were merged with the adjacent class. Among the four different
classifications that were used, this is the only one that has a worldwide coverage, as
all the other classifications are available at a national scale. A detailed description
of the methodologies used by the authors is available in the related references, thus
allowing all the classifications to be reproduced over other nations.

The second classification – GC2 – is the Carta delle Unità Fisiografiche dei
Paesaggi italiani (“Map of the physiographic units of Italian landscapes”) and is
included in the Carta della Natura (“Map of nature”; Amadei et al. (2003)). A vector

https://esdac.jrc.ec.europa.eu/content/global-landform-classification
https://esdac.jrc.ec.europa.eu/content/global-landform-classification


88 Geographically-based Analysis of Rainfall Statistics in Italy

map, which was obtained by means of a visual interpretation of satellite images,
aided by the analysis of further land cover maps and morphological–lithological
characteristics, was available at a 1:250,000 scale.

The third classification – GC3 – was proposed by Guzzetti and Reichenbach
(1994). It was obtained, in vector format, by combining an unsupervised three-
class cluster analysis of four properties of altitude (altitude itself, slope curvature,
frequency of slope reversal and elevation–relief ratio) with a visual interpretation of
morphometric maps and an inspection of geological and structural maps.

The fourth classification – GC4 – is the one that delineates zones with the
greatest detail, as it is based on local morphometric properties of the landscape.
It was proposed by Alvioli et al. (2020), who considered a set of 439 watersheds,
covering the whole of Italy, grouped into seven clusters on the basis of the various
properties of the slope units within each basin, e.g., a distribution of slope unit sizes
and aspects. In this work, adjacent watersheds of the same class were collapsed (GIS
Dissolve), thus producing a total of 178 areas. Geomorphologically homogeneous
terrain partitions were defined as “slope units” that were delimited by drainage and
divide lines and delineated with a method that was first introduced by Alvioli et al.
(2016) and which is widely used in the literature for geomorphological zonation
purposes.

An additional geomorphological classification, which was proposed by Meybeck
et al. (2001) and which has a worldwide coverage, was also considered. It is based
on a combination of a relief roughness index and elevation and in principle could
have been a good fifth candidate. However, it was not included in this analysis
because, except for a very large geographical zones, the resulting delineated areas
often contained very few rain gauges, which would have made it impossible to
perform the desired statistical analyses.

Coherently with the aim of addressing connections between terrain properties and
rainfall at a more zonal level, a set of linear regression models between elevation and
index rainfall was built for all the classifications, considering an individual model for
each outlined geomorphological zone. Only the internal rain gauges in each of these
homogeneous zones with a minimum of five available stations that had to ensure at
least 100 m of difference in elevation were considered for the regressions. There were
four possible outcomes of the applications: (a) a positive and significant correlation
(at the 5% level), (b) a negative and significant correlation; (c) a nonsignificant



6.5 Zonal-scale Simple Linear Regression Over Geomorphological Regions 89

correlation and (d) an insufficient number of stations or an insufficient difference in
elevation.

6.5.2 Results

The four geomorphological classifications previously described were used to pool
the data needed to fit the regression models. The slope coefficients obtained for each
geomorphological zone are mapped in Figures 6.6a–d for the 1 h duration and in
Figures 6.7a–d for the 24 h duration.

A comparison of the maps included in Figures 6.6a–d and 6.7a–d clarifies that
the more detailed the geomorphological zonation is, the less likely it is to satisfy the
requirements necessary to build a significant regression. On the other hand, if one
applies regression models to finer geomorphological classifications, it is possible to
see that the regression sign is not uniform over the entire country. For example, with
regard to 1 h data, it is possible to clearly recognize the presence of zones with a
positive rainfall depth versus elevation trend for pre-hill/plain morphology in both
GC3 (Figure 6.6c) and GC4 (Figure 6.6d).
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Fig. 6.6 Slope coefficients of the regression between the mean 1 h rainfall depth and elevation
for GC1 (a), GC2 (b), GC3 (c) and GC4 (d) and the R2 of the regression between the mean 1
h rainfall depth and elevation for GC1 (e), GC2 (f), GC3 (g) and GC4 (h). In the first row,
blue areas denote geographical zones, where h1 or h24 increase together with elevation, while
the red palette applies to zones where rainfall decreases with elevation. The color intensity is
proportional to the respective slopes. In the second row, the color intensity is proportional
to the R2. In both rows, the light gray color denotes zones in which the linear regression is
not statistically significant (at a 5% level), while dark gray denotes insufficient data (case d).
Modified figure from Mazzoglio et al. (2022a).
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Fig. 6.7 Slope coefficients of the regression between the mean 24 h rainfall depth and
elevation for GC1 (a), GC2 (b), GC3 (c) and GC4 (d) and the R2 of the regression between
the mean 24 h rainfall depth and elevation for GC1 (e), GC2 (f), GC3 (g) and GC4 (h). In
the first row, blue areas denote geographical zones, where h1 or h24 increase together with
elevation, while the red palette applies to zones where rainfall decreases with elevation. The
color intensity is proportional to the respective slopes. In the second row, the color intensity
is proportional to the R2. In both rows, the light gray color denotes zones in which the linear
regression is not statistically significant (at a 5% level), while dark gray denotes insufficient
data (case d). Modified figure from Mazzoglio et al. (2022a).

The spatial distribution of the light gray zones is an important piece of informa-
tion: no trend can be assumed over these areas because the p-value is greater than
0.05. Consequently, h1 can be considered constant over these areas. Finally, the
occurrence of the dark gray zones is directly connected to the kind of classification:
the smaller the areas delineated by the classification are, the more likely it is that
the requirement of having at least five rain gauges with at least 100 m difference in
elevation is not satisfied. In this regard, it can be observed that the above require-
ments are not met for the elevation difference, i.e., in plain areas, and it is necessary
to assume a constant h1 in the area as being the most reasonable value.

The maps in Figures 6.6a–d show that the availability of more detail in the spatial
analysis of the relationship between rainfall depth and elevation has a remarkable
effect on both the sign of the regression and the slope of the regression line in several
areas. In addition, even the quality of the relationship can improve, as can be seen
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Table 6.3 National-scale error statistics for the 1 h interval. Statistics for GC1, GC2 and
GC3 were only evaluated over areas where the regression was statistically significant at a 5%
level, while GC4 was tested on both statistically significant areas and over the entire nation,
using the mean rainfall, where there was a p-value > 0.05 or where the requirement of at
least five rain gauges with at least 100 m difference in elevation was not satisfied. Source:
Mazzoglio et al. (2022a).

Regression model
Bias MAE RMSE NSE
(mm) (mm) (mm) (-)

GC1 0 5.94 7.67 0.10
GC2 0 5.65 7.18 0.15
GC3 0 5.15 6.77 0.27
GC4 over statistically significant areas 0 4.53 5.84 0.50
GC4 over the entire nation 0 3.87 5.12 0.52

from a comparison of Figures 6.6e–h: far more areas with high R2 can be seen in
Figure 6.6h than in Figure 6.6e. This allows us to conclude that lower values of R2

are obtained in wider areas.

The same analysis was conducted on h24, where all of the above outcomes were
confirmed, except for the sign of the precipitation vs elevation relationship (Figure
6.7).

To test the reliability of the regression models built over the GCs, the linear
equations found in each geomorphological zone were applied to all the rain gauge
positions, to obtain errors that could be examined at the country scale. The global
indices computed for the GC areas in which the regressions were statistically signifi-
cant are reported in Table 6.3 for h1 and in Table 6.4 for h24. These results clearly
show a lower performance of the GC1 than the national-scale regression model. On
the other hand, the error statistics in Tables 6.3 and 6.4 show that GC4 produces the
smallest errors, and this geomorphological subdivision therefore presents the best
performances. It is possible to understand this result by considering that GC4 uses
watershed units, while the other classifications are based on the automatic processing
of digital terrain data.



6.6 Discussion about National vs Zonal Approach 93

Table 6.4 National-scale error statistics for the 24 h interval. Statistics for GC1, GC2 and
GC3 were only evaluated over areas where the regression was statistically significant at a 5%
level, while GC4 was tested on both statistically significant areas and over the entire nation,
using the mean rainfall, where there was a p-value > 0.05 or where the requirement of at
least five rain gauges with at least 100 m difference in elevation was not satisfied. Source:
Mazzoglio et al. (2022a).

Regression model
Bias MAE RMSE NSE
(mm) (mm) (mm) (-)

GC1 0 30.44 39.49 -0.11
GC2 0 20.30 31.29 0.11
GC3 0 20.03 28.84 0.32
GC4 over statistically significant areas 0 14.84 21.12 0.61
GC4 over the entire nation 0 14.36 20.73 0.60

6.6 Discussion about National vs Zonal Approach

The different regression models used in this work to investigate the role of morphol-
ogy in the spatial distribution of sub-daily annual maximum rainfall depths produced
results deserving some comments. First of all, it must be mentioned that a nation-
wide multiple regression model that includes morpho-climatic attributes represents
a significant step forward with respect to the simple regression model, as the error
statistics show. In this approach, working at a national scale and given the elongated
shape of the Italian peninsula, geographic location was expected to play a major role
in the spatial distribution of extremes, even though this evidence was not mentioned
in similar national-scale analyses (see, e.g., Faulkner and Prudhomme (1998) for
the UK, and Avanzi et al. (2015) for Italy). The role of geography progressively
weakened while seeking further improvements, in terms of MAE and RMSE, through
the application of distinct multiple regressions to four macro-regions, i.e., the Alps,
peninsular Italy and the main islands (Figures 6.8 and 6.9).
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Fig. 6.8 Error statistics for the 1 h duration in the case of the national-scale regression
model (a, f, k, p), the national-scale multiple linear regression model (b, g, l, q), the four-
region multiple regression model (c, h, m, r) and GC4 simple linear regression model over
statistically significant areas (d, i, n, s) and over the entire nation (e, j, o, t). Modified figure
from Mazzoglio et al. (2022a).
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Fig. 6.9 Error statistics for the 24 h duration in the case of the national-scale regression
model (a, f, k, p), the national-scale multiple linear regression model (b, g, l, q), the four-
region multiple regression model (c, h, m, r) and GC4 simple linear regression model over
statistically significant areas (d, i, n, s) and over the entire nation (e, j, o, t). Modified figure
from Mazzoglio et al. (2022a).

Our findings show that, while the 24 h index rainfall exhibits a clear overall
dependence on the geographic location at a full national scale (Equation 6.14), the
same does not apply to 1 h extremes (Equation 6.11). In an area with a lesser span in
latitude (the Italian Alps), instead, the 1 h extremes curiously show some dependence
on latitude (Equation 6.15). Formetta et al. (2022) followed a similar reasoning,
recognizing the role of geography and elevation as they partitioned by longitude and
elevation even a small area (the province of Trento) before applying their statistical
analyses.
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While the multivariate regression can be a good tool to express geographic de-
pendence, and on 24 h extremes the national scale helps in drawing some general
findings, the residual errors in large clustered areas are still very significant. There-
fore, geographic attributes seem not to drive uniformly the variability of rainfall
extremes across Italy, as the high residuals of the multiple regression over these areas
do not apparently follow any latitudinal/longitudinal gradient.

The better suitability of the application of multiple regressions on four regions
is confirmed by the increase of the adjusted coefficient of determination (R2

ad j), as
reported in Section 6.3.2 and in Appendix B. Moreover, while the national-scale
multiple regression model provides high negative residuals over Sardinia and high
positive residuals over Sicily, the four-region multiple regression model significantly
improves this result (see Figures 6.5, 6.7, 6.8 and 6.9 for more details). However,
similar improvements were not achieved in the peninsular and alpine areas of the
country.

The subsequent investigations undertaken in Section 6.5 descend from the above
considerations; i.e., the building of regressions in morphological zones that are a
fraction of the whole area is an attempt to overcome the highlighted lack of regularity
in the dependence between rainfall and geography. Among all the considered geo-
morphological classifications, the selection of rain gauges for the model application
is more effective in the case of GC4 (Alvioli et al. (2020)), which also embeds
hydrographic information. The GC4 model behaves reasonably well for both the 1
and 24 h durations, compared to the multiple regression models, as far as the national
scale is considered. Table 6.5 summarizes all the previously mentioned statistics.

Analyzing the error statistics computed globally at the national scale, it seems
that the four-region multiple regression approach is the most precise. However, this
is not necessarily true at a local scale. To clarify the drawbacks that large-scale
regression models can produce, for the 1 h case, we compared the residuals obtained
from the four-region multiple regression model (Figure 6.10a) in the areas identified
by GC4 with the residuals of the GC4 regression model by selecting: (1) the GC4
areas that were statistically significant (Figure 6.10b) and (2) the entire nation (Figure
6.10c). The mean rainfall depths were considered over nonstatistically significant
areas (i.e., the gray zones visible in Figure 6.10b). The GC4 regression models were
statistically significant for h1 for 45% of the Italian area, for a total of 31 different
zones, while the GC4 model for h24 were statistically significant in 49% of the area,
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Table 6.5 Error statistics for the 1 and 24 h intervals at a national scale. Average spatial
values are used for the gray areas in Figure 6.6d. The bias of the national simple regression
is different from zero, being evaluated as biasd = 1

n ·∑havg(d)− â ·dn̂. Source: Mazzoglio
et al. (2022a).

Regression model
Bias MAE RMSE NSE
(mm) (mm) (mm) (-)

1 h National simple regression 1.07 5.29 6.98 0.10
1 h National multiple regression 0 3.83 4.98 0.54
1 h Four-region multiple regression 0 3.65 4.77 0.58
1 h GC4 regression 0 3.87 5.12 0.52
24 h National simple regression 6.05 22.27 31.99 0.03
24 h National multiple regression 0 13.14 18.43 0.68
24 h Four-region multiple regression 0 11.71 16.53 0.74
24 h GC4 regression 0 14.36 20.73 0.60

for a total of 47 different zones. From a comparison of the maps in Figure 6.10, it is
possible to note that the multiple regression model has a spatially nonuniform bias
while the average bias obtained from the individual models in the zones selected by
GC4 is zero all over Italy. Maps of all the other statistics are reported in Figure 6.8.
This outcome is also evident for the 24 h case (see, for example, the maps of the bias,
that is Figure 6.9a–e).

Fig. 6.10 The 1 h case. Local bias for the four-region multiple regression model (a), the GC4
simple linear regression model over statistically significant areas (b) and the GC4 simple
linear regression model over all the areas (c). Modified figure from Mazzoglio et al. (2022a).

An additional comparison was undertaken to investigate the local bias. In this
case, the bias was computed for each GC4 zone. The bias values obtained using
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the four conditions were compared in the cases of: (1) the national-scale simple
regression model (Equations 6.3 and 6.5), (2) the national-scale multiple linear
regression model (Equations 6.11 and 6.14), (3) the four-region multiple regression
model (Equations B.3, B.6, B.9, B.12, B.15, B.18, B.21 and B.24, in Appendix B)
and (4) the GC4 simple regression model (Section 6.5).

The results are illustrated in the maps of Figure 6.11, which show the best
regression model for each area in different colors. Figure 6.11a and b are related
to h1, while Figure 6.11c and d refer to h24; Figure 6.11a and c only highlight the
situations where significant regressions were found. The results in Figure 6.11b
and d include the bias calculated in nonstatistically significant areas with respect
to the spatial average of the rainfall depths. The good results obtained in the areas
where the spatial mean values are adopted can be seen by comparing the borders
of the GC4 areas with the clusters of the residuals of the multiple regression model
(see Figure 6.5). A dedicated multiple regression model was built for the island of
Sardinia: nevertheless, the bias all over the GC4 zones is smaller when the local
spatial average is used. A good correspondence between the residual clusters and
the GC4 borders is evident.

Fig. 6.11 Absolute bias assessment for all the regression models used for the 1 h case (a, b)
and 24 h case (c, d). The color refers to the model that provides the lowest absolute value
of the bias. The GC4 model bias in cases (a) and (c) was only evaluated for statistically
significant areas, while it was evaluated over every area in (b) and (d) Modified figure from
Mazzoglio et al. (2022a).

From Figure 6.11, it is possible to conclude that the morphological subdivisions
allow building a set of simple linear regression models that can perform better almost
everywhere than the other wide-area models in terms of local bias. However, finer
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analysis could be performed to further investigate the spatial variability of rainfall
extremes and how they are influenced by elevation.

6.7 From a Zonal to a Local Approach: The Geore-
gression Approach

Among the methods listed in Section 6.1, univariate and multivariate linear regression
models have the advantage of producing results that are statistically stable with
respect to small errors in the observations; they also explain a large portion of the
rainfall variability (Daly (2006)). Nevertheless, when applied to large areas with
complex terrain features, the use of a unique regression model can lead to evident
clustering of the residuals. This is why simple or multiple linear regressions usually
provide better results if applied over small regions, as pointed out in Daly (2006))
and in the previous sections (see also Mazzoglio et al. (2022a)).

Geographically-weighted regression techniques have been developed to deal with
local relationships between rainfall and geography. For instance, in the first version of
PRISM, i.e. the Parameter-elevation Regressions on Independent Slopes Model (Daly
et al. (1994)), the precipitation-elevation relationship is investigated with reference to
any individual grid cell. The approach uses a local regression model that selects rain
gauges located within a specific radius on topographic facets having an orientation
similar to the one of the estimation cell. An improved version of PRISM (Daly
et al. (2002)) uses a complex geographically-weighted regression model based on
weighting functions that account, for every station, for the effects of elevation, terrain
orientation, coastal proximity and a two-layer atmosphere introduced to handle non-
monotonic variations with the elevation (Daly et al. (2002); Daly (2006)). In both the
PRISM versions, the optimal search radius is identified through cross-validation and
ranges from 30 to 100 km, in an attempt to adapt to the station density. Other works
(Brunsdon et al. (2001); Fotheringham et al. (2003)) implemented a geographically-
weighted regression with fixed or adaptive spatial kernels (using a Gaussian or
exponential decay function). These latter approaches avoid the a priori selection of
the radius used to select the points in the analysis of the spatially varying precipitation
vs elevation relationships. A mixed approach is used in the Daymet model (Thornton
et al. (1997); Thornton et al. (2021)): a Gaussian spatial kernel is applied only
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to stations located within a specific search radius defined using a data density
evaluation algorithm (a truncated Gaussian spatial kernel is the model used). In all
these applications, each rain gauge included in the regression function is weighted
by its distance from the grid cell where rainfall is to be estimated. This approach
makes data measured far from the target cell irrelevant. It is interesting to note that
all the above models consider only linear precipitation-elevation relationships.

Due to the lack of a complete national rainfall database, until recently, analyses
based on geo-regression models were not extensively conducted over Italy. The only
study available for the entire country (Crespi et al. (2018)) considers monthly and
annual precipitations. Some studies are available for selected regions of Italy: Di
Piazza et al. (2011) focused on monthly rainfall in Sicily, Golzio et al. (2018) and
Crespi et al. (2021) analyzed monthly rainfall in the Central Alps region, while Frei
and Schär (1998) and Isotta et al. (2014) addressed daily rainfall in Northern Italy.
None of them, whatever the spatial coverage, has considered the rainfall extremes of
sub-daily durations.

In addressing the goal of accurately reconstructing sub-daily extreme rainfall
indices at a national scale, we can take advantage of a complete database of sub-daily
annual maximum rainfall depths (Mazzoglio et al. (2020)). Within the framework
of the spatial analysis of rainfall extremes, and based on the above considerations,
the aims of this research are to: i) investigate the relationships between orography
and sub-daily precipitation extremes in Italy and ii) build maps of sub-daily average
rainfall extremes, that can be used for describing the spatial variability of the extremes
over Italy. The approach undertaken is based on an improved local regression
approach, that is able to preserve local features and to prevent the spatial clustering
of the residuals.

The main novelties introduced in this work are: i) a definition of the optimal
search radius on the basis of the station density (this is something that has been
already attempted in Daymet (Thornton et al. (2021)) using a georegression model
that includes a truncated Gaussian kernel and that is further expanded here; ii)
a methodology that, contrary to PRISM, allows also negative rainfall-elevation
relationships, following recent investigations conducted by Allamano et al. (2009),
Avanzi et al. (2015) and Mazzoglio et al. (2022a) to investigate the presence of
negative orographic gradients for shorter durations; iii) the inclusion of constraints
regarding the minimum elevation difference among the rain gauges pooled to form
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the local sample and the maximum extrapolation allowed. This latter point allowed
us to solve some well-known problems remarked in Daymet, such as the possibility
of having negative estimated values (previously solved by forcing them to zero) or
estimated values that are more than two time higher than the measured ones.

6.8 The Local Regression Approach: Methods

The nature of the approach proposed involve a strict relationship between data and
methods. The reason is that the selection of the sample to be subjected to local
regression is based itself on the quality of the results of the regression applied. In
this section, the interactions between the two components is preliminary exposed.

6.8.1 Data catalog

As performed in the first sections of this chapter, in this study only time series with
at least 10 years of data (from more than 3800 stations) are used. At-site average
rainfall extremes for the 5 durations are computed and constitute our sample.

Elevation data of the rain gauges and of the surrounding terrain come from
the Shuttle Radar Topography Mission (STRM) Digital Elevation Model (DEM)
at 30 m resolution (Farr et al. (2007)) resampled at 1-km resolution using a cubic
interpolation, as in Daymet (Thornton et al. (2021)). The elevation of the rain gauges
was derived from the resampled DEM using the station coordinates, following the
approach suggested in PRISM (Daly et al. (1994); Daly et al. (2002)) and also
adopted in Daymet (Thornton et al. (1997); Thornton et al. (2021)). This step is
not trivial and has methodological implications. In fact, the authors involved in the
development of PRISM pointed out that the relationship between precipitation and
elevation is more representative if local elevations are derived from a low-resolution
DEM, that is able to describe better the scale of orographic processes and to filter
out local elevation details.

More details will be provided in the application section, where the regression
models are applied to each cell of the resampled DEM.
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6.8.2 Linear Regression Model

To examine the relations between sub-daily rainfall depths and orography, local
linear regression models have been built. The linear regression model that we use is

hd = a+b · z+ ε (6.17)

where hd is the mean rainfall extreme of an assigned duration d (with d = 1, 3, 6, 12
and 24 hours in our case), a is the intercept, b is the slope (that represents the rainfall
gradient), z is the elevation and ε is the residual of the regression.

As mentioned in Section 6.7, approaches that use a unique linear regression
model applied over vast areas are known to produce high residuals and high bias (see
also Brunsdon et al. (2001) and the first sections of this chapter). For this reason,
the parameters a and b are allowed to be space-dependent, i.e. Eq. 6.17 assumes the
form

hd(x,y) = a(x,y)+b(x,y) · z(x,y)+ ε(x,y) (6.18)

where hd , a, b, z and ε have the same meaning as in Eq. 6.17 but are related to a
generic position with coordinates (x,y).

Similarly to the Daymet model (Thornton et al. (1997)), we consider linear
rainfall-elevation relationships by using slope coefficients b(x,y) dependent only on
the planimetric coordinates. In most applications of the PRISM model, the minimum
allowable slope coefficient b(x,y) is set to zero, because Daly et al. (2002) argue
that the rainfall depth can only increase with elevation. Considering that previous
works conducted over Italy suggest that a reduction of rainfall depth with elevation
is possible (e.g. Allamano et al. (2009), Avanzi et al. (2015), Libertino et al. (2018a),
Formetta et al. (2022), Mazzoglio et al. (2022a)), in our work we do not disregard
negative values obtained for the b(x,y) parameter. Nevertheless, values of the b(x,y)
parameter need to be in a reasonable range, as will be explained in Section 6.9.3.

6.8.3 Local Sample Identification

To estimate the parameters of the local regression (Eq. 6.18) in every (x, y) position,
a "local" reference sample must be identified with a number n of station included
in an area adequate for a regression. Similarly to Daly et al. (2002), we proceed by
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selecting n stations available in a circular area of radius r, whose center coincides
with the centroid of the grid cell to which the regression is referred. The length of
the radius and the minimum number of stations required for reaching a reasonable
local estimate are parameters that have to be conveniently tuned.

If r is small, a low number of rain gauges would be selected (in some cases, the
low data density can imply that no rain gauge can be selected). If r is large, the
relationship ceases to be "local", and model performance can degrade. The definition
of the number of stations necessary for the regression is strongly driven by the station
density and its uniformity on the territory, being desirable that the regression model
is applicable on a high percentage of the territory. To provide a baseline, we started
to use local samples gathered in circles of varying radii, to perform a rain gauge
density analysis. The search of the modal value of stations available in circles of
different radius can be a first approach for defining n. As a reference, when the
PRISM model considers all the stations (independently on the orientation of the
topographic facet on which these stations are installed), the authors account for the
availability of 10 to 30 stations within a radius of 30 to 100 km (Daly et al. (2002)).

To define the most appropriate radius of the area needed for selecting the local
sample, in this work two approaches have been adopted:

• to use a unique, fixed radius r = r f ix;

• to use a radius interval, variable from rmin to rmax, that depends on data density.

In the first approach the regression parameters were evaluated using the data
of rain gauges that are located inside a circular area of radius r = r f ix, whatever
the statistical significance of the regression model. This approach is similar to the
one used in the PRISM and in Daymet models. In the second approach, the radius
increases from rmin to rmax in each cell, until a statistically-significant regression
model is found (p-value < 0.05). The rmax is set to avoid regression models that
gather data from areas that are too large. If, when reaching rmax, the model pools
together at least n rain gauges, but the regression is not statistically significant, two
alternatives can be considered: a) the model is applied without considering the p-
value threshold; and b) the predicted value is set to the mean rainfall value evaluated
using the n nearest stations. If n stations are not present even within a circle of radius
rmax, the model is applied to the n nearest stations, regardless of their position.
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It is worthwhile to observe that the evaluation of the mean rainfall depth, using
the mean values of the n nearest stations, can be applied all over the territory. This
approach, despite its simplicity, especially for areas with complex morphology,
has the advantage of being very simple and can provide a valid starting point for
additional comparisons with most complex methods. Notice that all the previously
referenced works do not provide this comparison.

6.8.4 Artifacts and Model Corrections in High/Low Elevations

Application of systematic criteria for the selection of both the local sample and of
the reference radius can involve the presence of artifacts in the final results. The
analyses carried out in this research have shown that artifacts are mainly due to two
causes: i) a non-consistent rainfall gradient; and ii) a level of extrapolation leading
to unreasonable results.

As it concerns the first issue, an insufficient elevation range in the data sample
was the reason for obtaining anomalously high (positive and negative) rainfall local
gradient. To prevent the occurrence of this effect, we envisage to impose a minimum
elevation range ∆z (i.e. the difference between the highest and the lowest rain gauge)
necessary to undertake the statistical estimation of the rainfall gradient.

Daly et al. (2002) addressed the same problem. In PRISM, the minimum valid
rainfall gradient is set after normalization by the mean annual precipitation, and it
is equal to 0 km-1 (it can be -0.5 km-1 only at high elevations) while a maximum
slope of 3 km-1 is allowed. In the Italian context, characterized by a mean annual
precipitation of about 1000 mm, applying a 3 km-1 threshold (i.e. a 3 mm/m value)
would remove only a few of the outliers, appearing as too low for the 24 h maxima.
Moreover, we could not find a physical explanation for excluding over-threshold
gradient values. Using a selection criterion based on a minimum elevation range
revealed indeed to be both efficient and straightforward to apply.

Considering the extrapolation aspects, it is well known that regression models
applied in data scarce regions with a complex rainfall-elevation relationship can
produce unrealistic results (Brunsdon et al. (2001); Crespi et al. (2018)). In Crespi
et al. (2018) no constraint is assigned to grid cells with elevation higher than those of
the rain gauges used in the local sample. Also in the first version of PRISM model
(Daly et al. (1994)) extrapolation is allowed almost without constraints; nevertheless,
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if the stations of the local sample have a lower elevation compared to the grid cell
for which the estimation is performed, and the elevation range covered by the station
elevation is small (less than 1000 m), a different slope coefficient is used in the
precipitation-elevation function above the elevation of the highest station. In an
improved version of PRISM (Daly et al. (2002)) the extrapolation is differently
handled: the atmosphere is divided into two layers, and thus a different weight is
assigned to each rain gauge depending on its elevation.

To decide how to handle the extrapolation in our work, we identified the situations
in which extrapolation leads to inconsistent results. A model correction appears
to be necessary both in mountainous and in very flat regions. Inconsistencies due
to extrapolation can be encountered over the peaks or in narrow valleys, when all
the rain gauges are located over the mountain sides. In this case, the local sample
includes only rain gauges installed at location higher than the selected one. Another
inconsistency can be encountered in grid cells of a plain area when the local sample
of the model includes stations located over an isolated small hill. To face similar
situations, different approaches have been tested, looking for more robust estimates
at ungauged grid cells. Three alternative constraints are finally considered in the
regression models:

• extrapolation is never allowed: in grid cells with an elevation z∗ that is
higher/lower than those of all the data of the local sample, the regression
model is not applied and the predicted value is set as the value obtained by
the model in correspondence of the elevation of the highest/lowest rain gauge
used (see the ordinate hd(z∗), i.e. the dashed line in Figure 6.12a);

• extrapolation is allowed to a limited extension, while elsewhere the regression
limit value are used: in grid cells with an elevation z∗ that is emax higher/lower
than those of the data of the local sample, the model is not applied and the
predicted value is set as the value obtained by the model at an elevation that is
emax higher/lower than those of the highest/lowest rain gauge of the sample
(see hd(z∗), i.e. the dash-dot line in Figure 6.12b);

• extrapolation is allowed to a limited extension, while elsewhere the mean value
is used: in grid cells with an elevation z∗ that is higher/lower than those of the
data of the local sample by an amount emax, the model is not evaluated and the
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predicted value is computed using the 5 nearest stations (see hd(z∗), i.e. the
dash-dot line in Figure 6.12c).

Fig. 6.12 Visual representation of the three approaches used to handle the extrapolation effect
described in Section 6.8.4 for the estimation of the mean precipitation p at the elevation h∗.
The black line represents the fit of the local sample; the vertical grey bars in case (b) and (c)
represent the case of extrapolation emax = 100 m allowed.

To summarize, in the last two cases (Figures 6.12b and 6.12c) an extrapolation is
allowed up to a level emax, while in the first one (Figure 6.12a) no extrapolation is
allowed. In the third case (Figures 6.12c) marked discontinuities can appear when
applying the constraint over a group of pixels, while in the first two cases (Figures
6.12a and 6.12b) discontinuities are not present. In all cases, extrapolation is not
allowed when the elevation of the estimation cell is emax higher than those of the rain
gauges of the local sample.

In the subsequent sections, we present the results obtained applying the different
alternative constraints mentioned above. The final value for emax is also defined after
proper testing.

6.9 The Local Regression Approach: Application

According to what defined above, we approach to the analysis of the spatial vari-
ability of precipitation extremes in Italy through a local regression framework. The
definition of the model configuration passes through the setting of the model config-
uration parameters introduced in Section 6.8. In this section, the parameter values
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are estimated for the Italian territory and a list of plausible model configurations is
obtained.

6.9.1 Definition of the Local Sample

Italy has a ≈ 300,000 km2 wide territory having marked mountainous characteristics
(Figure 6.13a), that undermine the possibility of having a uniform rain gauge den-
sity. Even though an unprecedent rainfall data coverage is now available with the
Improved Italian – Rainfall Extreme Dataset (Mazzoglio et al. (2020)), the search
for algorithms that predict extreme rainfall indices based on local data will face a
marked spatial data heterogeneity in station density, with changes up to half an order
of magnitude in different areas of the country.

Fig. 6.13 Elevation data (a) and number of rain gauges available for each cell within a 15 km
radius (b). Source: Shuttle Radar Topography Mission (Farr et al. (2007)).

For each grid cell all over Italy we evaluated the number of rain gauges (with
a time series of at least 10 years of data) available within circles with radius of 10,
15, 20 and 25 km. The results are shown in Table 6.6 in terms of the mean, median,
modal and standard deviation values found.
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Table 6.6 Mean, median, modal and standard deviation values of the rain gauges falling in
circles of variable radius.

Radius (km) Mean (n°) Median (n°) Mode (n°) Standard deviation (n°)

10 3.9 3 2 2.7
15 8.2 7 5 5.2
20 14.3 13 7 8.4
25 21.8 19 14 12.2

The values shown in Table 6.6 are useful both to understand what could be a
reasonable minimum local sample size n and to the selection of r. We then evaluated
that a local sample of 5 stations within a 15 km radius can provide a reference set
similar to the one used in PRISM (1 station every 3 km of radius in average).

More specifically, using a fixed 15-km radius a local sample of at least 5 rain
gauges is obtained in over 227,150 grid cells (Figure 6.13b), leading to an equal
minimum density in about 75% of Italy. As we do not consider reliable a regression
fitted using a local sample with less than 5 values, for the remaining 25% of the
cells over Italy we computed the mean rainfall depth using the 5 nearest stations,
independently on their distance from the reference cell. It is interesting to note
that the spatial coverage of this 25% of under-threshold density cells (that can be
recognized as the yellow areas of Figure 6.13b) is quite coherent, i.e. cells are
spatially connected. These areas often coincide with flat regions, where we expect
a limited influence of the orographic effect. We decided not to reduce the radius
because, if we consider as an example the case of 10 km, only 93,735 grid cells (≈
31% of the Italian territory) can secure a local sample of at least 5 rain gauges.

Based on the results of Table 6.6, we considered model configurations with a
fixed radius whose length is equal or greater than 15 km (r f ix = 15, 20 and 25 km),
within which the criterion of pooling a minimum number of 5 stations was always
kept valid.

For the variable radius approach, as described in Section 6.83, the radius length
was allowed to vary between rmin = 1 km and rmax = 15 km to have a local regression.
Some tests were performed using also larger rmax (up to 50 km) but we observed a
marked decrease of the model performance, in terms of error statistics and residuals
of the regressions, as the radius increases beyond 15 km. A quantitative estimation
of the degradation of model performance is reported in Section 6.10.
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6.9.2 Locally-averaged Rainfall Maps

As mentioned in Section 6.8.3, the estimation of the mean rainfall extremes using the
average values of the n nearest stations can represent a strong reference for additional
comparisons with all the other attempts based on more complex georegression
models. In this case, no specific radius is used to put together a local sample whose
spatial extension depends on the data density. This approach represents a step
forward compared to the approach used in Section 6.2 to 6.6, where geographical
and geomorphological classifications were used to pool the data before fitting the
model.

Figure 6.14a shows the mean 1 h rainfall depth computed on the basis of the n
= 5 nearest stations: it can be seen that this approach does not allow to model the
orographic gradients (i.e., some of the spatial patterns that follow the orography
are missing) and several artifacts are clearly visible. Moreover, Figure 6.14b shows
clusters of high residuals in correspondence of orographically complex areas as the
Prealps.

Figure 6.14c shows the comparison of the box plot of measured average values
of the ≈ 3,800 time series with the reconstructed values of ≈ 300,000 pixels and
confirms that a simple spatial averaging smooths the extremes: while the highest
measured rainfall mean in 1 hour is 64 mm, the highest estimated value is 54 mm.
The analysis of the spatial distribution of the extreme values shows a concentra-
tion of high values in Liguria, North of Piedmont and Friuli Venezia Giulia. The
reconstructed map, instead, shows a cluster of values > 50 mm only in Liguria, that
incidentally shows a high density of rain gauges. In all the other regions, the rain
gauges characterized by high values are sparse, and this probably justifies that the
reconstructed extremes are smoothed.

The results of Figure 6.14a suggests that, where possible, it is advisable to
consider the links between rainfall and elevation with a georegression approach,
using the bare local sample average as a baseline and as a surrogate of more accurate
estimations when regressions are not possible.
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Fig. 6.14 Mean 1 h rainfall depth computed on the basis of the 5 nearest stations (a). Residuals
of the 1 h model, with an indication of the elevation (b). Box plots of measured and estimated
mean of 1 h values (c).

6.9.3 Effects of the Elevation Range in the Local Samples

To undertake the role of the elevation range of the sample we performed an analysis
using the variable radius approach, without losing generality. For the analysis of
this detail, moving from the results of Section 6.9.1, we referred to rmin = 15 km
and rmax = 50 km and a minimum local sample size n = 5 to apply local regressions.
We computed the precipitation gradient over elevation where possible, i.e. in the
75% of the Italian area and we checked the statistical significance and the spatial
variability of the slope estimates. In terms of slope values, we noticed the presence
of some consistent outliers in the box plots (see Figure 6.15). These very high
values were mainly clustered in the flat areas, pointing to a data anomaly effect: we
realized that an insufficient elevation range - ∆z - in the data sample was the reason
of obtaining anomalously high (positive and negative) rainfall local gradient. Based
on the experience gained in Sections 6.2 to 6.6 and after some exploratory tests, we
set the minimum ∆z value to 100 m. Application of this constraint allowed us to
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remove a considerable number of outliers, as shown in Figure 6.15 (lower row of
each subplot).

Fig. 6.15 Visual representation through box plots of the slope coefficients obtained with a
regression model based on r = 15 to 50 km and ∆h = 0 or 100 m in the case of 1 (a) and 24 h
durations (b).

To support the assessment of the efficiency of the threshold criterion (∆z = 100
m), we tested its application comparing maps of estimated average rainfall extremes
obtained without any constraint, to those built with the minimum range threshold
∆z. Considering the average rainfall extremes in 24 hours, the maps in Figure 6.16
show that, when assuming no threshold, several artifacts appear (see e.g. the dark
triangle in the left part of Figure 6.16c). For reference, elevation data are visible in
Figure 6.16a. In that area, slopes are obtained by applying the local regression to
rain gauges presenting very similar elevations (say, with a 5-10 m elevation range
only). Incidentally, the mean rainfall depth presented moderate local variability (e.g.,
a 10 mm rainfall range). Applying, instead, the technique using the ∆z = 100 m
range threshold, we obtained more than reasonable improvements (Figures 6.16d
and 6.16e) with removal of almost all artefacts. To verify the impact of using ∆z =
100 m, among the proposed model configurations both cases with ∆z = 100 m and
∆z = 0 m are considered.
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Fig. 6.16 Elevation map with the indication of the area investigated (a). 24 h mean rainfall
depth estimated using radii variable from 15 to 50 km (simulation with an extrapolation of
100 m allowed and with mean rainfall depth evaluated using the 5 nearest rain gauges in
uncovered cells) in the case of ∆z = 0 m (c) and ∆z = 100 m (e) and related slope coefficients
(b and d). Red circles in (c) serve to highlight artifacts. Grey color defines areas where the
local regression approach is not applicable e.g., due to the impossibility of pooling at least 5
rain gauges or to the lack of significance of the regression model.

6.9.4 Correction of Regression Application in Extrapolation

Preliminary tests made on selected mountain areas showed the importance of consid-
ering constraints in applying the regression equation well beyond the elevation ranges
of the local sample, as pointed out in Section 6.8.4. Extrapolation showed to produce
even negative values of rainfall estimates in areas with complex topography. After a
preliminary sensitivity analysis that proved that higher values degraded the model
performances, the threshold value of emax = 100 m was selected for the alternative
constraints outlined in Section 6.8.4.

To exemplify, we have reported in Figure 6.17 the estimated values of 24 h mean
rainfall extremes in two mountainous areas of Italy: in Friuli Venezia Giulia (Figures
6.17a, 6.17c and 6.17e) and in Sicily, near the Etna volcano (Figures 6.17b, 6.17d
and 6.17f). In Figures 6.17e and 6.17f the estimates are obtained by selecting a
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maximum 100 m of extrapolation allowed. Figures 6.17c and 6.17d show the results
obtained with the extrapolation allowed without limitations. Some cells with negative
estimates appear in this latter case (the grid cells are highlighted in red in Figures
6.17c and 6.17d). The results in Figures 6.17e and 6.17f, obtained after correction,
confirm that the extrapolation problem must be carefully handled. As mentioned in
Section 6.8.4, we considered different limiting cases to tackle the problem. All three
approaches to managing extrapolation presented in Section 6.8.4 are present in the
model configurations examined to assess their impact.

Fig. 6.17 Elevation data for Friuli Venezia Giulia (a) and Sicily (b). In (c, d) extrapolation is
allowed without limits and red areas represent cells with negative estimated rainfall. In (e, f)
extrapolation is limited to 100 m.

6.9.5 The Selected Model Configurations

As mentioned before, the geo-regression approach presented in this chapter, even
if simple, involves the selection of different parameters, namely the number of
rain gauges that forms the local sample n, the elevation difference among the rain
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Table 6.7 Most relevant model configurations. Case 0 represents the case with mean values
reconstructed using the 5 nearest stations, while all the other tests were performed using
georegression models. The last column refers to the configuration described in Section 6.8.4:
in configuration "a" extrapolation is not allowed while in "b" and "c" the extrapolation is
allowed up to emax (for the grid cells that would require extrapolation higher than emax, in
configuration "b" the predicted value is set equal to the value obtained by the model at an
elevation that is emax higher/lower than those of the highest/lowest rain gauge of the sample,
while in configuration "c" the predicted value is computed using the 5 nearest stations).

Case n ∆z Radius r f ix rmin rmax emax Extrapolation
(-) (m) configuration (km) (km) (km) (m) configuration

0 5 0 Variable - - - - -
1 5 100 Variable (V1) - 1 15 0 a
2 5 100 Variable (V1) - 1 15 0 c
3 5 100 Variable (V2) - 15 50 100 c
4 5 100 Fixed 15 - - 100 b
5 5 100 Fixed 15 - - 100 c
6 5 100 Fixed 20 - - 100 c
7 5 100 Fixed 25 - - 100 c

gauges of the local sample ∆z, the area of support (r f ix, rmin, rmax) and the maximum
extrapolation allowed emax. On the basis of the analysis carried out in Section 6.9.1
to Section 6.9.4, meaningful combinations of the different parameters were applied
and several techniques were jointly used to select the most valuable model. The
most relevant model configurations considered in this study, in the following called
"cases", are listed with their settings in Table 6.7.

As it can be seen, case 0 is the model configuration where the evaluation of the
mean rainfall depth is performed using the mean values of the 5 nearest stations all
over the territory. Cases 1, 2 and 3 consider the variable radius approach, but with a
difference in the methodological approach if when reaching rmax the model pools
together at least 5 rain gauges and the regression is not statistically significant: case
1 and case 2 applied the model without considering the p-value (Variable (V1)); case
3 used the mean rainfall value evaluated using the 5 nearest stations (Variable (V2)).

Cases 4, 5, 6 and 7 refer to the fixed radius approach, for two different extrapola-
tions configurations and three radii: 15, 20 and 25 km.
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6.10 The Local Regression Approach: Discussion

6.10.1 Residual Analysis and Model Selection

To evaluate the performance of the cases listed in Table 6.7, the residuals were
carefully analyzed. For each case two sets of residuals were analyzed: i) the residuals
obtained from a cross-validation (leave-one-out approach), that is "cross-validation
configuration" and ii) the residuals obtained applying the regression on the whole
data, that is "real model configuration".

As a first step, error statistical indexes were computed for each residual set: bias,
mean absolute error (MAE), root mean square error (RMSE) and Nash-Sutcliffe
model efficiency coefficient (NSE) (Nash and Sutcliffe (1970); Wasserman (2004)).

Results obtained for the 1 h duration are reported in Table 6.8 for the cross-
validation configuration and in Table 6.9 for the real model configuration. Similarly,
for the 24 h duration, the results of the cross-validation configuration are reported
in Table 6.10 while the real model configuration is summarized in Table 6.11. The
results shown in Tables 6.8 to 6.11 do not clearly indicate a model that is able to
outperform all the others. Moreover, 1 and 24 h durations seem to perform differently.
As expected, cases 3, 6 and 7 that consider a large radius do not perform well because
the benefit of working with a local sample is lost. Focusing on short radii (cases 1,
2, 4 and 5), comparable performances of the models emerged. For the 1 h duration,
as an example, the fixed radius case with r f ix = 15 km (case 5) performs slightly
better in cross-validation mode (Table 6.8) but considering the performance of the
real model (Table 6.9), the variable radius approach (cases 1 and 2) proved to be
better, even if the improvement in terms of error statistics is limited.

For an accurate analysis of the residuals, we also analyzed the box plots of the
reconstructed values for both the "real model configuration" and the "cross-validation
configuration" (Figure 6.18), compared with the box plot of measured values. Figure
6.18 shows that models based on variable radii (with an upper threshold of 15 km,
i.e. cases 1 and 2) proved to be able to cover almost the same measurement range
of the measured values. Measured values have higher upper quartile and maximum
whiskers, but the median values remain almost constant.
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Table 6.8 Results of the cross-validation configurations for the 1 h duration. The values
reported in bold represent the three models with better error statistics.

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BIAS -0.110 -0.004 -0.021 -0.011 -0.019 -0.027 -0.019 -0.011
(mm)
MAE 3.135 3.120 3.145 3.342 3.113 3.105 3.136 3.214
(mm)

RMSE 4.151 4.120 4.172 4.429 4.120 4.097 4.151 4.259
(mm)
NSE 0.680 0.685 0.677 0.636 0.685 0.688 0.680 0.663
(-)

NRG 223 222 230 263 221 214 216 234
(-)

Table 6.9 Results of the real model configurations for the 1 h duration. The values reported
in bold represent the three models with better error statistics.

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BIAS -0.073 -0.012 -0.024 -0.031 -0.028 -0.028 -0.026 -0.008
(mm)
MAE 2.510 2.569 2.556 2.945 2.603 2.603 2.779 2.957
(mm)

RMSE 3.351 3.440 3.433 3.961 3.482 3.482 3.705 3.938
(mm)
NSE 0.792 0.780 0.781 0.709 0.775 0.775 0.745 0.712
(-)

NRG 101 118 117 189 122 122 151 184
(-)
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Table 6.10 Results of the cross-validation configurations for the 24 h duration. The values
reported in bold represent the three models with better error statistics.

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BIAS -0.662 -0.144 -0.254 -0.255 -0.135 -0.058 0.099 0.075
(mm)
MAE 10.167 10.379 10.512 11.042 10.450 10.370 10.836 11.464
(mm)

RMSE 14.873 15.403 15.686 16.612 15.562 15.404 16.219 17.213
(mm)
NSE 0.790 0.775 0.767 0.738 0.771 0.775 0.751 0.719
(-)

NRG 207 219 236 275 225 218 250 280
(-)

Table 6.11 Results of the real model configurations for the 24 h duration. The values reported
in bold represent the three models with better error statistics.

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

BIAS -0.475 -0.259 -0.214 -0.372 -0.140 -0.140 -0.012 0.095
(mm)
MAE 8.143 8.472 8.346 9.643 8.684 8.684 9.637 10.607
(mm)

RMSE 12.024 12.759 12.528 14.807 13.103 13.103 14.606 16.078
(mm)
NSE 0.863 0.846 0.851 0.792 0.837 0.837 0.798 0.755
(-)

NRG 116 138 129 193 142 142 192 240
(-)
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Fig. 6.18 Box plots of the real model configurations for the 1 (a) and 24 h (c) durations and
box plots of the cross-validation configurations for the 1 (b) and 24 h (d) durations. The
orange box plots refer to the measured values, while the blue box plots refer to the estimated
value.

Thornton et al. (2021) pointed out that unrealistically high estimated rainfall
values can be obtained using a local-regression approach. In their approach, if the
estimated rainfall depth is more than twice the highest measured rainfall depth,
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this anomalous value is reduced to twice the maximum measured rainfall depth.
By applying constraints on the search radius and on the extrapolation, we never
encountered this problem, independently on the duration that we considered.

A close inspection of the residuals and their spatial aggregation was also per-
formed. The analysis of the spatial distribution of the residuals confirms what was
outlined in Section 6.8.3: for the variable radius configuration, by increasing both
rmin and rmax the benefit of using a local regression approach decreases. Case 3, with
rmin = 15 km and rmax = 50 km, presents larger clusters, and significant residuals with
opposite signs lying at close distances. By comparing the data density map (Figure
6.13) with the maps of the cross-validation residuals (not reported here for brevity)
it emerges that the largest errors are in areas with complex topography. This fact
suggests that, even with a high data density, some local behaviors were not correctly
represented and managed when too large area were considered in the regression
model. The higher spatial homogeneity of residuals in the case of smaller variable
radii or fixed radius suggests that these models should be preferable. As an example,
Figure 6.19 shows the residuals of the 1 h duration model (case 1).

Fig. 6.19 Residuals of case 1, for duration = 1 h. Panel (a) shows the spatial interpolation of
the residuals visible in (b) obtained by applying an ordinary kriging. By comparing (a) and
(b) with Figures 6.3a, 6.5a and 6.5b, the improvements in terms of spatial modelling clearly
emerge when moving from a national/sub-national to a local approach.
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To have a complete picture of the model configurations of Table 6.7, we focused
also on the estimation of the extreme values, following what emerged in Section
6.9.2. As an example, Figure 6.20a shows the location of the rain gauges with
a 1 h mean rainfall depth of at least 50 mm while Figure 6.20(b to e) shows the
location of the estimated values for case 0, case 1, case 2 and case 5. As it can be
seen in Figure 6.20b a simple computation of the mean rainfall depth performed
by using the 5 nearest rain gauges (case 0), even if providing good error metrics,
cannot reconstruct the extremes in the northern part of the area. Conversely, a model
based on a georegression, as cases 1 and 2, provides additional information, even if
the area where we expect to reach high rainfall depths shows some underestimated
values (Figures 6.20c and 6.20d). Model 5, despite good performance, is not able
to reconstruct the extremes and, in addition, it overestimates the extremes in the
North-East of the area (Figure 6.20e).

Fig. 6.20 Spatial distribution of the rain gauges with 1 h mean rainfall depth higher than 50
mm (a). Location of the estimated values higher than 50 mm for case 0 (b), case 1 (c), case 2
(d) and case 5 (e).
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By integrating all the above features, we suggest that the model configuration of
case 1 represents the best compromise and can be taken as the optimal model for all
the durations.

6.10.2 Orographic Gradients and Rainfall Maps

For the best model configuration considered in Section 6.10.1 (case 1), it can be
worth examining the spatial variability of the slope coefficients emerged by the
regression models. These have been mapped in Figure 6.21 and represent an answer
to the scientific question regarding the sign and the stability of the orographic effect
on extreme rainfall.

Fig. 6.21 Slope coefficients of the regression models for the 1 h (a) and 24 h (b) duration in
the case of r = 1 to 15 km.

As introduced in the first part of this chapter, the orographic effect (rainfall
gradient with elevation) appears to vary greatly with the duration of the extreme
rainfall in Italy. In Figure 6.21a we show the gradient for the 1 h duration average
rainfall extremes. The grey color is used for the areas where the regression model
cannot be applied due to low data density or extrapolation constraints. Over most of
the Alps, Liguria region and portions of the Apennines, a general decrease of the 1 h
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mean rainfall depth with increasing elevation emerges (confirming thus the "reverse
orographic effect" mentioned in Allamano et al. (2009), in Avanzi et al. (2015), in
Formetta et al. (2022), and in Mazzoglio et al. (2022a)), while over most of the hills,
pre-hills and flat areas, the mean rainfall depth increases with the elevation.

Figures 6.21b shows the slope coefficients for the 24 h duration, for the same
model configurations. The maps confirm a general increase of the 24 h mean rainfall
depth with increasing elevation over Italy, except for some hill/mountainous areas.

The optimal model configuration, case 1, is used to evaluate the mean rainfall
depth of rainfall extremes over Italy, as reported in Figure 6.22. For short durations
(e.g. for the 1 h interval, depicted in Figure 6.22a) the Northern areas of Aosta Valley
and Bolzano province showed rainfall extremes smaller than in Southern Italy. For
longer durations (e.g., for the 24 h interval, Figure 6.22e), these areas are affected
by a mean rainfall depth comparable with the one recorded in Sicily and Sardinia
Islands, in the Po Valley and in the Southern Apennines. The wetter areas are located
in Friuli Venezia Giulia, in Liguria, in the northern areas of Piedmont and in Calabria.
It is interesting to notice that the 1 and 24 h durations have different characteristics:
as the duration increases, the highest values appears to be clustered in space and
focused over limited areas.
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Fig. 6.22 Mean rainfall depth for 1 (a), 3 (b), 6 (c), 12 (d) and 24 (e) h intervals and related
box plots.

6.11 Conclusions

In this chapter, the role of orography and morphology in short-duration annual
maximum rainfall depths have been analyzed, taking advantage of a new and com-
prehensive database for Italy, I2-RED (Mazzoglio et al. (2020)). The approach finds
its relevance in the first use of the most complete and updated data collection of
short-duration annual maxima available for the whole Italian territory. With respect
to the previous knowledge on the topic, the analyses allowed us to better understand,
confirm and extend previous results from the literature.
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The results described here show that a national-scale simple regression model
of precipitation vs elevation presents some weaknesses (high residual values, high
local- and national-scale bias, and low NSE coefficient, etc.) and therefore needs to
be improved.

The use of multiple regression models introduces some benefits, such as a
reduction of MAE and RMSE at the national scale; nevertheless they were not
successful in reducing the local bias.

Considering the necessity of working on smaller domains, several geomorpho-
logical classifications which are able to preserve the intrinsic value of the statistically
significant landscape variables that emerge in regression models were analyzed. Four
different geomorphological classifications available in literature were used to provide
criteria for the identification of homogeneous zones. Simple linear regression models
were applied over these homogeneous domains and the performances were compared
at both a national and a zonal level. Among all the considered classifications, the
selection of rain gauges for the model application was found to be more effective in
the case of GC4 (Alvioli et al. (2020)), which embeds hydrographic information.

The best approach was selected by evaluating the error statistics for the bias at
both a national and a zonal scale and at a national scale for MAE, RMSE and NSE.
The obtained results have shown that using simple linear regression applied to the
GC4 model produces better results than all the others, in the zones in which the GC4
model is statistically significant, in terms of bias. As far as national statistics are
concerned, considering the mean rainfall depths in the gray zones in Figure 6.10b
does not significantly affect the performance of GC4, in terms of MAE, RMSE and
NSE, in particular for the 1 h duration. In short, it was propose using the GC4 model
where possible and adopting the (spatial) mean value of the rainfall depths in case of
a nonstatistically significant relationship.

The first part of this work has led to the following conclusions. The relationship
between precipitation and elevation is not meaningful in all the areas in Italy, as
already pointed out by Caracciolo et al. (2012) for the island of Sicily. In this chapter,
this concept has systematically been extended to the whole country, and significant
relationships have only been obtained for 45% of the area for h1 and 49% for h24. As
far as the model that we suggest using is concerned, that is GC4, we are aware that
improvements are possible, considering that no significant regressions were found
over 55% (h1) and 51% (h24) of the territory. However, it should be pointed out that
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the rainfall station density is not sufficient for the application of the method proposed
here over 9% of the territory.

Then, a local approach was used. The proposed method optimizes the selection
of the local sample based on the station density and allows to highlight the presence
of several areas with negative orographic gradients in Italy. Moreover, the results
show that a simple local regression approach that considers the elevation can be
successfully applied to the mean values of the short-duration annual maximum rain-
fall depths. Different radii were used to select the local sample to be used in the
regression model. Both the case of variable and fixed radius was considered. The op-
timal model configuration was selected by analyzing the regression residuals through
cross-validations, visual inspection of their spatial distributions, and comparative
analysis of their box plots. With regard to Italy, the results presented in Section
6.10 suggest that the estimation of the mean rainfall depth using a local regression
calibrated for a limited spatial extent (circle with radius of 15 km at maximum)
represents the best solution that preserves the local feature of the regressions and
takes into account the different data densities over the entire country.

In the development of the regression model particular attention was paid to the
presence of artifacts due mainly to a non-consistent rainfall gradient or to extrapo-
lation issues. This work showed that the extrapolation must be carefully handled
to avoid artifacts and, most importantly, negative values of the estimated mean
rainfall depths. The presence of estimated rainfall depth with negative values is a
widely-known problem. In the Daymet model (Thornton et al. (2021)) cell with
negative values are truncated to zero. In our work, we preferred to investigate the
causes that lead to anomalous values, being a null mean rainfall depth an unsuitable
solution when dealing with annual maxima. In this work, negative gradients are
not considered errors and are not equaled to zero, but their values are effectively
controlled through appropriate constraints on data elevation range. By using a simple
but effective constraint, we were able to mitigate extrapolation problems. This
approach represents a step forward compared to previous studies on this topic, where
these drawbacks are highlighted but no solutions are suggested. The results obtained
with the cross-validation suggest that the extrapolation must not be allowed.

The maps and the methodological results presented in this work, regarding also
orographic gradients, will help to investigate the different morphological/climatological
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characteristics that lead to such variations and will support frequency analyses di-
rected to estimate high return period rainfall quantiles.



Chapter 7

Geographically-based Analysis of
Rainfall Quantiles

The work described in this chapter has been partially derived from Claps et al.
(2022b), Mazzoglio et al. (2022b) and Mazzoglio et al. (2022d). Part of the results
contained in this chapter will be submitted to a scientific journal in the upcoming
months.

7.1 Background

As mentioned in Chapter 2, regionless methods based on interpolation and geosta-
tistical techniques have recently been widely used to improve the rainfall regional
frequency analysis. The main advantages come from the possibility of collecting
information displaced over the entire region without the need to delineate regions
and, thus, overcoming possible inconsistencies in areas located near the borders of
each region. Moreover, geostatistical techniques allow the reconstruction of spatial
information. This interesting feature solves the widely-known problems induced by
missing data, fragmentation of the time series, non-uniform densities, and station
relocation (Libertino et al. (2018b); Mazzoglio et al. (2020)).

Two different approaches can be used to overcome the data fragmentation prob-
lem: (a) a precautionary approach based on the exclusion of all the time series shorter
than a specific length (usually 30 years) to obtain at-site parameters that will be, in
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a second step, spatially interpolated; and (b) a conservative approach that tries to
extract all the available information, even those included in short and fragmented
time series. The first approach, even if it allows a more robust parameter estimation,
can ignore important information hidden in short series and, thus, can lead to under-
estimating the risk associated with extreme events (mainly when long return periods
are investigated) and must be appropriately managed. Instead, the second approach
requires robust assumptions in the spatial model used for the reconstruction to obtain
reliable estimates.

Independently from the approach, moving from a regional to a national appli-
cation requires a step-by-step analysis of all the main drawbacks that could be
encountered during the application. This chapter aims to investigate possible prob-
lems that may arise when increasing the area of interest, trying to solve them with
the results obtained in the previous parts of this dissertation.

In this chapter, the focus is the patched kriging methodology, a regional frequency
analysis approach developed to bypass some of these shortcomings, originally ap-
plied over Piedmont region (Claps et al. (2015); Libertino (2017); Libertino et al.
(2018a)). The methodology will be briefly described here, but the reader is referred
to Claps et al. (2015), Libertino (2017) and Libertino et al. (2018a) for a complete
description of the original method. In the final part of the chapter, a comparison with
the Regional Ombrian Model proposed by Iliopoulou et al. (2022) is performed.

7.2 The Patched Kriging Methodology

The patched kriging technique can be used to deal with a rainfall frequency analysis
of annual maxima. According to the "index flood approach" (see Chapter 2 for
more information), then extended also to rainfall, the rainfall quantile hd,T related to
duration d and return period T can be evaluated by multiplying the index variable
hd (that, in most of the cases, is computed as the mean of the annual maxima of
duration d) with a dimensionless frequency quantile Kd,T also named as “growth
factor” (see Equation 2.1). In that equation, both hd and Kd,T are computed from the
rainfall measurements. The patched kriging has been developed to take advantage
of all he available records for the computation of both hd and Kd,T. It treats the
various duration separately and consists of a year-by-year application of the ordinary
kriging equations to all the available measurements. The application of the ordinary
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kriging requires the verification of the second-order stationarity: this means that the
covariance between two data points depends only on the distance and not on their
location. Thus, the possible presence of trends is investigated. In the first application
over Piedmont, the influence of elevation on rainfall extremes clearly emerged. Thus,
a regional detrending with elevation was performed using the equation

hd = m · ln(z+1)+m0 + εd (7.1)

where m is the slope of the regression model, m0 is the intercept and εd is the residual
of the regression. The logarithm of the elevation z was here considered to limit the
weight of the stations placed at a lower altitude. The model is built by considering
all the measurements performed in all the years (i.e., it is based on the assumption
that the precipitation vs elevation relationship is invariant over time). The trend
significance is evaluated using the Student’s t-test (significance level α = 0.05). The
analysis of the relationship between rainfall depth and elevation also compensates
and recovers the lack of information at the small scale, especially in data-scarce
locations.

The de-trended values are then used to compute yearly variograms, which are
weighted on the number of active rain gauges in each year to obtain a global sample
variogram for each duration. The sample variogram is approximated using a theoreti-
cal variogram (an exponential one, in the case of Piedmont). The ordinary kriging is
applied by using the 10 nearest stations for the estimation in each pixel. The latter
value has been obtained after some preliminary tests and corresponds to the number
that prevents the flattering of the estimates at a value almost equal to the global mean.
Finally, the de-trended component is added.

The result is a "rainfall data cube", with a number of layers equal to the number
of investigated years. Each pixel corresponds to a complete annual maxima time
series of measured and estimated values. The kriging procedure also provides a
"variance data cube", i.e., a pixel-by-pixel measurement of the estimate uncertainty.
By coring the cubes along the time axis is thus possible to obtain n time series (with
n equal to the number of grid cells investigated) with the associated uncertainty. The
workflow described here is summarized in Figure 7.1.
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Fig. 7.1 The first steps of the patched kriging workflow. Source: Claps et al. (2022b).
Copyright holder: Elsevier.

The main advantage of the patched kriging is the possibility of working with all
the annual maxima, independently from the length of the time series they belong
to, avoiding the need to discard the shortest one. The possibility of using all the
available information is an essential requirement when dealing with large return
periods.

The patched kriging technique merges the locally observed and interpolated
values, which can have different statistical distributions. A weighted procedure was
introduced to evaluate the sample L-moments of the reconstructed series to preserve
the statistics of the original time series. This correction uses the kriging variance of
each year to weight each contribution of each annual maxima in the estimation of
the sample L-moments. The correction is based on the assumption that the kriging
variance can be considered a measure of the estimation uncertainty because: (a) it is
higher in cells far from the gauged grid cells, and (b) it increases when the number of
data around the grid cell decreases. Thus, higher weights are assigned to measured
values or years with a high number of available data. This correction allows us
to preserve the spatial correlation of higher-order L-moments. More in detail, the
weight

wi =
σ2

max

σ2
i

(7.2)
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is assigned to the i-th value of the time series. In Equation 7.2, σ2
i is the kriging

variance of the series and σ2
max = max(σ2

i ).

When a rain gauge is installed in a previously ungauged grid cell, the kriging
variance is expected to decrease drastically. This variation gives all the previous
kriged values a weight almost equal to zero. Considering that L-moments computed
on short time series are expected to lack reliability, this variation should be avoided
because it would undermine the benefit of the patched kriging (i.e., the reconstruction
of time series based on nearby measurements). Thus, a threshold wmax was set. If
wi > wmax, the value wi = wmax is considered. In the Piedmont case study, a wmax =
10 was defined after a sensitivity analysis aimed at assigning a larger weight to the
measured values without completely discarding the contribution of the reconstructed
values.

As mentioned before, the patched kriging merges observed and interpolated val-
ues, which can have different statistical distributions. This operation can potentially
introduce bias and reduce the variability of the estimates and thus leads to a possible
underestimation of the design rainfall. To correct this behaviour, a bias-correction
procedure is applied to increase the variance of the cored series and to preserve the
statistics of the original time series. The entire procedure is applied separately for
each duration under investigation. This last step completes the process, making this
method a complete RFA approach.

Suppose a situation when a series xi(t) is obtained with the patched kriging. The
series has a temporal average equal to xi and all the xi(t) values are thus underdis-
persed around xi. A simple approach that can be used to avoid underdispersion
consists in inflating the distance from the mean through a multiplicative factor K0 by
using

x̂i(t)− xi = K0 · (xi(t)− xi) (7.3)

with K0 > 1. Unfortunately, Equation 7.3 can produce not acceptable negative
rainfall depths. To avoid this drawback, the logarithm of the variable is introduced in
Equation 7.3, leading to

K =
ln(x̂i(t))− ln(xi)

ln(xi(t))− ln(xi)
(7.4)

The attenuation of the variability is tackled by exploiting the wide availability of
spatial information to develop a correction factor for each cell and each year of the
domain. The spatial variability of the bias proved to be influenced by the distance of
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the target grid cell from the closer gauged grid cells. As the distance between the
target cell and the gauged grid cells decreases, the correction required by the grid
cell becomes less relevant. It was therefore expected to have a correction factor K
that is an increasing function of the distance from the gauged cells, following the
equation

K = f (Ds) (7.5)

where Ds is the distance and f (Ds = 0) = 1.

Due to the high annual variability of the network, which sees considerable varia-
tions in the number of active rain gauges, each grid cell is considered independently
in each year. In addition, all the grid cells with a similar distance to the nearest
gauged grid cells are supposed to have similar behaviour and thus are considered
as belonging to the same sub-sample. The variance of the set of measurements is
considered as the reference value for the calibration of the correction factor. To do
so, several distance classes are computed, and each class’s variance is corrected to
be coherent with the reference value.

From an operational point of view, a Ds value is assigned to each cell for each
year. Ds represents the inverse average distance of the target grid cell from the 10
nearest gauged grid cells and can be evaluated as

Ds =
1

1
10 ·

10
∑
j=1

( 1
δ j
)

(7.6)

with δ j the number of cells that separate the target cell from the j-th closest gauged
cell. In Equation 7.6 an inverse average distance is considered for the attribution
of a Ds value almost equal to zero to the gauged grid cells that do not necessitate
corrections (i.e., grid cells with measured values).

With the aim of estimating the dependence of K on Ds, the average of Equation
7.4 conditioned on Ds is considered. On the right side of Equation 7.4, the numerator
is a variable that does not depend on Ds by definition. The average can therefore be
written as

∆(Ds)

a0
= E

[
1

ln(xi(t))− ln(xi)
|Ds

]
= f (Ds) (7.7)
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For each equally consistent Ds class, the value ∆(Ds) is evaluated, considering
all the grid cells that belong to each class. The computation is performed for each
year and each duration.

The (∆(Ds),Ds) pairs evaluated for all the years are pooled together to compute
the median value of each Ds class. For each duration, a correction function K(Ds,d)
is computed by interpolation (with a linear equation) of the previously computed
median values with the aim of reducing the ratio between the variance of the mea-
sured data and the estimated ones for each Ds class. The so-computed correction
factor K(Ds,d) increases as the distance from the gauged grid cells increases, and
then loses relevance. The coefficient can be therefore approximated with

K(Ds,d) =
{

1+β (d) ·Ds Ds ≤ l
1+β (d) · l Ds > l

(7.8)

For Ds > l the behaviour appears to be less consistent. In the application over
Piedmont, an l value equal to 25 km was used.

Once the correction factor is applied, each observation ẋi(t) of the i cell for the
generic year t is set using

x̂i(t) = x̄i

(
xi(t)

xi

)K

(7.9)

where x̂i(t) is the corrected value, xi(t) is the original value, xi is the mean of the
cored series and K(Ds,d) is the correction factor. Equation 7.9 is in the form of a
power law in order to avoid the estimation of negative rainfall depths.

The bias-corrected rainfall data cube can now be used to finalize the rainfall
regional frequency analysis. The first step consists of the computation of the IDF
curves. To evaluate the design rainfall for a set of different return periods and
durations, a probability distribution that fits the data has to be identified. In the
application over Piedmont, the L-moment ratio diagram suggested that the Gumbel
is a good candidate for the representation of the extremes at the regional scale, even
if the centroid of the cloud of points appears to be slightly shifted towards larger
τ3 values. Only in the case of series with larger skewness, a GEV distribution was
suggested as the preferred one. Over Piedmont, a clear pattern (and a physical
explanation) of grid cells where the GEV has to be preferred to the Gumbel can
not be identified due to the different weather systems that produce the extremes
(shorter duration annual maxima are usually extracted from convective events, while
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longer durations are typically associated with stratiform events) and by the complex
topography, that can influence the storm generation. In addition, boundary effects in
the Northern part of the region can affect the results obtained at the edges.

7.3 Application of the Patched Kriging Methodology:
Sensitivity Issues Over Piedmont, Aosta Valley
and Liguria

7.3.1 Introduction

One of the main drawbacks of this approach is linked to the detrending procedure.
In the Piedmont case study, a single regional detrending was performed by pooling
together, for each duration, all the annual rainfall depth – elevation pairs. This
approach can be reasonably applied over a small region such as the Piedmont one.
However, a regional detrending can lose its applicability when larger areas are
investigated, as highlighted in Chapter 6. In this case, a local-scale detrending could
be a more appropriate approach.

The other major limitation of this methodology, already highlighted in Libertino
(2017), is linked to the accuracy of the spatial reconstruction of the extent of the
rainfall events. The actual spatial distribution of the rainfall pattern is not known
because the only available information is located in correspondence of the rain
gauges. The patched kriging tries to address this issue by using nearby information
and ancillary variable (such as the elevation in the Piedmont case study) to reconstruct
the phenomena. However, there is no evidence that a correct output is provided. To
solve this problem, additional information can be retrieved from, as an example,
weather radar data. This latter problem will not be addressed in this dissertation.
However, weather radar data will be used to perform a spatial check of the extent
of a severe rainfall event occorred in Liguria during 2021 and a comparison of the
reconstructed 2021 annual maxima.
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7.3.2 Application

To investigate the potentiality of the patched kriging over a larger area, the North-
West of Italy (Aosta Valley, Piedmont and Liguria) was selected as a case study.
This area can provide interesting insights into the pros and cons of the current
methodology due to the complex morphology, climate and non-uniform rain gauge
density. Moreover, Liguria was affected by the most severe rainfall events recorded
in Italy since early ’900 (i.e., since we have systematic rainfall monitoring performed
with rain gauges). The last one, recorded in 2021, broke most of the all-time Italian
records, by exceeding the previous 3, 6 and 12 h annual maximum records (Figure
7.2).

Fig. 7.2 Influence of the 2021 heavy rainfall events. Top: accumulated 24 h rainfall depths
recorded by rain gauges until the 5th of October 2021 at 2 a.m. interpolated with a geosta-
tistical method. Source: https://www.arpal.liguria.it/contenuti_statici/pubblicazioni/
rapporti_eventi/2021/REM_20211002-05-rossaBD_vers20220203.pdf. Bottom: ta-
ble containing the all-time Italian records (the 2021 records are reported in red). Source:
Improved - Italian Rainfall Extreme Dataset (Mazzoglio et al. (2020)).

It was then decided to perform a new rainfall frequency analysis over this larger
area by applying the patched kriging in four different configurations, using:

https://www.arpal.liguria.it/contenuti_statici/pubblicazioni/rapporti_eventi/2021/REM_20211002-05-rossaBD_vers20220203.pdf
https://www.arpal.liguria.it/contenuti_statici/pubblicazioni/rapporti_eventi/2021/REM_20211002-05-rossaBD_vers20220203.pdf
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• the data of the entire NW Italy acquired from 1931 until 2020 within the
original patched kriging workflow (configuration n°1);

• the data of the entire NW Italy acquired from 1931 until 2021 within the
original patched kriging workflow (configuration n°2);

• the data of Liguria region acquired from 1931 until 2021 in an improved ver-
sion of the patched kriging, that accounts for a regional detrending procedure
(configuration n°3).

• the data of Liguria region acquired from 1931 until 2021 in a further improved
version of the patched kriging, that accounts for a local detrending procedure
(configuration n°4).

By comparing the results obtained only over the Liguria region with the first two
configurations it is possible to investigate the influence of the 2021 records in the
overall rainfall frequency analysis using the old methodology, while the comparison
of the latter three will highlight the differences encountered when working with a
smaller data sample, especially in terms of precipitation vs elevation relationship.

The new analysis is conducted using a 1 km grid size, despite in the original
application developed by Libertino et al. (2018a) a 250 m resolution was selected.
This choice was made on the basis of the results obtained in Chapter 6, following
what has also been suggested by Daly et al. (1994) in terms of the representation of
rainfall depth vs elevation with different spatial resolutions.

In the original application over Piedmont performed by Libertino et al. (2018a),
the regional detrending described by Equation 7.1 was characterized by a statistically
significant negative slope (m) for 1 and 3 h durations and by a positive slope for
12 and 24 h durations (Table 7.1). For the duration of 6 hours, no detrending was
performed because of the lack of significance of the slope coefficient. In the new
analysis, statistically-significant negative values for 1 to 12 h durations emerged
from configurations n°1 and 2, while a statistically significant positive slope emerged
for the 24 h duration (Table 7.1). This general behaviour completely changed when
analyzing a smaller area as Liguria using only the data of its territory (configuration
n°3): in this case, a statistically significant positive slope appeared for 3 until 24
h durations, while the 1 h duration lacks the significance of the hypothesis that m
is different from 0 (Table 7.1). In configuration n°4, instead, the slope coefficient
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Table 7.1 Slope m of the regression models used in the four configurations (* indicates a
statistically significant trend at a 5% level).

Duration Libertino et al. (2018a) Conf. 1 Conf. 2 Conf. 3 Conf. 4

1 hour -3.56* -3.02* -3.03* 0.10 Variable
3 hours -2.57* -3.54* -3.53* 1.47* Variable
6 hours -0.32 -2.81* -2.81* 3.38* Variable

12 hours 3.52* -0.85* -0.85* 6.05* Variable
24 hours 8.34* 2.52* 2.51* 9.96 Variable

varies from pixel to pixel, according to the methodology described in Sections 6.8 to
6.10 of Chapter 6. Modest differences between the configurations n°2, 3 and 4 are
therefore expected to emerge in the following part of this section.

The following step of the patched kriging workflow, i.e. the bias correction, was
performed in all the four configurations with Ds values until 15 km (see Equations
7.5 and 7.6 as a reference). Figure 7.3 shows the L-moment ratio diagrams obtained
considering all the durations before (a) and after (b) the bias-correction for configura-
tion n°2 (entire NW of Italy). Similarly, Figure 7.3(c, d) shows the same parameters
for configuration n°3 (Liguria region, regional detrending) and (e) and (f) show
the same parameters for configuration n°4 (Liguria region, local-scale detrending).
Configuration n°1 is here not reported for brevity (results similar to configuration n°2
were obtained). In this figure it is possible to observe the variability of the coefficient
of L-variation τ , defined as

τ = LCV =
L2

L1
(7.10)

of the coefficient of L-skewness τ3, defined as

τ3 = LCA =
L3

L2
(7.11)

and of the coefficient of L-kurtosis τ4, defined as

τ4 = LKUR =
L4

L2
(7.12)

The distance between the centroid of the cloud of estimated values and the centroid
of the cloud of measured values can be used as an indicator of the overall bias.
The overlap of the two centroids after the bias-correction procedure suggests the
effectiveness of the procedure from a visual point of view.
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Fig. 7.3 L-moment ratio before (a, c, e) and after (b, d, f) the bias correction. τ , τ3 and
τ4 are the coefficients of L-variation, L-skewness and L-kurtosis. Plots (a) and (b) refer to
configuration n°2, plots (c) and (d) refer to configuration n°3 and plots (e) and (f) refer to
configuration n°4. The black dots represent the L-moment ratios of all the cored series, made
of measured and estimated values, while the coloured dots represent the L-moments of the
measured series with a length of at least 20 years (of Piedmont, Aosta Valley and Liguria in
configuration n°2, of Liguria in configurations n°3 and 4).
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The bias-corrected rainfall datacubes obtained in the three configurations allowed
us to perform a complete rainfall frequency analysis both with the Gumbel and the
GEV distributions.

As a first comparison, the spatial variability over Liguria of the growth factor of
a 200-year return period in the first two configurations was investigated by selecting
the GEV distribution. Figure 7.4a shows the growth factor of configuration n°1
while Figure 7.4b is related to configuration n°2. Figure 7.4c shows the absolute
difference among them: in this map, the influence of the 2021 records is clearly
visible, especially in the Central-West part of the region. For comparison purposes,
it is possible to compare this variation with:

• the 24 h annual maxima of the year 2021 spatially interpolated with the patched
kriging (Figure 7.5a);

• the accumulated 24 h rainfall depths recorded by rain gauges until 5th of
October 2021 at 2 a.m. (Figure 7.2);

• the accumulated rainfall of the 4th of October obtained from the adjusted
surface rainfall intensity coming from the weather radar mosaic produced by
the Italian Civil Protection Department (Figure 7.5b).

In the Central-West part of Liguria, the variation of the growth factor follows
the same spatial patterns of these three maps. Some minor differences emerge in
the eastern part of the region. The map produced by ARPA Liguria by means of a
spatial interpolation of the rain gauge measurements (Figure 7.2) shows localized
values up to 150 mm. The same rounded pattern is not visible in the radar data
(Figure 7.5b). Few grid cells with rainfall depths up to 140 mm are visible, but
with a different spatial configuration. By checking the hourly data available on the
database of ARPA Liguria (https://ambientepub.regione.liguria.it/SiraQualMeteo/
script/PubAccessoDatiMeteo.asp, accessed on 29th September 2022) it was possible
to understand that a severe event occurred in late September 2021 (129.6 mm in 1
hour, 235.4 mm in 24 hours) induced such variation in the growth factor. Thus, the
variations in the growth factor in the right side of the region are not caused by the
same weather system.

When focusing on the data of Montenotte Inferiore station (that is the station
that broke the all-time 6 h annual record), the influence of the 2021 records on the

https://ambientepub.regione.liguria.it/SiraQualMeteo/script/PubAccessoDatiMeteo.asp
https://ambientepub.regione.liguria.it/SiraQualMeteo/script/PubAccessoDatiMeteo.asp
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Table 7.2 Local values (GEV distribution) of the Montenotte Inferiore station.

T (years) 2 10 50 100 200 500 1000

K(T) with 2021 non included 0.90 1.57 2.29 2.64 3.01 3.55 4.00
K(T) with 2021 included 0.80 1.66 3.02 3.86 4.93 6.78 8.62

∆K(T ) -0.10 0.09 0.73 1.22 1.92 3.23 4.62

increase of the growth factor clearly emerges (Table 7.2). For the same station, the
IDF curves were computed for configurations n°1 (Figure 7.4d) and n°2 (Figure
7.4e). In both figures, black dots represent the 2021 annual maxima recorded by the
Montenotte Inferiore rain gauges. The estimated return period of configuration n°1
is higher than 1000 years for all the durations, except for the 1 h one. In the second
configuration, the return periods are in the range 80 - 280 years, depending on the
duration.

Fig. 7.4 Growth factor for return period of 200 years for configuration n°1 (a) and n°2 (b)
and absolute difference (c). IDF curves for configuration n°1 (d) and n°2 (e).
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Fig. 7.5 Spatial interpolation of the 24 h annual maximum rainfall depths measured in
2021(a). Accumulated rainfall depth provided by weather radar. Source: weather radar
mosaic produced by the Italian Civil Protection Department, made available within the
framework of the LEXIS project.

The first results obtained with this analysis confirm the need to update the
available information about rainfall quantiles as soon as a new severe event occurs.

One of the open points in the regionalization field is the investigation of the
area influenced by a single, major event, its influence in the overall process and the
possible extent of the variation of the distribution parameters and rainfall quantiles.
This is something that has been already point out for example in Germany, where a
major event happened near Münster (Shehu et al. (2022)) but that, up to now, still
has to be understood. Providing a unique answer that can be relevant for all the
nation could be challenging, especially considering the high topographic variability.
However, in this thesis a first preliminary investigation is performed for the Liguria
case study, and some preliminary comparisons with weather radar data are performed.

The comparison between configurations n°2 and n°3 allowed us to investigate the
influence of working with a smaller sample within the actual version of the patched
kriging. As shown in Table 7.1, for configuration n°2, which pools together the data
of the entire region, a negative precipitation vs elevation relationship emerges for
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Table 7.3 Comparison of the error statistics obtained from the cross-validation analyses of
configurations n°2, n°3 and n°4.

Error statistic
h1 h1 h1 h24 h24 h24

Conf. 2 Conf. 3 Conf. 4 Conf. 2 Conf. 3 Conf. 4

Bias (mm) -0.31 -0.50 -0.14 -0.94 -1.46 -0.77
MAE (mm) 11.07 10.60 10.48 27.63 28.89 28.04
RMSE (mm) 15.13 14.44 14.29 41.83 42.78 41.22
NSE (-) 0.31 0.38 0.38 0.55 0.53 0.56

duration from 1 to 12 hours. The relationship between 24 h extremes and elevation
is instead positive. Configuration n°3 pools together only the data of the Liguria
region. A positive precipitation vs elevation relationship emerges in this case, but
the relationship loses its significance when considering the 1 h duration. Even if
surprising, this result is in line with Chapter 6 where we show significant variations
in the orographic gradients over this specific interval for the 1 h duration.

A cross-validation procedure (leave-one-out approach) was implemented to
evaluate the performance of these last three configurations in reconstructing the
values of all the 144 time series with at least 20 years of data in the 1938 - 2021 period.
For all the duration some improvements were obtained moving from configuration
n°2 to n°4 (Table 7.3). If we consider the NSE coefficient, with configuration n°4
it was possible to obtain a +22.6% improvement compared to configuration n°2 for
the 1 h duration, while for the 24 h duration the improvement is limited to + 1.8%.
Similar variations emerge when analyzing the RMSE: in this case, a -5.6% reduction
was achieved for the 1 h duration, while the variation is limited to -1.5% for the 24 h
interval.

7.4 Application of the Patched Kriging Methodology:
Sensitivity Issues Over Sardinia

7.4.1 Application

The patched kriging was then applied over Sardinia using the annual maxima of the
I2-RED database. The change of the region, compared to the previous section, is
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based on two different motivations: the first one is the interest in investigating an
area with different climatological and morphological characteristics compared to the
North-West of Italy that in recent years was affected by a severe rainfall event, while
the second one is related to the interest in performing further comparisons with other
established methods, as will be described in the following parts of this section.

As mentioned in Section 7.2, the application of ordinary kriging requires to verify
the hypothesis of stationarity of the second order: it is therefore necessary to remove
from the measured values any dependencies on other variables through a detrending
operation.

A multiple regression analysis at a regional scale (see Chapter 6 and Appendix
B) showed that, contrary to what happens for Piedmont, where the extremes are
particularly influenced by the elevation (Libertino et al. (2018a)), for Sardinia other
variable are more relevant. After having discarded the variables that are both more
complex to be computed and based on parameters that have to be fixed on the basis
of a sensitivity analysis (as obstruction, barrier, maximum slope angle, maximum
slope angle distance and openness), the geographical position and the mean annual
rainfall proved to play a dominant role. The 1 h annual maxima were then detrended
using longitude and latitude, while for the durations of 3 to 24 h longitude and mean
annual rainfall were used.

The detrended values were then used for the next steps of the workflow, which
include the application of the ordinary kriging for the construction of the rainfall
data cube (and related kriging variance) and the bias correction. The results of
the bias-correction performed in this specific case study are reported in Figure 7.6.
Also in this application, the overlap of the two centroids after the bias-correction
procedure suggests the effectiveness of the procedure.
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Fig. 7.6 Variability of the L-moment ratio before (a) and after (b) the bias-correction. The
black dots represent the reconstructed data while the colored dots are the measured data
coming from time series of at least 20 years. Modified figure from Mazzoglio et al. (2022d).

The mean regional values of τ , τ3 and τ4 computed on the basis of the recon-
structed rainfall depths are, respectively, 0.234, 0.229 and 0.180. As a comparison,
we can introduce the regional values obtained by Deidda et al. (2021) with a weighted
averaging on the basis of the length of the time series, that are 0.225, 0.243 and 0.186.
These values are quite similar to the ones obtained with the patched kriging, even if
significant differences among the two datasets are present. In this study, sub-daily
annual maxima were used, while Deidda et al. (2021) used daily annual maxima.
These two datasets have also both a different temporal coverage (1929-2019 in this
work, 1920-2008 in Deidda et al. (2021)) and a different data density (the time series
with at least 30 years of data are 58 in this work and 256 in Deidda et al. (2021)).

The application of the patched kriging allowed us to obtain maps of interpolated
values, as the index rainfall for different durations, the a and n parameters of the
average depth - duration curves, the parameters of the GEV distribution and the
growth factors for different return periods. Among all, it is interesting to focus on the
map of the 24 h index rainfall evaluated on the basis of the bias-corrected maps of
annual maxima (Figure 7.7b). As a comparison, the map of the daily index rainfall
produced by Deidda et al. (2021) in a recent application was reported in Figure 7.7a
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(more details about the methodology behind the study of Deidda et al. (2021) will be
provided in the following part of this section). Figure 7.7 shows a good agreement
between the two approaches in terms of spatial patterns. Figure 7.7b presents higher
values being related to sliding 24 h maxima that are, as highlighted in Chapter
4, generally higher than the corresponding fixed daily maxima (Hershfield (1961)
pointed out that sliding maxima are, at least for the United States of America, 1.13
times higher than the corresponding fixed maxima, while in Chapter 4 we obtained a
mean value of 1.146).

Fig. 7.7 Panel (a): daily index rainfall obtained by Deidda et al. (2021). Source: Deidda et al.
(2021). Panel (b): 24 h index rainfall obtained with the patched kriging.

7.4.2 The Bitti case study

The heavy rainfall event that affected Sardinia on 28 November 2020, causing
widespread damages in the Nuoro province and in the town of Bitti, produced high
rainfall depths compared to historical values. The rainfall event began at about 00:30
a.m. of November 28 and continued without interruptions until 10:30 a.m. of the
same day. The total rainfall depth reached about 330 mm but the greater intensities
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were recorded in the final hours, from 07:15 a.m. until 09:15 a.m.. Figure 7.8 and
Table 7.4 shows the maximum values reached in various durations.

Fig. 7.8 Rainfall intensities recorded during 27 and 28 November 2020 by the San Giovanni -
Bitti rain gauge. Rainfall depths over 30-minute intervals (a) and total rainfall depth (b).

Lacking hydrometric measurements, the examination of the severity of the event
was performed thought the analysis of the rainfall depth, fortunately detected by
the San Giovanni - Bitti station, which was put back into operation a few months
before this severe event. However, the scarcity of observations of the station made
it mandatory to resort to regional statistical methods to reconstruct the rarity of the
event, methods that inevitably have a different reference dataset and which were
therefore applied together, to provide elements for a multi-model estimate.

The estimate of the return period of a rainfall event is crucial for supporting
the design of new hydraulic infrastructures. This need has led to the development
of several regional rainfall frequency analysis methods, characterized by different
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Table 7.4 Maximum accumulated rainfall depths for different durations recorded by the San
Giovanni - Bitti station during the event of the 28th of November.

Duration (h) Rainfall depth (mm)

0.25 23.8
0.5 33.6

0.75 42.0
1 54.0
3 125.4
6 218.0
9 283.2

12 293.4
24 327.2

levels of complexity. As highlighted in Chapter 2, the first methods were based
on the identification of regions, suitable for selecting and merging data belonging
to homogeneous areas. In recent years, on the other hand, greater importance has
been given to methods that are continuous in space, without borders, based on
geostatistical approaches.

The regional methods used in this application are:

• the VAPI Sardegna method (Deidda and Piga (1998), GNDCI Linea 1 (2001));

• a boundaryless approach based on the hierarchical application of geostatistical
interpolation to obtain estimates of GEV distribution parameters in space
(Deidda et al. (2021), Deidda (2022));

• an improved version of the patched kriging, previously described in Section
7.4.1.

The VAPI Sardegna method is based on the definition of homogeneous regions
(and sub-regions) and adopts the Two Component Extreme Value (TCEV) distribu-
tion. It was developed considering the data of the maximum annual rainfall depths
recorded over 30 and 45 minutes and 1, 3, 6, 12 and 24 consecutive hours of the
period 1929-1982. Three different versions of this method were developed: in this
work the version of Deidda and Piga (1998) is adopted as it is the most used version
(Deidda (2021)). The mathematical formulation and the main results obtained from
its application are reported in Appendix C.
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The GEV boundaryless method suggested by Deidda et al. (2021) is based on the
spatial interpolation of the rainfall depths measured from 1920 until 2008 through
a kriging for uncertain data (KUD) which allows the appropriate treatment of data
characterized by a modest variability and uncertainty mainly dictated by the limited
length of the time series. Data of 256 stations with at least 30 years of data were
used to estimate the daily index rainfall, while the information collected by 229 rain
gauges with time series of at least 50 years were used to evaluate the moments of
order greater than one. This method differs from the VAPI Sardinia being not based
on the definition of homogeneous regions and allowing a better representation of the
effects induced by topography and climatology on precipitation. With this approach,
it is possible to make an assessment of the rarity of the event both for sub-hourly
and sub-daily durations through mathematical expressions that depend on the daily
index rainfall and on the dimensionless scale and shape parameters, interpolated
throughout the area of interest. The mathematical formulation and the main results
obtained from its application are reported in Appendix D.

The patched kriging consists in the sequential application, year by year, of an
ordinary kriging to all the available annual maxima, regardless of the length of their
time series. The patched kriging method, originally developed for an application in
Piedmont, was here applied using the sub-daily (1 to 24 hours) annual maxima of the
period 1929-2019 contained in the Improved Italian - Rainfall Extreme Dataset (I2-
RED) (Mazzoglio et al. (2020)). For this specific application, the modified version
described in Section 7.4.1 was used.

The patched kriging method was not applied to sub-hourly durations due to the
extreme fragmentation of the records and the low data density. However, specific
analyses were carried out on the sub-hourly rainfall extremes using the data of the
stations located near Bitti with a double purpose, that is to extend the estimates
obtained with patched kriging to the sub-hourly durations and re-evaluate both the
VAPI method and the boundaryless approach suggested by Deidda et al. (2021) using
even more recent data.

Sub-hourly annual maxima were retried from the Hydrological Yearbooks of
the SIMN and of the Regional Hydrological Service (for the 1951-2011 period),
from the Hydrological Yearbooks of ARPA Sardegna (2012-2019 period) and from
unpublished data of the Regional Hydrological Service, processed by Deidda et al.
(2002) (1986-1996 period).
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First of all, for each rain gauge located nearby Bitti with both sub-hourly and
sub-daily measurements, the estimation of the scaling exponent n’ of the average
depth-duration curve was performed again only for the sub-hourly durations by using
the equation

hd = a ·dn′ (7.13)

where hd is the rainfall depth related to the interval d and a is the scale factor, also
representing the best unbiased estimator oh the mean 1 h rainfall, kept constant for
all durations, as it represents the junction point between the durations lower and
higher of 1 hour. Equation 7.13 allowed to re-estimate the coefficient n’ (i.e. the
new scaling exponent evaluated for sub-hourly durations). To verify the reliability
of this parameter, the ratio between the scaling exponents of the two sides of the
average depth-duration curve, n’ and n, was examined for each rain gauge through
the equation:

α =
n′

n
(7.14)

Finally, the average value of this coefficient was used for the correction of the
lower branch of the average depth-duration curves. The mean α value obtained with
Equation 7.14 is equal to 1.51.

The so-computed relationship that links the lower and upper branches of the
IDF curves was used both for the complete application of the patched kriging (the
mathematical formulation and the main results obtained from its application are
reported in Appendix E) and for the re-evaluation of the estimates concerning the sub-
hourly durations made with the other methods (VAPI Sardinia and GEV boundaryless
approach; see Appendix F for the formulation and the main results achieved). The
application of this coefficient made it possible to obtain 5 different estimates: two
with the VAPI Sardegna, two with the GEV boundaryless approach suggested by
Deidda et al. (2021) and one with patched kriging. Finally, a sixth estimate was
produced, obtained as the average of the return periods weighted on the number of
observations used in each method. The severity diagram built on the basis of these
six methods is shown in Figure 7.9.
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Fig. 7.9 Severity diagram containing the evaluation of the return periods performed with the
different methods. The dashed curves were obtained with a modified model for sub-hourly
durations evaluated introducing the coefficiente α . Source: Mazzoglio et al. (2022d).

The results obtained in this section show that the estimates obtained with the
VAPI Sardegna, GEV boundaryless and patched kriging methods follow a similar
path. The greatest difference is observed for the 15-minute duration, in the case of
correction made to the VAPI Sardegna method. Given the large difference, it was
considered appropriate to discard this estimate in the evaluation of the multi-model
return period of the 15-minute duration. For durations smaller than 3 hours, the
results obtained with the different methods converge to the same estimate while
for longer durations the differences became larger. For durations greater than 9
hours, the patched kriging provides an intermediate evaluation between that of the
Sardinia VAPI and that of the GEV boundaryless method. The differences among
the approaches could be partially attributable to the different databases used in each
study. An estimate based on a combined approach provides a robust assessment of
the severity of the event, as well as helping to reduce the uncertainty in estimating
quantiles for high return periods.

Further work could be conducted to repeat the study by including also the 2020
records, as performed for the Liguria case study. At this stage, these record were not
included to be able to perform a "fair" comparison with the VAPI Sardegna method
and the GEV boundaryless approach.
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7.5 Development of a Regional Ombrian Model

7.5.1 Introduction of the Ombrian Model

As mentioned in Chapter 2, the intensity - duration - frequency (IDF) curves are
a standard tool for estimation of the design rainfall. However, Koutsoyiannis and
Iliopoulou (2022) pointed out that this name can be a misnomer because the term
"duration" does not refer to the duration of the rainfall event but rather to a pre-
determined fixed time interval used to average the rainfall intensity, while "frequency"
is here used not to define the actual frequency but its reciprocal, that is the return
period. While introducing the new term "ombrian model", Koutsoyiannis and Il-
iopoulou (2022) and Iliopoulou et al. (2022) also revisited the entire formulation by
including recent advances to stochastic modeling of rainfall intensity at any point in
a given area, developing a framework that can be valid over any scale supported by
the rainfall data. As a consequence, in the following part of this section, the term
"ombrian model" will be used in place of IDF curves.

As pointed out by Iliopoulou et al. (2022), the construction of a regional ombrian
curves can be performed using two different approaches. The first one consists of an
at-site independent fitting approach combined with a spatial interpolation method
for mapping the parameters over the entire region. Despite its simplicity, it presents
the drawback of being very sensitive to the data of single stations, which are often
plagued by missing data. The second one is a regional simultaneous fitting method
applied after having appropriately pooled the data, with the aim of obtaining a single
model that is valid for the entire area. The latter approach can thus be considered as
the inverse of the first one and is, in theory, more powerful since it takes advantage
of all the observations to limit uncertainty. However, a rigorous framework must be
considered to deal with the different record lengths of the series and the possible
presence of spatial dependence.

This new approach is based on an ombrian model structure common for each
grid cell of the domain, except for a spatially-varying scale parameter modeled by
applying a spatial smoothing model. The difficulties that could be encountered in
the delineation of sub-regions on the basis of the similarity are bypassed here.

As mentioned before, the spatial dependence can play a not negligible role. The
widely used regional frequency analysis based on L-moments (Hosking (1990), Hosk-
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ing and Wallis (1997)) can decrease in accuracy as the spatial dependence increases
(Hosking and Wallis (1988)). According to Koutsoyiannis (2019), L-moments can
be better estimated and are effective in inferring the marginal distribution of stochas-
tic processes, but cannot characterize second-order dependence of processes. A
new rainfall frequency analysis framework was thus proposed to explicitly address
the spatial dependence in the data while estimating higher-order properties. The
fitting procedure is applied to the pooled sample using the knowable moments or
K-moments recently introduced by Koutsoyiannis (2019) and Koutsoyiannis (2020).

More details about this methodology will be provided in the following sections.
The reader is referred to Koutsoyiannis (2019), Koutsoyiannis (2020), Koutsoyiannis
and Iliopoulou (2022) and Iliopoulou et al. (2022) for a complete description of the
method.

7.5.2 Mathematical Formulation of the Ombrian Model

An ombrian model can be derived from the dependence structure and the marginal
distribution of rainfall intensity. A non-simple scaling behavior is considered to link
the rainfall intensity x to any timescale k and return period T. The quantity x is thus
the quotient of two separate functions of the return period and the timescale, b(T)
and a(k) (Iliopoulou et al. (2022)). The advantage of this approach is the separability
of these two terms, which allows a two-step procedure for the parameter estimation.

In this application only small time scales are considered, for which a Pareto
distribution can be used. More in detail, the rainfall intensity can be computed as

x =
b(T )
a(k)

= λ
(T/β )ξ −1
(1+ k/α)η

(7.15)

where λ is an intensity scale parameter in the same units of x (e.g., mm/h), T is the
return period, β is a timescale parameter in units of the return period (typically years),
α ≥ 0 is a timescale parameter (typically expressed in hours), η is a dimensionless
parameter (0 < η < 1) and ξ > 0 is the tail index of the process (Iliopoulou et al.
(2022)).

If the rainfall frequency analysis is performed using Peak over Threshold (POT)
series, a Pareto distribution (and thus Equation 7.15) can be assumed. When deal-
ing with annual maxima, the Extreme Value Type 2 (EV2) distribution from the
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Generalized Extreme Value (GEV) distribution family

F(y) = exp(−(1+ξ (
y
ν
−ψ))

− 1
ξ ) (7.16)

has to be preferred. In Equation 7.16, y ≥ ν(ψ − 1
ξ
), ψ (dimensionless), ν > 0

(same units as y) and ξ > 0 are the location, scale and shape parameters of the GEV
distribution. Equation 7.16 can be re-parameterized consistently to Equation 7.15 as

F(y) = exp(−∆

β
(

y
λ
+1)−

1
ξ ) (7.17)

where β = (1− ξ ψ)1/ξ , λ = (1− ξ ψ)ν/ξ and ξ > 0. In the end, the ombrian
model follows the equation

x = λ
(−(β/∆)ln(1−∆/T ))−ξ −1

(1+ k/α)η
(7.18)

For small return periods, Equation 7.15 (derived from a Pareto distribution)
provides higher intensity than Equation 7.18 (derived from a GEV distribution),
while for larger return periods (T > 10 years) the two are almost indistinguishable.

7.5.3 Regionalization Method

The regional model aims at generalizing Equations 7.15 and 7.17 in space after
having identified those parameters that can be considered as regionally varying,
keeping in mind that they should be reliably estimated from at-site data.

On the basis of the available data, Iliopoulou et al. (2022) decided to spatially
model the parameter λ of Equation 7.18 (i.e., one of the parameters of the numerator
of Equation 7.18), which corresponds to the scale parameter of the EV2 distribution
and is proportional to the mean annual maxima at each location for any timescale.
Considering that the transformation between timescales is controlled by the a(k)
function, it is enough to model the average maxima at a single, convenient timescale.
The 24 h maxima were selected here because they are usually available in a larger
number (daily data could also be adopted). This choice is not new: the index
flood method (Dalrymple (1960)) is a widely-known approach based on the same
assumption.
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Fine-scale records are needed to obtain a reliable estimate of α and η , which
control the timescale transformations of the ombrian curves. Among the two, the
parameter α proved to be very sensitive to small-scale intensities and theoretically
requires sub-hourly data to be reliably estimated. Because sub-hourly and sub-daily
data are generally scarce and with short time series in the region, they usually do not
constitute a good choice for the spatial modeling. It was then decided to consider
common values for these parameters, by selecting the values that minimize the sum
of all stations’ variance, as performed in Iliopoulou et al. (2022). In general terms,
α > 0 and 0 < η < 1. Another possible option could be keeping α costant and
considering a spatially-varying η .

After having selected the variable that needs to be regionalized, a proper spatial
model needs to be identified. The bilinear surface smoothing (BSS) model (Malamos
and Koutsoyiannis (2016a), Malamos and Koutsoyiannis (2016b)) was here selected.
The interpolation is performed by approximating a surface with consecutive bilinear
surfaces, which can be estimated by means of a least squares fitting procedure into a
regression model with known breakpoints and adjustable smoothing terms (Malamos
and Koutsoyiannis (2016a)). This approach is based on a trade-off between the
objectives of minimizing the fitting error and the roughness of the fitted bilinear
surface. The application of a larger weight of the first objective implies a rougher
surface, while the opposite is true when using a larger weight of the second objective.

In the BSS framework, the fitting procedure is based on the minimization of the
generalized cross-validation error (GCV) between measured and estimated values in
gauged locations. This approach can be considered both local and global: it is local
because it uses the four surrounding data points of the bilinear surface to estimate
the target point, and it is global because the GCV procedure globally fits the bilinear
surfaces to the data points. The general estimation function of BSS ẑu in point u is

ẑu = du (7.19)

where du is the value of the bilinear surface d at that point. The surface d is modeled
and defined by using four adjustable parameters: the numbers of intervals along
the horizontal and vertical direction (mx and my) and the corresponding smoothing
parameters (τλx and τλy).

The BSS method can be further extended by introducing an additional explanatory
variable that comes from a denser dataset compared to the one on the main variable (in
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this case, we will refer to a bilinear surface smoothing with an explanatory variable,
BSSE). Here, the methodology is focused on combining two bilinear surfaces into
the same regression model to improve the interpolation accuracy: the first surface
is fitted to the available data and the second one incorporates the influence of an
explanatory variable available at a spatially denser dataset. If, in correspondence of
the gauged sites, we also know the value of an explanatory variable t, the general
estimation function for point u becomes

ẑu = du + tueu (7.20)

where du and eu are the values of two fitted bilinear surfaces in point u, namely d
and e, while tu is the value of the explanatory variable at that point. In Equation 7.20
the quantities du and eu change in space. In this case, six different parameters model
the surface: the four parameters used in the BSS case (mx, my, τλx and τλy) and two
smoothing parameters of the surface e, τµx and τµy.

Both in the BSS and in the BSSE models the smoothing parameters are restricted
in the interval [0, 1) for both directions (Malamos and Koutsoyiannis (2016a)):
smoothing parameters close to 1 mean that the bilinear surface exhibit greater
smoothness. For each mx and my combination, the minimization of the GCV error
provides the optimal values of τλx, τλy, τµx and τµy.

In areas with complex terrain, it is probable that the elevation could influence
the extremes. Thus, Iliopoulou et al. (2022) suggested to apply both BSS and BSSE
approaches using the elevation as an explanatory variable.

The evaluation of the most accurate model (BSS or BSSE) can be performed using
two statistical indexes, the root mean square error (RMSE) and the mean absolute
error (MAE), both using all the data and using a leave-one-out cross-validation
approach.

7.5.4 Moment Estimation

Let’s consider a sample (x1, x2, ..., xn) of size n of a stochastic variable x with
probability density function f (x). The "underline" sign used in this chapter defines
random variables and serves to distinguish them from regular variables, according to
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the Dutch convention (Hemelrijk (1966). A continuous time series will be denoted
by x(t) while a discrete one will be defined by xτ .

The estimator of the non-central moment (that is the moment about the origin) of
order p, µ̂

′
p
, is

µ̂
′
p
=

1
n

n

∑
i=1

xp
i (7.21)

while the estimator of the central moment µ̂
p

is

µ̂
p
=

1
n

n

∑
τ=1

(xτ − µ̂)p (7.22)

where µ̂ ≡ µ̂
′
1

is the estimator of the mean (Koutsoyiannis (2020)).

According to Lombardo et al. (2014) and Koutsoyiannis (2020), the estimators of
the central moments µ̂

′
p

are in theory unbiased but their use with p > 2 is unpractical.

The estimation of the second one is instead more complex. For large p and
positive xi we can consider the approximation

( n

∑
i=1

xp
i
)1/p≈ max

1≤i≤n
(xi) (7.23)

This equation is related to the fact that the maximum norm is the limit of the p-norm
as p → ∞ (Koutsoyiannis (2019)). Therefore, for relatively large p, the estimate of
µ ′

p will be

µ̂
′
p =

1
n

n

∑
i=1

xp
i ≈ 1

n
( max

1≤i≤n
(xi))

p (7.24)

In Equation 7.24 the term (1/n) can be omitted with a negligible error for large p.
This equation suggests that µ̂ ′

p, while theoretically is an unbiased estimator of µ ′
p,

in practice is more an estimator of an extreme quantity than the actual estimator of
µ ′

p (i.e., the convergence to the maximum value is faster than the convergence of µ̂ ′
p

to µ ′
p). Thus, Koutsoyiannis (2019) pointed out that the latter is a biased estimator

for any p > 1 and that, even for relatively low p (as in the 2-4 range) the bias can
be large. In the case of an iid sample and low p, the bias can be quantified and its
entity is small, while for higher p the estimation of the moments becomes almost
impossible due to the high variance and skewness of the estimators, which lead to
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have an expected value different by orders of magnitude from the mode (i.e., the
most probable value).

Due to this drawback, Koutsoyiannis (2019) re-named the classical moments as
"unknowable moments" and discouraged their estimation from the data, introducing
the "knowable moments" (or K-moments), which can reliably be estimated even for
high orders and are particularly useful when dealing with extremes.

Let’s introduce a stochastic variable x with x1, x2, ..., xn the iid copies of it
rearranged in increasing order of magnitude such that x(i:n) is the ith smallest among
the n, i.e.

x(1:n) ≤ x(2:n) ≤ ...≤ x(i:n) (7.25)

The variable x(i:n) is termed the ith order statistic. The maximum value of the sample
corresponds to the highest order statistics, that is

x(n) = x(n:n) = max(x1,x2, ...,xn) (7.26)

According to Koutsoyiannis (2020), the distribution function F(n:n)(x) and the
probability density function f(n:n)(x) can be computed as

F(n:n)(x) = (F(x))n (7.27)

and
f(n:n)(x) = n f (x)(F(x))n−1 (7.28)

where the former is n times F(x) (equation justified by the iid assumption) while the
latter is the derivative of F(n:n)(x) with respect to x.

The expected value of the maximum of order p of x is therefore

E[xp)] = E[max(x1,x2, ...,xp)] = pE[(F(x))p−1x] (7.29)

The expected value of Equation 7.29 is a statistical moment, i.e., the non-central
knowable moment of order p, which can be defined as

K′
p = pE[(F(x))p−1x] (7.30)

for the moment order p ≥ 1.
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The estimators of the non-central K-moments are obtained using

K′
p =

n

∑
i=1

binpx(i:n) (7.31)

and

binp =

{
0, i < p

p
n

Γ(n−p+1)
Γ(n)

Γ(i)
Γ(i−p+1) , i ≥ p ≥ 0

(7.32)

where x(i:n) is the ith smallest variable in a sample x of size n placed in ascending
order, p is the order of the moment (which can be any positive number that satisfy
p ≤ n and ∑

n
i=1 binp = 1.

In Equation 7.32 the fact that binp = 0 means that fewer data are used in the
estimation as the moment order increases. When only one is left, i.e. when dealing
with the maximum, p = n and bnnn = 1. When p > n, binp = 0 for every i (with
1 ≤ i ≤ n), and the estimation is impossible.

A return period can be assigned to each K-moment, using

T (K′
p)

∆
= pΛp ≈ Λ∞ p+(Λ1 −Λ∞) (7.33)

where Λ1 and Λ∞ are coefficients that depend on the distribution function. Kout-
soyiannis (2020) showed that, when dealing with the EV2 distribution, these coeffi-
cients depend on the shape parameter ξ , with

Λ1 =
1

1− exp(−(Γ(1−ξ ))
− 1

ξ )
(7.34)

and
Λ∞ = Γ(1−ξ )

1
ξ (7.35)

This procedure can be applied at an at-station level for assigning return periods
to the K-moments of each individual station. Similarly, the parameters of the EV2
distribution can be obtained by minimizing an error statistic (MAE or RMSE)
between the empirical and the theoretical K-moments (or between the corresponding
return periods. However, the maximum return period that can be directly estimated
from the pooled data is a function of the dependence structure of the sample itself.
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When dealing with cross-correlated data, the amount of information decreases, but it
is still more significant than that of an individual station.

To explicitly account for the dependence effect in the estimation of the return
period, proper modification of the moment orders of the unified sample is performed
by considering p’. When dealing with m stations with sample length equal to n1, the
quantity n = mn1 represents the size of the merged sample. In this case:

• for p ≤ n1, p′ = p is set;

• for p > n1 an approximation is used. More specifically, the equivalent Hurst
parameter H is estimated on the basis of the spatial correlation of the station
ρ , with

H =
1
2
+

ln(1+ρ)

2ln2
(7.36)

that is used to compute a coefficient for the bias-correction

Θ
HK(n,H)≈ 2H(1−H)

n−1
− 1

2(n−1)2−2H (7.37)

Finally, the modified orders of the moments are obtained as

p′ ≈ 2Θ+(1−2Θ)(p−n1 +1)((1+Θ)2
+n1 −1 (7.38)

and the corresponding return period are then adjusted using Equation 7.32.

The parameter n1 controls the maximum moment order that is unaffected by
spatial dependence: a higher n1 value suggests an increase in the information gain
because fewer return periods are modified downwards. If the stations have different
time series lengths, n1 can be estimated as the average record length of all stations.
To reduce the uncertainty linked to the modification of the return periods, a good
strategy can involve using moment orders up to n1 for model calibration, while
higher moments are used only for validation. Despite this subdivision, the moments
used for the calibration are much more than those used in regular moment fitting
procedures (typically 3 or 4 orders).

Coming back to the operation procedure, after having defined the α and η

parameters of a(k) as described in the previous section, it is necessary to specify the
parameters of the b(T ) function. From a practical point of view, the sample can be
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made by pooling all 24 h annual maxima after dividing them by their theoretical
mean value given by the spatial smoothing model. The pooled standardized sample
is used to fit the EV2 distribution using the method of the non-central K-moments
described above. For each K-moment estimate a return period can be assigned with
Equation 7.33, with a procedure that can also manage possible bias due to spatial
dependence (see Equations 7.36 to 7.38).

The two-step fitting procedure (α and η in the first step, and then b(T )) represents
an interesting methodology feature since it allows greater flexibility in using different
data sources. As mentioned in Section 7.4.3, α and η are better estimated using
sub-hourly and sub-daily data, while the b(T ) is better inferred using daily data.

After the calibration, the parameters of the EV2 distribution (as expressed in
Equation 7.17) of the standardized mean 24 h annual maxima need to be transformed
to the final ombrian parameters of b(T). The rainfall intensity for any station at the
24 h timescale can be computed as

x(24h)
T = µuT/24 (7.39)

where uT is the 24 h annual maximum rainfall value for return period T standardized
by its mean value µ and µ is the mean value used in the standardization step (i.e, the
one derived from the BSS/BSSE spatial models). Similarly, the quantity

yT = x(24h)
T (1+24/α)η (7.40)

whose distribution defines the b(T) function become

yT = µuT (1+24/α)η/24 (7.41)

As a consequence, the variable y has the same distribution function of the variable
u, which keeps the same shape and location parameters and has a scale parameter
that is proportional to the one of u, i.e.

ξ = ξu (7.42)

β = βu (7.43)

λ = λuµ(1+24/α)η/24 (7.44)
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where the subscript u denotes the standardized 24 h rainfall and α is expressed in
hours.

Summarizing, the α and η parameters (estimated simultaneously by pooling
the data of all the stations), the distribution parameters of the standardized 24 h
maxima and the 24 h maxima spatially modeled with the BSS/BSSE models can
fully determine the ombrian curves.

7.6 Approaches to Intercomparison: the Thessaly case
study

Iliopoulou et al. (2022) applied for the first time the workflow needed to develop an
ombrian model according to the theory described in Section 7.4. The first application
of the regional ombrian curves was performed over the Water District of Thessaly,
a 13,700 km2 region of Greece delimited by mountains (Figure 7.10). Data of 55
rain gauges with at least 12 years of data are here used, with rainfall intensity data
typically starting from fine scales (5 to 60 minutes) and extending to the 24 or 48 h
scale. The data management operation is described in Iliopoulou et al. (2022).

Fig. 7.10 Area of interest with the position of the rain gauges (red dots).
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The patched kriging was then applied over the same area to obtain a spatial
interpolation of 24 h annual maxima, as performed using the BSSE method. Both
methodologies differ from the classical rainfall RFA being developed to take advan-
tage of all the information, even those included in short and fragmented time series.
The main purpose of this step is the investigation of the rainfall pattern obtained
using two completely different spatial models, that has in common only the inclusion
of an external information in the spatialization approach. Then, the two interpolated
maps will be used as input for the K-moment fitting. This step serves to investigate
how the spatial model used to compute the rainfall quantiles influence the final
results. Some preliminary results are reported in Mazzoglio et al. (2022b) and will
be detailed here, especially for what concern the patched kriging.

The patched kriging was applied in the model configuration described by Lib-
ertino et al. (2018a), after having properly calibrated the main parameters. More
specifically, the following steps where performed:

• detrending with the elevation of the 24 h annual maxima. More specifically, a
positive variation of rainfall depth with elevation emerged over the region, as
already pointed out by Iliopoulou et al. (2022);

• computation of the sample and theoretical variograms for each duration;

• application of the ordinary kriging using as input the detrended values to
obtain a rainfall data cube made of measured and estimated values, with the
corresponding kriging variance;

• bias-correction;

• computation of the 24 h mean rainfall depth.

A comparison between the interpolated mean 24 h rainfall depth at a 2 km
resolution is shown in Figure 7.11a and b. Here, only BSSE and patched kriging
are considered while the results obtained with BSS are not discussed here because
this model provided a less accurate estimation in this case study compared to BSSE.
The models efficiently capture the spatial variability of extreme rainfall, and their
estimates are robust even under increased spatial uncertainty due to inconsistencies
among the point data. It is worth highlighting that the spatial distribution of the λ

values is similar to the one of the 24 h maxima because they are directly estimated
from them using Equation 7.44.
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Fig. 7.11 Area of interest with the position of the rain gauges (black dots). Mean 24 h rainfall
depth spatially modeled with the BSSE (a) and with the patched kriging (b). Scale parameter
spatially modeled with the BSSE (c) and with the patched kriging (d).

The timescale parameters α and η are obtained through optimization by using
the procedure detailed in Koutsoyiannis et al. (1998). The final results are reported
in Table 7.4.

The distribution parameters are obtained by minimizing an error metric (MAE in
this case) between the theoretical quantiles and the empirical K-moments, using the
methodology described in Section 7.4.4. The moment calibration (Figure 7.12) is
performed using the moment orders up to n1 (here 42, corresponding to the average
record length of all stations). Higher moments (in total 2305) are used for validation.
As also highlighted before, with this approach the moments used in calibration are
many more (42) than those used in regular moment fitting procedures (typically up
to 3 or 4 orders). Also the main parameters of the two ombrian models are listed in
Table 7.4.
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Table 7.5 Model parameter of both BSSE and patched kriging.

Parameter BSSE Kriging

α (h) 0.03 0.03
η (-) 0.64 0.64
ξ (-) 0.18 0.2

beta (years) 0.013 0.006
λ (mm/h) Spatially varying Spatially varying

Fig. 7.12 Empirical K-moments obtained on the basis of the pooled standardized 24 h mean
rainfall depths modeled with an EV2 distribution and the corresponding return periods,
computed with 24 h maxima modeled with BSSE (a) and with the patched kriging (b).

From a comparison of the results it is possible to affirm that no out-performing
spatial model emerges, both in terms of 24 hour mean rainfall depth interpolation
(MAEBSSE = 5.3 mm while MAEKRIGING = 3.9 mm) and K-moment estimation
(MAEBSSE = 0.00489 while MAEKRIGING = 0.00610). The patched kriging resulted
in lower λ estimates compared to BSSE but, conversely, it provided a higher shape
parameter ξ .

Ombrian curves were calculated for each gauged station on the basis of BSSE
and patched kriging models. Results related to the Trikala station are reported in
Figure 7.13, where it is possible to see the theoretical and empirical distributions
of annual maximum intensities at 10 minutes to 48 hours scales. Figure 7.13 also
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shows the estimates from the order statistics computed with the relationship

T(i:n)
∆

=
n+ e1−γ −1
n− i+ e−γ

=
n+0.526

n− i+0.561
(7.45)

It is possible to observe that the empirical values are in good agreement with the
theoretical ones, with some (non-systematic) deviations at higher return periods for
some durations in both cases. A clear optimal model can thus not be identified on
the basis of these results. However, this is not a drawback of the methodology: these
results confirm the robustness of the two approaches.

Fig. 7.13 Ombrian curves for Trikala weather station computed on the basis of BSSE (a) and
patched kriging (b) models.

7.7 Conclusion

This chapter summarizes the research effort performed to improve currently-available
methodologies for the estimation of the design rainfall in ungauged sites also in the
presence of short and fragmented records.

This fragmentation is handled with a different approach in the two methods used
here. The patched kriging treats each annual maxima as a point in the (x, y, t) space
with the aim of reconstructing spatio-temporal information that are consistent with
the time series used as an input, without discarding records included in short time
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series. The ombrian model, instead, is based on a different concept: in this case,
each measurement is used to compute parameters in the (x, y) space, while the time
information is here not considered. In this case, a minimum threshold is applied.

The first results reported in Section 7.6 show similar performance in terms of
recostruction of the 24 hour index rainfall and K-moment estimation. However,
further analyses over bigger and more complex areas are mandatory to draw more
reliable conclusions.

Regarding the patched kriging, the results reported in Section 7.3 show improve-
ments when appropriately managing the possible influence of an external variable
(elevation, in this case). The four different patched kriging configurations provide
results that are coherent but that are different in terms of accuracy. Moreover, Section
7.3 represent a first application of the research work performed in Chapter 6.

The methodologies here discussed provide the basis for a reliable frequency
analysis over large areas.



Chapter 8

Conclusions

The work described in this chapter has been partially derived from Mazzoglio et al.
(2020), Mazzoglio et al. (2022a), Mazzoglio et al. (2022b), Mazzoglio et al. (2022c),
Mazzoglio et al. (2022d) and Claps et al. (2022b).

8.1 Conclusions

Most of the achievements of this dissertation are related to the renovation and use of a
national-scale database of short-duration annual maximum rainfall depths, measured
since early 1900 from more than 5200 rain gauges. The work described here attempts
to provide an updated view of the spatial variability of the rainfall extremes at the
national scale, also considering how the local climatology and morphology can be
shown to significantly affect this variability. The overall work was performed with
the aim of improving currently available rainfall frequency analysis methodologies
that are typically developed and applied over relatively small regions.

The state of the art of regionalization techniques applied to rainfall data is first
presented in Chapter 2, starting from the identification of today’s problems in data
availability, and then highlighting the differences between traditional and more
innovative approaches aimed to provide the computation of intensity – duration –
frequency curves. Considering the significant changes observed over time in station
density over large areas, the chapter deals with the advantages of interpolation
methods over the homogeneous region paradigm, addressing the valorization of the
local information deriving from short or intermittent records.
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Chapter 3 describes the methodological approach adopted to build an improved
and quality-controlled version of I-RED (in terms of both the rainfall depth values
and the position of the rain gauges). The new database can be used as a more
reliable research support for the frequency analysis of the rainfall extremes. The so-
call Improved Italian - Rainfall Extreme Dataset (I2-RED) contains rainfall annual
maxima rainfall of 1, 3, 6, 12 and 24 h from 1916 to the present, counts more
than 5200 rain gauges and has been corroborated by a re-positioning and elevation-
checking of 15% of the stations. A descriptive analysis of the 24 h maximum values
of the stations is also presented to exemplify additional quality checks and discussing
intriguing spatial features of Super-Extreme rainfall events in relation to the local
climatology.

As the majority of rainfall measurements in the world is at the daily scale, i.e.
related to a specific calendar day and measured over fixed 24 h, a specific research
effort is appropriate, considering that, on these data, daily annual maximum rainfall
depths (F-maxima) series can be easily obtained. The research goal is to connect
these maxima to 24 h annual maximum rainfall depths (S-maxima), which refer to
a period starting at any instant, and that is a more useful indicator of the extreme
rainfall features, being connected to the maxima of whatever (smaller) duration. The
ratio between these extremes, called Hershfield factor (H), has been studied to move
from F-maxima to S-maxima, allowing to take advantage of the relevant amount
of information included in historical records of daily extremes. In Chapter 4, the
possibility of using F-maxima to complement the S-maxima records was investigated
over the Po river basin and the Liguria region (North of Italy). The annual H for all
the stations and all the years where both the F- and S-maxima are available were
computed and analyzed in their temporal and spatial variability. The values of H
obtained were similar to those reported in the literature. Their spatial distribution
was found related to the geographic position of the stations, allowing the possibility
to identify some distinct areas with positive or negative anomalies. The obtained
map of the H factor, with interpolated local anomalies, will allow reconstructing
the missing S-maxima in stations where only F-maxima are available, and has the
potential to improve the knowledge of the spatial variability of sub-daily rainfall
extremes.

Before tackling the themes of the quantitative spatial variability of extreme
rainfall parameters, in Chapter 5, the results of a national-scale investigation of the
presence of trends in the time series has been presented. This work represents one
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of the first attempts to deal with this topic using both historical and recent records
throughout all Italy. The results confirmed earlier findings (Libertino et al. (2019)),
i.e. that rainfall extremes of different durations are not increasing uniformly over
Italy, and that separate tendencies emerge in different sectors, even at close distances.
Compared to Libertino et al. (2019), the presence of reinforced trends appears to be
more relevant.

Chapter 6 addresses the spatial variability of the average of rainfall extremes.
This has been undertaken through a systematic study of the relationship between
geomorphological forms and the average annual maxima (index rainfall) across the
whole of Italy. The dependence of sub-daily rainfall depths on elevation and other
landscape indices was first investigated through univariate and multivariate linear
regressions. The results of the national-scale regression analysis did not confirm
the assumption of elevation being the sole driver of the variability of the index
rainfall. The inclusion of other variables, such as longitude, latitude, distance from
the coastline, morphological obstructions and mean annual rainfall, contributes to
the explanation of a larger percentage of the variance, even though this connection is
different for different durations (1 to 24 h). After analyzing the spatial variability
of the regression residuals, the analysis was repeated on geomorphological subdi-
visions of Italy. Comparing the results of the best multivariate regression models
with univariate regressions applied to the small zones deriving from morphological
subdivisions, we found that "zonal" rainfall–topography relationships outperform the
country-wide multiple regressions, offering a more uniform error spatial distribution
and allowing the effect of morphology on rainfall extremes to be better reproduced.

In a subsequent evolution of the work, the orographic effect was analyzed through
a local regression approach, in which every station become the center of a "local
region", using a grid covering the entire Italian territory at 1-km resolution. This
approach aims to find general rules that can allow the estimation of the average
extreme rainfall in every cell of the national grid, considering a "local sample" made
of the few closer stations falling in the reference circle surrounding any cell. Before
testing the procedures systematically, several constraints had to be considered to
tackle problems such as those determined by the low data density in some parts of
Italy (e.g., Sardinia or the lowlands in the Po river basin) or by the extrapolation at
low/high elevations. Different criteria for selecting the local sample were examined,
using cross-validation to compare the related performances, and always checking the
spatial uniformity of the regression residuals. The results obtained allow to produce
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detailed maps of the estimated rainfall average extreme throughout Italy and confirm
previous findings, such as a generally positive gradient with elevation of the 24 h
extremes, and the evidence of negative gradients in large mountainous areas of the
1 h average. With reference to the latter, the use of a local regression approach
allows to identify with an increased detail the areas showing the inverse orographic
effect, providing material for future investigations on the physical explanation of this
empirical evidence. At the same time, the reconstructed maps allow to apply more
accurate detrending approaches in the subsequent research steps related to spatial
analysis of other statistics of the rainfall extremes, such as the quantiles required for
hydrologic design.

In Chapter 7 this last issue is tackled, starting from some practical application
that have the role of offering several problems to solve in addressing large-scale
rainfall frequency analysis. The case studies have been addressed with the aim to
stress currently available methodologies, gathering issues to solve at the national
scale, and suggesting possible improvements. Some case studies stem from the
necessity to deal, at the regional scale, with the additional knowledge resulting from
the occurrence of very severe rainfall events, as those occurred in Sardinia in 2020
and in Liguria in 2021 (the latter broke some of the all-time Italian records). In other
words, these analyses are relevant for investigating the need of updating the rainfall
quantiles in a region after the occurrence of a major event. In the overall aim of
checking the significance of individual methodologies on the final maps of quantiles,
a comparison was undertaken between the patched kriging methodology (Libertino
et al. (2018a)) and the regional ombrian curves suggested by Iliopoulou et al. (2022)
over the Thessaly region. As no outperforming model emerged, it was concluded
that although the development of IDF curves has been a widely investigated topic for
about one hundred years, clear guidelines and standardized and universal approaches
for the selection of a regional rainfall frequency model are still needed.

The Improved Italian - Rainfall Extreme Dataset was also used in other research
studies, not discussed in this dissertation. It is worth mentioning:

• a project funded by the "Autorità di Bacino Distrettuale del Fiume Po" for the
development of updated rainfall and flood frequency analyses in the Po River
basin, also taking into account the influence of climate change scenarios;
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• a project funded by the "Autorità di Bacino Distrettuale dell’Appennino Merid-
ionale" for the development of an updated rainfall frequency analysis over
Southern Italy;

• the development of the first Italian database of geomorphological, climatologi-
cal and land use/cover attributes (Claps et al. (2022a));

• the ranking of the Italian dams based on their flood attenuation potential
(Evangelista et al. (2022)).

A discussion of the possible developments emerging from this dissertation in-
volves several "layers" that are expounded below.

In terms of the description of the empirical evidence of the spatial distribution of
the "Super- Extremes", as described in Chapter 3, more work could be dedicated to
the assessment of the nature and the behavior of quasi-maxima, using comparisons
between n and n-1 ranked extremes. Also, extremes for durations shorter than 24
hours should be considered.

Regarding the computation of the Hershfield factor described in Chapter 4,
further work could be addressed to apply the methodology described in Papalexiou
et al. (2016), where an approach that simultaneously corrects both the mean and the
standard deviation errors is proposed.

One of the main limitations of the work described in Chapter 5 is the non-uniform
temporal coverage of dataset, due to extremely fragmented data acquisition policies
and also a considerable variability in the delay in the publication of validated data
from the regional hydrological agencies. Future work could be addressed to: i) the
investigation of the influence of a threshold record length (20, 30 or 40 years, as
an example) applied to select only the longer time series; ii) investigate if different
results are obtained when reducing the period under investigation or when using also
the values reconstructed with the patched kriging; iii) the research of new methods
for delineating areas needed to pool data and apply the record-breaking analysis
and the regional Kendall test in search of trends of rainfall extremes. In the latter
case, the geomorphological classifications introduced in Chapter 6 could provide a
research path.

The 24 h extremes reconstructed by applying the Hershfield factor could also be
integrated in the dataset used in Chapter 6 and 7. Further work could be performed
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with the aim of investigating: i) the influence of elevation on the index rainfall and
ii) if the 24 h extremes reconstructed using the Hershfield factor can improve the
estimates performed with the patched kriging. If some improvements, especially in
orographically-complex areas are achieved, an extension of the computation of the
Hershfield factor all over Italy would become advisable.

One of the main open points concerning the practical needs related to the themes
of this dissertation is the investigation of the influence of a single, major event on
the overall rainfall frequency map over an area. This is something that has been
already pointed out for example in Germany (Shehu et al. (2022)) but that, up to
now, still requires efforts to be understood. Providing a unique answer that can be
relevant for regions with very different geographic and morphological features, as is
the case of Italy, is a challenge worth to deal with. In this dissertation a preliminary
investigation is performed for the Liguria case study taking into account the 2021
annual maxima and weather radar. The combined analysis of data from raingauges
and radar, already available in some literature works, is another research direction
that has a great potential to provide answers to this issue.

Future work could also be addressed to improve the terms of comparisons
between rainfall frequency analysis models over large and complex areas. Reliable
metrics related to the sensitivity and uncertainty of different rainfall quantiles are to
be developed, to clarify the terms of transferability to research achievements to the
end users, that await new and more reliable methods to update the available design
rainfall in a perspective of climate change.
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Appendix A

I2-RED Data Policy

This appendix summarizes the information about the regional agencies involved
in the data collection and management after the dismantling of SIMN. This list
represents an updated version of the one reported in Mazzoglio et al. (2020). The
number assigned to each "region" mentioned in this list is equal to the station ID
reported in I2-RED.

1. Abruzzo, Ufficio Idrografico e Mareografico Regione Abruzzo: data acquired
until 2011 are available free of charge on https://www.regione.abruzzo.it/
content/annali-idrologici, while data acquired from 2012 onward are available
free of charge for research and no-profit purposes, upon request.

2. Basilicata, Dipartimento Protezione Civile Regione Basilicata: data are avail-
able free of charge on http://www.centrofunzionalebasilicata.it/it/annali1.php.

3. Calabria, ARPACAL–Centro Funzionale Mulirischi: data are available on
http://www.cfd.calabria.it (password-protected website, access granted upon
request).

4. Campania, Centro Funzionale Regione Campania: data are available free of
charge for research and no-profit purposes, upon request.

5. Emilia-Romagna, ARPA Emilia-Romagna: data are available free of charge on
https://www.arpae.it/it/temi-ambientali/meteo/report-meteo/annali-idrologici.

6. Friuli Venezia Giulia, ARPA Friuli Venezia Giulia: data are available free of
charge for research and no-profit purposes, upon request.

https://www.regione.abruzzo.it/content/annali-idrologici
https://www.regione.abruzzo.it/content/annali-idrologici
http://www.centrofunzionalebasilicata.it/it/annali1.php
http://www.cfd.calabria.it
https://www.arpae.it/it/temi-ambientali/meteo/report-meteo/annali-idrologici
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7. Lazio, Centro Funzionale Regione Lazio: data acquired until 2004 are avail-
able free of charge on http://www.regione.lazio.it/rl_protezione_civile/?vw=
contenutidettaglio&id=153, while data acquired from 2005 onward are avail-
able free of charge for research and no-profit purposes, upon request.

8. Liguria, ARPA Liguria: data are available free of charge on https://www.
regione.liguria.it/articoli/26-servizi-online/14279-banca-dati-meteoclimatica.
html.

9. Lombardy, ARPA Lombardia: data are available free of charge on http://idro.
arpalombardia.it/pmapper-4.0/map.phtml.

10. Marche, Dipartimento di Protezione Civile Regione Marche: data are avail-
able on http://console.protezionecivile.marche.it (password-protected website;
access granted upon request).

11. Molise, Centro Funzionale Regione Molise: data are available free of charge
for research and no-profit purposes, upon request.

12. Piedmont, ARPA Piemonte: data can be accessed free of charge through
the "Banca dati meteorologica" after having downloaded a Java applica-
tion from https://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_
meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html.

13. Apulia, Dipartimento di Protezione Civile Regione Puglia: data are available
free of charge on https://protezionecivile.puglia.it/annali-idrologici-parte-i.

14. Sardinia, ARPA Sardegna: data acquired until 2011 are available free of
charge on https://www.regione.sardegna.it/j/v/25?s=205270&v=2&c=5650&
t=1, while data acquired from 2012 onward are available free of charge on http:
//www.sardegnaambiente.it/index.php?xsl=611&s=21&v=9&c=93749&na=1&
n=10. Other data acquired from ARPAS are available upon payment.

15. Sicily, Autorità di Bacino del Distretto Idrografico della Sicilia: data of the
1916-2018 period can be downloaded free of charge in pdf format from https://
www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/
autorita-bacino-distretto-idrografico-sicilia/annali-idrologici.

16. Tuscany, Servizio Idrografico Regione Toscana: data are available free of
charge on http://www.sir.toscana.it/consistenza-rete.

http://www.regione.lazio.it/rl_protezione_civile/?vw=contenutidettaglio&id=153
http://www.regione.lazio.it/rl_protezione_civile/?vw=contenutidettaglio&id=153
https://www.regione.liguria.it/articoli/26-servizi-online/14279-banca-dati-meteoclimatica.html
https://www.regione.liguria.it/articoli/26-servizi-online/14279-banca-dati-meteoclimatica.html
https://www.regione.liguria.it/articoli/26-servizi-online/14279-banca-dati-meteoclimatica.html
http://idro.arpalombardia.it/pmapper-4.0/map.phtml
http://idro.arpalombardia.it/pmapper-4.0/map.phtml
http://console.protezionecivile.marche.it
https://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html
https://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html
https://protezionecivile.puglia.it/annali-idrologici-parte-i
https://www.regione.sardegna.it/j/v/25?s=205270&v=2&c=5650&t=1
https://www.regione.sardegna.it/j/v/25?s=205270&v=2&c=5650&t=1
http://www.sardegnaambiente.it/index.php?xsl=611&s=21&v=9&c=93749&na=1&n=10
http://www.sardegnaambiente.it/index.php?xsl=611&s=21&v=9&c=93749&na=1&n=10
http://www.sardegnaambiente.it/index.php?xsl=611&s=21&v=9&c=93749&na=1&n=10
https://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia/annali-idrologici
https://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia/annali-idrologici
https://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia/annali-idrologici
http://www.sir.toscana.it/consistenza-rete


191

17. Autonomous Province of Trento, Centro Funzionale Provincia Autonoma di
Trento: data are available free of charge on https://www.meteotrentino.it/#!
/content?menuItemDesktop=143.

18. Autonomous Province of Bolzano – Alto Adige, Ufficio Idrografico Provin-
cia Autonoma di Bolzano–Alto Adige: data are available free of charge for
research and no-profit purposes, upon request.

19. Umbria, Regione Umbria–Servizio Idrografico Regionale: data are available
free of charge on https://annali.regione.umbria.it/#.

20. Aosta Valley, Centro Funzionale Regione Autonoma Valle d’Aosta: data are
available free of charge on http://presidi2.regione.vda.it/str_dataview.

21. Veneto, ARPA Veneto: data freely available on https://www.arpa.veneto.it/
bollettini/storico/precmax/.

Although the Italian law requires an Open Source policy for all public data, this
right has not yet been implemented by all the Italian agencies. The agreements we
signed with some of the agencies involved in the data collection, aimed at monitoring
the correct use of the data, restricted their use to the aims of the authors’ project.
As a result of these legal restrictions, a complete version of I2-RED can only be
provided to two groups of people:

• people in the authors’ research group (who are already fully authorized to use
the data);

• people who can prove they have received clearance from the regional authori-
ties.

Currently, the entire quality-controlled database is available on Zenodo, albeit
with restricted access. The data can be used by third parties, for an indefinite
timeframe, upon having completed an agreement either with the authors or the
regional agencies involved in the data collection.

https://www.meteotrentino.it/#!/content?menuItemDesktop=143
https://www.meteotrentino.it/#!/content?menuItemDesktop=143
https://annali.regione.umbria.it/#
http://presidi2.regione.vda.it/str_dataview
https://www.arpa.veneto.it/bollettini/storico/precmax/
https://www.arpa.veneto.it/bollettini/storico/precmax/


Appendix B

Four-regions Multiple Linear
Regression Models

The best regression models built for the four-regions using up to four covariates are
reported hereafter, together with the corresponding R2

ad j.

Alps

h1 =12.5631−0.0053 · z+0.0145 ·MAR (B.1)

h1 =−28.0382−0.0051 · z+0.0139 ·MAR+29.5758 ·OP (B.2)

h1 =60.9365−1.6664 ·10−5 ·LAT −0.0046 · z+0.0148 ·MAR+ (B.3)

+25.1825 ·OP

h24 =751.4719−1.4892 ·10−4 ·LAT +0.0839 ·MAR (B.4)

h24 =63.0269−7.2339 ·10−5 ·LONG−0.2079 ·C+0.0828 ·MAR (B.5)
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h24 =59.0632−7.2955 ·10−5 ·LONG−0.2223 ·C+0.4306 ·OBS+ (B.6)

+0.0822 ·MAR

The R2
ad j values in Equations B.1 to B.3 are 0.65, 0.73 and 0.75, respectively. The

R2
ad j values in Equations B.4 to B.6 are instead 0.74, 0.76 and 0.76.

Apennines

h1 =19.5774−0.0083 · z+0.0128 ·MAR (B.7)

h1 =21.5180−0.0075 · z−0.0387 ·C+0.0122 ·MAR (B.8)

h1 =−12.0037−0.0072 · z−0.0399 ·C+0.0139 ·MAR+20.8086 ·OP (B.9)

h24 =22.8286−0.1775 ·C+0.0645 ·MAR (B.10)

h24 =35.6610−1.2603 ·10−5 ·LONG−0.2097 ·C+0.0629 ·MAR (B.11)

h24 =179.2636−3.3612 ·10−5 ·LONG−2.6594 ·10−5 ·LAT+ (B.12)

−0.1979 ·C+0.0623 ·MAR

The R2
ad j values in Equations B.7 to B.9 are 0.36, 0.40 and 0.41, respectively. The

R2
ad j values in Equations B.10 to B.12 are instead 0.66, 0.67 and 0.68.

Sicily

h1 =11.2186−1.9845 ·10−5 ·LONG−0.0036 · z (B.13)

h1 =252.6852−5.5699 ·10−5 ·LAT −0.0061 · z+0.0163 ·MAR (B.14)
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h1 =187.8533−5.4790 ·10−5 ·LAT −0.0069 · z+0.0220 ·MAR+ (B.15)

+37.6608 ·OP

h24 =975.8822−0.0002 ·LAT +0.1077 ·MAR (B.16)

h24 =704.6903+8.9786 ·10−5 ·LONG−0.0002 ·LAT +0.0916 ·MAR (B.17)

h24 =816.4861+8.5718 ·10−5 ·LONG−0.0002 ·LAT −0.0140 · z+ (B.18)

+0.1064 ·MAR

The R2
ad j values in Equations B.13 to B.15 are 0.12, 0.25 and 0.34, respectively. The

R2
ad j values in Equations B.16 to B.18 are instead 0.53, 0.61 and 0.65.

Sardinia

h1 =42.1910+3.8767 ·10−5 ·LONG−25.3164 ·OP (B.19)

h1 =42.3615+4.3842 ·10−5 ·LONG−0.0693 ·C−26.2139 ·OP (B.20)

h1 =54.8897+4.1827 ·10−5 ·LONG−1.3045 ·10−5 ·LAT+ (B.21)

−0.0890 ·C+0.0091 ·MAR

h24 =−171.0751+0.0003 ·LONG+0.0964 ·MAR (B.22)

h24 =−186.5050+0.0004 ·LONG−0.7802 ·C+0.1167 ·MAR (B.23)

h24 =−169.9531+0.0004 ·LONG−0.7002 ·C+0.8954 ·MSA+ (B.24)

+0.0965 ·MAR
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The R2
ad j values in Equations B.19 to B.21 are 0.18, 0.23 and 0.29, respectively. The

R2
ad j values in Equations B.22 to B.24 are instead 0.54, 0.68 and 0.71.



Appendix C

Application of the VAPI Sardegna
Method in the Bitti Case Study

This appendix contains the step-by-step procedure used to evaluate the rainfall
quantiles hd,T with the VAPI Sardegna approach for the point where the San Giovanni
- Bitti rain gauge is installed. The procedure requires two steps: the computation of
the index rainfall and the assessment of the growth factor.

The evaluation of the index rainfall is performed using the equation

µ(d) = a1 ·dn1 (C.1)

with d the duration and a1 and n1 defined on the basis of equations

a1 =
µg

0.886 ·24n1
(C.2)

n1 =−0.493+0.476 · log10µg (C.3)

where the daily index rainfall µg is obtained from a raster map proposed by Deidda
and Piga (1998).
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The point under investigation presents µg equal to 81.7 mm, a1 equal to 24.49
and n1 equal to 0.42.

The growth factor Kd,T related to return period T and duration d can be computed
with equation

Kd,T = a2 ·dn2 (C.4)

with a2 and n2 depending on the return period. Two different cases could be encoun-
tered: T ≤ 10 years or T > 10 years.

For return period T ≤ 10 years the parameters a2 and n2 can be computed as

a2 = 0.62408+0.95234 · log10T (C.5)

n2 =−2.5392 ·10−2 +4.7188 ·10−2 · log10T (C.6)

Conversely, for return period T > 10 years the parameter a2 can be computed as

a2 = 0.41273+1.1370 · log10T (C.7)

while the parameter n2 is evaluable with

n2 =−0.19055+0.25937 · log10T −3.8160 ·10−2 · (log10T )2 (C.8)

for durations d ≤ 1 hour and with

n2 = 1.5878 ·10−2 +7.6250 ·10−3 · log10T (C.9)

for durations d ≥ 1 hour.

The growth factor for each combination of return period and duration is reported
in Table C.1, where each row represent a return period T (expressed in years) and
each column is a different duration d (expressed in hours).
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Table C.1 Growth factors KT,d for different return period T (rows) and durations d (columns).

- 0.25 0.5 0.75 1 3 6 9 12 24

2 0.925 0.918 0.914 0.911 0.900 0.893 0.889 0.886 0.879
5 1.276 1.283 1.287 1.290 1.301 1.307 1.311 1.314 1.321

10 1.530 1.553 1.567 1.576 1.615 1.639 1.654 1.664 1.689
20 1.688 1.787 1.848 1.892 1.946 1.982 2.002 2.017 2.054
50 1.931 2.128 2.252 2.344 2.420 2.469 2.498 2.519 2.569

100 2.106 2.379 2.554 2.687 2.780 2.841 2.877 2.903 2.966
200 2.282 2.629 2.856 3.029 3.142 3.216 3.260 3.291 3.368
500 2.526 2.965 3.257 3.481 3.624 3.716 3.772 3.812 3.909

1000 2.726 3.228 3.564 3.824 3.990 4.099 4.164 4.210 4.325

The results reported in Table C.1 were then used to compute both the IDF curves
(Figure C.1) and the return period (Table C.2) of the heavy rainfall event that affected
Bitti during 28th November 2020.

Fig. C.1 IDF curves computed using the VAPI Sardegna method.
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Table C.2 Return period of the 28th November 2020 event maxima of different durations.
The µ(hd) values are computed as a1 ·dn1 while Kobs

d,T is computed as h/µ(hd).

d (h) h (mm) µ(hd) (mm) Kobs
d,T (-) T (years)

0.25 23.8 13.7 1.733 23
0.5 33.6 18.3 1.832 22

0.75 42 21.7 1.934 24
1 54 24.5 2.205 38
3 125.4 38.7 3.238 240
6 218 51.7 4.216 1235
9 283.2 61.2 4.624 2239

12 293.4 69.1 4.249 1068
24 327.2 92.2 3.548 272



Appendix D

Application of the GEV Boundaryless
Method in the Bitti Case Study

This appendix contains the step-by-step procedure used to evaluate the rainfall
quantiles hd,T with the GEV boundaryless approach for the point where the San
Giovanni - Bitti rain gauge is installed.

The short-duration rainfall quantile hT (τ) can be computed as

hT (τ) = m(τ) · yT (τ) =

{
a1 · τn1 τ ≤ 1hour
a2 · τn2 τ ≥ 1hour

(D.1)

where m(τ) is the index rainfall and yT (τ) is the adimentional reduced variable, that
can be computed as

m(τ) =

{
a1m · τn1m τ ≤ 1hour
a2m · τn2m τ ≥ 1hour

(D.2)

yT (τ) =

{
a1y · τn1y τ ≤ 1hour
a2y · τn2y τ ≥ 1hour

(D.3)
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The parameters of the index rainfall m(τ) depend on the daily index rainfall mD

trough the equations
n1m =−0.20+0.33 · log10mD (D.4)

n2m =−0.60+0.52 · log10mD (D.5)

a1m = a2m =
−10+1.25 ·mD

24n2m
(D.6)

In this case study, mD is equal to 64.5 mm (value obtained from the daily index
rainfall map obtained by Deidda et al. (2021), also reported in Figure 7.7).

The parameters related to the adimentional reduced variable yT (τ) depend on the
return period T and on the shape κD and adimensional scale σ∗

D parameters trough
the equations

n1y = n1yp +n1yq · log10T (D.7)

n2y = n2yp +n2yq · log10T (D.8)

a1y = a2y = 10a1yp+a1yq ·log10T+a1yr ·(log10T )2
(D.9)

where

n1yp =−0.08441−0.09092κD+0.07846σ
∗
D+0.32383κ

2
D+0.00793κDσ

∗
D+0.01891σ

∗2
D

(D.10)
n1yq =+0.02720+0.13097κD+0.18360σ

∗
D−0.37370κ

2
D−0.07701κDσ

∗
D−0.07303σ

∗2
D

(D.11)
n2yp =+0.01206−0.17695κD+0.01612σ

∗
D−0.67415κ

2
D−0.05609κDσ

∗
D+0.13555σ

∗2
D

(D.12)
n2yq =−0.10358+0.17971κD+0.29584σ

∗
D+0.74819κ

2
D+0.36062κDσ

∗
D−0.34968σ

∗2
D

(D.13)
a1yp =−0.06465−0.04403κD−0.08110σ

∗
D+0.08870κ

2
D+0.06253κDσ

∗
D+0.05123σ

∗2
D

(D.14)
a1yq =+0.20019+0.06131κD+0.38674σ

∗
D−0.09988κ

2
D−0.10208κDσ

∗
D−0.10724σ

∗2
D

(D.15)
a1yr =−0.01193−0.00329κD−0.05745σ

∗
D−0.01044κ

2
D+0.01938κDσ

∗
D+0.01084σ

∗2
D

(D.16)
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Table D.1 Adimentional reduced variable yT (τ) for different return period T (rows) and
durations d (columns).

- 0.25 0.5 0.75 1 3 6 9 12 24

2 1.065 1.039 1.025 1.014 1.008 1.004 1.002 1.000 0.996
5 1.324 1.324 1.324 1.324 1.327 1.329 1.330 1.330 1.332

10 1.539 1.568 1.585 1.597 1.610 1.619 1.623 1,627 1.635
20 1.766 1.833 1.873 1.902 1.930 1.947 1.958 1.965 1.983
50 2.079 2.211 2.292 2.351 2.405 2.439 2.459 2.474 2.509

100 2.317 2.511 2.631 2.720 2.799 2.850 2.881 2.903 2.956
200 2.552 2.816 2.983 3.107 3.218 3.290 3.332 3.363 3.438
500 2.843 3.215 3.455 3.635 3.796 3.901 3.963 4.008 4.119

1000 3.041 3.503 3.805 4.035 4.239 4.373 4.453 4.511 4.654

The parameters κD and σ∗
D are obtained from Deidda et al. (2021) by sampling

the raster map of these two variables at the Sain Giovanni - Bitti rain gauge point: in
this case, κD is equal to 0.15 and σ∗

D is equal to 0.34.

The adimentional reduced variable yT (τ) for each combination of return period
and duration is reported in Table D.1, where each row represent a return period T
(expressed in years) and each column is a different duration d (expressed in hours).

The results reported in Table D.1 were then used to compute both the IDF curves
(Figure D.1) and the return period (Table D.2) of the heavy rainfall event that affected
Bitti during 28th November 2020.



203

Table D.2 Return period of the 28th November 2020 event maxima of different durations.
The µ(hd) values are computed as a1 ·dn1 j with j equal to m or n depending on the duration
(smaller or greather than 1 hour) while Kobs

d,T is computed as h/µ(hd).

d (h) h (mm) µ(hd) (mm) Kobs
d,T (-) T (years)

0.25 23.8 13.8 1.727 18
0.5 33.6 18.1 1.852 21

0.75 42 21.3 1.970 25
1 54 23.9 2.260 42
3 125.4 34.8 3.608 373
6 218 44 4.953 2363
9 283.2 50.5 5.603 5314

12 293.4 55.8 5.263 2831
24 327.2 70.6 4.634 974

Fig. D.1 IDF curves computed using the GEV boundaryless method.



Appendix E

Application of the Patched Kriging
Method in the Bitti Case Study

This appendix contains the step-by-step procedure used to evaluate the rainfall
quantiles hd,T with the patched kriging approach for the point where the San Giovanni
- Bitti rain gauge is installed.

The average depth-duration curve can be expressed, for durations equal to or
greater than 1 hour, with equation

h = a ·dn (E.1)

where a is the scale factor and n is the scaling exponent. By sampling with the
coordinates of the San Giovanni - Bitti rain gauge the maps obtained with the
patched kriging, it is possible to obtain an a parameter equal to 23.77 mm and an n
parameter equal to 0.38. The index rainfall obtained on the basis of these parameters
is reported in Table E.1.
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Table E.1 Event maxima of the 28th November 2020 and index rainfall µ(hd) values,
computed as a ·dn.

d (h) h (mm) µ(hd) (mm)

0.25 23.8 10.8
0.5 33.6 16
0.75 42 20.2

1 54 23.8
3 125.4 36
6 218 46.7
9 283.2 54.4

12 293.4 60.6
24 327.2 78.7

As highlighted in Chapter 7, for the sub-hourly durations it is possible to consider
the equation

h = a ·dn′ (E.2)

where n’ is the scaling exponent of the sub-hourly durations, linked to the n parameter
trough the equation

α =
n′

n′
(E.3)

with α = 1.51 (mean value computed on the basis of the rain gauges located near
Bitti; more details are reported in Chapter 7). In this case, n’ is equal to 0.57. The
index rainfall for sub-hourly durations complements Table E.1.

Once defined the most appropriate distribution (GEV in this case), it is possible
to compute the growth factor

KT = θ1 +
θ2

θ3
[1− (−ln(1− 1

T
))θ3] (E.4)

with θ1 the location parameter, θ2 the scale parameter and θ3 the shape parameter
evaluated at the San Giovanni - Bitti station. In this case, θ1 = 0.768779, θ2 =
0.307428 and θ3 = -0.15165, while the main results related to the computation of the
growth factor are reported in Table E.2. The results reported in Tables E.1 and E.2
were then used to compute the IDF curves (Figure E.1).
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Table E.2 Growth factors for different return periods. A simple scaling approach is here used
and , thus, the growth factor depends only on the return period and is kept constant for all
the durations.

d (h) KT (-)

2 0.885
5 1.287

10 1.593
20 1.922
50 2.405

100 2.814
200 3.267
500 3.943
1000 4.520

Fig. E.1 IDF curves computed using the patched kriging method.
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Table E.3 Return period of the 28th November 2020 event maxima of different durations.

d (h) h (mm) µ(hd) (mm) Kobs
T (-) y (-) F (-) T (years)

0.25 23.8 10.8 2.202 3.527 0.9710 35
0.5 33.6 16.0 2.096 3.322 0.9646 28

0.75 42 20.2 2.081 3.291 0.9635 27
1 54 23.8 2.272 3.657 0.9745 39
3 125.4 36.0 3.488 5.610 0.9963 274
6 218 46.7 4.670 7.076 0.9992 1184
9 283.2 54.4 5.208 7.649 0.9995 2099

12 293.4 60.6 4.842 7.264 0.9993 1429
24 327.2 78.7 4.159 6.481 0.9985 653

The return periods of the event maxima can be computed as

T =
1

1−F(x)
(E.5)

where F(x) is the cumulative probability function of the GEV distribution evaluable
as

F(x) = e−e−y
(E.6)

and

y =
−ln(1−θ3

Kobs
T −θ1

θ2
)

θ3
(E.7)

The main results in terms of return period assessment are reported in Table E.3.



Appendix F

Application of the Modified Versions
of both VAPI Sardegna and GEV
Boundaryless Methods in the Bitti
Case Study

This appendix contains the step-by-step procedure used to evaluate the rainfall quan-
tiles hd,T with the modified versions of both VAPI Sardegna and GEV boundaryless
methods for the point where the San Giovanni - Bitti rain gauge is installed.

Regarding the VAPI Sardegna method, the application follows what described
in Appendix C. The only difference is the computation of the index rainfall for
durations smaller than 1 hour. In this case, Equation C.1 become

µ(d) = a1 ·dn′1 (F.1)

where
n′1 = 1.51 ·n1 (F.2)
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Table F.1 Return period of the 28th November 2020 event maxima of different durations.
The µ(hd) values are computed as a1 ·dn′1 for duration shorter than 1 hour and as a1 ·dn1 for
duration greater than 1 hour, while Kobs

d,T is computed as h/µ(hd).

d (h) h (mm) µ(hd) (mm) Kobs
d,T (-) T (years)

0.25 23.8 10.2 1.733 239
0.5 33.6 15.8 1.832 49

0.75 42 20.4 1.934 32
1 54 24.5 2.205 38
3 125.4 38.7 3.238 240
6 218 51.7 4.216 1235
9 283.2 61.2 4.624 2239

12 293.4 69.1 4.249 1068
24 327.2 92.2 3.548 272

on the basis of the correction factor α described in Section 7.4.2. The results obtained
during the computation of the return period of the heavy rainfall event that affected
Bitti during 28th November 2020 are reported in Table F.1.

Similarly, the application of the modified GEV boundaryless method follows
what described in Appendix D. The only difference is the computation of the index
rainfall for durations smaller than 1 hour. In this case, in Equation D.2 become
necessary to use

n1m = 1.51 ·n2m (F.3)

The results obtained during the computation of the return period of the heavy
rainfall event that affected Bitti during 28th November 2020 are reported in Table
F.2.
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Table F.2 Return period of the 28th November 2020 event maxima of different durations. The
µ(hd) values are computed as detailed in this section while Kobs

d,T is computed as h/µ(hd).

d (h) h (mm) µ(hd) (mm) Kobs
d,T (-) T (years)

0.25 23.8 11.7 1.727 44
0.5 33.6 16.7 1.852 31

0.75 42 20.6 1.970 29
1 54 23.9 2.260 42
3 125.4 34.8 3.608 373
6 218 44 4.953 2363
9 283.2 50.5 5.603 5314

12 293.4 55.8 5.263 2831
24 327.2 70.6 4.634 974


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Rationale of the Work
	1.2 Thesis Outline

	2 Regional Rainfall Frequency Analysis
	2.1 Introduction
	2.2 Variables to be Regionalized, Data Preparation, and Data Scarcity
	2.2.1 Regionalized Variables
	2.2.2 Data Preparation and Data Scarcity

	2.3 Regional Methods
	2.3.1 Fixed Region and Region-Of-Influence Methods
	2.3.2 Regionless Methods
	2.3.3 Geostatistical Techniques

	2.4 Methods Adopted in the Practice: the Italian Example
	2.5 Conclusions

	3 Sub-daily Rainfall Extremes: the Improved Italian – Rainfall Extreme Dataset (I2-RED)
	3.1 Introduction
	3.2 Data Collection and Data Policy
	3.3 Data Update and Quality Control
	3.4 Quality Control on the Station Elevation
	3.5 Time and Space Uniformity of the Database
	3.6 Super-Extreme Quality Control
	3.7 Conclusions

	4 Spatial Variability of Empirical Indices: The Hershfield Factor
	4.1 Introduction
	4.2 Data Management and Quality-control
	4.3 Evaluation of the Hershfield Factor
	4.4 Discussion
	4.5 Conclusions

	5 Spatial Issues of Trend Analysis of Rainfall Extremes in Italy
	5.1 Introduction
	5.2 Data and Methods
	5.2.1 Rainfall Data
	5.2.2 Record-breaking (RB) Analysis
	5.2.3 Mann-Kendall Test, Regional Kendall Test and Sen's Slope Estimator

	5.3 National and Regional Trend Analyses
	5.4 Conclusions

	6 Geographically-based Analysis of Rainfall Statistics in Italy
	6.1 The Rationale of Spatial Mapping of Rainfall Statistics
	6.2 Simple Linear Regression Analysis
	6.2.1 Methods
	6.2.2 Results

	6.3 National-scale Multiple Linear Regression Analysis
	6.3.1 Methods
	6.3.2 Results

	6.4 Sub-national-scale Multiple Linear Regression Analysis
	6.4.1 Methods
	6.4.2 Results

	6.5 Zonal-scale Simple Linear Regression Over Geomorphological Regions
	6.5.1 Methods
	6.5.2 Results

	6.6 Discussion about National vs Zonal Approach
	6.7 From a Zonal to a Local Approach: The Georegression Approach
	6.8 The Local Regression Approach: Methods
	6.8.1 Data catalog
	6.8.2 Linear Regression Model
	6.8.3 Local Sample Identification
	6.8.4 Artifacts and Model Corrections in High/Low Elevations

	6.9 The Local Regression Approach: Application
	6.9.1 Definition of the Local Sample
	6.9.2 Locally-averaged Rainfall Maps
	6.9.3 Effects of the Elevation Range in the Local Samples
	6.9.4 Correction of Regression Application in Extrapolation
	6.9.5 The Selected Model Configurations

	6.10 The Local Regression Approach: Discussion
	6.10.1 Residual Analysis and Model Selection
	6.10.2 Orographic Gradients and Rainfall Maps

	6.11 Conclusions

	7 Geographically-based Analysis of Rainfall Quantiles
	7.1 Background
	7.2 The Patched Kriging Methodology
	7.3 Application of the Patched Kriging Methodology: Sensitivity Issues Over Piedmont, Aosta Valley and Liguria
	7.3.1 Introduction
	7.3.2 Application

	7.4 Application of the Patched Kriging Methodology: Sensitivity Issues Over Sardinia
	7.4.1 Application
	7.4.2 The Bitti case study

	7.5 Development of a Regional Ombrian Model
	7.5.1 Introduction of the Ombrian Model
	7.5.2 Mathematical Formulation of the Ombrian Model
	7.5.3 Regionalization Method
	7.5.4 Moment Estimation

	7.6 Approaches to Intercomparison: the Thessaly case study
	7.7 Conclusion

	8 Conclusions
	8.1 Conclusions

	References
	Appendix A I2-RED Data Policy
	Appendix B Four-regions Multiple Linear Regression Models
	Appendix C Application of the VAPI Sardegna Method in the Bitti Case Study
	Appendix D Application of the GEV Boundaryless Method in the Bitti Case Study
	Appendix E Application of the Patched Kriging Method in the Bitti Case Study
	Appendix F Application of the Modified Versions of both VAPI Sardegna and GEV Boundaryless Methods in the Bitti Case Study

