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Abstract This paper addresses model checking based on SAT solvers and Craig
interpolants.We tackle major scalability problems of state-of-the-art interpolation-
based approaches, and we achieve two main results: (1) a novel model checking
algorithm; (2) a new and flexible way to handle an incremental representation of
(over-approximated) forward reachable states. The new model checking algorithm
IGR, Interpolation with Guided Refinement, partially takes inspiration from IC3
and interpolation sequences. It bases its robustness and scalability on incremental
refinement of state sets, and guided unwinding/simplification of transition relation
unrollings. State sets, the central data structure of our algorithm, are incrementally
refined, and they represent a valuable information to be shared among related
problems, either in concurrent or sequential (multiple-engine or multiple-property)
execution schemes. We provide experimental data, showing that IGR extends the
capability of a state-of-the-art model checker, with a specific focus on hard-to-
prove properties.

Keywords Formal Verification · Hardware Model Checking · Interpolation · SAT
solving

1 Introduction

Craig interpolants (ITPs for short) [2,3], introduced by McMillan [4] in the Un-
bounded Model Checking (UMC) field, have shown to be effective on difficult
verification instances. Though recently challenged by new techniques (IC3, Incre-
mental Construction of Inductive Clauses for Indubitable Correctness [5]), our ex-
perience within the field of HWMCC competitions [6] and industrial co-operations
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shows that interpolation-based approaches still play an important role within a
portfolio-based tool.

From a high-level Model-Checking perspective, Craig interpolation is an opera-
tor able to compute over-approximated images. The approach can be viewed as an
iterative refinement of proof-based abstractions, to narrow down a proof to relevant
facts. Over-approximations of the reachable states are computed from refutation
proofs of unsatisfied BMC-like runs, in terms of AND/OR circuits, generated in
linear time and space, w.r.t. the proof.

Their most interesting features are completeness and the automated abstrac-
tion mechanism. Whereas one of their major challenges is the inherent redundancy
of interpolant circuits, as well as the need for fast and scalable techniques to com-
pact them. Improvements over the base method [4] were proposed in [7,8], [9], [10,
11], [12] and [13], in order to push forward applicability and scalability of the
technique.

Interpolant compaction is a potential approach that we have specifically ad-
dressed in [14,15,16]. We follow here a second track of research: alternative ITP-
based traversal schemes for model checking algorithms, under the underlying pur-
pose of incrementally computing state sets and reducing the complexity of their
computation. We also follow the idea of incrementality in order to support optimal
data structures for the verification of multiple properties [17], and for a tighter
integration with counterexample- and/or proof-based abstraction/refinement ap-
proaches [18,19].

Our purpose is to improve the standard interpolation algorithm in order to
support incremental computation of reachable states sets and dynamic tuning of
the backward unrolling from the target. We target incremental data structures in
order to enable the reuse of previously computed overapproximations and make
interpolant-based algorithms better suited for the verification of multiple prop-
erties or for integration with abstraction/refinement approaches. Furthermore,
maintaining overapproximated reachable states information in an incremental data
structure allows us to dynamically adjust the bound of the BMC formulas checked
during each traversal step, in order to better control the precision of the computed
image overapproximations.

1.1 Contributions

The main contributions of this work are:

– The integration of a trace data structure in the standard interpolation algo-
rithm, along with a flexible way to compute and refine state set representations;

– An optimization that aims at simplifying the representation of image approxi-
mations and/or bad cones (i.e., the set of bad states that are backward reach-
able in at most k steps from the target.) with ad-hoc redundancy removal;

– Techniques to refine the precision of the computed overapproximations by guid-
ing the bound of the set of backward reachable states from the target used in
BMC checks;

– A novel interpolation-based model checking algorithm that makes use of all
the above techniques.
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1.1.1 Additional remarks

A preliminary version [1] of this paper was originally presented at FMCAD2014.
The key differences w.r.t. the original paper are:

– The introduction (Section I) has been revisited in order to better characterize
the context;

– Background and notations (Section II) have been extended and improved in
order to make the paper as self-contained as possible;

– The description of the proposed algorithm (Sections III through V) have been
completely revisited, rewritten and expanded to better illustrate the underly-
ing details of the procedure. Theorems have been introduced to support the
theoretical foundation on which the proposed approach is built upon;

– An additional section (Section VI), describing the applicability of IGR along-
side lazy abstraction and in a multiple-properties context, has been introduced;

– Experimental results (Section VII) have been revamped to better characterize
the proposed algorithm.More in details, we provide a better characterization of
the proposed techniques/schemes composing the IGR algorithm itself. We also
introduced new benchmarks derived from the latest Hardware Model Checking
competitions.

1.2 Outline

Section 2 introduces background notions and notation about BMC and UMC,
SAT-based Craig interpolant Model Checking, and IC3. The next three Sections
introduce our contributions: Section 3 discusses the use of incremental state sets in
interpolation, Section 4 introduces base concepts on guiding cones through state
sets and Section 5 presents the overall IGR algorithm. Furthermore, in Section 6,
we discuss the integration of IGR within lazy abstraction and multiple proper-
ties verification loops. The proposed algorithm is experimentally evaluated in Sec-
tion 7. Finally, Section 8 and Section 9 conclude the paper with some summarizing
remarks.

2 Background

2.1 Model and Notation

We address systems modelled by labelled state transition structures and repre-
sented implicitly by Boolean formulas.

Definition 1 A transition system S is a triple 〈X, I, T 〉, where X is a set of Boolean
variables representing the states of the system, I is a Boolean formula over X
representing the set of initial states of the system and T is a Boolean formula over
X ×X′ that represents the transition relation of the system.

Variables of X are called state variables of S. A state of S is thus represented
by a complete truth assignment s to its state variables. Boolean formulas over
X represent sets of system states. We denote as Space(S) the state space of S.
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Given a Boolean formula F over X and a complete truth assignment s such that
s |= F , then s is a state contained in the set represented by F and is thus called
an F -state. Primed state variables X′ are used to represent future states of S, i.e.,
states reached after a transition. Accordingly, Boolean formulas over X′ represent
sets of future states. We denote as s, s′ a complete truth assignment to X × X′

obtained by combining a complete truth assignment s to X and a complete truth
assignment s′ to X′.

We use transition systems to model the behaviour of hardware sequential cir-
cuits, where each state variable xi ∈ X corresponds to a latch, the set of initial
states I is defined by reset values of latches and the transition relation T is the con-
junction

∧
i(x

′
i ↔ ∃PI.δi(X,PI) = ⊤) being formulas representing the next-state

function of each latch. Note that primary inputs PI of the circuit are abstracted
away in the resulting transition system.

Definition 2 A literal is a Boolean variable or the negation of a Boolean variable.
A clause is a disjunction of literals whereas a cube is a conjunction of literals.
A Boolean formula is said to be in Conjunctive Normal Form (CNF) iff it is a
conjunction of clauses.

Definition 3 A truth assignment for a Boolean formula F over X is a function
τ : Y ⊆ X → {⊤,⊥} that maps variables in Y to truth values. A truth assignment
τ for F is complete iff Y ≡ X, otherwise τ is partial.

Definition 4 A truth assignment τ satisfies a literal x, written τ |= x, iff τ(x) =
⊤. Conversely, a truth assignment τ satisfies a literal ¬x iff τ(x) = ⊥. A truth
assignment τ satisfies a clause C, written τ |= C, iff at least a literal in C is
satisfied by τ . A truth assignment τ satisfies a CNF formula F , written τ |= F , iff
each clause in F is satisfied by τ .

Definition 5 A Boolean formula F is satisfiable iff there exists a truth assignment
τ for F so that τ |= F . Otherwise F is unsatisfiable. Two Boolean formulas F and G
are equi-satisfiable iff either both F and G are satisfiable or both are unsatisfiable.

With abuse of notation we sometimes represent a truth assignment as a set of
literals of different variables. A truth assignment represented this way assigns each
variable to the truth value satisfying the corresponding literal in the set. We also
represent a clause (cube) as a set of literals, leaving the disjunction (conjunction)
implicit when clear from the context.

Most modern SAT solvers [20,21] adopt clauses as their main representation
and manipulation formalism for Boolean functions. Given a Boolean formula F,

whenever we need to explicitly indicate its before/after version, w.r.t. an evaluation
(e.g., a refinement step), we use a −1 superscript for the before version: F−1. We
will use letters in boldface for arrays of functions: e.g., F = (F0, F1, . . . ).

Definition 6 Given a transition system S = 〈X, I, T 〉, and a complete truth as-
signment s, s′ to X × X′, if s, s′ |= T then s is said to be a predecessor of s′ and
s′ is said to be a successor of s. A sequence of states π

0,n = (s0, . . . , sn) is said to
be a path in S iff si, s

′
i+1 |= T for every couple of adjacent states in the sequence

(si, si+1), 0 ≤ i < n.

Definition 7 A state s ∈ Space(S) is said to be reachable exactly in k steps in S iff
there exists a finite initial path π = (s0, . . . , sk) of length k such that sk = s.
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Definition 8 A state s ∈ Space(S) is said to be reachable within k steps (or reachable
bounded by k) in S iff there exists i ≤ k such that s is reachable exactly in i steps
in S.

Definition 9 A state s ∈ Space(S) is said to be reachable in S if it is reachable
within an arbitrary (finite) number of steps in S.

Definition 10 We denote with RE
i (S), the set of states reachable in exactly i steps

in S.

Definition 11 We denote with Ri(S), the set of states reachable within i steps in
S, i.e.,

Ri(S)
def
=

⋃

0≤j≤i

RE
j (S)

Definition 12 We define the reachability diameter of S to be the minimal number
d ∈ N of steps required for reaching all reachable states in S:

d
def
= argmin

i∈N

{i | Ri(S) = Ri+1(S)}

Definition 13 We denote with R(S), the set of states reachable in S, i.e.,

R(S)
def
=

⋃

0≤j<d

Rj(S)

Whenever more time frames are involved in a formula, we use a superscript
notation: e.g., in circuit unrollings, we use Xi for the X variables instantiated at
the i-th time frame. Support variables will be omitted for simplicity when they
can be easily guessed from the context.

Definition 14 A path formula of length k = j− i from timeframe i to timeframe j
is the propositional formula Π(i, j) over Xi ∪ · · · ∪Xj :

Π(i, j)
def
=

j−1∧

h=i

T (Xh, Xh+1)

Definition 15 An initial path formula of length k is a propositional formula:

Π0(k)
def
= I(X0) ∧Π(0, k)

A path formula Π(i, j) represents all paths of length k = j − i starting at
timeframe i in S, whereas an initial path formulaΠ0(k) describes all paths of length
k starting from the initial states in S. An initial path formula Π0(k), therefore,
can be used to represent the set of states reachable in exactly k steps from the
initial states in S.

Definition 16 Given a transition system S = 〈X, I, T 〉 we define an invariant

property P as a Boolean formula that must hold true in every reachable state s of
S, i.e.,

∀s ∈ R(S) : s |= P

We call target the set of states represented by ¬P . States or sets of states are called
bad if they are part of the target or can reach the target.



6 Cabodi et al.

Definition 17 Given a transition system S = 〈X, I, T 〉 and an invariant property
P over X a propositional formula F over X is said to be safe w.r.t. P iff F is
stronger than P , i.e., F → P .

Definition 18 A bad cone of length k = j − i from timeframe i to timeframe j is
the propositional formula Cone(i, j) over Xi ∪ · · · ∪Xj :

Cone(i, j)
def
= Π(i, j) ∧

j∨

h=i

¬P (Xh)

A bad cone Cone(i, j) represents all paths starting at timeframe i that reach
the target in at most k = j − i steps, i.e., represents the set of bad states that are
backward reachable in at most k steps from the target.

Definition 19 Given a transition system S = 〈X, I, T 〉, a trace of length k with
respect to S is a sequence Fk = (F0, . . . , Fk) where each Fi is a propositional
formula over X, called frame, such that the following conditions hold:

F0 = I (Base)

Fi ∧ T → F ′
i+1 for 0 ≤ i < k (Image Approximation)

A trace Fk may also satisfy one or both of the following additional conditions,
being P an invariant property over X:

Fi → Fi+1 for 0 ≤ i < k (Monotonicity)

Fi → P for 0 ≤ i < k (Safety)

A trace Fk is said to be monotonic if it satisfies the monotonicity condition. A
trace Fk is said to be safe (with respect to P ) if it satisfies the safety condition.
Note that for a trace Fk to be safe with respect to P according to the previous
definition it is not required for frame Fk to be safe. Figure 1 provides a graphical
representation of different kinds of traces.

Definition 20 Given a transition system S = 〈X, I, T 〉, let F be a propositional
formula over X, F is said to be an inductive invariant of S if it satisfies the following
conditions:

I → F (Initiation)

F ∧ T → F ′ (Consecution)

Note that an inductive invariant F of S is an over-approximation of the set of
reachable states R(S).

Definition 21 Given a transition system S = 〈X, I, T 〉 and an invariant property
P over X, an inductive invariant F of S is said to be an inductive strengthening of
P iff it is safe w.r.t. P .
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Fig. 1: Different types of traces with respect to a given S = 〈X, I, T 〉.

(a) Trace.

I

T T T

P

FkFk-1F
1

(b) Safe trace.

(c) Monotonic trace.

P

I

T
T T

FkFk-1F
1

(d) Safe and monotonic trace.

2.2 Bounded and Unbounded Model Checking

Given a transition system S
def
= 〈X, I, T 〉 and an invariant property P , Bounded

Model Checking (BMC) [22] is an iterative process to check whether there exists
a counterexample to P of length at most k in S or to prove its absence. In order
to do this, BMC simply performs a SAT check on a formula defined as follows.

Definition 22 A BMC formula of length k for P in S is the propositional formula
bmc(k) over X0 ∪ · · · ∪Xk:

bmc(k)
def
= Π0(k) ∧

k∨

i=0

¬P (Xi) = I ∧ Cone(0, k)

Intuitively, a BMC formula of length k represents all initial paths in S of
length at most k that reach a bad state in ¬P . If the formula is Sat, there exists a
counterexample to P of length at most k in S. Otherwise, no such a counterexample
exists.

BMC tools iteratively solve BMC formulas of increasing bound, until either
a counterexample is found or some maximum bound is reached. Though BMC is
effective at finding counterexamples, it is not able to detect whether P holds in S.
Therefore, specific techniques are required in order to support Unbounded Model
Checking. The ability to check reachability fix-points and/or to find inductive
invariants is thus the main difference, and additional complication, between BMC
and UMC.
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2.3 Interpolation-based Model Checking

Craig’s interpolation theorem is a seminal result in mathematical logic about the
relationship between model theory and proof theory. The original formulation of
the theorem, due to Craig [2], was given in the context of first-order logic. Variants
of the theorem hold for other logical systems as well, including propositional logic.
We provide here the formulation of the theorem in propositional logic, which is
the one typically encountered in the context of model checking.

Theorem 1 Given two propositional formulas A and B, if A∧B is unsatisfiable then

there is a propositional formula I, called interpolant between A and B, such that (1)

A→ I is valid, (2) I ∧B is unsatisfiable and Vars(I) ⊆ Vars(A) ∩Vars(B).

Intuitively, I is an abstraction of A from the viewpoint of B that summarizes
and translates in the shared language between A and B, the reasons why A is
inconsistent with B. We denote with I = ITP(A,B) the procedure that derives a
Craig’s interpolant from a pair of inconsistent formulas A and B.

Interpolants can be derived from refutation proofs of unsatisfiable SAT solving
runs. Given an unsatisfiable formula A ∧B, most SAT solvers are capable to gen-
erate a proof of refutation either in resolution-based or clausal form. In the case
of resolution proofs, an interpolant I = ITP(A,B) can be derived as an AND/OR
combinational circuit in polynomial time and space with respect to the size of the
proof. In the context of model checking, if A represents a set of reachable states
and B represents a set of bad states, then the interpolant I = ITP(A,B) is a safe
overapproximation of A with respect to B. As a result, such overapproximations
can be used to detect a reachability fix-point. The first complete algorithm for
symbolic model checking based on Craig’s interpolation is due to McMillan [4].
Such an algorithm, called ITP or standard interpolation, computes Craig’s inter-
polants to overapproximate reachable states of the system. Such interpolants are
computed from refutation proofs of unsatisfiable BMC runs.

The algorithm is composed of two nested loops. The outer loop is implemented
in procedure ItpModelChecking (Algorithm 1) whereas the inner loop is imple-
mented in procedure ApproxFwdTrav (Algorithm 2). At each iteration of the
outer loop, the procedure ApproxFwdTrav is invoked to perform an overapproxi-
mated forward traversal of the reachable states while keeping safety with respect to
a backward unrolling from the target (bad cone). ApproxFwdTrav can be thought
of as computing a safe monotonic trace. The trace is not explicitly maintained, in-
stead only its final frame is kept at each iteration and used as a base for computing
the next one.

The procedure ApproxFwdTrav operates a forward traversal in which inter-
polation is used as an overapproximated image operator. At each iteration the
procedure checks a BMC formula of fixed length k, composed of two parts:

A
def
= R(X0) ∧ T (X0, X1)

B
def
= Cone(1, k) = Π(1, k) ∧

∨k
i=1
¬P (Xi)

where R is a set of overapproximated forward reachable states. It is easy to see
that A represents the image of the set of states at the current traversal step,
whereas B represents the set of bad states that are backward reachable in at most
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k − 1 transitions from the target. If at a given iteration the results of the BMC
check is Sat then a possibly spurious counterexample has been found (the forward
traversal has hit the cone).

Being an overapproximation of the image of R, the interpolant is treated as a
candidate inductive invariant. The algorithm checks whether consecution I → R is
valid (i.e., ¬R∧I is unsatisfiable). If that is the case, R is an inductive invariant for
S and, sinceR is safe w.r.t. P , it is also an inductive strengthening for P . Otherwise,
a new set of overapproximated forward reachable states is computed as R ∨ I and
the algorithm iterates. The sequence of R composed at each iteration of the nested
procedure can be thought of as a safe monotonic trace. The monotonicity is due
to the fact that the first R is initialized with I (line 2) and each consecutive R
is a disjunction of the previous one and of an overapproximation of the states
reachable from the previous (line 14). Safety (with respect to P ) follows from the
fact that I was proved to be safe (Algorithm 1, lines 2–4) and each interpolant I
used to construct R does not intersect Cone(1, k). The sequence of interpolants,
instead, can be seen as a non-monotonic safe trace.

Considering Algorithm 1, first the initial states I are checked to be safe (lines
2–3). If that is not the case, there is a trivial counterexample consisting of a single
initial state only. The procedure then terminates returning the counterexample
found. Otherwise, the bound k for the bad cone is initialized to 1 (line 4) and the
procedure starts iterating forward overapproximated traversals of reachable states
while keeping safety with respect to a bad cone of increasing depth k from the
target (lines 5–11). Increasing the bound k helps finding real counterexamples and
generating more precise overapproximations on the next iteration. This is because
as the bad cone from the target unwinds, some of the states in the overapproxi-
mated images computed at previous iterations would be reached by the unrolling
and therefore excluded from the new images. Note that at each iteration of the
outer loop, the nested procedure starts a forward traversal from scratch from the
initial states. As k increases, the algorithm is guaranteed to find a bound k in which
the computed interpolants are precise enough to find an inductive strengthening
if P holds for the system, or to find a real counterexample otherwise.

The overall algorithm may end up with three possible results:

– reachable, if it proves ¬p reachable in k steps, hence the property has been
disproved;

– unreachable, if the approximate traversal reaches a fix-point. In this case the
property is proved;

– undefined, if the target is reachable from the over-approximate state set in un
to k steps. Then, k in increased for a new iteration.
The algorithm is sound and complete [4].

2.4 IC3

IC3 [5] is a SAT-based algorithm for symbolic invariant verification. Given a tran-
sition system S = 〈X, I, T 〉 and an invariant property P over X to be checked, IC3
aims at finding an inductive strengthening of P for S.

To this end, IC3 maintains two main data structures. The first is a trace Fk =
(F0, . . . , Fk) that is both monotonic and safe w.r.t. the property P . At a given



10 Cabodi et al.

Algorithm 1. Top-level procedure of McMillan’s interpolation algorithm. It iterates

forward overapproximated traversals of reachable states while keeping safety with respect

to a bad cone of increasing depth from the target.

Input: S = 〈X, I, T 〉 a transition system; P a property over X.
Output: 〈res, cex〉 with res ∈ {Success,Fail}; cex a (possibly empty) initial path representing

a counterexample.
1: procedure ItpModelChecking(S, P )
2: if ∃s0 |= I(X) ∧ ¬P (X) then

3: return 〈Fail, (s0)〉

4: k ← 1
5: while true do

6: 〈res, cex〉 ← ApproxFwdTrav(S, P, k)
7: if res is Unreach then

8: return 〈Success,−〉
9: else if res is Reach then

10: return 〈Fail, cex〉

11: k ← k + 1

Algorithm 2. Inner procedure of McMillan’s interpolation algorithm. It operates a

forward overapproximated traversal of the reachable state space while keeping safety

with respect to a bad cone of fixed depth from the target.

Input: S = 〈X, I, T 〉 a transition system; P a property over X; k bound of a backward
unrolling from the target.

Output: 〈res, cex〉 with res ∈ {Reach,Unreach,Undef}; cex a (possibly empty) initial path
representing a counterexample.

1: procedure ApproxFwdTrav(S, P , k)
2: R← I
3: if ∃π0,k |= R(X0) ∧ T (X0,X1) ∧ Cone(1, k) then

4: return 〈Reach,π0,k〉

5: while ⊤ do

6: A← R(X0) ∧ T (X0,X1)
7: B ← Cone(1, k)
8: if ∃π0,k |= A ∧B then

9: return 〈Undef,−〉
10: else

11: I ← ITP(A,B)
12: if 6 ∃s |= I ∧ ¬R then

13: return 〈Unreach,−〉

14: R← R ∨ I

iteration of the algorithm, being Fk such a trace, each frame Fi, with 0 ≤ i < k,
is a safe overapproximation of the set of states reachable in at most i steps in S.
The purpose of the algorithm is to iteratively refine such Fk in order to satisfy the
condition Fi+1 → Fi for some 0 ≤ i < k, thus finding an inductive strengthening of
ψ. In order to do this, IC3 maintains a second data structure called proof-obligation

queue that is used to collect sets of states in Fk that can reach a violation of the
property in some number of steps. IC3 processes those sets of states according to
a given priority and for each of them it either finds a backward path to the initial
states or learns a new inductive lemma that can be used to refine Fk to exclude
such states from the overapproximation. In the first case the algorithm has found
a counterexample to P . In the second case, the algorithm continues its search of an
inductive strengthening of P over a tighter approximation of the reachable states
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sets. At various points during its operation, IC3 requires to solve SAT calls. A
peculiarity of the algorithm is the fact that its SAT calls are very frequent but
involve only a single instance of the transition relation T . Performing many local

reachability checks, IC3 achieves a better control on the precision of the computed
overapproximations.

Considering the trace Fk, each frame Fi is represented by a set of clauses,
denoted by clauses(Fi), in order to enable efficient syntactic checks for the equality
of frames. The base condition of the trace is fulfilled by initializing the first frame
with I at the start of the algorithm. Monotonicity is maintained syntactically,
by enforcing the condition clauses(Fi+1) ⊆ clauses(Fi). Image approximation and
safety, instead, are guaranteed explicitly by the algorithm’s operations.

The introduction of IC3 suggested a different way to compute information
about reachable states, as (unlike ITP-based approaches) IC3 requires no unrolling
of the transition relation. One of the major contributions of IC3 is an inductive
reasoning, where induction is exploited under stepwise assumptions-assertions. IC3
is incremental in that it finds inductive subclauses of the negations of states. The
main limitation of IC3 is the potential clause-based state set enumeration. Some
interesting ideas of IC3, that partially influenced our work, are:

– the incremental representation of state sets;
– the push operation, that possibly re-uses clauses from inner state sets to outer

ones;
– redundancy removal by subsumption.

3 Incremental state sets in ITP

In this section we describe our model of incremental state sets. Instead of directly
introducing the overall IGR algorithm (see section 5), we first propose here some
modifications to the standard interpolation algorithm [4], that would allow reusing
and refining previously computed interpolants. In the proposed variant a trace of
overapproximations to reachable states is maintained and incrementally refined, in
order to enable the reuse of previously computed interpolants. Since interpolants
are safe image overapproximations with respect to the property under verification,
the trace maintained by our variant of ITP is safe as well.

As already pointed out, incremental state sets are present in ITPSEQ [23,24]
and DAR [25]. Compared to those works, our approach, as described in the sequel,
is much closer to standard interpolation. More in detail:

– we just focus on approximations of forward reachable states, with no attempt
to mix forward and backward state sets (as in DAR);

– we keep the standard interpolation scheme, extended by saving and reusing
previously computed state sets;

– we always refine (i.e., strengthen) state sets, which does not prevent us from
possibly simplifying their representation by using ad–hoc redundancy removal.

At each i-th iteration of the inner loop an ITP overapproximation of the states
reachable in i steps in the system is computed by extracting an interpolant from
the refutation proof of a BMC formula. The computed interpolant is discarded at
the end of the iteration. Furthermore, when a spurious counterexample is found,
the current forward traversal is interrupted, the backward cone from the target is
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unwound by one step and the forward traversal of reachable states restarts from
the initial states. The key idea of the proposed method is to keep track of the
overapproximations computed during each run of ApproxFwdTrav, in order to
enable their reuse in further iterations of the outer loop. In order to do this, we
extend the standard interpolation algorithm to maintain a trace of reachable states.
As the bound k of the cone increases, stronger overapproximations are computed
at each traversed time frame and used to refine the trace.

Algorithm 3. Top-level procedure of the proposed ITP variant that keeps track of the

computed interpolants using a trace.

Input: S = 〈X, I, T 〉 a transition system; P a property over X.
Output: 〈res, cex〉 with res ∈ {Success,Fail}; cex a (possibly empty) initial path representing

a counterexample.
1: procedure IncrItpModelChecking(S, P )
2: if ∃s0 : s0 |= I(X) ∧ ¬P (X) then

3: return 〈Fail, (s0)〉

4: Fk[0]← I
5: k ← 1
6: while true do

7: 〈res, cex〉 ← IncrApproxFwdTrav(S, P,Fk, k)
8: if res is Unreach then

9: return 〈Success,−〉
10: else if res is Reach then

11: return 〈Fail, cex〉

12: k ← k + 1

We use a trace Fk = (F0, . . . , Fk) in order to keep track of previously computed
overapproximations. Each timeframe of the trace is represented as an AIG circuit.
Each timeframe Fi of Fk, with 0 ≤ i < k, is an over-approximation of the set of
states that are reachable in exactly i steps. The trace is constructed so that it is
safe with respect to P .

The proposed ITP variant, called IncrItpModelChecking, is sketched in Al-
gorithms 3 and 4. The differences between the proposed variant and standard
interpolation are the following:

– The trace is initialized with F0 = I prior to starting the first forward traversal
(Algorithm 3, line 4)1.

– Each time the forward traversal reaches the end of the current trace, a new
frame is Fi+1 instantiated equal to ⊤ and added to the trace (Algorithm 4,
lines 7–8).

– Every time a new interpolant, overapproximating states reachable in i+1 steps,
is computed, the corresponding frame Fi+1 in the trace is refined (Algorithm 4,
lines 15).

Note that refinement is a strengthening step, performed by conjoining the previous
set with a new term. In the following we prove that the sequence of formulas
(F0, . . . , Fk) computed by the algorithm constitutes a safe trace for the system
with respect to P .

1 We use the notation Fi instead of Fi to refer to a frame of Fk that does not exists yet
and that is being initialized for the first time.
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Algorithm 4. Inner procedure of the proposed ITP variant that keeps track of the

computed interpolants using a trace.

Input: S = 〈X, I, T 〉 a transition system; P a property over X; Fk a trace; k bound of a
backward unrolling from the target.

Output: 〈res, cex〉 with res ∈ {Reach,Unreach,Undef}; cex a (possibly empty) initial path
representing a counterexample.

1: procedure IncrApproxFwdTrav(S, P , Fk, k)
2: R← F0

3: if ∃π0,k |= F0(X0) ∧ T (X0,X1) ∧ Cone(1, k) then

4: return 〈Reach,π0,k〉

5: i← 0
6: while ⊤ do

7: if i = |Fk| then
8: Fk[i+ 1]← ⊤

9: A← Fi(X
0) ∧ T (X0,X1)

10: B ← Cone(1, k)
11: if ∃π0,k |= A ∧ B then

12: return 〈Undef,−〉
13: else

14: I ← ITP(A,B)
15: Fi+1 ← Fi+1 ∧ I

16: if 6 ∃s |= Fi+1 ∧ ¬R then

17: return 〈Unreach,−〉

18: R← R ∨ Fi+1

19: i← i+ 1

Theorem 2 At any moment during the execution of Algorithm 4, the sequence Fk =
(F0, . . . , Fk) maintained by the algorithm is a trace.

Proof. Given a sequence Fk = (F0, . . . , Fk) computed by Algorithm 4, we need
to prove that the base and image approximation conditions of Definition 19 hold
for Fk. Since F0 is initialized with I (Algorithm 3, line 4) and never refined, the
base condition holds. We prove that the image approximation condition holds by
induction on the refinement step (Algorithm 4, line 16). Assume Fk to be a trace
prior to a refinement step. We denote by F ∗

i the i-th element of the sequence
after the refinement step. Since the sequence prior to the refinement is assumed
to be a trace, Fi ∧ T → Fi+1 is valid for each 0 ≤ i < k. From the definition
of I = ITP(Fi ∧ T, B) it follows that Fi ∧ T → I is valid. By conjoining the two
together, the following is valid:

Fi ∧ T → Fi+1 ∧ I (4)

Therefore, considering the image approximation condition after a refinement step,
we have:

F ∗
i ∧ T → F ∗

i+1

= Fi ∧ T → Fi+1 ∧ I

which is valid according to Formula 4. Refinement preserves the image approxi-
mation condition of Definition 19, therefore Fk = (F0, . . . , Fk) is a trace.

Theorem 3 At each moment during the execution of Algorithm 4, the trace Fk =
(F0, . . . , Fk) maintained by the algorithm is safe.
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Proof. The safety of the trace follows trivially by induction. Timeframe F0 is ini-
tialized with I, which the algorithm checks to be safe (Algorithm 3, lines 2–4).
Each subsequent timeframe is initialized with ⊤ (which is not safe) and refined by
conjunction of interpolants (which are safe according to the definitions of inter-
polants and bad cone). Therefore, for each timeframe Fi of Fk, with 0 ≤ i < k, the
safety condition Fi → P holds. Note that, the outermost timeframe Fk is the only
one to be potentially unsafe (equal to ⊤), but its safety is not required according
to Definition 19.

3.1 Frames and Cone Simplification

In this subsection we describe an optimization that aims at simplifying the rep-
resentation of frames and/or bad cones with ad-hoc redundancy removal. The
purpose of the proposed optimization is to keep overapproximations of reachable
states and cones small. Such a simplification step is based on the general notion of
redundancy removal under observability don’t cares. We denote simplification under

a care set as the function Simplify(F,C), where F is a formula over X to be simpli-
fied and C is another formula over X to be used as a care set for the simplification
of F . The care set is defined with respect to a reference formula G over X ∪W in
which F appears as a subformula, as follows.

Definition 23 Given a propositional formula F over X and another formula G

over X ∪ W such that F is a subformula of G, we define the care set CG
F of F

with respect to G as the set of assignments over X under which the value of F
affects the value of G. A care set for F with respect to G can be represented by
the formula:

CG
F = G⊕G[F ← ¬F ]

The complement of a care set CG
F is called don’t care set of F with respect to G

and it represents the set of assignments over X under which the value of F does
not affect the value of G.

The knowledge of the care set of a formula F with respect to a reference formula
G can be used to simplify F . Simplification of a formula F under a care set CG

F

with respect to a reference formula G can involve the application of any number
of equivalence-preserving or strengthening transformations over F , as long as the
following constraint is preserved:

G ≡ G[F ← Simplify(F,CG
F )]

Computation of care sets and don’t care sets can be costly [26]. Considering a
conjunction F = A∧B as a reference formula, the following Lemma describes two
straightforward ways to obtain care sets for either of the conjoined formulas. We
focus on B being the case for A dual.

Lemma 1 Given F = A∧B, with both A and B propositional formulas over X, then

A is a care set for B with respect to F . Given C a propositional formula over X such

that A→ C, then C is a care set for B with respect to F .
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Figures 2a and 2b illustrate, in terms of sets of assignments, the simplification
of a formula B with respect to a reference formula F = A ∧ B under care sets
as defined by Lemma 1. For instance, given two propositional formulas A = a

and B = (a ∨ b), the knowledge that any assignment satisfying their conjunction
F = A∧B must be a satisfying assignment of either formula, can be used to simplify
the other. Using A as a care set for B, since F = a ∧ (a ∨ b) is satisfied only by
assignments satisfying A (i.e., assignments µ such that µ(a) = ⊤) we can simplify
B through the injection of a constant ⊤ prior to conjoining it to A, obtaining
⊤ ∨ b ≡ b. The resulting formula after simplification A ∧ Simplify(B,A) = a ∧ b is
syntactically more compact than the equivalent A ∧B = a ∧ (a ∨ b).

Fig. 2: Examples of simplification under a care set.

(a) Simplification of B using A as care set.
The Simplify procedure simplifies B with-
out affecting its conjunction F with A.

(b) Simplification of B using C as care set,
with A→ C. The Simplify procedure sim-
plifies B without affecting its conjunction
F with A.

Though many redundancy removal techniques can be used to perform simpli-
fication under a care set, such as latch correspondence, signal correspondence and
equivalence to constants, our experience shows that most of them are too expen-
sive to perform at each forward traversal iteration of an ITP scheme. As we need
a fast operator, we limit Simplify to the removal of equivalences between state
variables, also known as latch correspondences. Given a formula B to simplify and
a care set A, the Simplify operator identifies pairs of state variables (x1, x2) such
that A→ (x1 ↔ x2). Then, B is simplified as B[x1 ← x2].

Simplification under a care set can be used to simplify the representation of
frames during the refinement step (Algorithm 4, line 17), or to simplify the bad
cone Cone(1, k) prior to checking its intersection with the image of Fi (Algorithm 4,
line 13). During forward overapproximated traversal, when the image of the cur-
rent set of reachable states Fi ∧ T is checked for intersection with the bad cone
Cone(1, k), we can simplify Cone(1, k) using any overapproximation of the states
reachable in the next k transitions that is already in the trace. In particular,
each frame Fj in Fk, with i < j < i + k, can be used as a care set to simplify
Cone(1, k). We denote with TraceSimplify(Cone(1, k), Fk, i, k) the function ap-
plying Simplify(Cone(1, k), Fj) for each i < j < i+ k, i.e., the function applying
latch correspondences substitution at each intermediate transition relation bound-
aries in Cone(1, k). This way, we exploit reachability information computed during
previous iterations of the algorithm to simplify the formula to be fed to the SAT
solver.
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4 Guided Cone

In standard interpolation, when a spurious counterexample is found the current
forward traversal is restarted from the initial states after the bad cone has been
expanded by one step. We explore the idea to dynamically unwind or rewind
the cone during forward traversal in order to guarantee the refinement of some
previously computed overapproximation of reachable states. The depth of the cone
is therefore guided by the frames in the trace so that it can lead to a strengthening
refinement for some of them.

Compared to the proposed approach, ITPSEQ and DAR refine frames based
on BMC-like runs of growing depth. IC3, instead, drives the refinements based on
a prioritized selection of backward reachable cubes.

Supposing that at a given point during the execution of IncrItpModelCheck-

ing the algorithm has computed a trace Fk, we follow two directions sharing the
goal of potentially expanding and refining Fk:

Cone Unwinding

When the forward traversal hits the cone, we start a new traversal at an inter-
mediate step in order to guarantee the refinement of the trace.

Cone Rewinding

When the forward traversal hits the cone, we continue the traversal with iter-
atively smaller cones in order to refine and expand the trace.

Overall, guided cone unwinding/rewinding allows us to dynamically tune the
unrolling from the target and therefore to have a better control over the precision
of the computed overapproximations (interpolants). In this respect, standard in-
terpolation is too rigid, as overapproximations are always strengthened expanding
the cone by one and restarting the traversal from scratch. If the diameter of the
system is very large, ITP takes a large number of iterations to converge. ITPSEQ,
computes overapproximations to the reachable states incrementally, but with a
fixed and rigid scheme. Much more flexibility is present in DAR, where local and
global strengthening techniques are used to refine just when and where needed.
Although backward refinement in DAR has similarities to our approach, it is based
on the idea of using overapproximated backward reachable states when refining
forward reachable ones. Our approach, instead, is based on backward cones in
order to represent the exact backward behaviour.

4.1 Cone Unwinding

At a given iteration i of the forward traversal, given the bound k of the cone, if
the following formula is Sat, then a possibly spurious counterexample is found.

Fi(X
0) ∧ T (X0, X1) ∧ Cone(1, k) (5)

Standard interpolation, in that case, unwinds the bad cone by one step and
starts a new traversal from the initial states. By doing so, when/if step i is reached
again in the traversal, the overapproximation Fi might have been strengthened
enough to exclude the spurious counterexample previously found. If that is not
the case, standard interpolation restarts the traversal again, incrementing k until
either all spurious counterexamples are excluded from the overapproximation or
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(at least) one counterexample is confirmed to be real. We propose an alternative
approach to handle spurious counterexamples, the purpose being to reuse the
computed overapproximations as much as possible. In our approach, we unwind
the cone of the minimum depth necessary to strengthen a frame Fj , with 0 < j ≤ i,
in order to directly refute the spurious counterexample.

Whenever Formula 5 is Sat, there is a path from a state σ ∈ Fi to a target
state and so there could exist a counterexample of length (at most) i + k. The
counterexample is feasible if σ is reachable from the initial states, otherwise we
say that the counterexample is spurious.

Theorem 4 A counterexample is spurious if the following formula is Unsat for a

given j, with 0 < j ≤ i:

Fi−j(X
0) ∧ T (X0, X1) ∧ Cone(1, k + j) (6)

Proof. We can demonstrate such a claim by reduction to absurdity. Suppose that
Formula 6 is Unsat for a given j, with 0 < j ≤ i. Suppose also that bmc(i+ k) is
Sat, therefore a counterexample of length (at most) i+k exists. Then, being Fl an
overapproximation of the states reachable in l steps, for all l such that 0 ≤ l < i+k
the following formula must be Sat:

Fl(X
0) ∧ T (X0, X1) ∧ Cone(1, k + i− l) (7)

By substituting j = i− l in Formula 6 we obtain Formula 7. The contradiction
follows from the fact that such a formula should be Unsat by assumption.

Theorem 4 can be used in multiple ways in order to set up a refinement process
of Fi. We call “cone unwinding” the process of iteratively finding a minimal value
of j, such that Formula 6 isUnsat. Once j is found, we can restart the interpolation
process at Fi−j with the cone “unwound” by j time frames, Cone(1, k + j).

With respect to standard interpolation we skip intermediate cones, whenever
j > 1, and we skip the initial traversal iterations, from F1 to Fi−j , which are reused
instead of being recomputed.

In order to check if a counterexample is feasible, we start an iterative process
checking BMC-like problems in which every time we unwind the cone by one step
and we consider the previous frame. Starting from frame Fi and cone Cone(1, k),
at the j-th iteration we consider the BMC-like problem described in Formula 6.
At each iteration we trade an overapproximated set of forward reachable states
Fi−j for an exact image backward reachable from the target, Cone(1, k+ j). If the
BMC-like problem is Sat at a given j, then Fi−j is not strong enough to refute
the counterexample and the process iterates. Eventually, either we find Unsat,
refuting the spurious counterexample, or we reach the initial states, confirming
the counterexample as a concrete one. In fact, for j = i we have exactly bmc(i+k).

Supposing that we have found a j, with 0 < j < i, such that Formula 6 is
Unsat, then we can restart the forward traversal from Fi−j with Cone(1, k + j),
which is guaranteed to generate an interpolant and refine the current trace, as
proved in the following theorem.

Theorem 5 Code unwinding is guaranteed to refine the current trace.
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Proof. Given an iteration i of the forward traversal procedure and a bound k of the
cone for which Formula 5 is Sat, cone unwinding can be applied. Suppose that, for
a given iteration j, Formula 6 is Unsat for j but Sat for j−1, then the interpolant
I computed for Formula 6 at iteration j has the property that all paths of length
k + j − 1 starting from I are safe. Since Formula 6 is Sat for j − 1 there exists
a state in Fi−j+1 that reach a bad state in at most k + j − 1 steps. Both I and
Fi−j+1 are overapproximations of the states reachable in i+ j−1 steps from I. By
conjoining I and Fi−j+1 all the paths that reach a bad state in at most k + j − 1
steps are removed, thus refining the current trace.

From a practical point of view, we are unwinding Cone(1, k) in a guided way
through the frames Fi−j , with 0 < j ≤ i, in order to find the minimum value of j
able to refute a spurious counterexample.

An additional consideration is that, upon detecting j such that Formula 6
is Unsat, we can continue the iterative process for a given number of bounds
checking whether or not Formula 6 still holds for higher values of j. Note that,
this is not guaranteed since the trace is non monotonic. Note also that, even if we
find Formula 6 to be Unsat for higher values of j, the corresponding interpolant
is not guaranteed to refine the trace. This nevertheless can be empirically useful
in order to restart traversal at a lower bound, i.e., closer to I, in order to avoid to
restart too close to frames that may lead to counterexamples in one or just a few
steps.

The unwinding strategy is heuristically more suitable to handle problems char-
acterized by deeper bounds, which typically need multiple iterations of standard
interpolation to converge.

4.2 Cone Rewinding

We call “cone rewinding” a strategy that, given a frame Fi safe with respect to
Cone(1, k), seeks to refine the next frames Fi+j (with 0 < j < k) with cones of de-
creasing bound, that guarantee interpolant computation (Unsat problems). This
strategy is inspired by the variant of interpolation sequences proposed in [24]. We
start at Fi, with Cone(1, k), under the condition that Formula 5 is Unsat. This
guarantees that a refinement of Fi+1 is possible, using the interpolant derived from
the corresponding SAT check. As a consequence, it follows from the nature of in-
terpolants that Fi+1(X

1)∧Cone(1, k) is Unsat. By performing variable relabelling
and making the first instance of transition relation in the cone explicit, we obtain
the following formula

Fi+1(X
0) ∧ T (X0, X1) ∧ Cone(1, k − 1) (8)

which is Unsat. Formula 8 is the base of the rewinding process, as we have
moved one step forward in image computation, from Fi to Fi+1, and the cone has
been reduced by one timeframe, from Cone(1, k) to Cone(1, k − 1).

Rewinding iterations can stop at any intermediate step, or even go ahead until
we have a cone of bound 1. This is a purely heuristic choice. We activate the
rewinding process in two cases (controlled by engine setup options):
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– After cone unwinding, from k to k + j, which means that, instead of starting
an interpolant iteration with a cone of bound k + j, we decrease the cone at
each iteration. We call this strategy IGR (A).

– We keep a given cone Cone(1, k) until it is hit (so Formula 5 is Sat), then we
start the rewinding process from the previous step, as Fi(X

0) ∧ T (X0, X1) ∧
Cone(1, k − 1) is guaranteed to be Unsat. We call this strategy IGR (B).

4.3 Overall strategy

To sum up, IGR (A) and IGR (B) are two ways of exploiting the same ability
to refine frames (overapproximations of reachable states). In IGR (A) we know
that a given frame Fi is safe respect to Cone(1, k), and we refine, or generate, the
frames (Fi+1, . . . , Fi+k) of the trace. In IGR (B), we initially performs as many
image steps as possible with Cone(1, k). Once the cone is hit at step i of the forward
traversal, we move back at step i−1, and we compute a sequence of k interpolants,
that can be used to refine, or generate, the frames (Fi, . . . , Fi+k−1) of the trace.
The purpose of such refinement sequences is to let future traversals operate over
more precise overapproximations of the reachable states.

5 IGR: interpolation with Guided Refinement

In this section we describe a novel complete invariant verification procedure based
on the ideas presented before. The proposed algorithm, called Interpolation with

Guided Refinement (IGR), can be seen as a variant of ITP that incorporates ex-
plicit trace computation and refinement, images and cones simplification under
observability don’t care and guided cone unwinding/rewinding.

Algorithm 5. Top-level procedure of IGR.

Input: S = 〈X, I, T 〉 a transition system; P a property over X.
Output: 〈res, cex〉 with res ∈ {Success,Fail}; cex a (possibly empty) initial path representing

a counterexample.
1: procedure IgrModelChecking(S, P )
2: if ∃s0 : s0 |= I(X) ∧ ¬P (X) then

3: return 〈Fail, (s0)〉

4: Fk[0]← I
5: ihit ← 0
6: khit ← 1
7: while true do

8: 〈res, cex, i, k〉 ← Unwind(S, P,Fk, ihit, khit)
9: if res is Reach then

10: return 〈Fail, cex〉

11: 〈res, ihit, khit〉 ← IgrApproxFwdTrav(S, P,Fk, i, k)
12: if res is Unreach then

13: return 〈Success,−〉

The top-level procedure of IGR is reported in Algorithm 5. The procedure
starts by checking safety of the initial states (lines 2–3) and initializing the trace
Fk (line 4). The indexes ihit and khit are also initialized (lines 5–6). Such indexes
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are used to keep track of the traversal step and cone depth at which a cone was hit
during the previous traversal. Then, the outer loop starts iterating overapproxi-
mated forward traversals (lines 7–13). First the procedure Unwind is invoked to
seek the best frame at which to start the next traversal (line 8). Such a procedure
performs cone unwinding (as described in Subsection 4.1) starting from the step
ihit and cone depth khit, until either a concrete counterexample or a frame that
could be refined by computing a new interpolant is found. In the first case, the
procedure Unwind returns a Reach result and a counterexample. The algorithm,
thus, terminates with Fail producing the counterexample as an output (lines 9–
10). In the second case, the procedure Unwind returns an Undef result, a step i

and a cone depth k to be used for the next traversal. Note that, at the first iter-
ation, ihit is 0 and khit is 1, therefore Unwind simply checks whether the initial
states can reach the target in one transition. If no real counterexample was found,
the algorithm starts a new forward overapproximated traversal invoking the proce-
dure IgrApproxFwdTrav (line 11). Upon termination of such a procedure, if the
result is Unreach, then an inductive invariant has been found during traversal.
In that case, the algorithm terminates with Success (lines 12–13). Otherwise, the
cone was hit and the traversal procedure returns an Undef result together with
the step ihit and cone depth khit at which that occurred. In that case, a possibly
spurious counterexample was found during traversal and the algorithm iterates to
perform a new traversal.

The overall task of IgrModelChecking can thus be summarized as:

– Iteratively choose a starting frame Fi and a cone Cone(1, k), unwound in a
guided manner throughout the (overapproximated) trace Fk.

– Start a new forward traversal from Fi with Cone(1, k) that is expected to refine
Fk and filter out the last spurious counterexample found within Fi.

The first sub-task is handled by Unwind, whereas the second is performed by
IgrApproxFwdTrav.

Procedure IgrApproxFwdTrav, described in Algorithm 6, performs a forward
overapproximated traversal of reachable states starting from a given frame in the
trace, while keeping safety with respect to a cone of given depth. The procedure
first computes the current overapproximated set of states reachable at step i by
disjoining the first i frames (line 2). Then, at each iteration of the traversal loop
(lines 6–29), the algorithm proceeds in two different ways based on whether or
not a cone rewinding (see Subsection 4.2) has been triggered, as controlled by the
variable rewind. If cone rewinding has not been triggered, the algorithm performs
a traversal step using a cone of bound k. Otherwise the algorithm decreases the
bound of the cone at each iteration to perform rewinding (lines 9–10). During
each traversal step, the procedure first performs cone simplification (line 12) as
described in Subsection 3.1 and then checks whether the current set of overapprox-
imated reachable states R hits the cone (line 13). If that is the case, the algorithm
saves the current step and cone bound in ihit and khit, respectively, and triggers
a refinement sequence (lines 14–16). Otherwise, a new overapproximated image is
computed through interpolation (lines 18) and the current frame Fi is refined and
simplified (line 19) as described in Subsection 3.1. Then, the algorithm checks if
the computed overapproximation is an inductive invariant, returning Unreach if
that is the case (lines 20–21). If no inductive invariant has been found, the new
set of overapproximated forward reachable states is computed as R ∨ Fi+1, to be
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Algorithm 6. Inner procedure of the proposed ITP variant that keeps track of the

computed interpolants using a trace.

Input: S = 〈X, I, T 〉 a transition system; P a property over X; Fk a trace; i start step of the
traversal; k bound of a backward unrolling from the target.

Output: 〈res, ihit, khit〉 with res ∈ {Unreach,Undef}; ihit the step (if any) at which the
cone is hit during traversal; khit the depth of the cone hit.

1: procedure IgrApproxFwdTrav(S, P , Fk, k)

2: R←
∨i

j=0
Fj

3: rewind← ⊥
4: ihit ← i

5: khit ← k

6: while ⊤ do

7: if i = |Fk| then
8: Fk[i+ 1]← ⊤

9: if rewind∧ k > 0 then

10: k ← k − 1

11: A← Fi(X0) ∧ T (X0,X1)
12: B ← TraceSimplify(Cone(1, k),Fk, i+ 1, k)
13: if ∃π0,k |= A ∧ B then

14: rewind← ⊤
15: ihit ← i

16: khit ← k

17: else

18: I ← ITP(A,B)
19: Fi+1 ← Simplify(Fi+1, I) ∧ I

20: if 6 ∃s |= Fi+1 ∧ ¬R then

21: return 〈Unreach,−,−〉

22: R← R ∨ Fi+1

23: i← i+ 1
24: if ¬rewind ∧ i > D then

25: rewind← ⊤
26: ihit ← i

27: khit ← k

28: else if rewind∧ k = 0 then

29: return 〈Undef, ihit, khit〉

used for the next iteration (line 22). Each time the forward traversal reaches the
end of the current trace, a new frame is Fi+1 instantiated equal to ⊤ and added
to the trace (lines 7–8). At the end of each iteration, if a given (user-controllable)
traversal depth thresholdD has been reached, the algorithm forces rewinding (lines
24–27). When rewinding has been triggered, either because a spurious counterex-
ample was found or because it was forced, the algorithm continues the traversal
decreasing the cone bound at each iteration. When the cone has been completely
rewound, the algorithm terminates returning Undef together with the step and
cone bound at which either a spurious counterexample was found (lines 15–16) or
rewinding has been forced (lines 26–27).

The threshold D heuristically controls activation of cone rewinding. Whenever
D = 0, rewinding is always active, so the approach obtains a minimal refinement,
and mimics the effect of interpolation sequences. High values of D keep the k

value constant until a hit, a scheme much closer to standard interpolation. We
empirically observed that small values are better at small sequential depths, as
they can produce more refinement steps of limited cost.
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Algorithm 7. Unwinding procedure of IGR.

Input: S = 〈X, I, T 〉 a transition system; P a property over X; ihit the step at which the
cone was hit during traversal; khit the depth of the cone hit.

Output: 〈res, cex, i, k〉 with res ∈ {Undef,Reach}; cex a (possibly empty) initial path rep-
resenting a counterexample; i the step at which resume forward traversal; k the depth of
the cone to use in the resumed traversal.

1: procedure Unwind(S, P , ihit, khit)
2: i← ihit
3: k ← khit
4: while i ≥ 0 ∧ ∃π0,k |= Fi(X

0) ∧ T (X0, X1) ∧Cone(1, k) do

5: i← i− 1
6: k ← k + 1

7: if i < 0 then

8: return 〈Reach,π0,k ,−,−〉

9: return 〈Undef,−, i, k〉

At each iteration, the Unwind procedure, described in Algorithm 7, properly
computes i and k, starting from ihit and khit (related to the previous spurious
counterexample). Following the strategy described in Subsection 4.1, the cone
bound k is extended, and i is decremented (lines 5–6), until an Unsat BMC check
is obtained or the initial states are reached (line 4). In the first case, Unwind has
found a frame at which starting traversal is expected to refine Fk and filters out the
last spurious counterexample found. The procedure then returns an Undef result
together with the values i and k computed (line 9). Otherwise, the procedure has
detected a real counterexample as a side effect. In that case, the procedure returns
Reach along the counterexample found (line 8).

5.1 IGR setup comparison: a case study on intel015

Figures 3 and 4 report experimental data on a case study, namely circuit intel015
from [6], that we selected among the ones where standard interpolation could be
compared with IGR. Figure 3 plots i + k, the sum of state set indexes (i) and
cone bounds (k). This is usually logged as an equivalent BMC bound. Itera-

tions (on the x axis) indicate algorithm iterations (with image computation). The
standard interpolation line clearly shows that BMC bounds grow linearly within
ApproxFwdTrav, and they restart from the newly adjusted cone bound2 at new
ApproxFwdTrav calls. The IGR (A) line plots a run of IGR, with cone rewinding
always enabled: this means that the iterative decrease of k compensates the in-
crease of i, keeping the BMC bound constant within IgrApproxFwdTrav (except
when we reach k = 0). The IGR (B) line plots a run of IGR, with cone rewind-
ing disabled until a BMC hit. In this case we observe an initial increase of BMC
bounds, followed by a phase with constant BMC bound. Overall, IGR exploits its
ability to avoid restarting from low bounds and seeking for optimal restarts, which
can provide convergence at lower iteration indexes.

A comparison between IGR (A) and (B) shows that the latter can converge in
fewer iterations, due to its ability to increase BMC bounds. However figure 4, that
plots cumulative CPU times, shows that IGR (A) can be faster.

2 Following [8], we heuristically increment cone bounds by more than 1, based on the depth
of the previous ApproxFwdTrav run.
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(ITP) and IGR in two versions: A (rewind always enabled) and B (rewind disabled
until hit).
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Fig. 4: CPU time comparison for intel015, between standard interpolation (ITP)
and IGR in two versions: A (rewind always enabled) and B (rewind disabled until
hit).

Intuitively, guided and simplified cones in IGR can generate cheaper BMC
problems, as compared to standard interpolation. IGR (A) benefits from triggering
more, but possibly simpler, refinement steps and hence, SAT calls. Although this
is a good way to avoid highly expensive BMC problems, IGR (B) often performs
better in case of models with higher diameters (e.g., in the range of hundredths).
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6 Lazy Abstraction and Multiple Properties

Due to the fully incremental representation chosen for reachable states, IGR can
be tightly embedded in lazy abstraction, as well as multiple property verification
loops.

Typically, abstraction-refinement approaches, such as [27] and [28], iterate in-
cremental model refinements, solving a model checking problem after each re-
finement step. More recently [29] explores a tighter integration between a model
checking algorithm (IC3) and a lazy abstraction framework. As IGR is based on a
similar trace data structure, it can be easily integrated within a lazy abstraction
framework. Frames can be inherited by all refined models. Refinements on frames
can be considered as model strengthening steps. Let Sj and Sj+1 be two abstract
models (after refinement steps j and j + 1). Let RE

i (S
j) and RE

i (S
j+1) be the

states reachable by them in i steps. As refinement of frames strengthens a model,
RE

i (S
j+1) ⊆ RE

i (Sj), so state set overapproximations for Sj also overapproximate
states in Sj+1.

A similar framework can be adopted in multiple property verification, where
frames can be inherited and reused by all properties under check on the same
model. Reusability of state sets is guaranteed here by sharing the same model over
different property checks.

7 Experimental Results

We implemented a prototype version of our methodology on top of the PdTRAV
tool [30], a state-of-the-art model checking academic tool.

The experimental data in this section provide an evaluation of the techniques
proposed, as well as a comparison with standard interpolation.

We aim at showing that IGR can improve over standard interpolation, and be
an effective part of a model checking portfolio, by covering problems not completed
by other engines or by simply improving performance over them. We thus do not
provide an extensive set of results, with all available options, over a complete set
of benchmarks. Instead, we focused most of our efforts on a set of experiments
that we deemed “challenging”, so adequate to our purpose.

We performed an extensive experimentation on a selected sub-set of publicly
available benchmarks from past HardwareModel Checking Competitions (HWMCCs)[6]
suites. Most of the benchmarks are from the last bit-level competition (HWMCC2017)
with some addition of challenging benchmarks from previous editions, that were
excluded from HWMCC2017, due to a benchmark selection strategy that obviously
avoided full inclusion of past edition benchmarks.

It is worth noticing that most of the selected benchmarks are from industrial
origin (IBM, Intel).

Benchmarks were selected by focusing on two groups:

– Benchmarks completed by at least one tool at HWMCC competitions that we
were able to solve with IGR (in more than 60 seconds). This set of benchmarks
was used to provide a comparison between IGR and other tools. As we didn’t
replicate the experiments with other tools, such a comparison is based on
available data from HWMCC competitions.
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– Benchmarks left unsolved at HWMCC competitions that we were able to solve
with IGR. This set of benchmarks was used to compare IGR to standard inter-
polation over challenging problems. Though HWMCC experiments were run
under a 1 hour time limit, we used a much higher time limit in our experiments.
Note that we are not claiming that no other tool could cover these benchmarks,
but simply that they can be deemed as challenging (some of them are indeed
very challenging) and thus worth further investigation. Our results show that
IGR improves over standard interpolation on such benchmarks.

Our experiments were run on a quad-core workstation, with 2.5 GHz CPU
frequency and 32 GB of main memory. We ran the proposed set of experiments
taking into account different setups, as detailed below.

Table 1 reports details about the selected benchmarks in terms of model name,
number of primary inputs, latches and AIG nodes. Table 2 compares the best re-
sults we could obtain using IGR to the best ones obtained using standard inter-
polation and to the best ones achieved by any contestant of past HWMCCs.

Model

Name #PI #FF #AIG

6s8 86 396 3016

6s38 343 1931 10847

6s102 72 1108 7700

6s144 480 3337 45470

6s189 479 2436 39830

6s194 532 2131 13617

6s428rb093 410 3790 29084

intel010 1111 280 10156

intel011 1024 273 9362

intel015 1024 273 9362

6s35 77 1571 11504

6s148 480 3337 45470

6s160 149 559 8716

6s195 87 1257 8046

6s171 94 1263 8073

6s366r 86 1998 20560

oc8051gm06iram 364 934 12067

oc8051gm3bacc 364 934 12055

oc8051gm49acc 364 934 11990

oc8051gm88iram 364 934 12761

intel028 7426 7436 99835

Table 1: Circuit details of the selected HWMCC benchmarks.

Tables are split into three parts. Benchmarks solved by other tools in HWMCC
competitions are listed in the first two parts, differentiating between IBM and Intel
benchmarks. The last section shows problems unsolved at HWMCC competitions,
this is thus the most interesting contribution of IGR: the section shows 6 IBM
benchmarks and 2 benchmarks derived from an OpenCores.org implementation of
the 8051 Intel micro-controller [31]. Though we were able to verify other unsolved
8051 benchmarks, we limited them to two instances.
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IGR ITP HWMCC

Model MaxB Fwd Last Time LA PA MaxB Fwd Time Solvers Time

6s8 48 21 2 835.4 No No 45 21 835.4 4 147.82

6s38 27 18 1 264.23 Yes No 25 17 310.71 2 606.89

6s102 23 7 1 488.47 Yes No 31 20 726.62 8 10.58

6s144 36 22 1 291.48 No Yes 40 22 160.62 6 155.98

6s189 30 16 1 96.46 No Yes 37 26 282.66 3 110.48

6s194 30 16 1 154.45 No No 40 29 852.17 7 54.38

6s428rb093 7 6 2 746.75 No No - - - 2 273.34

intel010 56 36 14 200.91 No Yes 65 44 265.7 3 96.37

intel011 56 36 20 190.73 No Yes 64 42 899.89 4 440.09

intel015 40 22 12 130.3 No Yes - - - 3 272.22

6s35 83 71 70 428.88 No No 81 71 2704.61 0 -

6s148 29 16 1 254.13 No Yes 39 27 288.94 0 -

6s160-f4 56 37 1 61573.25 No No - - MEMOUT 0 -

6s195-f8 139 70 1 11447.65 No No 39706.02 140 71 0 -

6s171 570 261 279 302129.05 Yes No - - MEMOUT 0 -

6s366r 79 69 66 226.73 No No 83 72 1811.43 0 -

oc8051gm06iram 38 26 15 6125.45 No No 49 36 17084.02 0 -

oc8051gm3bacc 33 22 14 816.28 No No 33 22 1128.29 0 -

oc8051gm49acc 33 20 14 867.18 No No 44 23 1318.41 0 -

oc8051gm88iram 44 33 16 14409.62 No No 42 31 14796.59 0 -

intel028 166 74 16 9855.81 No Yes - - MEMOUT 0 -

Table 2: Comparison of results of IGR vs. ITP on selected HWMCC benchmarks.

In Table 2, for IGR we report the maximum BMC bound depth reached (Col-
umn MaxB), the bound at which a fixed point has been found during forward
traversal (Column Fwd), the last restart forward iteration, i.e., the bound at the
which the forward traversal has been restarted last as a result of cone unwinding,
(Column Last) and the verification time (Column Time). In addition we report
whether or not lazy abstraction (Column LA) or phase abstraction [32] (Column
PA) were used to verify the benchmark. For ITP we just report the maximum
bound depth reached (Column MaxB), the fixed point forward iteration (Column
Fwd) and the verification time (Column Time). Finally, we provide the best results
obtained during past HWMCCs in terms of number of solvers that were able to
verify the benchmark (Column Solvers) and verification time (Column Time). To
this respect, it is worth noticing that time statistics from competitions were mea-
sured on a different machine, by portfolio based (concurrent) model checkers. The
comparison with other engines is not as easy. To this respect it is worth noticing
that the best model checkers at HWMCCs highly rely on aggressive transforma-
tional techniques, that seek to pre-simplify problems under various equivalence-
preserving notions, before getting to Model Checking engines.

Data clearly show that, in some cases, interpolation based approaches are
more expensive than HWMCC best results: depending on individual instances,
this could be due to other engines in portfolios (e.g. IC3) and/or netlist prepro-
cessing/simplification steps. Overall, the performance of IGR and ITP are not far
from the HWMCC best. A comparison between IGR and ITP generally confirms
the higher ability of IGR to converge at lower BMC bounds, as seen in columns
labelled MaxB and Fwd.

A different outcome can be derived by experiments in the last section, that
shows the power of IGR in terms of scalability. The cases solved by both IGR and
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ITP confirm the previous comments; differences in execution times can generally
be attributed to the ability of IGR to skip intermediate bounds and/or restarts
from the initial state. The benchmarks only solved by IGR, or solved with rele-
vant gains (6s160,6s195,6s171, intel028) are more related to the ability to reuse
previous interpolants, which can be used for simplification purposes and or as ad-
ditional constraints in solver runs. It is worth noticing that 6s160 and 6s195 were
preprocessed by framing (which means composing a given number of transition
relation frames into one).

It is also worth noticing that lazy abstraction helped improving performance in
2 of the listed cases. Lazy abstraction was not implemented with standard interpo-
lation, where we just rely on CEGAR-based abstraction, as reuse of information
from precious abstraction would be limited, whereas IGR fully reuses previous
interpolants.

An updated version of the results presented in the last section of Table 2 (most
challenging benchmarks), as well as a copy of the pdtrav binary used to perform
the experiments is available at [33].

In order to gather more data, we did a second experimental evaluation of IGR,
extended to the single property benchmarks set of the latest HWMCC, purged of
the instances solved by any engine in less than a minute. We repeated a “compe-
tition run” with our multi-engine portfolio in three different setups:

– enabling all the available engines within PdTRAV, thus including standard
interpolation techniques, IC3, IGR, BMC and reachability-based techniques;

– excluding IC3;
– excluding both IC3 and IGR.

The results are plotted in figure 5, which clearly confirms IC3 as the most
powerful engine. But it also shows a good impact of IGR, as a relevant contribution
to the portfolio. The run with the full set of engines solved 116 problems, of which
47 were covered by IC3, and 10 by IGR. When disabling IC3, the overall result
decreased to 81, with IGR solving 18 problems. Data also show that IGR is still
not oriented to fast runs (within minutes). As seen in Table 2, a 2 hours timeout
better shows the gain of IGR over ITP.

8 Related works

Our work is related to many recent papers on SAT-based Model Checking. Among
the others, let us mention ITPSEQ [23], DAR [25] and AVY [34]. Our approach
shares with them the purpose to push forward scalability and performance of
interpolation-based model checking and the idea of incremental refinement of the
computed overapproximations.

Our approach takes ideas from all above works, it is based on interpolation, it
computes just forward approximations of state sets, which allows us to potentially
reuse them for multiple properties, or sub-properties, of the same model.

The use of a trace data structure is partially inspired by IC3 [5], DAR and
ITPSEQ. Compared to IC3, the proposed approach relies on transition relation
unrollings, instead of local reachability checks, in order to increase the precision
of the computed overapproximations. In addition, contrary to IC3, IGR stores
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Fig. 5: Wall clock cumulative time comparison on HWMCC instances solved by
PdTRAV (concurrent multi-engine version), with all engines active, without IC3,
and without IC3 and IGR. Time limit 900 seconds per instance.

overapproximations as AIG circuits instead of sets of clauses and does not en-
force monotonicity of the sequence of reachable states sets it derives. Compared
to other interpolation-based approaches, the proposed method keeps the standard
interpolation scheme of ITP, without considering backward reachable overapprox-
imations like DAR. Contrary to standard interpolation, in which the trace data
structure can be thought as implicitly computed but not explicitly maintained,
in the proposed approach the trace is explicitly represented and iteratively re-
fined. Compared to interpolation sequences we never compute an interpolation
sequence from a single SAT run and proof, but we activate sequences of standard
interpolation and/or approximate image calls.

Cone rewinding is similar to computing an interpolation sequence [24]. Some
user-controllable parameters in the proposed algorithm can be configured to make
the procedure mimic either the ITPSEQ or the standard ITP algorithm.

Simplification under observability don’t cares is an extensively studied subject
in the field of logic synthesis [35]. The proposed algorithm makes use of some very
light-weight simplification techniques in order to remove redundancies from the
computed approximations and transition relation unrollings from the target.

Many other internal details, at the level of SAT and circuit-based reasoning,
take inspiration from the above, as well as other existing works. Let us mention for
instance clause propagation by pushing, redundancy removal by subsumption, that
we brought from IC3 and re-implemented on circuit-based (AIG) representations.

9 Conclusions

We addressed the problem of optimizing interpolant-based verification techniques
for SAT-based Unbounded Model Checking. Our main contribution is to provide a
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new approach, that improves over standard interpolation, by exploiting the ideas
of incremental refinement and guidance through state sets. We experimentally
observed that the proposed optimizations have improved both performance and
scalability of our existing UMC approaches.
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