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Exact and Approximate Squarers for
Error-Tolerant Applications

Ke Chen, Member, IEEE, Chenyu Xu, Haroon Waris, Weiqiang Liu, Senior Member, IEEE,
Paolo Montuschi, Fellow, IEEE, and Fabrizio Lombardi, Life Fellow, IEEE

Abstract—Approximate computing is considered an innovative paradigm with wide applications to high performance and low power
systems. These applications have relaxed requirements for accuracy, so they can tolerate errors in results and achieve high performance.
In approximate computing, multipliers have been widely studied, but squarers (as similar schemes) have not received much attention.
In this paper, an accurate squarer is designed based on a Radix-8 Booth-folding square algorithm to reduce the number of partial
products and the depth of the partial product array. Several approximate squarers (R8AS1, R8AS2 and R8AS3) are proposed based
on the exact squarer to reduce power and delay. Two approximate partial product generators are also designed to simplify the Radix-8
Booth square encoder in R8AS1 and R8AS2. In addition, approximate compressors with compensation are used in the partial product
compression stage to reduce additional area and power consumption in R8AS3. Synthesis results for power, area, and delay at 28nm
CMOS technology are presented. Compared with designs in the technical literature with the same accuracy, the proposed 16-bit designs
reduce the PDP by 37%; in general, the PDP is decreased by up to 51%. Finally, the proposed approximate squarers are implemented
in a square-law detector as a communication application and achieve an SNR close to 30dB. Also, the three proposed approximate
squarers are applied to the k-means clustering algorithm for machine learning to accomplish high performance in classification.

Index Terms—Radix-8 Booth-folding square algorithm, low power, approximate squarers, approximate compressors, square-law
detector, k-means clustering.

F

1 INTRODUCTION

SQUARE operation is widely used in digital signal pro-
cessing, such as error correction, image compression,

vector quantization, equalization, and co-processors [1] [2].
Energy efficiency in hardware has become a significant
challenge in today’s DSP systems and machine learning.
In addition, with an increase in workload for modern DSP
applications, low power and high performance are strict
requirement. However, it is difficult to further reduce power
consumption and delay when results are required to be
fully accurate for squarers. Furthermore, most applications
are error-tolerant, so relatively high performance can be
maintained even though errors are introduced [3]. There-
fore, it is acceptable to use approximate computing to
improve performance of squarers and reduce power with
some accuracy loss. The square operation is commonly
performed by a conventional multiplier, using the same
multiplicand and multiplier, however, a multiplier accounts
for a significant redundancy because it is designed for two
independent operands, so leading to significant power and
area consumption [4]. As shown in [5] [6], the use of specific
folding squares instead of multipliers can reduce power by
more than 50% and increase performance; therefore, it is also
appropriate to design a specialized approximate squarer.
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Several schemes have been proposed for exact squarers
design. In [7], a novel squaring algorithm is proposed, it
precomputes the partial product coordination multiplication
to improve the square operation. In [8], two new bit-serial
squarers for long numbers of LSB first form are proposed;
the computational efficiency is 50% higher than for the tra-
ditional squarer. A novel left-to-right leading digit first dual
recoding is proposed in [9]; it generates an array with non-
negative partial squares. The size of its partial product array
is half of the conventional Radix-4 and Radix-8 multiplier
designs.

The hardware of the squarer is similar to the multiplier,
which including partial product generation, partial prod-
uct compressor, and the final accumulation. Therefore, the
conventional Radix-4 Booth folding method can be applied
to implementing squarer [10]. In addition, for squarer’s ap-
proximation, techniques used for a approximate multiplier
such as approximate Booth encoding [11] can also be ap-
plied to a squarer. Based on the approximation techniques,
the approximate squarer can be classified as truncated ap-
proximate squarer [12] - [16] and non-truncated approxi-
mate squarers [17]. For truncated approximate squarers, the
computing accuracy is significantly reduced. On the other
hands, research on non-truncated approximate squarers is
inadequate, especially for approximate squarers based on
Booth coding. [17] proposed Radix-4 Booth-folding Approx-
imate squarers with input signal rearrangement method.
However, the Radix-4 algorithm can only reduce the partial
products by almost 50%.To the best of the authors’ knowl-
edge, a Radix-8 Booth-folding algorithm for squarer has not
yet been proposed. Although the partial product generator
of a Radix-8 Booth-folding encoding is more complex than
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Radix-4, a Radix-8 Booth-folding encoding can reduce more
partial products, and therefore the depth of the partial
product array; fewer compressors are then needed for the
partial product accumulation trees, as already shown by the
hybrid low Radix Booth multipliers of [18].

In this paper, a Radix-8 Booth-folding square algorithm
and a squarer based on Radix-8 Booth-folding encoding are
proposed. The hardware for odd multiples such as (×3) in
the Radix-8 Booth-folding encoding are complex, so these
terms are approximated to simplify the encoder circuit. In
addition, when considering the trade-off between power
consumption and accuracy, approximate 4-2 compressor,
full and half adders are used in the partial product accumu-
late unit to further reduce power consumption. The main
contributions of this work are summarized as follows:

1) The Radix-8 Booth-folding algorithm for squarer and
Radix-8 Booth-folding encoding are proposed to re-
duce the number and height of the partial products,
so reducing the number of adders used for partial
product matrix compression.

2) Two approximate encoders are designed to simplify
the circuit complexity of the Radix-8 Booth encoding.
The proposed Radix-8 Booth folding encoding, two
approximate encoders and approximate compressors
with compensation are used in three approximate
squarers (R8AS1, R8AS2 and R8AS3) to assess the
trade-off between power and accuracy.

3) The proposed designs achieve 20% to 52% en-
ergy saving compared with the latest approximate
squarer; they are used to test for the square-law
detector in the process of amplitude modulation and
demodulation. In addition, all approximate squarers
are utilized to calculate the Euclidean distance in the
k-means clustering algorithm for data classification.

The rest of this paper is organized as follows: An ex-
act squarer based on Radix-8 Booth-folding encoding is
introduced in Section II. In Section III, two approximate
partial product generators are proposed according to the
characteristics of the Radix-8 Booth encoder. Combined with
approximate compressors, three approximate squarers are
designed. In Section IV, the hardware simulation and error
results of the approximate squarers are comprehensively
analyzed and compared. Approximate squarers are used in
communication and machine learning applications to verify
their performance in Section V. Section VI concludes the
paper.

2 RADIX-8 BOOTH FOLDING ENCODING

Like a multiplier, a squarer also consists of folding en-
coding, partial product generator (PPG), partial product
matrix compression, and final accumulation. The significant
difference of the Booth algorithm is that only one input is
encoded in the multiplier, while in a squarer, both inputs
must to be encoded. However, using Booth encoding cir-
cuits for both inputs make the partial product generator
extremely complicated. Therefore, one of the inputs needs to
be expanded. The derivation process of the Radix-8 Booth-
folding squarer operation is as follows.

TABLE 1: Truth Table of Ci,j for Radix-8 Booth Encoders

a3i+2a3i+1a3ia3i−1 Ai Ci Ci,4 Ci,3 Ci,2 Ci,1 Ci,0

0000 0 0 0 0 0 0 0
0001 +1 1 0 0 0 0 1
0010 +1 1 0 0 0 0 1
0011 +2 4 0 0 1 0 0
0100 +2 4 0 0 1 0 0
0101 +3 9 0 1 0 0 1
0110 +3 9 0 1 0 0 1
0111 +4 16 1 0 0 0 0
1000 -4 16 1 0 0 0 0
1001 -3 9 0 1 0 0 1
1010 -3 9 0 1 0 0 1
1011 -2 4 0 0 1 0 0
1100 -2 4 0 0 1 0 0
1101 -1 1 0 0 0 0 1
1110 -1 1 0 0 0 0 1
1111 0 0 0 0 0 0 0

Consider an N-bit signed binary integer A, given by:

A = −aN−12N−1 +
N−2∑
i=0

ai2i (1)

Let N=12, after being encoded by the Radix-8 Booth algo-
rithm, A is represented as:

A = A329 +A226 +A123 +A020 (2)

where Ai = −4a3i+2 + 2a3i+1 + a3i + a3i−1 and a−1 = 0.
The result of the Radix-8 encoded A2 can be written as :

A2 =2A3A029 + 2A2A026 + 2A1A023 +A0A020

+ 2A3A1212 + 2A2A129 +A1A126

+ 2A3A2215 +A2A2212

+A3A3218 (3)

By introducing two variables Pi and Ci, we obtain:

A2 =(P024 + C0)20 + (P124 + C1)26 + (P224 + C2)212

+ C3218 (4)

And by expanding to N-bit, where:

Ci = Ai ×Ai for 0 6 i 6 dN/3e − 1 (5)

Pi = Ai

N/3−1∑
t=i+1

At2
3t−3(i+1)

= Ai ×Bi +Ai × a3i+2 for 0 6 i 6 dN/3e − 2 (6)

and

Bi = −aN−12N−3i−4 + aN−22N−3i−5 + . . .+ a3i+320 (7)

As per the Radix-8 Booth encoders of Table 1, the value
of the encoded Ci = {0,1,4,9,16}. Then Ci,1 is ’0’ because
none of the values among Ci,1 has a weight of 2. The
Boolean function of a partial product Ci is given as follows:

Ci,0 = a3i−1 ⊕ a3i (8)
Ci,2 = (a3i−1 � a3i)(a3i ⊕ a3i+1) (9)
Ci,3 = (a3i−1 ⊕ a3i)(a3i+1 ⊕ a3i+2) (10)
Ci,4 = (a3i−1 � a3i)(a3i � a3i+1)(a3i+1 ⊕ a3i+2) (11)
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Fig. 1: The partial product generator of Pi,j .

Hence, a3i+2 is represented as the sign bit of Ai. Thus (6)
can be rewritten as:

Pi =

{
Bi ×Ai ifAi ≥ 0

Bi × |Ai| ifAi ≤ 0
(12)

In (12), when Ai = 2, the circuit of 2Bi can be imple-
mented by shifting one bit to the left and two bits for the
Ai = 4 scenario. At the same time, 3Bi is calculated by
adding Bi and 2Bi, which requires additional circuits when
Ai = 3. Therefore, the circuit overhead can be reduced by
considering this scenario. The approximate method for 3Bi

is discussed in the next section. As per the Radix-8 Booth
encoders of Table I, Ai is given by:

|Ai| = 4m4,i + 3m3,i + 2m2,i +m1,i (13)

where, the mj,i are the control signals generated by the
encoder for calculating the value of Ai when Ai = ±j. The
one-hot code is composed of {m4,i, m3,i, m2,i, m1,i},which
means only one of the four signals can be 1 at the certain
time. For example, if m4,i is 1, the other three signals are all
0. The value of |Ai| will be 4. Controlled by mj,i, the value
of |Ai| can be one of {1, 2, 3, 4} to produce the value of the
second column in Table 1. By replacing (7) and (13) into (12),
merging different items with the same weight, and defining
the weight as the variable j, the following expression is
found.

Pi,j = [a3i+j+1m4,i + (a3i+j+2 + a3i+j+1)m3,i + a3i+j+2

m2,i + a3i+j+3m1,i]⊕ (a3i+2a3i+1a3ia3i−1) (14)

The ranges of i and j are respectively [0, N/3-2] and [0, N-
3i-2]. Fig. 1 shows in schematic form the partial product
generator circuit of Pi,j , that consists of the Radix-8 Booth
encoder and decoder.

As per previous expressions, the partial product array of
each term can be obtained. Fig. 2 graphically shows the Pi,j

and Ci,j partial products arrangement of a Radix-8 Booth
squarer with a 12-bit input. The most significant bit of Pi;j
in each row has a negative weight and must be subtracted
by taking the two’s complement. The constant term is the

TABLE 2: Truth Table of Approximate Radix-8 Booth En-
coders for Squarer

a3i+2a3i+1a3ia3i−1 Ai AR8E1 ED AR8E2 ED
0000 0 0 0 0 0
0001 +1 +1 0 +1 0
0010 +1 +1 0 +1 0
0011 +2 +2 0 +2 0
0100 +2 +2 0 +2 0
0101 +3 +2 -1 +2 -1
0110 +3 +4 1 +2 -1
0111 +4 +4 0 +2 -2
1000 -4 -4 0 -2 2
1001 -3 -4 -1 -2 1
1010 -3 -2 1 -2 1
1011 -2 -2 0 -2 0
1100 -2 -2 0 -2 0
1101 -1 -1 0 -1 0
1110 -1 -1 0 -1 0
1111 0 0 0 0 0

sign extension bit, that uses the sign extension prevention
technique proposed in [19] to add constants and reduces the
number of constant ones by pre-calculating their sum and
sending the carry into the next column.

3 APPROXIMATE RADIX-8 BOOTH SQUARER

In this section, two approximate Radix-8 encoders (AR8E1
and AR8E2) are proposed for analysis on the Radix-8 Booth-
folding encoding squarer to reduce the area and power of
the partial product generators. Furthermore, approximate
compressors are introduced into the partial product com-
pressor unit to reduce the overall hardware for the squarer;
so three approximate squarer schemes are proposed. Dif-
ferent approximate partial product generators are used in
R8AS1 and R8AS2 to compare the effects of the approximate
encoding on the accuracy and power; R8AS3 uses approxi-
mate compressors in the compression tree based on the ap-
proximate partial product generator that saves most of the
power and area. In the design of the approximate squarer,
the more bits are involved in the approximate modules, the
more power reduction is achieved while introducing larger
errors.

3.1 R8AS1 Booth Squarer

Compared with the array-based folding squarer, the Booth
encoding squarer’s partial product generator circuit is more
complicated. Therefore, an approximation to the partial
product generator can result in improvements in the Booth
encoding speed and reduce power consumption and area
with acceptable errors.

In the Radix-8 encoding of the squarer, m3 in the partial
product generator is more complicated which is imple-
mented by adding m1 and m2. In order to avoid the gener-
ation of m3, the approximate Radix-8 encoder (AR8E1) are
proposed. In AR8E1, the m3 terms are approximated to m2

andm4 respectively to produce negative and positive errors.
In detail, AR8E1 encode the ‘0101’ and ‘0110’ case to +2 and
+4, and ‘1001’ and ‘1010’ cases to -4 and -2, respectively. In
this way of design, the maximum error distance will be +1
or -1, and the average error distance is zero. The truth table
is shown in Table 2.
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Fig. 2: Partial product matrix of 12-bit squarer using the proposed Radix-8 Booth folding encoding
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Fig. 3: Encoders of partial product generator Pi,j used in an
approximate Radix-8 squarer (a) AR8E1. (b) AR8E2.

This approximation introduces both positive and nega-
tive errors into the partial product generation circuit. When
these two errors occur simultaneously in the circuit, they can
compensate each other in the partial product compression
process. Therefore, there is no need to generate the m3

encoder circuit and the corresponding decoder, saving an
addition in the partial product generator. Fig. 3(a) shows
the encoder circuit of the partial product Pi,j .

As shown in Fig. 3(a), AR8E1 has no significant area ad-
vantage compared to an accurate encoder circuit; however;
the serial adder that generates the x3 signal in the decoder
is not required because the m3 signal is discarded. Also,
the dynamic power consumption of AR8E1 is reduced and
area and power of the partial product generator circuit can
be saved, with significant improvement in the critical path
delay. The complete partial product generation circuit of the
Radix-8 Booth folding squarer includes Pi,j and Ci,j . Since
Ci,j can be generated only by the encoder, and no complex
decoding circuit is required. Therefore Ci,j is simple to
generate and does not require approximation.

3.2 R8AS2 Booth Squarer
To further reduce the complexity of the partial product
generator, both m3 and m4 are considered. They are approx-
imately equal to m2 in AR8E2, so reducing the complexity
of the approximate partial product generator as equivalent
to the Radix-4 Booth folding encoding.

As shown in Fig. 3(b), AR8E2 has one less gate than
AR8E1, so achieving a rather small area improvement. How-
ever, the discarded output m4 ensures that AR8E2 further
reduces two multiplexed XOR gates, thereby reducing the
dynamic power consumption of the approximate encoder.

TABLE 3: Truth Table of the Approximate Compressors

x4x3x2x1
AC 42 AC 32 AC 21

S1S2 ED S1S2 ED S ED

0000 00 0 00 0 0 0
0001 00 -1 00 -1 0 -1
0010 00 -1 00 -1 0 -1
0011 10 -1 10 -1 1 -1
0100 00 -1 00 -1 X X
0101 01 -1 01 -1 X X
0110 01 -1 01 -1 X X
0111 11 -1 11 -1 X X
1000 00 -1 X X X X
1001 01 -1 X X X X
1010 01 -1 X X X X
1011 11 -1 X X X X
1100 10 -1 X X X X
1101 11 -1 X X X X
1110 11 -1 X X X X
1111 11 -2 X X X X

The complexity of the approximate decoder circuit is also
reduced. The approximate input of the encoder of the partial
product generator is shown in Table 2, and the error distance
(calculated by considering the exhaustive input combina-
tions) is also reported; the value of AR8E2 is always smaller
than the exact product, hence the partial product generator
causes a negative error. Therefore, if an appropriate approx-
imation method is used to produce a positive error in the
partial product compression stage, the errors of these two
parts compensate for each other to improve the accuracy.

3.3 R8AS3 Booth Squarer
The designs of R8AS1 and R8AS2 employ two types of ap-
proximate partial product generation circuits for the squarer,
leading to different power consumption and accuracy. The
remaining circuits of the squarer, namely the partial product
compression and the final summation, are all accurate. In
this section, an approximation method for the partial prod-
uct compression process is also used. The approximate par-
tial product generator proposed for R8AS2 is used in R8AS3
by reducing the power of the partial product generator. In
addition, the approximate 4-2 compressor, the approximate
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Fig. 4: Approximate compressors with constant compensa-
tion. (a) AC 42, (b) AC 32, (c) AC 21.

half and full adder with constant compensation are utilized
to replace the accurate adders and decrease the power and
area of the squarer.

The truth table of the approximate compressors (AC 42,
AC 32 and AC 21) are shown in Table 3. The approximate
4-2 and 3-2 compressors have two sum output signals (S1

and S2) in place of the carry output signal. The approximate
2-1 compressor has only one output signal S. As shown in
Table 3, these approximate compressors produce errors of
-1 in all input states, except when the input is all zeros.
When the input is ’1111’ in AC 42, the error distance is
–2 because there are only two output signals with weights
at the current bit. Since these approximate compressors
have not carry output signals and introduce errors in most
input situations, the circuit structure of their output signals
becomes simpler. Fig. 4 shows the circuit diagram of the
approximate compressor. Although the error probability of
the approximate compressor is very high, the error can be
recovered by a simple approach which will be demonstrated
using the example of 32-bit R8AS3 squarer.

The accumulation diagram of 32-bit R8AS3 partial prod-
ucts is shown in Fig. 5. Approximate partial product gen-
erators and approximate compressors are used for lower
32-bit, where the Ci,j term is precisely generated.For the
column with two partial products, the AC 21 compressor
is employed. Meanwhile, the AC 32s are used for pro-
cessing the compression with three partial products case,
and AC 42s are used for more than three partial products
case scenarios. Table 3 demonstrates the truth table and the
error distance of three types of approximate compressors.
It can be observed that the expected error distance for each
approximate compressor is almost −1, which means each
for nth column, the approximate compressor is expected
to introduce a −1 × 2n error. Besides, the six LSBs of the
first row of partial product is set to 0 in order to maintain
a negative error distance. In all, the error introduced by
approximate compressors and truncations can be viewed
as 1̄1̄...1̄ (32 bit 1̄) approximately. Therefore, the 100...0 (32
bit 0) can be used to compensate for the error significantly,
which is adding a constant at the 32nd column of the partial
product array. After adding a constant one in the higher bit,
the approximate compressors can be thought as producing
errors only when the input are all zeros and all ones in the
approximate 4-2 compressor. So the error probabilities of
approximate compressors (AC 42, AC 32 and AC 21) are
12.5%, 12.5% and 25% respectively.

4 COMPARISON AND ANALYSIS

The proposed approximate squarers are evaluated by con-
sidering the required hardware and the error analysis. This
work evaluates the performance of 12-bit and 16-bit approx-
imate squarers. In a 12-bit squarer, the approximate Radix-8
encoders and approximate compressors are implemented in
the lowest 12 bits. In R8AS1 and R8AS2, the approximate
encoders AR8E1 and AR8E2 are used in the least significant
12 bits, and also the approximate bit-width is 16 in 16-
bit approximate squarers. The approximate half-adder and
full-adder are implemented in 4-7 and 8-11 weight bits
respectively; the constant compensation is added in bit 12.
No approximate 4-2 compressor is used due to the low
height of the partial product array. For a 16-bit approximate
squarer, the approximate half-adder and full-adder are im-
plemented in 4-7 and 8-11 weight bits respectively while the
approximate 4-2 compressor is used in 12-15 weight bits; the
constant compensation is added to bit 16. All approximate
squarers use a recursive carry-lookahead adder consisting
of 4-bit carry-lookahead adder in the final addition unit.

The squarers used for comparison include truncated
squarers [12] and fixed-width squarers based on Radix-4
Booth folding encoding [15]. Also, the approximate Radix-
4 Booth squarers (ABSx) of [17] are compared. For a fair
comparison, in an n-bit (12 or 16) squarer, the truncation
factor is set to n for the truncated schemes [12]. In the fixed
width [15] squarers, the lower n bits of the partial product
array are considered LP, including the (n − 1)-bit LPminor

and the 1-bit LPmajor. The approximate factor is set to n
with a compensation bit number of k=4 for ABSx [17].

The proposed designs are implemented in Verilog HDL.
The Synopsys Design Compiler tool under the NanGate 28-
nm standard cell library is used to synthesize the squarers
and evaluate power, area and delay with temperature of
25 degrees Celsius and 1V supply voltage. The normalized
mean error distance (NMED) are assessed using the C pro-
gramming language based on uniformly distributed input
data. The PDP-NMED product (P-N) is used to evaluate the
trade-off between hardware and accuracy of approximate
squarers.

All comparison metrics of the proposed and existing
approximate squarers are shown in Table 4. For 16-bit squar-
ers, R8AS1 has the highest accuracy among the proposed
approximate squarers due to the approximate partial data
generator and its compensating features; R8AS2 provides
a better trade-off between power consumption and accu-
racy. Compared with R8AS2, R8AS3 further reduces PDP
by 16% due to the use of approximate compressors. The
proposed approxiamte squarers save 49.6% to 31.2% PDP
and 31.1% to 16.4% area compared with accurate Radix-
8 Booth squarer. In addition, the three proposed approxi-
mate squarers achieve an 16% to 42% reduction in power
consumption and up to 51% reduction in PDP compared
with ABSx [17] and have the same or higher accuracy. Fig.
6 plots the PDP and NMED of all approximate designs.
The proposed designs provide a comparable accuracy, and
reductions in power. TRUN-SQ [12] provides power and
delay advantages because they are truncated squarers; how-
ever, the truncation operation also causes larger errors. In
addition, the dynamic error-compensation circuit and the



6

   32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0

`

: Accurate partial product

00000 0

: Approximate partial product

: Compensation bit

: AC_42

: AC_32

: AC_21

Fig. 5: Partial products accumulation diagram of 32-bit approximate squarer R8AS3

TABLE 4: Hardware Comparison and Error Analysis of Approximate Squarers

Designs Area (µm2) Delay (ns) Power (µW) PDP (pJ) NMED (10−4) P-N (10−2)

12-bit

Accurate 337.1 0.97 207.9 201.7 — —
R8AS1 276.6 0.85 165.4 140.6 2.024 2.85
R8AS2 251.3 0.85 151.9 129.1 2.271 2.93
R8AS3 234.7 0.81 139.7 113.2 3.916 4.43

ABS1 [17] 312.8 0.82 174.1 142.8 3.712 5.30
ABS2 [17] 304.0 0.73 150.3 109.7 5.136 5.63
ABS3 [17] 333.9 0.75 186.9 140.2 3.843 5.39

TRUN-SQ [12] 224.6 0.61 118.7 72.4 64.431 46.65
FW-PBFT [15] 361.2 0.87 180.9 157.4 81.269 127.92

16-bit

Accurate 440.7 1.20 267.8 321.4 — —
R8AS1 368.8 1.05 210.5 221.0 0.104 23.1
R8AS2 336.5 1.05 183.6 192.8 0.113 21.7
R8AS3 303.7 1.02 158.7 161.9 0.235 38.0

ABS1 [17] 458.8 1.02 267.8 273.2 0.224 61.1
ABS2 [17] 445.9 0.89 250.5 222.9 0.323 71.9
ABS3 [17] 491.0 0.93 274.9 255.7 0.231 59.1

TRUN-SQ [12] 374.4 0.75 197.9 148.4 4.576 679.1
FW-PBFT [15] 519.8 1.18 258.4 304.9 6.742 2055.6

R8AS1

R8AS2

R8AS3

ABS1

ABS2

ABS3

TRUN-SQ

FW-PBFT

140

160
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200

220

240

260

280

300

320

-1 19 39 59

P
D
P
(p
J)

NMED(10⁻⁵)

Fig. 6: PDP and NMED plot of the proposed approximate
Radix-8 squarers and squarers found in the technical litera-
ture.

folding method rather than Radix-4 Booth folding algorithm
are used in FW-PBFT [15], this results in the highest area
and delay penalties. Among all approximation designs,
the proposed three squarers show the largest advantages
in PDP and NMED when combined. For 12-bit squarers,
the proposed approximate squarers provide lower errors
at the same PDP level compared with ABSx [17], because
the circuit of the Radix-8 Booth folding algorithm occupies
more area at a low bit-width. The lower bit-width decreases
the advantage of this algorithm by reducing the number of
partial products. Nevertheless, the proposed approximate
squarers achieve an advantage in accuracy due to the lower
error probability of the approximate encoder and the ap-
proximate compressors with compensation.

The proposed squares are further evaluated for hard-
ware resource consumption and error under 32-bit. As is
shown in Table. 5, R8AS1 and R8AS2 only use approxi-
mate encoders, so their performance is similar. Furthermore,
R8AS3 uses the approximate compressors that save the most
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TABLE 5: Hardware and Error Metrics of 32-bit Squarers

Designs Area (µm2) Delay (ns) Power (mW) NMED (10−7)

Accurate 1813.0 4.77 0.650 —

R8AS1 1670.2 4.61 0.575 2.231

R8AS2 1605.8 4.58 0.558 2.857

R8AS3 1458.4 4.51 0.512 4.441

area, so R8AS3 has the lowest power consumption and
area, but the accuracy is also reduced. Compared with exact
squarer, they can save lots of hardware resources and have
lower critical path delay.

5 APPLICATIONS

5.1 Square-Law Detector
In communication application, detection techniques are re-
quired to extract low-frequency signals. For small signals
in amplitude modulation (AM), the so-called square-law
detector is used to demodulate the signal. In the demod-
ulation process, the modulated amplitude signal is squared
to obtain a signal of twice the frequency. The high-frequency
component is removed by a low-pass filter, and the original
signal is obtained by coherent demodulation. For a square-
law detector of the demodulation process, the modulated
signal needs to be squared as:

x2(t) = [A2(m(t) + 1)2 +A2(m(t) + 1)2 · cos(2πfct)]/2
(15)

where fc and A stands for the frequency and amplitude of
carrier signal, while m(t) is the message signal. The high-
frequency component of the squared signal can be filtered
after passing through a low-pass filter. Then, the output is
connected to the square root module and the DC component
is subtracted to demodulate the message signal.

Simulink simulation is used to model the square-law
detector. Fig. 7 shows the demodulated waveform after ap-
plying the proposed squarers to the square-law detector. To
assess the performance of the proposed approximate squar-
ers for demodulating signals, carrier signals and message
signals at various frequencies and amplitudes are used to
generate the modulated signals. In Fig. 6(a), the carrier sig-
nal with frequency fc = 1kHz and amplitude A = 1V and the
message signal with frequency fm = 50Hz and amplitudeM
= 0.5V are used. The carrier signal with fc = 1.5kHz and A =
1V and the message signal with fm = 200Hz and M = 0.25V
are also used in the simulation of Fig. 6(b). In addition, the
sample frequency of all experiments is set to 20kHz, and
the passband edge frequency of the low-pass filter satisfies
the Nyquist sampling theory. In these cases R8AS1 has the
best performance due to its lowest NMED. Although the
three approximate squarers slightly shift the waveform up,
all signals are demodulated smoothly. The SNR is used to
evaluate the quality of the demodulated waveform. Fig. 8
illustrates the SNR of the demodulated waveforms of each
approximate squarer. The proposed squarers have an SNR
close to 30dB, and this result is consistent with the error
analysis of Table 4.

(a)

(b)

Fig. 7: AM demodulated signals using the proposed approx-
imate squarers and an exact squarer: (a) the carrier signal
with fc = 1kHz, A = 1V and message signal with fm = 50Hz,
M = 0.5V, and (b) the carrier signal with fc = 1.5kHz, A =
1V and message signal with fm = 200Hz, M = 0.25V.
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Fig. 8: SNR of demodulated waveforms for squarers.

5.2 K-means Clustering Results

The K-means clustering is widely utilized in the cluster-
ing paradigm as based on minimizing a formal objective
function [20]. As a typical application of the unsupervised
clustering algorithm, the k-means clustering algorithm is
used to automatically classify samples into a category. In
the clustering algorithm, the classification result is obtained
according to the coordinates for the center point of the
cluster and the Euclidean distance from the center point
to the data point to be classified in each cluster. In this
section, the proposed three approximate squarers are used
to calculate the Euclidean distance and compared with
the classification results using an exact squarer. The data
classification results are evaluated by using the F1-measure
parameter for testing the performance of the classifier. The
value of the F1-measure is given by:

F1 =
2 · P ·R
P +R

(16)
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where P is the precision rate and R is the recall rate.
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Fig. 9: Clustering results with different squarers: (a) exact
squarer with F1=1, (b) R8AS1 with F1=0.9366, (c) R8AS2
with F1=0.9236 and (d) R8AS3 with F1=0.9106.

Fig. 9 shows the classification results obtained by us-
ing the exact squarer and the three proposed approximate
squarers for the Euclidean distance. As experimental results,
600 randomly generated data points and three clustering
centers with different colors are utilized. The use of the
proposed approximate squarers in calculating the minimum
Euclidean distance has no significant impact on the classifi-
cation results. The F1-measure values of the three proposed
approximate squarers are also shown in Fig. 9. When the
value of F1-measure is equal to 1, then the classification
result is fully accurate. R8AS1 has the highest value, again
consistent with the error analysis of the approximate squar-
ers in Section 4.

6 CONCLUSION

In this paper, a Radix-8 Booth folding method has been
proposed to reduce the number of partial products and
further simplify the design of the compression tree. Then
two approximate partial product generators (AR8E1 and
AR8E2) have been designed to reduce the complexity of the
encoder and decoder. Also, the approximate compressors
with constant compensation have been designed to reduce
the compressor tree area and power, while compensating for
the negative error generated by the approximate compres-
sors. Finally, three different combinations of approximate
squarers (R8AS1, R8AS2, and R8AS3) have been proposed
to assess the trade-off between hardware and accuracy of
the different design schemes. The proposed designs provide
up to 51% and 68% reduction in PDP and NMED compared
with the latest approximate squarers. Moreover, the effec-
tiveness of the approximate squarers have been verified by
applying them to the square-law detector and the k-means
clustering algorithm.
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