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We derive an anisotropic a posteriori error estimate for the adaptive conforming Virtual Element ap-
proximation of a paradigmatic two-dimensional elliptic problem. In particular, we introduce a quasi-
interpolant operator and exploit its approximation results to prove the reliability of the error indicator.
We design and implement the corresponding adaptive polygonal anisotropic algorithm. Several numeri-
cal tests assess the superiority of the proposed algorithm in comparison with standard polygonal isotropic
mesh refinement schemes.

Keywords: Virtual Element Method; anisotropy; a posteriori error analysis.

1. Introduction and Notation

In recent years, the numerical approximation of partial differential equations on computational meshes
composed by arbitrarily-shaped polygonal/polyhedral (polytopal, for short) elements has been the subject of
an intense research activity. Examples of polytopal element methods (POEMs) include the Mimetic Finite
Difference method, the Polygonal Finite Element Method, the Polygonal Discontinuous Galerkin Finite
Element Method, the Hybridizable Discontinuous Galerkin and Hybrid High-Order Methods, the Gradient
Discretization method, the Finite Volume Method, the BEM-based FEM, the Weak Galerkin method and
the Virtual Element method (VEM). For more details see the special issue Beirão da Veiga & Ern (2016)
and the references therein.

The novelty and recent surge of interest in POEMs stems from their ability to describe a physical do-
main using not only standard shapes (triangles, tetrahedra, square, hexahedra,...) but also highly irregular
and arbitrary geometries. This flexibility of essentially arbitrary polytopal meshes is naturally very attrac-
tive for designing adaptive algorithms based on mesh refinement (and derefinement/agglomeration) driven
by suitable a posteriori error estimates. However, while (isotropic and anisotropic) error estimates and a
posteriori error estimates and adaptive finite element methods (AFEMs) have been intensively investigated
during the last decades (see, e.g., for the isotropic case the monographs Verfürth (2013); Nochetto & Veeser
(2012) and the references therein and for the anisotropic case Apel (1999); Formaggia & Perotto (2001,
2003); Georgoulis (2003, 2006); Georgoulis et al. (2007a,b) and the references therein), the corresponding
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study of a posteriori error estimates and adaptivity for polytopal methods is still in its infancy. See, for ex-
ample, Beirão da Veiga (2008); Beirão da Veiga & Manzini (2008); Antonietti et al. (2013) for the study of a
posteriori error estimates in the context of Mimetic Finite Differences, Beirão da Veiga & Manzini (2015a);
Berrone & Borio (2017); Cangiani et al. (2017b); Mora et al. (2017); Beirão da Veiga et al. (2019); Chi
et al. (2019); Cangiani & Munar (2019) for the Virtual Element Method, Weisser (2011); Weisser (2017);
Weisser & Wick (2018); Weisser (2019) for polygonal BEM-based FEM, Zenoni et al. (2017) for the polyg-
onal Discontinuous Galerkin method, Di Pietro & Specogna (2016) for the Mixed High Order method, Mu
(2019) for the Weak Galerkin method and Vohralı́k & Yousef (2018) for lowest-order locally conservative
methods on polytopal meshes. Moreover, despite the great flexibility provided by polytopal meshes, the
above works focused on the isotropic case, only. The anisotropic adaptive polytopal mesh refinement, to
our knowledge, has been addressed only in Antonietti et al. (2019) for the Virtual Element Method in two
dimensions. For completeness, see also the recent work Cao & Chen (2019) for nonconforming VEM a
priori anisotropic error analysis. Aim of this paper is to push forward the research of Antonietti et al.
(2019) providing a rigorous polygonal anisotropic a posteriori error estimate for conforming VEM and nu-
merically assessing its efficacy in driving polygonal adaptive anisotropic mesh refinement strategies for the
virtual element approximation of a paradigmatic two-dimensional elliptic problem.

The outline of the paper is as follows. In Section 2 we introduce the continuous elliptic problem together
with its lowest order virtual element approximation. In Section 3 we first make precise the notion of
polygonal anisotropy, then we state the anisotropic mesh regularity assumptions under which our theoretical
results will be obtained. In the same section we also collect a series of instrumental results that will be
employed in the subsequent analysis. In Section 4 we introduce a quasi-interpolant operator and prove
approximation results that will be employed in Section 5 where a novel polygonal anisotropic a posteriori
error estimate is obtained. Finally, in Section 6 we present a set of numerical results assessing the validity
of our theoretical error estimates and the capability of our anisotropic error indicators to drive an adaptive
polygonal anisotropic mesh refinement strategy for the solution of an elliptic problem.

1.1 Notation of functional spaces and technical results

We use the standard definition and notation of Sobolev spaces, norms and seminorms as given in Adams
& Fournier (2003). Hence, the Sobolev space Hs(ω) consists of functions defined on the open bounded
connected subset ω of R2 that are square integrable and whose weak derivatives up to order s are square
integrable. As usual, if s = 0, we prefer the notation L2(ω). Norm and seminorm in Hs(ω) are denoted
by || · ||s,ω and | · |s,ω , respectively, and (·, ·)ω denote the L2-inner product. The subscript ω may be omitted
when ω is the whole computational domain Ω .

If `> 0 is an integer number,P`(ω) is the space of polynomials of degree up to ` defined on ω , with the
convention that P−1(ω) = {0}. The L2-orthogonal projection onto the polynomial space P`(ω) is denoted
by Π

0,ω
` : L2(ω)→P`(ω). The space P`(ω) is the span of the finite set of scaled monomials of degree up

to `, that are given by

M`(ω) =

{(
x− x̄ω

hω

)α

with |α|6 `

}
, (1.1)

where

• x̄ω denotes the center of gravity of ω and hω its characteristic length, as, for instance, the edge length
or the cell diameter for d = 1,2;

• α = (α1,α2) is the two-dimensional multi-index of nonnegative integers αi with degree |α|= α1 +
α2 6 ` and such that xα = xα1

1 xα2
2 for any x ∈R2.

Finally, we use the symbols . and & to denote inequalities holding up to a positive constant that is
independent of the characteristic length of mesh elements, but may depend on the problem constants, like
the coercivity and continuity constants, or other discretization constants like the mesh regularity constant,
the stability constants, etc. Accordingly, a ' b means a . b . a. The hidden constant generally has a
different value at each occurrence.
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2. Model problem and Virtual Element discretization

Let Ω ⊂ R2 be a bounded polygonal domain. In this paper we are interested in deriving anisotropic error
estimates for the virtual element approximation of the following elliptic problem:

−∆u = f in Ω , u = 0 on ∂Ω (2.1)

with f ∈ L2(Ω). The variational formulation of (2.1) reads as: Find u ∈ H1
0 (Ω) such that

a(u,v) = F(v) (2.2)

for every v ∈ H1
0 (Ω) where a(u,v) =

∫
Ω

∇u ·∇v dx and F(v) =
∫

Ω
f v dx.

We now briefly recall (see Beirão da Veiga et al. (2013) for more details) the lowest order virtual
element approximation to (2.2). Let {Kh}h be a sequence of decompositions of Ω where each mesh Kh is
a collection of nonoverlapping polygonal elements K with boundary ∂K, and let Eh be the set of edges E
of Kh. Each mesh is labeled by h, the diameter of the mesh, defined as usual by h = maxE∈Kh hK , where
hK = supx,y∈K |x−y|. We denote the set of vertices v in Kh by Vh. The global lowest order virtual element
space is defined as

Vh,0 = {vh ∈ H1
0 (Ω) : vh|K ∈V K

h and vh(v) = 0 ∀v ∈ ∂Ω} ⊂ H1
0 (Ω), (2.3)

where
Vh(K) = {vh ∈ H1(K) : ∆vh = 0 in K, vh|E ∈ P1(E) ∀E ⊂ ∂K}, (2.4)

is the local virtual element space. As usual (see, e.g., Beirão da Veiga et al. (2013)), we introduce the H1

projector Π ∇,K : Vh(K)→ P1(K). We denote by uh ∈Vh,0 the virtual element approximation to the solution
u of (2.2), defined as the unique solution to

ah(uh,vh) = ( fh,vh) (2.5)

for every vh ∈Vh,0, where fh is the piecewise constant approximation of f on Kh and ah(uh,vh)=∑K∈Kh
aK

h (uh,vh)
being

aK
h (uh,vh) =

∫
K

∇(Π ∇,Kuh) ·∇(Π ∇,Kvh) dx+SK((I−Π
∇,K)uh,(I−Π

∇,K)vh),

the local discrete bilinear form that satisfies the usual stability and consistency properties (see Beirão da
Veiga et al. (2013) for precise definitions). For wh ∈ Ker(Π ∇,K) the stabilization form SK(·, ·) is defined as

SK(wh,wh) =
nK

∑
i=1

w2
h(vi,K),

being vi,K , i = 1, . . . ,nK the vertices of K. For more details about different choices for the stabilization form,
see Beirão da Veiga et al. (2017).

3. Polygonal Anisotropy and mesh regularity

In this section, following Weisser (2019), we first make precise the notions of isotropic and anisotropic
polygonal element. This will be obtained analysing the spectral decomposition of a suitable matrix (in the
sequel named covariance matrix) associated to the element. More precisely, let K be a polygonal element
of the partition Kh. We denote by |K| the area of K, we define the barycenter of K as

x̄K =
1
|K|

∫
K

xdx,

and we introduce the covariance matrix of K as

MCov(K) =
1
|K|

∫
K
(x− x̄K)(x− x̄K)

> dx ∈ R2×2. (3.1)

Obviously, MCov is real valued, symmetric and positive definite, once we assume that K is not degenerating
(i.e. |K|> 0). Therefore, MCov admits an eigenvalue decomposition

MCov(K) =UKΛKU>K ,
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with
U> =U−1 and ΛK = diag(λK,1,λK,2), (3.2)

where λK,1 > λK,2 > 0 only depend on the shape of K but not on its orientation.
The eigenvectors of MCov(K) give the characteristic directions of K. Consequently, if

MCov(K) = cI

for c > 0, there are no dominant directions in the element K. Thus, we can characterise the anisotropy with
the help of the quotient λK,1/λK,2 > 1 and say that an element K is

isotropic, if
λK,1

λK,2
≈ 1,

and anisotropic, if
λK,1

λK,2
� 1.

Hinging upon the above spectral informations on the polygonal elements, we introduce a linear trans-
formation of an anisotropic element K onto a kind of reference element K̂. For each x ∈ K, we define the
mapping by

x 7→ x̂ = FK(x) = AKx with AK = αKΛ
−1/2
K U>K (3.3)

where αK > 0 will be chosen later. From now on, K̂ = FK(K) will be called the reference element associated
to K.

It is possible to prove (see Weisser (2019)) the following result.

LEMMA 3.1 There holds

1. |K̂|= α2
K |K|/

√
det(MCov(K)),

2. xK̂ = FK(xK),

3. MCov(K̂) = α2
KI.

According to the previous lemma, the reference element K̂ is isotropic, since λK̂,1/λK̂,2 = 1, and thus,
it has no dominant direction. For what concerns the choice of the parameter αK we set

αK =

(√
det(MCov(K))

|K|

)1/d

=

(√
λK,1λK,2

|K|

)1/2

, (3.4)

which obviously ensures, in view of Lemma 3.1, |K̂|= 1.
In the sequel, we will work under the following assumption on the behaviour of the constant αK .

Assumption 3.1. We assume that it holds αK ' 1 for every K ∈Kh, uniformly in h.

For a numerical exploration on the validity of Assumption 3.1 see (Weisser, 2019, Section 6.2). For
future use, we note that the above assumption implies

|K| '
√

λK,1λK,2. (3.5)

As usual, we mark the operators and functions defined over the reference configuration by a hat, as, for
instance,

v̂ = v◦F−1
K : K̂→ K.

Obviously, it is
∇v = αKUKΛ

−1/2
K ∇̂v̂, (3.6)

and, after some algebra,
Ĥ(v̂) = α

−2
K Λ

1/2
K U>K H(v)UKΛ

1/2
K , (3.7)

where H(v) denotes the Hessian matrix of v ∈H2(Ω) and Ĥ(v̂) the corresponding Hessian on the reference
configuration.
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Following Weisser (2019), we are now ready to state the mesh requirements which will be needed in
the sequel for deriving the properties of the quasi-interpolation operator (Section 4) and the anisotropic
a posteriori error analysis (Section 5). We first recall the notion of isotropic regular polygonal meshes
(Definition 3.3) which is instrumental for the definition of anisotropic polygonal meshes (Definition 3.4).

DEFINITION 3.2 (regular isotropic element) An element K ∈Kh is said to be regular if

(a) K is a star-shaped polygon with respect to a circle of radius ρK and center zK ∈ K.

(b) The aspect ratio is uniformly bounded from above by σK , i.e. hK/ρK < σK , being hK the diameter
of K.

(c) For every edge E ⊂ ∂K it holds hK 6 cK hE , being hE the length of E.

DEFINITION 3.3 (regular isotropic mesh) A polygonal mesh Kh is called regular or a regular isotropic
mesh, if all elements K ∈Kh are regular in the sense of Definition 3.2 and the constants σK and cK have
to be uniformly bounded for all considered regular elements.

DEFINITION 3.4 (regular anisotropic mesh) Let Kh be a polygonal mesh with anisotropic elements. Kh
is called regular or a regular anisotropic mesh, if

(a’) The reference configuration K̂ for all K ∈Kh obtained by (3.3) is a regular polygonal element ac-
cording to Definition 3.2.

(b’) Neighbouring elements behave similarly in their anisotropy. More precisely, for two neighbouring
elements K+ and K−, i.e. K+∩K− 6=∅, with covariance matrices

MCov(K+) =UK+ΛK+U>K+ and MCov(K−) =UK−ΛK−U>K−

as defined above, we can write

ΛK− = (I +∆
K+,K−)ΛK+ with ∆

K+,K− = diag
(

δ
K+,K−
1 ,δ K+,K−

2

)
,

and
UK− = RK+,K−UK+ with RK+,K− rotation matrix

where for i = 1,2

06 |δ K+,K−
i |< cδ < 1 and ‖I−RK+,K−‖0

(
λK+,1

λK+,2

)1/2

< cφ .

uniformly for all neighbouring elements, being ‖ · ‖0 the spectral norm.

Thus a regular anisotropic element can be mapped according to (3.3) onto a regular polygonal element
in the usual sense. In the definition of quasi-interpolation operators (see Section 4 ), we deal, however, with
patches of elements instead of single elements. Thus, we study the mapping of such patches. Let ω = ωv

be the neighbourhood of the vertex v which is defined by

ωv =
⋃{

K′ : v ∈ K′, K′ ∈Kh
}
.

Furthermore, for K ∈Kh, recall that the map FK defined in (3.3) is given by

x 7→ FK(x) = AKx = αKΛ
−1/2
K U>K x.

Consequently, we may write K̂ = FK(K) and we know, that K̂ is regular for all K ∈Kh with some regularity
parameters σK and cK . However, let now K+,K− ∈ Kh with K+,K− ⊂ ω . We are interested in the
regularity of FK+(ω) and FK+(K−). For the proofs of the following results we refer to Weisser (2019).

LEMMA 3.2 Let Kh be a regular anisotropic mesh, ω =ωv be a patch as described above, and K+,K− ∈Kh
with K+,K− ⊂ ω . The mapped element FK+(K−) is regular in the sense of Definition 3.3 with slightly
perturbed regularity parameters σ̃K and c̃K . Consequently, the mapped patch FK(ω) consists of regular
polygonal elements for all K ∈Kh with K ⊂ ω .
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PROPOSITION 3.5 Let Kh be a regular anisotropic mesh. Each vertex v of the mesh Kh belongs to a
uniformly bounded number of elements. Viceversa, each element K ∈Kh has a uniformly bounded number
of vertices on its boundary.

In the rest of the paper we will work under the following mesh assumption.

Assumption 3.6. Let {Kh}h be a sequence of regular anisotropic meshes with regularity parameters uni-
formly bounded with respect to h.

Finally, we recall some instrumental results (see Weisser (2019) for the proofs) that will be employed
in the next section.

LEMMA 3.3 Let K ∈Kh be a polygonal element of a regular anisotropic mesh Kh. Then, for v ∈ H1(K)
and corresponding v̂ ∈ H1(K̂) there holds

‖∇̂v̂‖L2(K̂) = |K|
−1/2‖A−T

K ∇v‖L2(K) (3.8)√
λK,2

λK,1
|v̂|2

H1(K̂)
6 |v|2H1(K) 6

√
λK,1

λK,2
|v̂|2

H1(K̂)
. (3.9)

Moreover, under Assumption 3.1 there holds

‖v̂‖L2(K̂) ' |K|
−1/2‖v‖L2(K), (3.10)

where the hidden constants are the ones appearing in (3.5).

LEMMA 3.4 (anisotropic trace inequality) Let K ∈Kh be a polygonal element of a regular anisotropic
mesh Kh. For an edge E ⊂ ∂K it holds

‖v‖2
L2(E)

.
|E|
|K|

(
‖v‖2

L2(K)+‖α
−1
K Λ

1/2
K U>K ∇v‖2

L2(K)

)
. (3.11)

LEMMA 3.5 (best-approximation by a constant) Let K ∈Kh be a polygonal element of a regular anisotropic
mesh Kh. For v ∈ H1(K), there exists a constant p ∈P0(K) such that

‖v− p‖L2(K) . ‖α−1
K Λ

1/2
K U>K ∇v‖L2(K).

4. Quasi-Interpolation of Functions in H1(Ω)

Let ω be a patch of physical elements belonging to a regular anisotropic polygonal mesh. Let ω̂ be the
patch of reference elements K̂ such that ω̂ = FK∗(ω), where the mapping is dictated by an element K∗ of
the patch ω (i.e. all the elements of the patch ω are transformed based on employing the same map FK ,
where K is one of the elements of the patch). On the reference patch ω̂ we introduce the space

Θ̂(ω̂) = {θ̂ ∈C0(ω̂) : ∀K̂ ∈ ω̂ θ̂|K̂ = θ ◦F−1
K∗ , θ ∈Vh(F−1

K∗ (K̂))} (4.1)

where Vh(F−1
K∗ (K̂)) is the lowest order local virtual element space defined on the polygon F−1

K∗ (K̂).1 We
remark that in view of Lemma 3.2 the specific choice of the element K∗ in the definition of the space
Θ̂(ω̂) is not restrictive. Moreover, we observe that, in view of Assumption 3.6, the dimension of Θ̂(ω̂) is
uniformly bounded with respect to h. Finally, it is worth noticing that functions in Θ̂(ω̂) are not necessarily
virtual element functions. However, constant functions are contained in Θ̂(ω̂) and this will be sufficient for
our scopes.

Now, following Bernardi & Girault (1998), we introduce a projection operator r̂ω(v̂) on the reference
patch ω̂ .

DEFINITION 4.1 For any function v̂ ∈ L1(ω̂) we define r̂ω(v̂) ∈ Θ̂(ω̂) as∫
ω̂

(r̂ω̂(v̂)− v̂)θ̂ = 0 ∀θ̂ ∈ Θ̂(ω̂). (4.2)

1Note that the polygon F−1
K∗ (K̂) is not necessarily equal to K∗, unless we consider exactly the reference polygon K̂∗ associated to

K∗.
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It is important to remark that r̂ω̂ is a projection operator on ω̂ .
On the physical patch ω we can define rω(v) so that rω(v)◦F−1

K∗ = r̂ω̂(v◦F−1
K∗ ), i.e. r̂ω(v) = r̂ω̂(v̂). Let

ωi be the patch of elements sharing the vertex vi and set ri = rωi . The operators ri will be employed to build
the quasi-interpolant IC (see (4.7) below). In the sequel, we collect some approximation results for ri that
will be instrumental for proving the approximation properties of IC.

LEMMA 4.1 Let Kh be a regular anisotropic mesh. For any K ⊂ ωi there hold

‖u− ri(u)‖2
L2(K) . ∑

K̃⊂ωi

|K|
|K̃|
‖A−T

K̃
∇u‖2

L2(K̃)
. (4.3)

which can also be written in the following way

‖u− ri(u)‖2
L2(K) . |K| ∑

K̃⊂ωi

√√√√λK̃,1

λK̃,2
|u|2

H1(K̃)
. (4.4)

Proof. Let K ∈ ωi then we have

‖u− ri(u)‖L2(K) . |K|1/2‖û− r̂ω̂i
(û)‖L2(K̂). (4.5)

Now, employing the fact that r̂ω̂i
is a projector on ω̂i we have

û− r̂ω̂i
(û) = û− θ̂ − r̂ω̂i

(û− θ̂),

for θ̂ ∈ Θ̂(ω̂i) which implies

‖û− r̂ω̂i
(û)‖L2(ω̂i)

6 2‖û− θ̂‖L2(ω̂i)
.

Assume θ̂ is constant on ω̂i and û∈H1(ω̂i), hence employing standard interpolation error estimate together
with (3.8) we have

‖û− r̂ω̂i
(û)‖L2(ω̂i)

. |û|H1(ω̂i)

.

 ∑
K̂⊂ω̂i

|û|2
H1(K̂)

1/2

.

 ∑
K̃⊂ωi

|K̃|−1‖A−T
K̃

∇u‖2
L2(K̃)

1/2

.

Combining (4.5) with the above inequality yields (4.3). On the other hand, using (3.8)-(3.9) we get (4.4).
�

LEMMA 4.2 For any K ⊂ ωi there holds

|u− ri(u)|2H1(K) . ∑
K̃⊂ωi

√√√√λK,1λK̃,1

λK,2λK̃,2
|u|2

H1(K̃)
. (4.6)

Proof. By using (3.9) and taking θ̂ constant on ω̂i, employing the equivalence of all norms on the finite
dimensional space Θ̂(ω̂i) (see Proposition A.1 below), the fact that r̂ω̂i

is a projection on ω̂i and standard
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interpolation error estimate we obtain

|u− ri(u)|H1(K) 6

(
λK,1

λK,2

)1/4

|û− r̂ω̂i
(û)|H1(K̂) 6

(
λK,1

λK,2

)1/4

|û− r̂ω̂i
(û)|H1(ω̂i)

6

(
λK,1

λK,2

)1/4(
|û− θ̂ |H1(ω̂i)

+ |θ̂ − r̂ω̂i
(û)|H1(ω̂i)

)
.

(
λK,1

λK,2

)1/4(
|û− θ̂ |H1(ω̂i)

+‖θ̂ − r̂ω̂i
(û)‖L2(ω̂i)

)
.

(
λK,1

λK,2

)1/4(
|û− θ̂ |H1(ω̂i)

+‖r̂ω̂i
(θ̂ − û)‖L2(ω̂i)

)
.

(
λK,1

λK,2

)1/4(
|û− θ̂ |H1(ω̂i)

+‖θ̂ − û‖L2(ω̂i)

)
.

(
λK,1

λK,2

)1/4

|û|H1(ω̂i)
.

Note that if û|ω̂i is constant we take θ̂ = û|ω̂i
, whereas if r̂ω̂i

(û) is constant (and û|ω̂i is not constant) we take
θ̂ = r̂ω̂i

(û). By using (3.9) on each K̂ ⊂ ω̂i we get the thesis. �
We are now ready to introduce the quasi-interpolation operator. For simplicity of exposition, we first

consider the case where no boundary conditions are imposed on the boundary of Ω . To this aim, we
introduce the global lowest order virtual element space Vh ⊂ H1(Ω), which is defined as Vh,0 except for
the conditions imposed on the boundary vertexes (cf. (2.3)). The quasi-interpolation of lowest order IC :
H1(Ω)→Vh is defined as

(ICv)(x) =
N

∑
i=1

[ri(v)](vi) ϕi(x) (4.7)

where ri = rωi and ϕi ∈Vh is the global virtual element basis function with ϕi(v j) = δi, j, i, j = 1, . . . ,N.
We first observe that under Assumption 3.1 and employing a generalized scaling argument it is possible

to derive the following anisotropic inverse inequality (cf. Beirão da Veiga et al. (2017); Chen & Huang
(2018); Vacca (2018) for the isotropic case).

LEMMA 4.3 Under Assumption 3.1, for any v ∈Vh(K) there holds

|v|H1(K) .
1√
λK,2
‖v‖L2(K). (4.8)

Proof. We first observe that the equivalence of all norms on finite dimensional spaces (cf. Proposition A.1
below) implies

|v̂|H1(K̂) . ‖v̂‖L2(K̂).

Employing (3.9) and (3.10) yields the thesis. �

REMARK 4.1 On the rectangle K = (0,a)×(0,b), with a > b, we consider, for instance, the local virtual el-
ement basis functions ϕ(x,y)= xy

ab . We observe that λK,1 =
a2

12 and λK,2 =
b2

12 . Straightforward computations

yield ‖∇ϕ‖2
L2(K)

= a2+b2

3ab and ‖ϕ‖2
L2(K)

= ab
9 . Hence, we get

‖∇ϕ‖L2(K) .
1
b
‖ϕ‖L2(K) .

1√
λK,2
‖ϕ‖L2(K).

THEOREM 4.2 For any K ⊂Kh there hold

‖u−ICu‖2
L2(K) .

nK

∑
i=1

∑
K̃⊂ωi

|K|
|K̃|
‖A−T

K̃
∇u‖2

L2(K̃)
, (4.9)

or, written in an alternative way,

‖u−ICu‖2
L2(K) . |K|

nK

∑
i=1

∑
K̃⊂ωi

√√√√λK̃,1

λK̃,2
|u|2

H1(K̃)
, (4.10)
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where nK denotes the number of vertices of K.

Proof. Denoting by nK the number of vertices of K and by ωi the patch of elements sharing the i-th vertex
of K we have

(u−ICu)|K = u|K−
nK

∑
i=1

[r1(u)](vi)ϕi|K−
nK

∑
i=2

[ri(u)− r1(u)](vi)ϕi|K

= (u− r1(u))|K−
nK

∑
i=2

[ri(u)− r1(u)](vi)ϕi|K ,

where in the last step we employed the fact that r1(u) is a virtual element function defined on the patch
F−1

K (ω̂) and K ⊂ F−1
K (ω̂). It follows

‖u−ICu‖L2(K) 6 ‖u− r1(u)‖L2(K)+
nK

∑
i=2
|[ri(u)− r1(u)](vi)|‖ϕi‖L2(K)

6 ‖u− r1(u)‖L2(K)+ |K|
1/2

nK

∑
i=2
‖ri(u)− r1(u)‖L∞(K).

To conclude, it is enough to employ Lemma 4.1 in combination with the following bound

‖ri(u)− r1(u)‖L∞(K) = ‖r̂i(û)− r̂1(û)‖L∞(K̂)

. ‖r̂i(û)− r̂1(û)‖L2(K̂) . ‖û− r̂i(û)‖L2(K̂)+‖û− r̂1(û)‖L2(K̂)

. |K|−1/2
(
‖u− ri(u)‖L2(K)+‖u− r1(u)‖L2(K)

)
, (4.11)

where in the first inequality we employed the fact that all norms are equivalent on the finite dimensional
space Θ̂(ω̂) (cf. Proposition A.1 below). �

COROLLARY 4.1 There holds

‖u−ICu‖2
L2(K) .

nK

∑
i=1

∑
K̃⊂ωi

‖A−T
K̃

∇u‖2
L2(K̃)

, (4.12)

where nK denotes the number of vertices of K.

Proof. Thanks to the mesh regularity assumption it is possible to prove that |K|
|K̃|

is bounded. �

THEOREM 4.3 Under Assumption 3.1, for any K ⊂ ωi there holds

|u−ICu|H1(K) .

(
λK,1

λK,2

)1/2

|u|H1(ωK)
, (4.13)

ωK being the patch of polygons K′ such that K′∩K 6= /0.

Proof. Following the proof of Theorem 4.2 and employing Lemma 4.2 we have

|u−ICu|H1(K) 6 |u− r1(u)|H1(K)+
nK

∑
i=2
|[ri(u)− r1(u)](vi)||ϕi|H1(K)

6

 ∑
K̃⊂ω1

√√√√λK,1λK̃,1

λK,2λK̃,2
|u|2

H1(K̃)

1/2

+
nK

∑
i=2
|[ri(u)− r1(u)](vi)||ϕi|H1(K).

Now, we observe that, similarly to the proof of Theorem 4.2, employing (3.10) together with Lemma 4.1
the following holds

‖ri(u)− r1(u)‖L∞(K) = ‖r̂i(û)− r̂1(û)‖L∞(K̂)

. |r̂i(û)− r̂1(û)|L2(K̂) . |û− r̂i(û)|L2(K̂)+ |û− r̂1(û)|L2(K̂)

. |K|1/2
(
|u− ri(u)|L2(K)+ |u− r1(u)|L2(K)

)
.

 ∑
K̃⊂ω1∪ωi

√√√√λK̃,1

λK̃,2
|u|2

H1(K̃)

1/2

.
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Employing Lemma 4.3 and the fact that ‖ϕ‖L2(K) 6 |K|1/2 we have, after invoking Assumption 3.1 (see

(3.5)), |ϕi|H1(K) .
(

λK,1
λK,2

)1/4
. Thus, we get

nK

∑
i=2
|[ri(u)− r1(u)](vi)||ϕi|H1(K) .

(
λK,1

λK,2

)1/4 nK

∑
i=1

 ∑
K̃⊂ωi

√√√√λK̃,1

λK̃,2
|u|2

H1(K̃)

1/2

.

As a consequence of the anisotropic mesh regularity assumption we have

λK,i ' λK̃,i, i = 1,2

which yields

nK

∑
i=2
|[ri(u)− r1(u)](vi)||ϕi|H1(K) 6

(
λK,1

λK,2

)1/2

|u|H1(ωK)
.

Combining the above inequalities we obtain the thesis.
�

THEOREM 4.4 Let E ⊂ ∂K be an edge of K ∈Kh. Then it holds

‖u−ICu‖L2(E) .
|E|1/2

|K|1/2 ‖A
−T
K̃

∇u‖L2(ωE )
(4.14)

being ωE the patch of elements K̃ having non-empty intersect with E.

Proof. Let E ⊂ ∂K be an edge of K ∈Kh with endpoints v1 and v2. Observing that r1(u) is a virtual
element function, we have

‖u−ICu‖L2(E) = ‖u−
2

∑
i=1

[ri(u)](vi)ϕi‖L2(E)

= ‖u− r1(u)− [r2(u)− r1(u)](v2)ϕ2‖L2(E)

6 ‖u− r1(u)‖L2(E)+‖r2(u)− r1(u)‖L∞(E)‖ϕ2‖L2(E).

Noting that ‖ϕ2‖L2(E) 6 |E|1/2, employing the norm equivalence on finite dimensional spaces and adapt-
ing the proof of Proposition A.1 below, it holds ‖r2(u)− r1(u)‖L∞(E) = ‖r̂2(û)− r̂1(û)‖L∞(Ê) . ‖r̂2(û)−
r̂1(û)‖L2(Ê) . |E|

−1/2‖r2(u)− r1(u)‖L2(E) we have

‖u−ICu‖L2(E) . ‖u− r1(u)‖L2(E)+‖r2(u)− r1(u)‖L2(E)

.

(
|E|
|K|

)1/2(
‖u− r1(u)‖L2(K)+‖r2(u)− r1(u)‖L2(K)

+‖A−T
K ∇(u− r1(u))‖L2(K)+‖A

−T
K ∇(r2(u)− r1(u))‖L2(K)

)
,

where we employed trace inequality (3.11). Now, using (4.3) and (3.8) we obtain

‖u−ICu‖L2(E) .

(
|E|
|K|

)1/2


 ∑

K̃⊂ω1∪ω2

|K|
|K̃|
‖A−T

K̃
∇u‖2

L2(K̃)

1/2

+|K|1/2(‖∇̂(û− r̂1(û))‖L2(K̂)+‖∇̂(û− r̂2(û))‖L2(K̂))
)
.

Proceeding as in the proof of Lemma 4.2 and employing (3.8) we get for i = 1,2

‖∇̂(û− r̂i(û))‖L2(K̂) . |û|H1(ω̂) .

 ∑
K̃⊂ωi

|K̃|−1‖A−T
K̃

∇u‖2
L2(K̃)

1/2

.
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Combining the above estimates and employing the anisotropic mesh assumptions guaranteeing |K| ' |K̃|
for K, K̃ belonging to the same patch, we obtain the thesis. �

In the following, we rewrite (4.12) and (4.14) in an equivalent way, suitable for future use when deriving
in the next section polygonal anisotropic error estimates. More precisely, let rK,i be the normalized eigen-
vectors to the eigenvalues λK,i for i = 1,2, which have been used already several times in the matrix UK .
Namely, it is UK = (rK,1,rK,2). Thus, we observe

Λ
1/2
K U>K ∇v =

(
λ

1/2
K,1 rK,1 ·∇v

λ
1/2
K,2 rK,2 ·∇v

)
,

and consequently

‖α−1
K Λ

1/2
K U>K ∇v‖2

L2(ωK)
= α

−2
K

(
λK,1 ‖rK,1 ·∇v‖2

L2(ωK)
+λK,2 ‖rK,2 ·∇v‖2

L2(ωK)

)
.

Furthermore, since rK,i ·∇v ∈ R, we get

‖rK,i ·∇v‖2
L2(ωK)

= ∑
K′⊂ωK

∫
K′
(r>K,i∇v)2 dx

= ∑
K′⊂ωK

∫
K′

r>K,i∇v(∇v)>rK,i dx

= r>K,i GK(v)rK,i,

with

GK(v) = ∑
K′⊂ωK

 ‖vx1‖2
L2(K′)

∫
K′

vx1vx2 dx∫
K′

vx1vx2 dx ‖vx2‖2
L2(K′)


where vxi stands for ∂v/∂xi. Thus (4.12) and (4.14) can be rewritten as

‖v−ICv‖L2(K) 6 cα
−1
K

(
λK,1 r>K,1 GK(v)rK,1 +λK,2 r>K,2 GK(v)rK,2

)1/2
(4.15)

and

‖v−ICv‖L2(E) 6 cα
−1
K
|E|1/2

|K|1/2

(
λK,1 r>K,1 GK(v)rK,1 +λK,2 r>K,2 GK(v)rK,2

)1/2
, (4.16)

respectively (cf. (Formaggia & Perotto, 2003, (2.12) and (2.15))).
We now introduce a variant of IC preserving the homogeneous boundary conditions. To this aim we

number the N vertices of the partition so that the first N∂ vertices are the boundary ones, while the remaining
ones (i.e. from N∂ + 1 to N) are the internal vertices. The quasi-interpolant IC,0 : H1

0 (Ω)→ Vh,0 is thus
defined as

IC,0u =
N

∑
i=N∂+1

[ri(u)](vi) ϕi(x). (4.17)

The results contained in Theorem 4.2, 4.3 and 4.4 are still true, and the analogous estimates to (4.15)
and (4.16) hold as well. For instance, in order to extend Theorem 4.2 it is sufficient to observe that for
u ∈ H1

0 (Ω) the following holds true

‖u−IC,0u‖L2(K) 6 ‖u−ICu‖L2(K)+
N∂

∑
i=1
|[ri(u)](vi)| ‖ϕi(x)‖L2(K). (4.18)

Finally, denoting by E ⊂ ∂Ω one of the two boundary edges containing the vertex vi, employing the norm
equivalence on finite dimensional spaces and adapting the proof of Proposition A.1, and observing u|∂Ω = 0
we have

|[ri(u)](vi)| 6 ‖ri(u)‖L∞(E) = ‖r̂i(û)‖L∞(Ê) . ‖r̂i(û)‖L2(Ê)

= ‖r̂i(û)− û‖L2(Ê) . ‖r̂i(û)− û‖L2(K̂)+ |r̂i(û)− û|H1(K̂),
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where in the last step we used standard trace inequality on regular isotropic elements. Finally, recalling that
it holds

‖r̂i(û)− û‖L2(K̂)+ |r̂i(û)− û|H1(K̂) . |û|H1(K̂),

the analogous to Theorem 4.2 follows after employing (3.8) and summing over the boundary vertices.

5. Anisotropic a posteriori error estimate

In this section we derive an anisotropic polygonal a posteriori error estimate for the virtual element approx-
imation of (2.1). We preliminary observe that in view of Lemma 3.3 the stabilization form satisfies√

λK,2

λK,1
SK(wh,wh). |wh|2H1(K) .

√
λK,1

λK,2
SK(wh,wh), (5.1)

for wh = (I−Π ∇,K)vh, vh ∈Vh(K). Indeed, it is sufficient to employ (3.9) in combination with the following

SK(wh,wh)' ‖wh‖2
L∞(K) = ‖ŵh‖2

L∞(K̂)
' ‖ŵh‖2

H1(K̂)
,

where we used the definition of SK , the mesh assumption (in particular the uniform boundedness of the
number nK of element vertices) and the fact that on finite dimensional spaces all norms are equivalent.

REMARK 5.1 Let us comment on the bounds in (5.1). On the rectangle K∗ = (0,a)× (0,b), with a > b, it
can be easily seen that the virtual element basis functions in Vh are

ϕ0(x,y) =
xy
ab
− y

b
− x

a
+1 , ϕ1(x,y) =

x
a
− xy

ab
,

ϕ2(x,y) =
xy
ab

, ϕ3(x,y) =
y
b
− xy

ab
,

and, for wh = (I−Π ∇,K)ϕi, i = 0, . . . ,3, the following holds:

λK,1 =
a2

12
, λK,2 =

b2

12
,

|wh|2H1(K∗)

SK∗(wh,wh)
=

1
3

(√
λK,1

λK,2
+

√
λK,2

λK,1

)
,

and hence

2
3

√
λK,2

λK,1
SK∗(wh,wh)6 |wh|2H1(K∗) 6

2
3

√
λK,1

λK,2
SK∗(wh,wh) .

We now state the main result of the paper.

PROPOSITION 5.1 Let uh ∈Vh,0 be the VEM approximation to the solution u of (2.1). Under Assumptions
3.6 and 3.1, for e = u−uh it holds

‖∇e‖2
L2(Ω) . ∑

K∈Th

‖RK‖L2(K)α
−1
K

(
λK,1 r>K,1 GK(e)rK,1 +λK,2 r>K,2 GK(e)rK,2

)1/2

+ ∑
E∈Sh

‖JE‖L2(E)α
−1
K

(
|E|
|K|

)1/2(
λK,1 r>K,1 GK(e)rK,1 +λK,2 r>K,2 GK(e)rK,2

)1/2

+ ∑
K∈Th

M2
KSK((I−Π

∇,K)uh,(I−Π
∇,K)uh)

+ ∑
K∈Th

‖ f − fh‖L2(K)α
−1
K

(
λK,1 r>K,1 GK(e)rK,1 +λK,2 r>K,2 GK(e)rK,2

)1/2
,

where

RK = fh|K ,
JE = |[∇(Π ∇,K)uh]|E ,

MK =

(
λK,1

λK,2

) 3
4
.
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Proof. The proof closely follows Cangiani et al. (2017b). Let us set e= u−uh ∈H1
0 (Ω) and we preliminary

observe that for every v ∈ H1
0 (Ω) the following holds

a(e,v) = ( f ,v)−a(uh,χ)−a(uh,v−χ)

= ( f − fh,χ)+( f ,v−χ)+ah(uh,χ)−a(uh,χ)−a(uh,v−χ) (5.2)

for all χ ∈Vh. Moreover, we observe that integration by parts yields

a(uh,w) =−(∇ ·∇(Π ∇uh),w)+ ∑
E∈Sh

∫
E
|[∇(Π ∇,Kuh)]|wds+(∇(I−Π

∇,K)uh,∇w) (5.3)

for all w ∈ H1
0 (Ω), where Π ∇(·)|K = Π ∇,K(·) for every K ∈Kh. Employing (5.2)-(5.3) we get

a(e,v) = ∑
K∈Th

((Rk,v−χ)K +(θK ,v−χ)K +BK(uh,v−χ))− ∑
E∈Sh

(JE ,v−χ)E

+( f − fh,χ)+ah(uh,χ)−a(uh,χ) (5.4)

where

RK = ( fh +∇ ·∇(Π ∇,K)uh)K = fh|K ,
θK = ( f − fh)K ,

BK(wh,v) = (∇(I−Π
∇,K)wh,∇v)K ,

JE = |[∇(Π ∇,K)uh]|E .

Let eI = IC,0e ∈ Vh,0 be the quasi-interpolant of e satisfying the analogous version to the estimates
(4.15)-(4.16). Then we have

‖∇e‖2
L2(Ω) = ∑

K∈Th

{
(RK ,e− eI)L2(K)+(θK ,e− eI)L2(K)+( f − fh,eI)L2(K)

+BK(uh,e− eI)+(aK
h (uh,eI)−aK(uh,eI))

}
− ∑

E∈Sh

(JE ,e− eI)L2(E)

=: ∑
K∈Th

(I+II+III+IV+V)− ∑
E∈Sh

VI. (5.5)

Let us now estimate the above terms. Employing Cauchy-Schwarz inequality together with the analogous
estimate to (4.15) we have

I. ‖RK‖L2(K)α
−1
K

(
λK,1 r>K,1 GK(e)rK,1 +λK,2 r>K,2 GK(e)rK,2

)1/2
. (5.6)

Similarly, employing the analogous estimate to (4.16), we have

VI. ‖JE‖L2(E)α
−1
K

(
|E|
|K|

)1/2(
λK,1 r>K,1 GK(e)rK,1 +λK,2 r>K,2 GK(e)rK,2

)1/2
. (5.7)

Combining II and III yields

II+III = ( f − fh,e)K = ( f − fh,e−Π
0,K
0 e)K

6 ‖ f − fh‖L2(K)‖e−Π
0,K
0 e‖L2(K)

. ‖ f − fh‖L2(K)‖α
−1
K Λ

1/2
K U>K ∇e‖L2(K)

= ‖ f − fh‖L2(K)α
−1
K

(
λK,1 r>K,1 GK(e)rK,1 +λK,2 r>K,2 GK(e)rK,2

)1/2

according to Lemma 3.5. We now focus on the term IV. Remembering (5.1) we have

IV 6 ‖∇(I−Π
∇,K)uh‖L2(K)‖∇(e− eI)‖L2(K)

6

(
λK,1

λK,2

) 1
4 (

SK((I−Π
∇,K)uh,(I−Π

∇,K)uh)
) 1

2 ‖∇(e− eI)‖L2(K)

.

(
λK,1

λK,2

) 3
4 (

SK((I−Π
∇,K)uh,(I−Π

∇,K)uh)
) 1

2 ‖∇e‖L2(ωK)
(5.8)
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where in the last step we employed the analogous version to (4.13) for IC,0. Finally, we consider the term
V. It is immediate to verify that it holds

V= (∇(I−Π
∇,K)uh,∇eI)K︸ ︷︷ ︸
V1

−SK((I−Π
∇,K)uh,(I−Π

∇,K)eI)︸ ︷︷ ︸
V2

. (5.9)

Employing the Cauchy-Schwarz inequality together with (5.1) and the analogous estimate to (4.13) we have

|V1| 6 ‖∇(I−Π
∇,K)uh‖L2(K)‖∇eI‖L2(K)

6

(
λK,1

λK,2

) 1
4 (

SK((I−Π
∇,K)uh,(I−Π

∇,K)uh)
) 1

2 ‖∇eI‖L2(K)

.

(
λK,1

λK,2

) 3
4 (

SK((I−Π
∇,K)uh,(I−Π

∇,K)uh)
) 1

2 ‖∇e‖L2(ωK).

Employing (5.1) and (4.13) we have

|V2| 6
(

λK,1

λK,2

) 1
4

SK((I−Π
∇,K)uh,(I−Π

∇,K)uh)
1
2 ‖∇(I−Π

∇,K)eI‖L2(K)

6

(
λK,1

λK,2

) 1
4

SK((I−Π
∇,K)uh,(I−Π

∇,K)uh)
1
2 ‖∇eI‖L2(K)

.

(
λK,1

λK,2

) 3
4

SK((I−Π
∇,K)uh,(I−Π

∇,K)uh)
1
2 ‖∇e‖L2(ωK)

.

Hence,

V .

(
λK,1

λK,2

) 3
4

SK((I−Π
∇,K)uh,(I−Π

∇,K)uh)
1
2 ‖∇e‖L2(ωK)

.

Using that the cardinality of ωK is uniformly bounded (i.e. the number of edges of each polygon is uniformly
bounded) yield the thesis. �

In the following, we focus on the computation of GK(e). In order to deal with this term we employ
Zienkiewicz-Zhu (ZZ) error estimator (see, e.g., Zhu & Zienkiewicz (1990); Zienkiewicz & Zhu (1992a,b))
which yields

GK(e)' G̃K(uh) := ∑
K′⊂ωK


∫

K′
(ηZZ

1 (uh))
2 dx

∫
K′

η
ZZ
1 (uh)η

ZZ
2 (uh)dx∫

K′
η

ZZ
1 (uh)η

ZZ
2 (uh)dx

∫
K′
(ηZZ

2 (uh))
2 dx

 , (5.10)

with ηZZ
i (uh) to be properly defined. Here, setting Π ∇,h|K = Π ∇,K , we take

η
ZZ
i (uh) = (I−Π

ZZ
h )(∂xi(Π

∇,huh)),

i = 1,2 where for every vertex v of K′ we set

Π
ZZ
h (∂xi(Π

∇,huh))(v) =
1

∑K′′ :v∈K′′ |K
′′ | ∑

K′′ :v∈K′′
|K ′′ |∂xi(Π

∇,K
′′
uh)|K′′ .

We employ the above vertex values Π ZZ
h (∂xi(Π

∇,huh))(v) to construct, via e.g. least square fitting, a linear
polynomial on K′ that we denote by Π ZZ

h (∂xi(Π
∇,huh))|K′ . This latter enters in the construction of ηZZ

i (uh)
and thus it is employed to approximate GK(e).

In the sequel we briefly comment on the viability of the approximation in (5.10). In particular, we
restrict ourself to regular isotropic meshes (see Section 6 for a numerical investigation of the anisotropic
case) and we prove the following estimate in the spirit of the results obtained in Guo et al. (2019); Chi et al.
(2019).
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PROPOSITION 5.2 Let uh ∈Vh be the VEM approximation on regular isotropic meshes to the solution u of
(2.1) and let e = u−uh. Then, for any K ∈Th, if u ∈ H2(Ω),∥∥∥∥(ηZZ

1 (uh)
ηZZ

2 (uh)

)
−∇e

∥∥∥∥
L2(ωK)

. hωK |u|H2(ωK)
+

(nωK

∑
i=1

(u(vi,ωK )−uh(vi,ωK ))
2

) 1
2

, (5.11)

where hωK = maxK′∈ωK hK′ , vi,ωK is the i-th vertex in ωK and nωK is the number of such vertices.

Proof. For the sake of clarity, in the following we use the symbol Π ZZ
h applied to a vector to denote

the application of the operator Π ZZ
h to each component of the vector. Moreover, let uI ∈ Vh be the VEM

interpolant of the solution u (see Beirão da Veiga et al. (2016); Cangiani et al. (2017b)). By the triangle
inequality, using the well established approximation properties of the VEM interpolant and of L2 projectors,
we get∥∥∥∥(ηZZ

1 (uh)
ηZZ

2 (uh)

)
−∇e

∥∥∥∥
L2(ωK)

= ‖∇Π
∇,huh−Π

ZZ
h ∇Π

∇,huh−∇u+∇uh‖L2(ωK)

6 ‖∇Π
∇,huh−∇Π

∇,hu‖L2(ωK)
+‖∇Π

∇,hu−∇u‖L2(ωK)

+‖Π ZZ
h ∇Π

∇,huh−∇uh‖L2(ωK)

. ‖∇uh−∇u‖L2(ωK)
+‖∇Π

∇,hu−∇u‖L2(ωK)
+‖Π ZZ

h ∇Π
∇,huh−∇uh‖L2(ωK)

. ‖∇uh−∇uI‖L2(ωK)
+‖∇u−∇uI‖L2(ωK)

+‖∇Π
∇,hu−∇u‖L2(ωK)

+‖Π ZZ
h ∇Π

∇,huh−∇uh‖L2(ωK)

. hωK |u|H2(ωK)
+‖∇uh−∇uI‖L2(ωK)

+‖Π ZZ
h ∇Π

∇,huh−∇uh‖L2(ωK)
,

(5.12)

where we used the regularity of the mesh, which implies that the number of elements in ωK is uniformly
bounded. The last norm can be estimated introducing the L2(ωK) projection on polynomials of degree 2,
denoted by Π

0,ωK
2 : L2(ωK)→ P2(ωK), and using the continuity of the Π ZZ

h operator and its consistency on
continuous polynomials of degree 1, which implies

Π
ZZ
h ∇Π

0,ωK
2 u = ∇Π

0,ωK
2 u .

We get

‖Π ZZ
h ∇Π

∇,huh−∇uh‖L2(ωK)
6 ‖Π ZZ

h ∇Π
∇,huh−Π

ZZ
h ∇Π

0,ωK
2 u‖L2(ωK)

+‖∇Π
0,ωK
2 u−∇u‖L2(ωK)

+‖∇u−∇uI‖L2(ωK)
+‖∇uI−∇uh‖L2(ωK)

. ‖∇Π
∇,huh−∇Π

0,ωK
2 u‖L2(ωK)

+hωK |u|H2(ωK)
+‖∇uI−∇uh‖L2(ωK)

. ‖∇Π
∇,huh−∇Π

∇,hu‖L2(ωK)
+‖∇Π

∇,hu−∇Π
0,ωK
2 u‖L2(ωK)

+hωK |u|H2(ωK)
+‖∇uI−∇uh‖L2(ωK)

. ‖∇uh−∇u‖L2(ωK)
+‖∇Π

∇,hu−∇u‖L2(ωK)
+‖∇u−∇Π

0,ωK
2 u‖L2(ωK)

+hωK |u|H2(ωK)
+‖∇uI−∇uh‖L2(ωK)

. ‖∇uI−∇u‖L2(ωK)
+hωK |u|H2(ωK)

+‖∇uh−∇uI‖L2(ωK)

. hωK |u|H2(ωK)
+‖∇uh−∇uI‖L2(ωK)

,

(5.13)

where in the estimate of ‖∇u−∇Π
0,ωK
2 u‖L2(ωK)

we used the regularity of the mesh, which implies that the
diameter of ωK scales as hωK and that the regularity of ωK depends on the regularity of its elements. Finally,
we are left to estimate the norm ‖∇uh−∇uI‖L2(ωK)

, which is present both in (5.12) and (5.13). By standard
scaling arguments (see Chen & Huang (2018)), denoting by Ξ

ωK
i the operator selecting the i-th degree of

freedom in ωK , with i = 1, . . . ,nωK , we get

‖∇uh−∇uI‖2
L2(ωK)

.
nωK

∑
i=1

(
Ξ

ωK
i (uh)−Ξ

ωK
i (uI)

)2
.
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We conclude by observing that, since u∈H2(ωK) by hypothesis, then u is continuous and the nodal degrees
of freedom of uI coincide with the values of u at the vertices of ωK . �

6. Numerical Results

In this section we assess the behavior of the error estimate on three test cases. We recall that, according to
the previous section (cf. Proposition 5.1), the estimator is defined as:

ηh =

(
∑

K∈Th

η
2
K + ∑

E∈Sh

ξ
2
E + ∑

K∈Th

σ
2
K

)1/2

, (6.1)

where

η
2
K = ‖RK‖L2(K)α

−1
K

(
λK,1 r>K,1 GK(e)rK,1 +λK,2 r>K,2 GK(e)rK,2

)1/2
,

ξ
2
E = ‖JE‖L2(E) max

K : E⊂∂K
α
−1
K

(
|E|
|K|

)1/2(
λK,1 r>K,1 GK(e)rK,1 +λK,2 r>K,2 GK(e)rK,2

)1/2
,

and σK is given by

σ̃
2
K = SK((I−Π

∇,K)uh,(I−Π
∇,K)uh) , (6.2)

σ
2
K = M2

K σ̃
2
K . (6.3)

To highlight the advantage of using an anisotropic adaptive process, we compare our results with the
ones obtained by refining the mesh with the following isotropic error estimate:

η
iso
h =

(
∑

K∈Th

h2
K‖RK‖2

L2(K)+ ∑
E∈Sh

hE‖JE‖2
L2(E)+ ∑

K∈Th

σ̃
2
K

) 1
2

, (6.4)

see Berrone & Borio (2017); Cangiani et al. (2017b).
We also introduce the following heuristically scaled estimator

η
heur
h =

(
∑

K∈Th

η
2
K + ∑

E∈Sh

ξ
2
E + ∑

K∈Th

σ̃
2
K

) 1
2

, (6.5)

that differs from ηh for the presence of the unscaled stabilization terms σ̃2
K .

In all the test cases, we consider (2.1) with Ω = (0,1)× (0,1). All the three proposed tests have a
boundary layer and are solved using VEM of order 1 and 2. We remark that the extension of the anisotropic
a posteriori framework developed in the previous section to the case of VEM of order 2 (see Beirão da Veiga
et al. (2013) for details on the definition of the approximation spaces) is straightforward. In the first two
test cases the solution is purely anisotropic while in the last test there is both an isotropic structure and an
anisotropic layer. Before presenting the results of the computations, we describe in detail the cell refinement
strategy. To simplify the implementation of the anisotropic mesh refinement process, that in presence of
very general elements may become computationally demanding, we restrict ourselves to convex elements.
The efficient implementation of the mesh refinement process in the general case is under investigation.

6.1 Cell refinement strategy

The anisotropic adaptive VEM hinges upon the classical paradigm

. . .→ SOLVE→ ESTIMATE→ MARK→ REFINE→ . . .

The module MARK is based on the Dörfler strategy, see, e.g., Nochetto & Veeser (2012) for more details.
All numerical tests have been run with marking parameter equal to 1/2.

In the sequel we focus on the description of the module REFINE, see Algorithm 1 below. We aim at
designing a refinement strategy that reduces the size of the element along the direction of the gradient of
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the error (thus cutting in the orthogonal direction), while preventing an unnecessary increase of the aspect
ratio of the polygon. The approach here applied extends the strategy presented in Berrone et al. (2019) (cf.,
e.g., Habashi et al. (2000) and Georgoulis et al. (2009) for refinement strategies in the case of triangular
and quadrilateral elements, respectively).

More precisely, for each marked polygon K, we compute: (a) the eigenvalues λK,1 and λK,2 (λK,1> λK,2)
of the covariance matrix MCov = MCov(K) together with the corresponding eigenvectors rK,i, i = 1,2; (b)
the eigenvalues λG,1 and λG,2 (λG,1 > λG,2) of the matrix GK = GK(e) together with the corresponding
eigenvectors rG,i, i = 1,2. The matrix GK is computed by resorting to the ZZ approximation, cf. (5.10) for
VEM of order 1 (the case of VEM of order 2 simply requires the use of a quadratic least square fitting).
We notice that large values of λG,1/λG,2 indicate a local anisotropic behaviour of the gradient of the error,
whereas large values of λK,1/λK,2 are associated to anisotropic elements.

If (λG,1/λG,2) > (λK,1/λK,2), then the refinement strategy cuts the polygon K along rG,2, otherwise it
cuts along rK,2.

Whenever λG,1/λG,2 > λK,1/λK,2 the refinement strategy takes advantage of the pronounced anisotropic
behaviour of the gradient of the error, whereas if λK,1/λK,2 dominates then the aspect ratio of the element
is reduced. Heuristically speaking, when λK,1/λK,2 dominates on λG,1/λG,2 the module REFINE aims at
identifying a situation where the anisotropy of the element is too pronounced (and possibly unnecessary)
with respect to the (anisotropic) behaviour of the gradient of the error. A typical situation could be the
presence of an anisotropic element in a region where an isotropic refinement is needed (i.e. the gradient of
the error does not exhibit any preferential direction).

Finally, we remark that whenever the estimator η iso
h is used to drive the adaptive procedure, the marked

polygon is always cut along the direction rK,2.

Algorithm 1 The Module REFINE

Given a marked cell K

1: Compute the barycenter x̄K
2: Compute the tensor GK
3: Compute the covariance matrix MCov
4: Compute the eigenvalues of the two tensors
5: if (λG,1/λG,2)> (λK,1/λK,2) then
6: Build a straight line passing through x̄K and parallel to rG,2
7: else
8: Build a straight line passing through x̄K and parallel to rK,2
9: end if

10: Refine the cell

In the following test cases we employ

ẽ = ‖∇(u−Π
0
k uh)‖Ω k = 1,2

as a measure of the exact error and we iterate the adaptive process until ẽ6 10−3.

6.2 Test case 1

In the first test we set the forcing term in such a way that the exact solution is given by

u(x,y) = 10−6x(1− x)(1− y)(e10x−1)(e10y−1) .

In Figure 1 we plot the exact solution, that displays a peak in the top-right corner of the domain, with
boundary layers in the x and y directions. In Figure 2 we report the behavior of the error estimator ηh
defined as in (6.1) when the adaptive process is run using ηh as estimator, based on employing both VEM
of order 1 (cf. Figure 2a) and of order 2 (cf. Figure 2b). We notice that the estimator ηh exhibits the
correct rates of convergence, but displays some mild oscillations. The origin of the oscillations is further
investigated in Figure 3 where we display the three components of the estimator: we observe that the
oscillations are due to the term σK , in view of of its dependence on the aspect ratio of the elements through
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FIG. 1: Test case 1. Plot of the exact solution

the term MK . In this respect, as we can see from Figure 4, the estimator ηheur
h (where we set Mk = 1, cf.

(6.5)) does not present such oscillations and preserves the correct rate of convergence. Finally, in Figures
2 and 4 we also display the behaviour of the isotropic estimator η iso

h , that, as expected, requires a larger
number of degrees of freedom to reach the desired tolerance, compared to both choices of the anisotropic
estimator.

In Figure 5 we report the color-plot of the solutions and the meshes at the beginning of the adaptive
process, whereas in Figure 6 we show the solutions and the meshes obtained at intermediate adaptive steps
by both estimators ηh and ηheur

h for VEM or order 1 and 2. We can see that the meshes induced by the
two estimators are quite similar. A zoom of a detail of the computed anisotropic mesh as well as the
computed solution at the final adaptive step, are reported in Figures 7 and 8, for the estimators ηh and
ηheur

h respectively, again employing VEM of order 1 and 2. The obtained meshes are quite similar, but
the adaptive algorithm driven by the estimator ηh required more refinement steps to satisfy the stopping
criterium.

Finally, we explore the approximation of GK(e) in (5.10) (see also Proposition 5.2). From the results
reported in Figure 9 and noticing that maxK∈Th ‖GK(e)‖∞ scales as ‖∇e‖2

L2(Ω)
, it is reasonable to infer the

reliability of our approximation.
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FIG. 2: Test case 1. Computed values of the estimator ηh, computed errors ẽ based on employing the
exact solution, and corresponding computed convergence rates m as a function of the number of degrees of
freedom. The results are compared with the analogous quantities obtained based on employing the isotropic
error estimator η iso

h defined in (6.4).
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(b) VEM of order 2.

FIG. 3: Test case 1. Components of the error estimator ηh as a function of the number of degrees of freedom,
when the adaptive process is driven by the estimator ηh.
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FIG. 4: Test case 1. Computed values of the estimator ηheur
h , computed errors ẽ based on employing the

exact solution, and corresponding computed convergence rates m (obtained through least square fitting) as
a function of the number of degrees of freedom. The results are compared with the analogous quantities
obtained based on employing the isotropic error estimator η iso

h defined in (6.4).

(a) VEM of order 1. (b) VEM order 2.

FIG. 5: Test case 1. Initial meshes.
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(a) VEM of order 1. Estimator ηh. Adaptive step
n. 12.

(b) VEM of order 1. Estimator ηheur
h . Adaptive

step n. 12.

(c) VEM order 2. Estimator ηh. Adaptive step
n. 7.

(d) VEM order 2. Estimator ηheur
h . Adaptive

step n. 7.

FIG. 6: Test case 1. Computed solutions and corresponding anisotropic grids at different steps of the adap-
tive algorithm based on employing the estimators defined in (6.1) and (6.5) to drive the adaptive algorithm.
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(a) VEM order 1. Adaptive step n. 36. (b) VEM order 2. Adaptive step n. 15

FIG. 7: Test case 1. Zoom of the computed solutions and corresponding anisotropic grids at the final step of
the adaptive algorithm based on employing the estimator ηh defined in (6.1) to drive the adaptive algorithm.

(a) VEM order 1. Adaptive step n. 25. (b) VEM order 2. Adaptive step n. 13

FIG. 8: Test case 1. Zoom of the computed solutions and corresponding anisotropic grids at the final step of
the adaptive algorithm based on employing the heuristically scaled estimator ηheur

h defined in (6.5) to drive
the adaptive algorithm.
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FIG. 9: Test case 1. Computed values of
√

maxK∈Th ‖G̃K(uh)‖∞ and computed values of ẽ when the
adaptive process is driven by the estimator ηh, and corresponding computed convergence rates m as a
function of the number of degrees of freedom.

6.3 Test case 2

We have repeated the same set of experiments of the previous section, now choosing the forcing term in
such a way that the exact solution is given by

u(x,y) = 10−2xy(1− x)(1− y)(e10x−1).

We notice that the exact solution of the proposed test case exhibits a steep boundary layer in the x-direction
close to the right boundary of the domain (see Figure 10). Next, we report the color-plot of the computed

FIG. 10: Test case 2. Plot of the exact solution

solutions and the corresponding meshes at the initial step of the adaptive algorithm, and after 16 (resp.
9), iterations based on employing VEM of order 1 (resp. 2), and using the heuristically scaled estimator
ηheur

h defined in (6.5) to drive the adaptive process; cf. Figure 11. A zoom of a detail of the computed
anisotropic mesh as well as the corresponding computed solution at the final step of the adaptive algorithm
are reported in Figure 12, again employing VEM of order 1 (Figure 12, top) and VEM of order 2 (Figure 12,
bottom). Similar meshes are obtained using ηh; for brevity they are not reported here. Finally, we compare
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(a) VEM of order 1. Adaptive step n. 1. (b) VEM of order 1. Adaptive step n. 16.

(c) VEM order 2. Adaptive step n. 1. (d) VEM order 2. Adaptive step n. 9.

FIG. 11: Test case 2. Computed solutions and corresponding anisotropic grids at different steps of the
adaptive algorithm based on employing the heuristically scaled estimator ηheur

h defined in (6.5) to drive the
adaptive algorithm.
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(a) VEM order 1. Adaptive step n.
21.

(b) VEM order 2. Adaptive step n.
13

FIG. 12: Test case 2. Zoom of the computed solutions and corresponding anisotropic grids at the final step
of the adaptive algorithm based on employing the heuristically scaled estimator ηheur

h defined in (6.5) to
drive the adaptive algorithm.

the behavior of the computed estimator and of the error as a function of the number of the degrees of
freedom. In Figure 13 we show the estimator ηh and the corresponding error ẽ as functions of the number
of degrees of freedom. As for the previous test, the estimator exhibits the correct rate of convergence but
it displays some mild oscillations, that are not present when considering the heuristically scaled estimator;
see Figure 14 where we report the estimator ηheur

h and the error ẽ, plotted against the number of degrees of
freedom as well as the computed convergence rates. As before, we compare these results with the analogous
quantities obtained with the isotropic error estimator η iso

h defined in (6.4). These results have been obtained
with VEM of order 1, cf. Figures 13a and 14a and with VEM of order 2, cf. Figures 13b and 14b. We
observe, as expected, that the isotropic adaptive process requires a larger number of degrees of freedom to
reduce the error below a given tolerance compared with the anisotropic error estimator.
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FIG. 13: Test case 2. Computed values of the estimator ηh, computed errors ẽ based on employing the
exact solution, and corresponding computed convergence rates m as a function of the number of degrees of
freedom. The results are compared with the analogous quantities obtained based on employing the isotropic
error estimator η iso

h defined in (6.4).
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FIG. 14: Test case 2. Computed values of the estimator ηheur
h , computed errors ẽ based on employing the

exact solution, and corresponding computed convergence rates m as a function of the number of degrees of
freedom. The results are compared with the analogous quantities obtained based on employing the isotropic
error estimator η iso

h defined in (6.4).
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6.4 Test case 3

We have repeated the same set of experiments of the previous section, now choosing the forcing term in
such a way that the exact solution is given by

u(x,y) = 10−2xy(x−1)(y−1)(e10x−5000x+4499) ,

that is obtained summing an isotropic bubble of the form

b(x,y) = 50x(1− y)y(0.9− x)(1− x)

to the solution of the second test case, cf. Figure 15. The manufactured exact solution exhibits a steep
boundary layer in the x-direction close to the right side of the domain, which requires anisotropic mesh
refinement to be efficiently treated and a bubble function in the left part of the domain, which asks for
isotropic mesh refinement. Next, we report the color-plot of the computed solutions and the meshes obtained

FIG. 15: Test case 3. Plot of the exact solution

at the initial step of the refinement process, and after 17 (resp. 9), iterations based on employing VEM of
order 1 (resp. 2), and using the heuristically scaled estimator ηheur

h defined in (6.5) to drive the adaptive
algorithm; Figure 16 (top) shows the results obtained with VEM of order 1, whereas in Figure 16 (bottom)
we show the analogous computations obtained with VEM of order 2. A zoom of a detail of the computed
solutions together with the corresponding computed anisotropic meshes at the final step of the adaptive
algorithm are reported in Figure 17, again employing VEM of order 1 (left) and VEM of order 2 (right).
Similar meshes are obtained using ηh; for brevity they are not reported here. The reported results show
that the combination of isotropic and anisotropic mesh refinement is correctly captured by the adaptive
algorithm. Finally, we compare the behavior of the computed estimator and of the error as a function of
the number of the degrees of freedom. In Figure 18 we show the estimator ηh and the error ẽ as functions
of the number of degrees of freedom. Again, the estimator features ηh some mild oscillations that are not
present when the estimator estimator ηheur

h is employed; see Figure 19 where we report the estimator ηheur
h

and the error ẽ versus the number of degrees of freedom, together with the computed convergence rates.
These results have been obtained with VEM of order 1, cf. Figures 18a and 19a and with VEM of order
2, cf. Figures 18b and 19b. As before, we compare these results with the analogous ones obtained with
the isotropic error estimator η iso

h defined in (6.4). Again, as expected, the adaptive algorithm based on
employing the anisotropic estimator guarantees a lower error compared with the isotropic one.
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(a) VEM of order 1. Adaptive step n. 1. (b) VEM of order 1. Adaptive step n. 17.

(c) VEM order 2. Adaptive step n. 1. (d) VEM order 2. Adaptive step n. 9.

FIG. 16: Test case 3. Computed solutions and corresponding anisotropic grids at different steps of the
adaptive algorithm based on employing the heuristically scaled estimator ηheur

h defined in (6.5) to drive the
adaptive algorithm.
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(a) VEM order 1. Adaptive step n.
21.

(b) VEM order 2. Adaptive step n.
18

FIG. 17: Test case 3. Zoom of the computed solutions and corresponding anisotropic grids at the final step
of the adaptive algorithm based on employing the heuristically scaled estimator ηheur

h defined in (6.5) to
drive the adaptive algorithm.
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(a) VEM of order 1.
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(b) VEM of order 2.

FIG. 18: Test case 3. Computed values of the estimator ηh, computed errors ẽ based on employing the
exact solution, and corresponding computed convergence rates m as a function of the number of degrees of
freedom. The results are compared with the analogous quantities obtained based on employing the isotropic
error estimator η iso

h defined in (6.4).
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(a) VEM of order 1.
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(b) VEM of order 2.

FIG. 19: Test case 3. Computed values of the estimator ηheur
h , computed errors ẽ based on employing the

exact solution, and corresponding computed convergence rates m as a function of the number of degrees of
freedom. The results are compared with the analogous quantities obtained based on employing the isotropic
error estimator η iso

h defined in (6.4).

A. Appendix

PROPOSITION A.1 Under Assumption 3.6, there holds

|ẑ|H1(ω̂) . ‖ẑ‖L2(ω̂) ∀ẑ ∈ Θ̂(ω̂)/R (A.1)

‖ẑ‖L∞(ω̂) . ‖ẑ‖L2(ω̂) ∀ẑ ∈ Θ̂(ω̂) (A.2)

where the constants do not depend on the specific choice of the patch ω̂ .

Proof. Employing the standard arguments in the proof of the well known result that on finite dimensional
spaces all norms are equivalent we obtain

|ẑ|H1(ω̂) 6

√
N maxi |ϕ̂i|H1(ω̂)

min
Θ̂(ω̂)3ŵ=∑

N
i=1 ŵiϕ̂i: ∑

N
i=1 ŵ2

i =1 ‖ŵ‖L2(ω̂)

‖ẑ‖L2(ω̂) (A.3)

‖ẑ‖L∞(ω̂) 6

√
N maxi ‖ϕ̂i‖L∞(ω̂)

min
Θ̂(ω̂)3ŵ=∑

N
i=1 ŵiϕ̂i: ∑

N
i=1 ŵ2

i =1 ‖ŵ‖L2(ω̂)

‖ẑ‖L2(ω̂) (A.4)

where Θ̂(ω̂) = span{ϕ̂1, . . . ϕ̂N} and ϕi is the associated ith virtual basis function.
As in the Virtual Element Method, differently from the Finite Element Method, there is no unique

reference element K̂ that can be employed independently of the physical element K, we need to prove that
the constants appearing in (A.3)-(A.4) are uniform with respect to ω̂ . To this aim, we follow the proofs of
(Cangiani et al., 2017a, Lemma 4.9) and (Beirão da Veiga & Manzini, 2015b, Theorem 4.1). First, we note
that in view of Proposition 3.5 the number N is uniformly bounded with respect to ω̂ . We denote by N∗ this
uniform constant. To proceed, we let X̂ = {X̂1, . . . , X̂N} for all N 6N∗ denote the coordinates of the vertices
of the elements in the patch ω̂ and we employ the symbol Σ̂ to refer to the set of all possible configurations
of the N vertices.

Having in mind (A.3), we set

C(X̂) :=
maxi |ϕ̂i|H1(ω̂)

min
Θ̂(ω̂)3ŵ=∑

N
i=1 ŵiϕ̂i: ∑

N
i=1 ŵ2

i =1 ‖ŵ‖L2(ω̂)

.

If the following are true:

(a) C(X̂) is a continuous function on Σ̂ ;

(b) Σ̂ is a compact set;
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then C = argmaxX̂∈Σ̂
C(X̂) exists and C

√
N∗ is the uniform constant in (A.1). The validity of (a) is obtained

following the arguments in the proofs of (Cangiani et al., 2017a, Lemma 4.9) and (Beirão da Veiga &
Manzini, 2015b, Theorem 4.1). In particular, the continuity of C(X̂) essentially relies on the continuity of
the solution of harmonic problems with respect to the boundary data and with respect to the deformation of
the domain. The validity of (b) is a consequence of our regularity assumptions for the reference elements
(cf. (Cangiani et al., 2017a, Lemma 4.9) and (Beirão da Veiga & Manzini, 2015b, Theorem 4.1)).

An analogous argument can be employed to prove (A.4). In this respect, note that ‖ϕ̂i‖L∞(ω̂) = 1 for
every i = 1, . . . ,N. �
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