
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SEM-O-RAN: Semantic and Flexible O-RAN Slicing for NextG Edge-Assisted Mobile Systems / Puligheddu, Corrado;
Ashdown, Jonathan; Chiasserini, Carla Fabiana; Francesco Restuccia, And. - ELETTRONICO. - (2023). (Intervento
presentato al convegno IEEE INFOCOM 2023 tenutosi a New York City, NY, USA nel 17-20 May, 2023)
[10.1109/INFOCOM53939.2023.10228870].

Original

SEM-O-RAN: Semantic and Flexible O-RAN Slicing for NextG Edge-Assisted Mobile Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/INFOCOM53939.2023.10228870

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973582 since: 2022-12-03T17:30:18Z

IEEE

SEM-O-RAN: Semantic and Flexible O-RAN
Slicing for NextG Edge-Assisted Mobile Systems

Corrado Puligheddu†, Jonathan Ashdown‡, Carla Fabiana Chiasserini†, and Francesco Restuccia◦

† Politecnico di Torino, Italy
‡ Institute for the Wireless Internet of Things, Northeastern University, United States

◦ Air Force Research Laboratory, United States
Corresponding Author Email: Corrado.Puligheddu@polito.it

Abstract—5G and beyond cellular networks (NextG) will
support the continuous execution of resource-expensive edge-
assisted deep learning (DL) tasks. To this end, Radio Access
Network (RAN) resources will need to be carefully “sliced” to
satisfy heterogeneous application requirements while minimizing
RAN usage. Existing slicing frameworks treat each DL task
as equal and inflexibly define the resources to assign to each
task, which leads to sub-optimal performance. In this paper,
we propose SEM-O-RAN, the first semantic and flexible slicing
framework for NextG Open RANs. Our key intuition is that
different DL classifiers can tolerate different levels of image
compression, due to the semantic nature of the target classes.
Therefore, compression can be semantically applied so that the
networking load can be minimized. Moreover, flexibility allows
SEM-O-RAN to consider multiple edge allocations leading to
the same task-related performance, which significantly improves
system-wide performance as more tasks can be allocated. First,
we mathematically formulate the Semantic Flexible Edge Slicing
Problem (SF-ESP), demonstrate that it is NP-hard, and provide
an approximation algorithm to solve it efficiently. Then, we
evaluate the performance of SEM-O-RAN through extensive
numerical analysis with state-of-the-art multi-object detection
(YOLOX) and image segmentation (BiSeNet V2), as well as real-
world experiments on the Colosseum testbed. Our results show
that SEM-O-RAN improves the number of allocated tasks by up
to 169% with respect to the state of the art.

I. INTRODUCTION

The number of mobile devices using 5G-and-beyond cellu-
lar networks (NextG) is expected to reach 64 billion by 2025
[1]. Among others, vehicle-to-everything (V2X) communica-
tions [2], [3] are enabling autonomous driving [4] and drone-
based delivery [5]. Thanks to V2X, the self-driving car market
will reach a global revenue of $49.79B by 2024 [6].

To perform their mission-critical operations, V2X and
other mobile devices will continuously execute complex com-
puter vision (CV)-based DL tasks, which require as input
high-resolution images (e.g., frames of a video) or three-
dimensional LIDAR (Light Detection and Ranging) data [7].
Examples include multi-object classification of blockages, in-
tersections, driveways, fire hydrants, and people [8]. However,
continuously sending multimedia data to the edge may eventu-
ally saturate the RAN. For example, in the Cityscape dataset
[9], images have a 100 KB size on average. By assuming
that real-time self-navigation requires DL inference on frames
collected from 4 cameras each 10 ms, the traffic load would
be 32 Gb/s if 100 vehicles are connected to the RAN.

Approved for Public Release; Distribution Unlimited: AFRL-2022-1622

To this end, RAN slicing [10]–[15] allows Virtual Network
Operators (VNOs) to virtualize and allocate the computational
and networking resources of the RAN according to their needs.
Interestingly, RAN slicing is fully supported by the Open RAN
(O-RAN) framework, which disaggregates the NextG RAN
hardware from its software components to allow fine-grained
real-time flexible control of the RAN components [16]–[18],
as summarized in Section III-A.

Existing Issues. The current state of the art – discussed
in details in Section VI – either does not support O-RAN
or defines edge-based tasks in a monolithic fashion, which
leads to sub-optimal performance, as shown in Section V-B.
To this end, we propose SEM-O-RAN, the first O-RAN slicing
framework for NextG edge-assisted mobile applications.

Two core innovations separate SEM-O-RAN from the
state of the art. First, existing work pre-defines the number
and type of edge resources needed to perform a given task.
Conversely, we define a task in terms of required end-to-end
latency and accuracy-per-class performance, thus allowing
flexibility in the way edge resources are allocated. Flexibility
allows for the consideration of multiple edge allocations
leading to the same task-related performance, ultimately im-
proving system-wide performance. In Section V, we show
that flexibility improves the number of allocated tasks by up
to 31% with respect to the state of the art [11]. Second,
SEM-O-RAN considers the semantics of the DL task to further
reduce the network overhead by compressing the images. For
example, Figure 1 shows that classifying cars is semantically
less difficult than bicycles, thus images can be compressed
more aggressively if classifying cars is the priority. In Section
V, we show that combining flexibility and semantics improves
the performance by up to 169% with respect to [11].

Technical Challenges. Introducing flexibility and applica-
tion semantics into the O-RAN slicing mathematical formu-
lation is significantly challenging, since (i) the relationship
between the allocated slice, image compression, classification
accuracy for the target classes and network latency cannot be
easily expressed in closed form, since state-of-the-art DL mod-
els are highly non-linear; (ii) the flexibility in edge resource
allocation makes the optimization significantly more complex,
as shown in Section IV-B. To the best of our knowledge, no
other work has holistically tackled these two aspects at the
same time.

(a) Original frame, 62.4 KB size (b) Compression rate 0.47x, 29.5 KB size (c) Compression rate 0.04x, 2.3 KB size

Fig. 1: Stronger compression rates make some objects undetectable and/or harder to detect by CV-based DL models.

Summary of Novel Contributions
• We present SEM-O-RAN, the first semantic and flexible

slicing framework to support edge-assisted DL task offloading
in NextG networks. SEM-O-RAN is fully compliant with the
O-RAN specifications (Section III). To perform the actual
slicing, we mathematically formulate the Semantic Flexible
Edge Slicing Problem (SF-ESP), which (i) optimizes the
number of DL tasks executed at the RAN edge while (ii)
guaranteeing strict guarantees on the DL task latency/accuracy,
and (iii) avoiding resource over-provisioning (Section IV).
The SF-ESP is fundamentally different from existing
formulations, since (a) it incorporates highly non-linear re-
lationships between slicing, compression, end-to-end latency
and classification accuracy; (b) employs flexibility in resource
assignments to balance the consumption of the different types
of resources and avoid the depletion of the most requested
ones. We demonstrate that the SF-ESP is NP-hard, and propose
a greedy algorithm to solve it efficiently (Section IV-C);
• We evaluate SEM-O-RAN through extensive numerical

analysis (Section V-B) and through a prototype implemented
on the Colosseum network emulator [19] (Section V). We
consider two state of the art CV problems, i.e., multi-object
detection with the YOLOX model [20] and the COCO dataset
[21], as well as the image segmentation problem on the
Cityscapes urban mobility dataset [9] with the BiSeNet v2
real-time classifier [22]. We compare SEM-O-RAN with 5
baselines, including the state-of-the-art Sl-EDGE framework
[11]. Our results show that SEM-O-RAN improves the number
of allocated tasks by up to 169% and by 18% on the average
with respect to Sl-EDGE. To allow replicability and bench-
marking, we pledge to release all of our code repositories
to the community.

II. TWO KEY CONCEPTS IN SEM-O-RAN

The first main concept is the semantic-based slicing. We
illustrate this notion in Figure 1 and in the left side of Figure
2, where the latter shows the mean Average Precision (mAP)
values corresponding to different mobile sensing applications
defined in Table II. We notice that different target classes have
different tolerances to image compression. Intuitively, some
classes are semantically ”harder” than others, especially in
some circumstances. For example, a person can be more easily
identified in a noisy image as opposed to a traffic light or a

backpack. This allows significant compression on the images
sent to the edge for inference, and still obtain acceptable
inference accuracy on average.

The second concept is the flexibility in the task resource
allocation. Indeed, a task requires many different kinds of
resources, from networking to computation and storage. There-
fore, the slicing algorithm can allocate different amounts of
resources in each category and still meet performance require-
ments. To illustrate this point, the right side of Figure 2 shows
experimental end-to-end task latency results of inference on
the state-of-the-art YOLOX deep neural network (DNN) model
for object detection [20] computed using the Colosseum
network emulator [19], as a function of the allocated Resource
Block Groups (RBGs) and GPUs. In this plot, 10 images per
second were generated from a singe User Equipment (UE),
without employing image compression.

0 0.2 0.4 0.6 0.8 1

Compression scaling factor

0

0.2

0.4

0.6

0.8

m
e
a
n
 A

v
e
ra

g
e
 P

re
c
is

io
n

all urban

animals bags

2 4 6 8 10

RBGs

1

1.5

2

2.5

3

3.5

4

4.5

5

G
P
U
s

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

X 6.0625

Y 2.995

Level 0.356092

X 5.875

Y 2.0326

Level 0.483161

X 10

Y 2.0326

Level 0.364039

Fig. 2: (Left) Mean Average Precision (mAP) as a function
of the compression scaling factor for the application classes
defined in Table II; (Right) Experimental latency as function
of allocated radio Resource Block Groups (RBGs) and GPUs.

The key takeaway is that more than one combination of
RBG/GPU allocations can lead to the same latency perfor-
mance while allowing more allocated tasks at the same time.
For example, let us assume that 25 RGBs and 4 GPUs are the
maximum radio and computational resources available in the
RAN, and that two tasks (T1 and T2) requiring 0.4 s of latency
need to be allocated. According to Figure 2, two different
RGB/GPU allocations meet the 0.4 s latency requirement,
namely (6, 3) and (10, 2). Let us assume T1 is allocated (6,
3), which is the most efficient allocation in terms of absolute
number of resources. In this case, however, T2 could not be
allocated as there would only be 1 GPU left. Instead, if (10,
2) is allocated to T1, T2 can be allocated since 2 GPUs are

Virtual Network Operator (VNO) Space

Non-Real-Time RIC

DL
Model

Database

Mobile
Task 1

Mobile
Task 2

Mobile
Task N

...

Task Descriptor
DL Service
DL Model

DL Target Classes

Task Requirements
Latency & Accuracy

Number of UEs
Tasks per Second

O-RAN Slice Request (OSR)

Human-
Machine

Semantic
Deep Learning
Analyzer rApp

Centralized
Unit (CU)

DU/RU 1

Task Descriptor

Latency &
Accuracy
Functions

A1

Task
Requirements

Semantic
Edge Slicing

xApp

O1

Radio
Statistics

DU/RU M...

E2

Near-Real-Time RIC

Computation
Slicing

(GPU, RAM)

E2

Physical Radio and Edge Infrastructure

RAN Edge

Computation
Statistics

Radio
Slicing
(RBs)

EI E2

Task 1 Descriptor
Object Recognition
YOLOX DL Model
Person, Car, Bicycle

Task 1 Requirements
Less than 0.5s latency,

More than 85% accuracy,
100 UEs, 50 Tasks/s

Semantic
Deep Learning
Analyzer rApp Latency/Accuracy

Functions

Semantic
Edge Slicing

xApp

COCO Dataset
YOLOX

Radio Info:

SNR of
UE1 ... UE50

Edge Info:

Available
GPU: 50%

Task Requirements
Less than 0.1s latency,

More than 90% accuracy,
10 UEs, 30 Tasks/s

Task 2 Descriptor
Image Segmentation

MASK-R-CNN DL Model
N/A

CityScapes Dataset
MASK-R-CNN

RAN and Edge Slicing:
70% RBs, 40% GPU to Task 1, Compression: 50%
30% RBs, 60% GPU to Task 2, Compression: 40%

(1)

(3)

(2)

(4)

(5)

(6)

(7)

Compression
Level

Per Task

Fig. 3: Functional Blocks and O-RAN Interfaces used by SEM-O-RAN (Left); A Walk-through of SEM-O-RAN (Right).

still available and 10 RBGs are still available.
We show that these aspects lead to up to 169% more

tasks being allocated by our RAN slicing algorithm with
respect to state-of-the-art [11].

III. THE SEM-O-RAN FRAMEWORK

A. Background Notions on O-RAN

The core philosophy behind O-RAN is the clear separation
the RAN software and hardware [23], by disaggregating the
RAN into a Radio Unit (RU), Centralized Unit (CU) and Dis-
tributed Unit (DU). The RU implements extremely low-latency
operations related to the lower Physical Layer (PHY). The DU,
in turn, implements the upper portion of the PHY, as well as
the Medium Access Control (MAC) and Radio Link Control
(RLC). These are controlled in a softwarized manner by a
RAN Intelligent Controller (RIC), which is further divided into
a Non-real-time RIC, handling high-level RAN orchestration
and management, and a Near-real-time RIC, implementing
fine-grained control policies such as RAN slicing, scheduling,
and load balancing. Third-party applications called xApps and
rApps can be hosted in the Non-real-time RIC and Near-real-
time RIC, respectively. The former may implement data-driven
control loops or may be used for RAN-specific data collection
and analysis. On the other hand, rApps may implement high-
level policy guidance as well as application-level interfaces.
Please refer to [16] for more information regarding O-RAN.

B. SEM-O-RAN: Functional Blocks and Interfaces

Figure 3 shows the functional blocks of SEM-O-RAN, as
well as how the blocks are mapped into the O-RAN modules
and interfaces. The core modules of SEM-O-RAN are the
Semantic Deep Learning Analyzer (SDLA) and the Semantic
Edge Slicing Module (SESM), which respectively reside in
the Non-real-time RIC and Near-real-time RIC portions of the
O-RAN as an rApp and an xApp. The SEM-O-RAN and the
VNO communicate through a human-machine interface [16].
Each VNO requires slices for a given set of mobile tasks. Each

mobile task corresponds to an O-RAN Slice Request (OSR),
which is composed of a Task Description (TD) field and a
Task Requirements (TR) field. The TD is used to define the
DL service requested, the DL model to be used and the DL
target classes, while the TR specified the latency and accuracy
requirements, the number of UEs requested, and the number
of jobs (e.g, inference on an image) per second generated
by the UEs. As shown in Figure 3-Right, a TD could be
(”Object Recognition”, ”YOLOX”, ”{Person, Car, Bicycle}”),
with the corresponding TR defined as (”0.5 s max latency”,
”0.85 min accuracy”, ”100 UEs”, ”50 jobs/sec”). The TD is
submitted to the SDLA rApp, which is tasked to compute
the latency function lτ (·) and accuracy function aτ (·), which
output the latency and accuracy values associated to a given
TD, a given level of task compression and amount of edge
resources (see Section IV-A for a more formal definition).
The accuracy function can be computed through representative
datasets, such as COCO [21] or CityScapes [9]. An initial
value of the corresponding latency function can be obtained
through emulation (e.g., Colosseum) and eventually improved
with empirical feedback.

The latency and accuracy functions are then shared with the
SESM xApp running in the Near-real-time RIC through the
A1 interface. These are ultimately used to solve the Semantic
Flexible Edge Slicing Problem (SF-ESP), as detailed in Sec-
tion IV. The output of the SF-ESP xApp is ultimately three-
fold: (i) select which tasks to admit; (ii) their compression
level; and (iii) the computational resources (GPU/RAM) and
the number of Physical Resource Blocks (PRBs) assigned to
each admitted task. Real-time information about the available
computational resources and the current radio-level statistics
are provided to the xApp through the E2 interface. The former
is used by the SF-ESP to properly account for the resources
that are actually available in the RAN edge, which are shared
through an Enriched Interface (EI) to the RAN. The latter are
used to select the appropriate latency function from the SDLA

Fig. 4: System model example with C = 3 application classes,
each of which is run by |Dc| = 2,∀c ∈ C devices. Each
device requests |Tcd| = 2,∀c, d tasks to be offloaded to the
Edge infrastructure, thus requiring the concurrent allocation of
m = 5 types of radio and compute resources.

according to the radio channel status. The radio slicing and
computation slicing are respectively shared with the CU and
the RAN edge through the E2 interface. The CU then takes
care of propagating the slicing information to the appropriate
DUs. The compression level per task is fed back to the VNO,
which then communicates this information to the UEs.

A Walk-through of SEM-O-RAN. We provide a simplified
walk-through of an actual slicing request and enforcement
operation in SEM-O-RAN in the right side of Figure 3. First,
TDs are sent to the SDLA rApp (Step 1). If latency/accuracy
functions are not already present, they are computed by using
the appropriate datasets/models and stored in the Non-real-
time RIC (Step 2). Otherwise, the functions are sent to the
SESM xApp (Step 3), which receives the TRs (Step 4) and
the current radio/edge status (Step 5). This information is used
to produce the RAN and edge slicing (Step 6). Finally, the
current radio/edge status may be shared with the SDLA rApp
for refinement of the latency functions (Step 7).

IV. SEMANTIC FLEXIBLE EDGE SLICING (SF-ESP)
We introduce the system model in Section IV-A. Then, we

formalize the SF-ESP and prove its NP-hardness in Section
IV-B. We propose a greedy algorithm in Section IV-C.

A. System Model

We define an application class as a high-level objective
that has to be achieved through the execution of one or more
DL tasks with certain requirements. Every application class
specifies the DL service, the classes of objects over which the
DL service is supposed to be applied to, and the requirements
for maximum delay and minimum expected accuracy that a
device running that application must satisfy. For example, a
monitoring application class could require the detection and
tracking of person and vehicle objects located in proximity
of a road intersection with a minimum expected accuracy of
0.50 mAP and maximum end-to-end delay of 800 ms. Figure
4 shows an example with 3 application classes.

Let C = {1, . . . , C} be the set containing the application
classes. The set of devices running an application class c ∈ C

is Dc. A device d ∈ Dc, according to its application class c,
submits a set of tasks Tcd to be offloaded on the RAN edge.
A task, uniquely identified at the system level by the tuple
(c, d, t), is the periodic execution at the edge of a DL service
over certain classes of objects, which is applied over a stream
of inference data sent by the device, and whose results are
then sent back to the requesting device, for a period of time
not known a priori. To make the notation clearer, let us define
τ = (c, d, t) ∈ T as a generic task. Given τ , we define the
compression scaling factor as zτ ∈ (0, 1] = {x ∈ R|0 < x ≤
1} such that the bitrate of the inference data stream is scaled
by that factor, i.e. bzτ = zτ bτ , where bzτ is the compressed
stream and bτ is the original stream without any applied
compression. A higher scaling factor implies higher inference
accuracy. A lower scaling factor sacrifices the data quality to
decrease the file size, thus requiring lower network bandwidth
and improving latency. In the proposed model, we assume
that the inference data original stream size is constant and
depends on the application class. Furthermore, we assume the
compression latency as constant for different scaling factors.

Given the type of edge resource k ∈ K = {1, . . . ,m}, we
denote with sτk the amount of resource of type k assigned
to each task τ ∈ T. Resource types can be networking, e.g.,
Physical Resource Blocks (PRBs), as well as computational,
e.g., GPU time and memory needed to run the DL models in
the RAN edge. Since edge resources are limited and costly, the
total amount of assigned resources of type k cannot exceed the
capacity Sk,∀k. Thus, careful resource allocation is needed to
avoid over-provisioning. Since not every resource has the same
cost, we define the coefficient pk as the cost associated with
each edge resource type k.

The performance requirements are imposed by the related
application class. Such requirements are defined in terms of
(i) minimum expected prediction accuracy Ac on the selected
object classes, and (ii) maximum expected end-to-end latency
Lc for each of the applications running on the mobile devices
belonging to class c. By defining aτ and lτ respectively as
the expected accuracy and latency of task τ , an allocation
solution is acceptable only if aτ < Ac and lτ > Lc,
∀τ = (c, d, t) ∈ T. Notice that the accuracy and latency are not
trivial functions of the slice allocation and compression factor.
Specifically, the accuracy depends on the highly nonlinear
output of a DNN, while the latency has a strong dependency
on the radio technology and channel conditions between the
RU and the UE, even when the slice allocation and the
compression factor are given. For this reason, integrating a
complex mathematical model to account for all of the high
number of factors involved (e.g., Signal-to-Noise-Ratio (SNR),
Modulation and Coding Scheme (MCS), carrier(s) frequency
to name a few) would be impractical. Instead, we follow a
data-driven approach where the accuracy and latency functions
are constructed through a regression model, keep the explicit
dependencies of the accuracy aτ (z) : (0, 1]→ R+ and latency
lτ (z, s) : (0, 1] × R+m → R+ functions on the compression
scaling factor and resource allocation, and assume that those
are given as part of the problem input.

TABLE I: Table of Symbols

Symbol Description
C Set of all application classes
c Application class index
d Mobile device index running an application
t Task index requested by a device

(c, d, t) t-th task requested by device d belonging to class c
τ the generic task identified by the triplet (c,d,t)
T Set of all tasks τ of all devices from all classes
K Set of all Edge resource types
k Edge resource type index
m Total number of resource types
pk Price of the resource type k
xτ Admission of task τ
sτk Slice allocation of the resource type k for τ
sτ Slice allocation vector (sτ1, ..., sτm) for τ
aτ Expected inference accuracy for the task τ
lτ Expected E2E latency for the task τ
Ac Minimum accuracy tolerable for class c tasks
Lc Maximum latency tolerable for class c tasks
zτ Compression scaling factor for the task τ
Sk Total capacity of type k resource

B. SF-ESP Problem Formulation

We consider the decision variables in our problem to be as
follows:

• x = [xτ], defined as the task admission vector where
the generic element, xτ , is a binary variable indicating
whether task τ is offloaded to the edge or not;

• s = [sτ] = [(sτ1, ..., sτm)], i.e., the resource allocation
matrix;

• z = [zτ] defined as the compression scaling factor vector.

Note that the data quality is maximum when zτ = 1 and
decreases for lower values of zτ . Consequently, the expected
inference accuracy aτ (z) is directly derived from zτ , as it
has no dependency from the resource allocation, while the
expected latency lτ (z, s) is a result of the choice of both zτ and
{sτk}∀k. The problem formalization according to the system
constraints and definitions is given by:

Semantic Flexible Edge Slicing Problem (SF-ESP)

maxx, s, z
∑
τ∈T

m∑
k

pk(Sk − sτk)xτ (1a)

s.t.
∑
τ∈T

sτkxτ ≤ Sk, k = 1, . . . ,m, (1b)

zτ ∈ (0, 1], ∀τ ∈ T, (1c)
aτ (zτ) ≥ Acxτ ,∀τ ∈ T, c ∈ C, (1d)

lτ (zτ , sτ)xτ ≤ Lc, ∀τ ∈ T, c ∈ C, (1e)
xτ ∈ {0, 1},∀τ ∈ T. (1f)

Notice that the SF-ESP includes both integer and contin-
uous variables, thus it belongs to the class of mixed integer
nonlinear problems (MINLP). Theorem 1 below proves that
the problem is NP-hard.

Theorem 1. The SF-ESP is NP-hard.

Proof. We prove the result by showing that the binary mul-
tidimensional Knapsack problem (0/1 d-KP), which is NP-
hard [24], can be reduced to an instance of the SF-ESP in
polynomial time. Let us assume that the compression factor
is fixed to zτ = 1,∀τ and the slice allocation sτk is given
for every task and resource type. Then let us ignore the
constraints on performance by making them always satisfied,
i.e., by setting A1 = 0 and L1 = inf . The problem now
has only x as decision variable and the value and weight of
each task are known and constant. The problem thus is an
instance of the 0/1 d-KP, whose statement is the following:
given a set of items (tasks), each with a multidimensional
weight (resource allocation) and a value (unused resources by
their price), determine which items to include in a collection
so that the total weight is less than or equal to a given limit
(total resources) and the total value is maximized. We observe
that the SF-ESP is a reduction of 0/1 d-KP that can be built
in polynomial time. ■

The above proof also suggests that SF-ESP is a harder
problem than 0/1 d-KP, as it is a combination of the 0/1 d-
KP, and a variant of the strongly correlated knapsack with
variable weights and non-linear constraints. Even though
an algorithm with (1−ϵ)-approximation ratio exists for the 0/1
d-KP [25], for the strongly correlated knapsack with variable
weights an algorithm with an acceptable approximation ratio
is available only for the simpler case where constraints are
linear [26, KLC2]. Thus, we provide a greedy heuristics for
which, however, the existing results do not permit to obtain a
non-trivial approximation ratio.
C. Greedy Algorithm for the SF-ESP

Given the NP-hardness of the SF-ESP, we propose a greedy
heuristic to find a sub-optimal solution with low computational
complexity. This algorithm is based on the primal effective
gradient method of [27] for the 0/1 d-KP. The gradient method
sorts tasks based on their effective gradients, a measure of
the task relative value according to a penalty vector that
prioritizes allocation of unused resources, then it admits tasks
with highest gradients. However, to calculate the gradient of
a task, we need to first find its resource requirement. If we
assume that the latency function lτ (zτ , sτ) is monotonically
increasing over the compression factor zτ , then the optimal
task compression factor z∗τ is the minimum that satisfies the
accuracy requirement Ac from (1d):

z∗τ = min
zτ

zτ s.t. aτ (zτ) > Ac (2)

We could apply the same idea to (1e) to find the resource
allocation sτ that minimize the resource cost for all tasks τ :

s∗τ = argmin
sτ

m∑
k

pksτk s.t. lτ (z
∗
τ , sτ) < Lc (3)

The disadvantage of such approach is that admitting tasks
in ascending order of their resource cost may not allocate
resources efficiently, thus preventing the admission of a larger
number of tasks. In fact, a task may satisfy latency and
accuracy constraints with several combination of resource

allocation, with the best being not the minimum, but the one
that best balance resource consumption according to available
resources. Thus, if radio resources are scarce, we allocate
few radio resources and balance the increased network latency
by lowering the processing delay through increased compute
resources. Therefore, we modify the choice of the optimal
resource allocation as the one that best balances the resources
utilization according to their availability, by maximizing the
primal gradient function of [27]:

s∗τ = argmax
sτ

PG(sτ)

s.t. lτ (z
∗
τ , sτ) < Lc, sτk ≤ Sk −

(∑
τ∈T

sτkxτ

)
,∀k

(4)

To efficiently find a solution to Equations 2 and 4, which
depend on the definition of the accuracy and latency functions,
it would be necessary to know the function properties (e.g.,
monotonicity, convexity). Since we consider accuracy and
latency as generic functions, we solve the equations through
enumeration of the resource allocation solution space.

Algorithm 1 Greedy Algorithm for the SF-ESP

1: Tc ← T ▷ consider all tasks candidate for admission
2: for all τ ∈ T do
3: Gτ ← 0, xτ ← 0, sτ ← (0, ..., 0), zτ ← 1
4: if ∃ z∗τ then ▷ if minimum accuracy can be met
5: zτ ← z∗τ ▷ save the optimal compression factor
6: else
7: Tc ← Tc \ τ
8: repeat
9: for k ← 1,m do

10: ok ←
∑

τ∈T sτkxτ ▷ occupied resources

11: for all τ ∈ Tc do
12: if ∃Gk ← maxsτk

PG(sτ) s.t. sτk ≤ Sk − ok,∀k
then

13: sτ ← argmaxsτ PG(sτ) s.t. sτk ≤ Sk − ok
14: else
15: Tc ← Tc \ τ
16: τ ← τ | Gτ = max{Gτ}∀τ
17: xτ ← 1 ▷ admit task whose gradient is maximum
18: Tc ← Tc \ τ
19: until Tc = ∅
20: return (xτ , sτ , zτ)∀τ∈T
21: function PG(sτ) ▷ calculate the primal gradient
22: if ok = 0,∀k then ▷ penalize resource usage equally
23: return (

∑m
k pk(Sk − sτk))n

1/2/(
∑m

k sτk/Sk)
24: else ▷ penalize resource usage as per availability
25: return (

∑m
k pk(Sk −

sτk))(
∑m

k o2k)
1/2/(

∑m
k sτkok/Sk)

The preliminary step of the greedy algorithm (Algorithm 1)
is to (i) include all submitted tasks to the candidate task set
(line 1), that contains the task that are considered feasible and
worth of admission, and (ii) initialize the solution by setting
the task admission vector and resource allocation matrix to

zero, and the compression scaling factor to the unitary vector
(line 3). Then, for each task, the optimal compression factor
z∗ is calculated according to its target accuracy (line 5),
as per Equation 2. An initial pruning of the candidate task
set is performed by removing tasks whose target accuracy
can not be met for any compression factor (line 7). The
main loop of the algorithm (lines 8-19) examines the tasks
in the candidate task set to find the most convenient one to
admit, based on the current resource occupation and until the
set empties. First, the current resource occupation vector is
updated (line 10). After that, the maximum primal gradient of
each task in the candidate task set in calculated exploring the
feasible resource allocations (line 12), following Equation 4.
The primal gradient is calculated according to the function,
defined in lines 21-25, in which the return value is computed
differently whether resources are currently free (line 23) or not
(25). If the maximum gradient is found, then the corresponding
resource allocation for the examined task is saved (line 13),
otherwise the task is discarded (line 15). Then, the task with
the maximum value of maximum primal gradient is found (line
16), admitted by setting to one its corresponding value of the
task admission vector (line 17) and therefore removed from
the candidate task set (line 18). Finally, after the loop ends,
the task admission vector, the resource allocation matrix and
the scaling factor vector are returned as the solution of the
SF-ESP (line 20).

V. PERFORMANCE EVALUATION

We evaluate the performance of SEM-O-RAN through ex-
tensive numerical analysis (Section V-B) and practical exper-
iments on the Colosseum network emulator (Section V-C).

A. Experimental Setup

Applications and datasets. As far as the DL services
are concerned, we consider object detection and instance
segmentation, which are state-of-the-art problems in computer
vision (CV). For the former, we consider (i) the widely-known
Common Objects in Context (COCO) as dataset, which is a
large-scale image database containing more than 200K labeled
examples across 80 object classes [21]; (ii) the YOLOX
classifier, which is based on the Modified CSP v5 as backbone
and has 54.2M parameters [20]. For the latter, we selected (i)
the Cityscapes dataset, which contains pixel-level annotated
video sequences of street scenes recorded in 50 different cities
[9]; (ii) the BiSeNet v2 real-time classifier, which is based
on a bilateral segmentation backbone network and has 14.8M
parameters [22]. For performance evaluation purposes, we
define a set of 10 object detection tasks in Table II.

Baselines. For comparison purposes, we consider the fol-
lowing baselines: (1) Sl-EDGE [11], the state-of-the-art algo-
rithm for RAN edge slicing; (2) MinRes-SEM, an algorithm
that considers the semantics but allocates the minimum re-
sources for each task following Equation 3; (3) FlexRes-N-
SEM, which implements flexible resource allocation but does
not consider the semantics; (4) HighComp, which compresses
each task to 10% of its original size, so as to reach mAP

TABLE II: Multi-object detection applications.

Application Target Classes
COCO All Entire set of classes (80) of COCO
COCO Urban Bicycle, car, motorcycle, bus, truck, traffic

light, stop sign, person
COCO Bags Handbag, backpack, suitcase
COCO Animals Bird, cat, dog, horse, sheep, cow, elephant,

bear, zebra, giraffe
COCO Person Person
Cityscapes All All evaluation classes (19) of Cityscapes
Cityscapes Vehicles Car, truck, bus, train, motorcycle, bicycle
Cityscapes Objects Pole, traffic light, traffic sign
Cityscapes Flat Road, sidewalk
Cityscapes Person Person

of about 0.25 in the COCO dataset. This is a baseline that
tries to compress aggressively tasks to minimize resources;
(5) HighRes, which statically allocates tasks 20% of the
total amount of resources. This is a baseline that attempts
to maximize the probability that admitted tasks will meet
application constraints.

Prototype on Colosseum. We designed and developed a
proof of concept of SEM-O-RAN on the Colosseum network
emulator [19], and used the open-source SCOPE framework
[28] as prototyping platform for NextG systems. Since SCOPE
did not support uplink slicing of resources, we extended
SCOPE to implement uplink slicing as well. We pledge
to release a Colosseum-ready Linux Container (LXC)
containing all of our code repositories, to allow full
reproducibility and further research on the topic.

DU/
CU/RU

...

Radio
Intelligent
Controller

(RIC)

Massive Channel Emulator
(MCHEM)

GPUs
(1 per SRN,

20 total)

Task 1: “Bags”
6 SRNs

Latency: 0.31s
mAP: 0.18

Task 2: “Animal”
6 SRNs

Latency: 0.31s
mAP: 0.50

DNN
Models

... ...

Task 3: “Flat”
6 SRNs

Latency: 0.5s
mIoU: 0.50

Uplink
Streaming

Traffic
(1 SRN)

Fig. 5: Experimental setup on Colosseum.

Figure 5 shows a high-level overview of the SEM-O-RAN
prototype. We utilize a set of 20 SRNs to implement the O-
RAN network, with 1 SRN used to process received jobs
of admitted tasks and to implement the DU/CU/RU and
the RIC, where we run the slice admission system and the
solvers of the SF-ESP, implemented in MATLAB. Out of
the remaining 19 SRNs, to emulate traffic separated from the
mobile applications requiring RAN slices, we use one SRN
to generate uplink streaming traffic with the iperf tool. The
other 18 SRNs are used to implement a system where a VNO
requests three slices for object detection tasks. Up to 20 Tesla

K40m GPUs can be utilized to run the DNNs. Regarding the
PHY, we utilize the standard SCOPE parameters, i.e., 10 MHz
of bandwidth corresponding to 50 PRBs in total grouped in 17
RBGs. We assign the uplink streaming traffic 2 RBGs, thus,
15 RBGs are available for slicing.

B. Numerical Results

Figure 6 shows the number of allocated tasks by
SEM-O-RAN and the baseline algorithms, as a function of the
number of requested tasks. To further investigate the impact of
our approach, we consider (i) different numbers (2 and 4) of
edge/network resources; (ii) different thresholds of accuracy
(“low”, “medium” and “high”) and latency (“low”, “high”).
We define the accuracy thresholds Ac as 0.20, 0.35, and 0.55
mAP for object detection tasks and 0.35, 0.50, and 0.70 mean
Intersection over Union (mIoU) for instance segmentation
tasks, while for latency threshold Lc we choose 0.2 seconds
and 0.7 seconds. We equally distribute the tasks across the
applications defined in Table II. We empirically formulate
a latency function lτ that expresses the computational and
network latency as a function of compression factor, resource
allocation, and task generation rate.

Figure 6(a) shows that in general the performance of
SEM-O-RAN is similar to the one given by MinRes-SEM.
Even when the requirements are medium accuracy and high
latency, SEM-O-RAN allocates 20% more tasks than Sl-EDGE
and FleRes-N-SEM, and 402% more tasks than HighRes,
when 50 tasks are generated. On the other hand, when the
accuracy requirements deviate from medium, we start to
notice that SEM-O-RAN delivers significantly better perfor-
mance than Sl-EDGE. Specifically, we notice that when high
mAP/mIoU is required, only SEM-O-RAN and MinRes-SEM
are able to allocate tasks that meet the requirements. Sl-
EDGE does not allocate tasks since Sl-EDGE considers all
the tasks as belonging to the ”All” application, which can
never reach the required mAP/mIoU of 0.55/0.70 (see the left
side of Figure 2). While HighComp and HighRes do allocate
tasks, they will not meet the requirements. The reason is that
HighComp and HighRes allocate tasks while being agnostic
of the target latency and accuracy. The effect of joint semantic
slicing and flexible resource allocation is even more evident in
Figure 6(b), where more types of edge/network resources are
considered. In this case, SEM-O-RAN overperforms all the
other schemes in all of the considered scenarios, especially
when the number of tasks increases and the requirements be-
come more stringent. The results indicate that SEM-O-RAN
allocates up to 169% more tasks than the existing state-
of-the-art Sl-EDGE algorithm, and 18,5% on the average.
C. Experimental Results

Figure 7 shows our experimental results on Colosseum. In
these experiments, we change the VNO slice requirements
by updating the number of frames per second (fps) that
will be generated by each UE every 25 seconds. Accordingly,
we report the experimental end-to-end latency for each slice
as a function of time, as well as the end-to-end latency
threshold requirement for each task. To further investigate

(a) Numerical results with 2 types of edge/network resources. (b) Numerical results with 4 types of edge/network resources.

Fig. 6: Numerical results and comparison between SEM-O-RAN and baselines.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Measured end-to-end latency Mean end-to-end latency threshold Allocated RBGs Allocated GPUs

0.28

0.3

0.32

0.34

0.36

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(a) SEM-O-RAN, ”Bags”, z = 0.28

0.28

0.3

0.32

0.34

0.36

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(b) MinRes SEM, ”Bags”, z = 0.28

-0.5

0

0.5

1

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(c) FlexRes-N-SEM, ”Bags”, z = 0.14

0.28

0.3

0.32

0.34

0.36

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(d) SEM-O-RAN, ”Animals”, z = 0.28

0.28

0.3

0.32

0.34

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(e) MinRes-SEM, ”Animals”, z = 0.28

-0.5

0

0.5

1

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(f) FlexRes-N-SEM, ”Animals”, z > 1

0.4

0.5

0.6

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(g) SEM-O-RAN, ”Flat”, z = 0.08

0.4

0.5

0.6

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(h) MinRes-SEM, ”Flat”, z = 0.08

0.4

0.5

0.6

Lat [s]

20 40 60 80 100

Time [s]

2

4

6
RBGs

GPUs

2 fps 5 fps 10 fps 20 fps

(i) FlexRes-N-SEM, ”Flat”, z = 0.18

Fig. 7: Experimental results obtained through Colosseum, where we report the end-to-end latency as a function of time, as
well as the end-to-end latency threshold requirement. We change the slice requirements by updating the number of generated
frames per second (fps) by each UE every 25 seconds, and show the related output of the slicing algorithm in terms of RBGs
(radio resources) and GPUs (computing resources). In each caption, we show the chosen compression rate.

the advantage of flexible allocation and semantic slicing,
we compare SEM-O-RAN to MinRes-SEM and FlexRes-N-
SEM. Accordingly, we show the related output of the slicing
algorithm in terms of RBGs (radio resources) and GPUs
(computing resources).

We see that SEM-O-RAN successfully allocates ”Bags”,
”Animals” and ”Flat”. Notice that the reason why RBG allo-
cation decreases as the fps request decreases is that for lower
values of fps, the experienced latency increases, since some
time is spent for LTE uplink scheduling requests from the UEs
[29]. With higher fps, the UE is able to use RBGs granted by
the eNB to exchange traffic pertaining to multiple frames, thus
leading to lower latency even if network utilization is higher.
In the third and fourth slice, all three tasks are allocated by
SEM-O-RAN. The impact of flexible resource is demonstrated
in (e) where we see that MinRes-SEM does not allocate
”Animals” in the first slice. The reason is that SEM-O-RAN
is balancing RBGs with GPUs, requesting 6 RBGs and 5
GPUs during the first slice. Since MinRes-SEM would have
requested 8 RBGs and 1 GPUs, this would have led to 16
RBGs in total, which exceeds system capacity.

Finally, from Figures (c), (f) and (i) it emerges that FlexRes-
N-SEM, by not considering the semantics, performs worse
than the former two approaches. By keeping in mind that
FlexRes-N-SEM assumes that every task is of type ”All”, it
will compress the tasks in ”Bags” to 14% of their original
size to maximize the number of tasks allocated. Conversely,
SEM-O-RAN and MinRes-SEM compress ”Bags” to 28%,
which leads to successful allocation since the mAP constraint
will be met. Worse yet, FlexRes-N-SEM will allocate re-
sources for ”Bags” but the tasks will fail because they will not
meet the required mAP. Thus, even if FlexRes-N-SEM saves
resources by compressing more, it cannot achieve the required
mAP. As shown in Figure 7(f), the ”Animals” task is never
admitted by FlexRes-N-SEM, because it assumes that a mAP
of 0.5 can never be reached by ”All”, while SEM-O-RAN
and MinRes-SEM, by considering the semantics, compress
the tasks to the optimal level and can successfully admit it.
As for ”Flat”, FlexRes-N-SEM is always able to allocate it
successfully but, by assuming the type as the more complex
”All”, it does not select the same aggressive compression
factor that instead is chosen by SEM-O-RAN and MinRes-
SEM (18% instead of 8%), at the cost of higher RBGs
consumption in the latest slice of Figure 7(i).

VI. RELATED WORK

RAN slicing has attracted a significant amount of attention
over the last years [11], [12], [14]. Moreover, as the RAN
gets softwarized, mobile edge computing (MEC) becomes
fundamental to address the ever-stringent latency demands of
mobile applications [30], [31]. We refer the interested reader
to the following surveys [32], [33].

Specific to slicing of edge resources, Van Huynh et al. [34]
presented a mechanism for slicing of computation, networking
and storage through a deep dueling neural network that pro-
vides slices admission while avoiding over-provisioning and

maximizing the VNO’s reward. However, the authors in [34]
do not focus on how to partition the MEC resources and only
focus on admission control. Conversely, Ndikumana et al. [35]
consider the allocation of heterogeneous resources for MEC
task offloading, while in [36] Liu et al. propose a framework
for MEC-enabled wireless networks called DIRECT, which
however does not consider the case when MEC and network-
ing resources are on the same edge node. Moreover, these
frameworks are not O-RAN-compatible, which is instead one
of the primary targets of this paper.

So far, most of the research focus in O-RAN has been
on designing algorithms for RAN control and optimization.
Recently, Bonati et al. [18] have developed deep reinforcement
learning (DRL) agents running in O-RAN xApps on the near-
real-time RIC to select the best-performing scheduling policy
for each RAN slice. In our work, we do not select scheduling
policies but instead focus on RAN slicing. D’Oro et al. [17]
proposed an orchestration mechanism to select the optimal
DL models and execution location for each model complying
with timescale requirements, resource and data availability.
Conversely, we focus on properly slicing MEC resources for
timely execution of CV-based DL models under strict accuracy
constraints. Although flexible resource allocation has been
considered in the context of Virtual Network Function (VNF)
[37], [38], existing formulations do not consider application
semantics, and in general cannot be easily applied to address
edge task offloading problems.

The closest work to ours is Sl-EDGE [11], a MEC slicing
framework that allows network operators to instantiate hetero-
geneous edge slices. The key limitation of Sl-EDGE is that it
does not consider DL semantics, which is the core advantage
of our approach. Indeed, we show that our solution allows
allocating up to 169% more tasks than Sl-EDGE.

VII. CONCLUDING REMARKS

We have proposed SEM-O-RAN, the first semantics-based
slicing framework for NextG O-RAN networks. SEM-O-RAN
delivers better performance by semantically compressing
the images sent to the edge. Moreover, unlike prior art,
SEM-O-RAN does not consider each task as monolithic, but
flexibly allocates radio and computational resources so as to
maximize the number of admitted tasks. Besides proposing
the O-RAN compliant SEM-O-RAN framework, we have
mathematically formulated the Semantic Flexible Edge Slicing
Problem (SF-ESP), demonstrated that it is NP-hard, and pro-
posed a greedy approximation algorithm to solve it efficiently.
We have evaluated the performance of SEM-O-RAN through
extensive numerical analysis by comparing to several baseline
algorithms including the state-of-the-art scheme [11]. We have
implemented a prototype of SEM-O-RAN by using the Colos-
seum network emulator through the SCOPE framework for
NextG systems [28]. Our numerical and experimental results
show that through our semantic-based approach, SEM-O-RAN
improves the number of allocated tasks by up to 169% with
respect to the existing state-of-the-art work, while still meeting
accuracy and delay constraints. We believe that beyond the

results presented in this paper, the proposed semantic-based
approach can serve as the foundation for future research on the
utilization of application-level features in the low-level design
and optimization of wireless networks.

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER

This work is funded in part by the National Science
Foundation (NSF) grant CNS-XXXXXXX, as well as by
an effort sponsored by the U.S. Government under Other
Transaction number FA8750-21-9-9000 between SOSSEC,
Inc. and the Government. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of the NSF, the Air Force Research Laboratory, the U.S.
Government, or SOSSEC, Inc.

REFERENCES

[1] Ericsson, “Ericsson mobility report,” tech. rep., November 2021.
[2] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, “Vehicle-

to-everything (V2X) services supported by LTE-based systems and 5G,”
IEEE Communications Standards Magazine, vol. 1, no. 2, pp. 70–76,
2017.

[3] T. Zugno, M. Drago, M. Giordani, M. Polese, and M. Zorzi, “Toward
Standardization of Millimeter-Wave Vehicle-to-Vehicle Networks: Open
Challenges and Performance Evaluation,” IEEE Communications Mag-
azine, vol. 58, no. 9, pp. 79–85, 2020.

[4] H. Bagheri, M. Noor-A-Rahim, Z. Liu, H. Lee, D. Pesch, K. Moessner,
and P. Xiao, “5G NR-V2X: Toward Connected and Cooperative Au-
tonomous Driving,” IEEE Communications Standards Magazine, vol. 5,
no. 1, pp. 48–54, 2021.

[5] E. Frachtenberg, “Practical Drone Delivery,” Computer, vol. 52, no. 12,
pp. 53–57, 2019.

[6] Market Watch, “North America Self-driving Car Market - Global
Industry Analysis, Size, Share, Growth, Trends, and Forecast.”
https://tinyurl.com/w64u9jwn, 2020.

[7] H. Ye, L. Liang, G. Ye Li, J. Kim, L. Lu, and M. Wu, “Machine Learning
for Vehicular Networks: Recent Advances and Application Examples,”
IEEE Vehicular Technology Magazine, vol. 13, no. 2, pp. 94–101, 2018.

[8] R. Ravindran, M. J. Santora, and M. M. Jamali, “Multi-object Detection
and Tracking, based on DNN, for Autonomous Vehicles: A Review,”
IEEE Sensors Journal, vol. 21, no. 5, pp. 5668–5677, 2020.

[9] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

[10] X. Li, A. Garcia-Saavedra, X. Costa-Perez, C. J. Bernardos,
C. Guimarães, K. Antevski, J. Mangues-Bafalluy, J. Baranda, E. Zeydan,
D. Corujo, et al., “5Growth: An End-to-End Service Platform for
Automated Deployment and Management of Vertical Services over 5G
Networks,” IEEE Communications Magazine, vol. 59, no. 3, pp. 84–90,
2021.

[11] S. D’Oro, L. Bonati, F. Restuccia, M. Polese, M. Zorzi, and T. Melodia,
“Sl-EDGE: Network Slicing at the Edge,” in Proceedings of the Twenty-
First International Symposium on Theory, Algorithmic Foundations, and
Protocol Design for Mobile Networks and Mobile Computing, pp. 1–10,
2020.

[12] S. Mandelli, M. Andrews, S. Borst, and S. Klein, “Satisfying Network
Slicing Constraints via 5G MAC Scheduling,” in Proceedings of IEEE
International Conference on Computer Communications (INFOCOM),
pp. 2332–2340, IEEE, 2019.

[13] V. Mancuso, P. Castagno, M. Sereno, and M. A. Marsan, “Slicing Cell
Resources: The Case of HTC and MTC Coexistence,” in Proceedings
of IEEE International Conference on Computer Communications (IN-
FOCOM), pp. 667–675, IEEE, 2019.

[14] S. D’Oro, F. Restuccia, A. Talamonti, and T. Melodia, “The Slice is
Served: Enforcing Radio Access Network Slicing in Virtualized 5G
Systems,” in Proc. of IEEE International Conference on Computer
Communications (INFOCOM), pp. 442–450, IEEE, 2019.

[15] G. Garcia-Aviles, M. Gramaglia, P. Serrano, and A. Banchs, “POSENS:
A Practical Open Source Solution for End-to-End Network Slicing,”
IEEE Wireless Communications, vol. 25, no. 5, pp. 30–37, 2018.

[16] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding O-RAN: Architecture, Interfaces, Algorithms, Security, and
Research Challenges,” arXiv preprint arXiv:2202.01032, 2022.

[17] S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “OrchestRAN: Network
Automation through Orchestrated Intelligence in the Open RAN,” in
Proc. of IEEE International Conference on Computer Communications
(INFOCOM), May 2022.

[18] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intel-
ligence and Learning in O-RAN for Data-driven NextG Cellular Net-
works,” IEEE Communications Magazine, vol. 59, pp. 21–27, October
2021.

[19] L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. Tehrani-
Moayyed, D. Villa, S. Shrivastava, C. Tassie, K. Yoder, et al., “Colos-
seum: Large-Scale Wireless Experimentation Through Hardware-in-the-
Loop Network Emulation,” in 2021 IEEE International Symposium on
Dynamic Spectrum Access Networks (DySPAN), pp. 105–113, IEEE,
2021.

[20] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
Series in 2021,” arXiv preprint arXiv:2107.08430, 2021.

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects in
Context,” in Proceedings of European Conference on Computer Vision
(ECCV), pp. 740–755, Springer, 2014.

[22] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, “Bisenet
v2: Bilateral network with guided aggregation for real-time semantic
segmentation,” International Journal of Computer Vision, vol. 129,
pp. 3051–3068, Nov 2021.

[23] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
Programmable, and Virtualized 5G Networks: State-of-the-Art and the
Road Ahead,” Computer Networks, vol. 182, pp. 1–28, December 2020.

[24] H. Kellerer, U. Pferschy, and D. Pisinger, Multidimensional Knapsack
Problems, pp. 235–283. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004.

[25] A. Frieze and M. Clarke, “Approximation algorithms for the m-
dimensional 0–1 knapsack problem: Worst-case and probabilistic analy-
ses,” European Journal of Operational Research, vol. 15, no. 1, pp. 100–
109, 1984.

[26] K. Nip, Z. Wang, and Z. Wang, “Knapsack with variable weights
satisfying linear constraints,” vol. 69, p. 713–725, nov 2017.

[27] Y. Toyoda, “A Simplified Algorithm for Obtaining Approximate So-
lutions to Zero-One Programming Problems,” Management Science,
vol. 21, no. 12, pp. 1417–1427, 1975.

[28] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An Open and
Softwarized Prototyping Platform for NextG Systems,” in Proceedings
of the International Conference on Mobile Systems, Applications, and
Services (MobiSys), pp. 415–426, 2021.

[29] G. Pocovi, I. Thibault, T. Kolding, M. Lauridsen, R. Canolli, N. Ed-
wards, and D. Lister, “On the Suitability of LTE Air Interface for
Reliable Low-Latency Applications,” in 2019 IEEE Wireless Commu-
nications and Networking Conference (WCNC), pp. 1–6, 2019.

[30] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation
Offloading in Multi-Access Edge Computing Using a Deep Sequential
Model Based on Reinforcement Learning,” IEEE Communications Mag-
azine, vol. 57, pp. 64–69, May 2019.

[31] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task Offloading in Vehicular
Edge Computing Networks: A Load-Balancing Solution,” IEEE Trans-
actions on Vehicular Technology, vol. 69, no. 2, pp. 2092–2104, 2019.

[32] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
Slicing and Softwarization: A Survey on Principles, Enabling Technolo-
gies, and Solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429–2453, 2018.

[33] S. Wijethilaka and M. Liyanage, “Survey on Network Slicing for Internet
of Things Realization in 5G Networks,” IEEE Communications Surveys
& Tutorials, vol. 23, no. 2, pp. 957–994, 2021.

[34] N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Optimal and Fast Real-Time Resource Slicing with Deep Dueling

Neural Networks,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1455–1470, 2019.

[35] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato,
and C. S. Hong, “Joint Communication, Computation, Caching, and
Control in Big Data Multi-Access Edge Computing,” IEEE Transactions
on Mobile Computing, vol. 19, no. 6, pp. 1359–1374, 2019.

[36] Q. Liu and T. Han, “DIRECT: Distributed Cross-Domain Resource
Orchestration in Cellular Edge Computing,” in Proceedings of ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), pp. 181–190, ACM, 2019.

[37] M. Golkarifard, C. F. Chiasserini, F. Malandrino, and A. Movaghar,
“Dynamic VNF placement, resource allocation and traffic routing in
5G,” Computer Networks, vol. 188, p. 107830, 2021.

[38] J. Martı́n-Pérez, F. Malandrino, C. F. Chiasserini, M. Groshev, and C. J.
Bernardos, “Kpi guarantees in network slicing,” IEEE/ACM Transactions
on Networking, vol. 30, no. 2, pp. 655–668, 2021.

