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ON THE EXISTENCE OF OPTIMIZERS FOR TIME-FREQUENCY
CONCENTRATION PROBLEMS

FABIO NICOLA, JOSÉ LUIS ROMERO, AND S. IVAN TRAPASSO

Abstract. We consider the problem of the maximum concentration in a fixed

measurable subset Ω ⊂ R2d of the time-frequency space for functions f ∈ L2(Rd).

The notion of concentration can be made mathematically precise by considering

the Lp-norm on Ω of some time-frequency distribution of f such as the ambiguity

function A(f). We provide a positive answer to an open maximization problem,

by showing that for every subset Ω ⊂ R2d of finite measure and every 1 ≤ p < ∞,

there exists an optimizer for

sup{∥A(f)∥Lp(Ω) : f ∈ L2(Rd), ∥f∥L2 = 1}.
The lack of weak upper semicontinuity and the invariance under time-frequency

shifts make the problem challenging. The proof is based on concentration com-

pactness with time-frequency shifts as dislocations, and certain integral bounds

and asymptotic decoupling estimates for the ambiguity function. We also discuss

the case p = ∞ and related optimization problems for the time correlation func-

tion, the cross-ambiguity function with a fixed window, and for functions in the

modulation spaces Mq(Rd), 0 < q < 2, equipped with continuous or discrete-type

(quasi-)norms.

This is an Accepted Manuscript of an article published by Springer in Calculus of
Variations and Partial Differential Equations on 9 November 2022, available at:
https://link.springer.com/article/10.1007/s00526-022-02358-6,
DOI: 10.1007/s00526-022-02358-6.

1. Introduction and discussion of the main results

The notion of concentration of a function f ∈ L2(Rd) in a measurable subset
Ω ⊂ R2d of the time-frequency space is central in harmonic analysis and is also
at the core signal processing [19, 36, 25, 49]. From a mathematical point of view,
the study of this issue represents a fascinating and multifaceted challenge, with
a longstanding and distinguished tradition [22, 28, 29, 44, 12], and it ultimately
reduces to one of the different, subtle manifestations of the uncertainty principle
[15, 21, 41].

2010 Mathematics Subject Classification. 49Q10, 49R05, 42B10, 94A12, 81S30.
Key words and phrases. Time-frequency concentration, optimization, ambiguity function, con-

centration compactness.
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2 F. NICOLA, J. L. ROMERO, AND S. I. TRAPASSO

A natural family of phase-space concentration measures is given by the Lp norms
on Ω of some time-frequency distribution of f , such as the short-time Fourier trans-
form (see below), or the ambiguity function

A(f)(x, ω) =

∫
Rd

f
(
t+

x

2

)
f
(
t− x

2

)
e−2πit·ω dt, x, ω ∈ Rd,

which is a quadratic time-frequency representation popular in engineering and radar
applications [8, 51, 37].

The design of maximally concentrated waveforms is of great theoretical and prac-
tical interest, as these provide compact elementary blocks tailored to a given tiling
of the time-frequency space, according to a paradigm that dates back to the pio-
neering work by Gabor [23] at least. The companion problem of designing pulses
with a peaky ambiguity function is of particular relevance in radar signal analysis
[41, Section 3.4.3], wireless communications [2, 38, 42], and signal recovery.

In spite of the importance of the problem and the extensive numerical experimen-
tation (see e.g. [16, 40]), the existence of an optimizer for the functional ∥A(f)∥Lp(Ω),
1 ≤ p < ∞, among the functions f ∈ L2(Rd), ∥f∥L2 = 1, is still open. While this
fact can seem surprising given the maturity of the field of time-frequency analy-
sis, close inspection of the problem soon reveals a number of technical difficulties,
including the lack of weak upper semicontinuity of the involved functional and its
invariance with respect to a non-compact group of time-frequency shifts :

π(z)f(t) = e2πit·ωf(t− x), z = (x, ω) ∈ Rd × Rd.(1.1)

Our main result establishes the existence of optimizers for the Lp-norm of the am-
biguity function on a domain.

Theorem 1.1. Let Ω ⊂ R2d be a measurable subset of finite, positive measure, and
1 ≤ p < ∞. Then the supremum

(1.2) sup
f∈L2(Rd)\{0}

(∫
Ω
|A(f)(x, ω)|pdxdω

)1/p
∥f∥2L2

is attained.

Moreover, for 1 < p < ∞, if f (n) is any maximizing sequence normalized in
L2(Rd), then there exists a subsequence (still denoted by f (n)) and z(n) ∈ R2d such
that π(−z(n))f (n) converges in L2 to a maximizer.

The optimization objective (1.2) is invariant under time-frequency shifts, since
|A(π(x, ω)f)| = |A(f)| for x, ω ∈ Rd, f ∈ L2(Rd). The first step towards Theorem
1.1 is to account for such symmetries. At the outset, our proof is based on a
concentration compactness strategy [6, 43, 45, 35, 34, 48], where the time-frequency
shifts {π(x, ω): x, ω ∈ Rd} serve as dislocation operators. The corresponding profile
decompositions of maximizing sequences are then leveraged by means of certain
integral estimates for the ambiguity function from [10] — expressing continuity at
an intermediate level between the “dislocation topology” and the weak topology —
and an asymptotic decoupling property in Lp(Ω) for sums of functions asymptotically
separated in the Fourier domain. The latter can be aptly regarded as an asymptotic
version of a known almost-orthogonality principle, cf. [47, Lemma 6.1]. Our method
yields not only the existence of optimizers, but, for 1 < p < ∞, also implies that
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every normalized maximizing sequence is relatively compact in L2(Rd), up to time-
frequency shifts. This stronger conclusion is consistent with numerical practices that
seek to optimize (1.2) by fixing a time-frequency center of gravity [40].

The attainability of (1.2) in the whole time-frequency space (Ω = R2d) was studied
in the celebrated article [31], under the assumption p ≥ 2 — which is a necessary
restriction in that case — and with very different techniques, in particular exploiting
the explicit expression of the candidate maximizers. Indeed, the value of (1.2)
was exactly calculated and maximizers were characterized as Gaussian functions.
For domains Ω with a special geometry, such as a ball, a similar characterization
could be expected. Theorem 1.1 is a first step in that direction, as it implies that
maximizers exist and therefore satisfy a certain variational equation. The analysis of
such equation is however challenging and we postpone it to a subsequent contribution
(in preparation) — cf. [39] for a related problem.

We stress that the conclusion of Theorem 1.1 does not extend to the case p = ∞.
Instead, we have the following characterization.

Proposition 1.2. Let Ω ⊂ R2d be a measurable subset of finite, positive measure.
Then

(1.3) sup
f∈L2(Rd)\{0}

∥A(f)∥L∞(Ω)

∥f∥2L2

= 1

and the supremum is attained if and only if |Ω ∩ Br| > 0 for every r > 0, where
Br = {z ∈ R2d : |z| < r}. In this case, every f ∈ L2(Rd) \ {0} is a maximizer.

The magnitude of the ambiguity function |A(f)(x, ω)| = |⟨f, π(x, ω)f⟩| is a time-
frequency auto-correlation function. To better appreciate the subtleties involved
in its optimization, we show that a result similar to Theorem 1.1 fails for time or
frequency correlations considered individually. Indeed, denote the translation and
modulation operators on L2(Rd) by

(1.4) Txf(t) = f(t− x), Mωf(t) = e2πit·ωf(t), x, ω ∈ Rd, f ∈ L2(Rd),

so that π(x, ω) = MωTx. The following result is in stark contrast with Theorem 1.1.

Proposition 1.3. Let Ω ⊂ Rd be a measurable subset of finite, positive measure,
and 1 ≤ p < ∞. Then

(1.5) sup
f∈L2(Rd)\{0}

(∫
Ω
|⟨f, Txf⟩|pdx

)1/p
∥f∥2L2

= |Ω|1/p

and the supremum is not attained.

Of course, a similar negative result holds true for the frequency correlation func-
tion ⟨f,Mωf⟩ = ⟨f̂ , Tωf̂⟩. As ⟨f, Txf⟩ = (f ∗ f∨)(x), with f∨(x) = f(−x), Proposi-
tion 1.3 could be rephrased as an optimization problem for positive definite functions
and it is related, at least in spirit, to the optimization of the constants in Young’s
inequality; see, e.g., [32, Chapter 4].

Optimization problems analogous to (1.2) can be considered also for linear time-
frequency representations, such as the short-time Fourier transform Vgf(x, ω) =
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⟨f, π(x, ω)g⟩, where g ∈ L2(Rd) \ {0} is a fixed window function. While the short-
time Fourier transform is not intrinsically associated with the function f , as it
requires the introduction of an additional parameter g, it is a popular tool in signal
analysis, in part because it is mathematically simpler than the ambiguity function.
For example, the existence of a maximizer for ∥Vgf∥Lp(Ω) is much easier to establish
than Theorem 1.1, because the introduction of the window function g weakens the
nonlinearity of the optimization objective, replacing the quadratic term |A(f)| with
the so-called cross-ambiguity |A(f, g)| = |Vgf |. A proof of the existence of optimizers
for ∥Vgf∥Lp(Ω) and a technical comparison to Theorem 1.1 is presented in Section
5. (The case p = 2 is straightforward, as it corresponds to the maximization of
the eigenvalues of a so-called localization operator [12, 50]; finer questions such
as optimal domains of prescribed measure and characterization of extremizers for
Gaussian windows are studied in [39].)

We also point out that different but related optimization problems have been
considered in the literature over the years, such as maximizing the integral on a
subset Ω ⊂ R2d of time-frequency distributions in the Cohen class [7] (as opposed
to their Lp-norms); see for instance [17, 33]. For this kind of optimization, we refer
the reader to the comprehensive recent survey [30], where deep connections with the
spectral theory of pseudo-differential operators are discussed.

Finally, we stress once again that |A(f)(x, ω)| = |⟨f, π(x, ω)f⟩|, so that (1.1) can
be also regarded as an optimization problem for the diagonal matrix coefficients of
the Schrödinger representation of the reduced Heisenberg group. This point of view
encourages us to investigate for which other groups and unitary representations a
similar property holds – an interesting question that appears to be largely open
at the time of writing. Indeed, the matrix coefficients encode the properties of
the corresponding representation and their study has a well-established tradition
[1, 27, 11, 26, 14], focused on proving refined estimates on the whole group – as
opposite to a subset Ω.

The article is organized as follows. In Section 2 we provide brief background
on time-frequency analysis and concentration compactness. Section 3 is devoted
to the proof of Theorem 1.1, whereas in Section 4 we prove Propositions 1.2 and
1.3. In Section 5 we consider the optimization problem for ∥A(f, g)∥Lp(Ω) and dis-
cuss technical differences with respect to Theorem 1.1. Finally, Section 6 provides
two variants of Theorem 1.1. There, we replace L2(Rd) by the modulation spaces
M q(Rd), 0 < q < 2, which are (quasi-)Banach spaces defined by imposing cer-
tain integrability requirements to the short-time Fourier transform, widely used in
time-frequency analysis [3]. More precisely, we incorporate modulation-space norms
into the optimization objective (1.2), and also consider their often preferred discrete
counterparts.

2. Notation and preliminary results

2.1. General notation. The inner product in L2(Rd) is denoted by ⟨·, ·⟩. The space
of Schwartz functions in Rd is denoted by S(Rd), while S ′(Rd) stands for the space
of temperate distributions. We write A ≲ B if A ≤ CB for some absolute constant
C > 0, whereas A ≲k B means that such a constant depends on the parameter
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k. The Lebesgue measure of a subset E of Rd (or R2d) is denoted by |E| while χE

stands for its characteristic function.

2.2. Tools from time-frequency analysis. We recall some definitions and facts
from time-frequency analysis; see [25, 20, 18] for extensive background. The main
objects are the time-frequency shifts (1.1), which define a unitary projective repre-
sentation z 7→ π(z) of R2d on L2(Rd). In particular, for all z, z′ ∈ R2d,

π(z)π(z′) = σ(z, z′)π(z + z′),(2.1)

π(z)∗ = σ(z,−z)π(−z),(2.2)

where σ(z, z′) is an adequate unimodular complex number, called cocycle.

Function spaces. We now fix a window function g ∈ S(Rd) \ {0}. Most defini-
tions below depend (albeit non-essentially) on such choice. The short-time Fourier
transform (STFT) of a temperate distribution f ∈ S ′(Rd) is defined by

(2.3) Vgf(z) = ⟨f, π(z)g⟩, z ∈ R2d.

By considering the Lp norm of Vgf in R2d one can naturally measure the time-
frequency content of a distribution and introduce corresponding families of function
spaces. For example, the modulation space M∞(Rd) consists of temperate distribu-
tions f ∈ S ′(Rd) such that

∥f∥M∞ := sup
z∈R2d

|Vgf(z)| = sup
z∈R2d

|⟨f, π(z)g⟩| < ∞.

Different choices of the window produce equivalent norms, and L2(Rd) ↪→ M∞(Rd).

The Wiener amalgam space W(L2, L∞) consists of all measurable functions f :
Rd → C such that

∥f∥W(L2,L∞) := ess sup
y∈Rd

∥f Tyg∥L2 < ∞,

where Ty is the translation (1.4). Again, different windows give rise to equivalent
norms and L2(Rd) ↪→ W(L2, L∞). Notice that the reverse inclusion holds locally,
namely

(2.4) ∥f∥L2(K) ≲K ∥f∥W(L2,L∞),

for every compact subsetK ⊂ Rd. This follows immediately if the window g is chosen
so that g = 1 in a sufficiently large ball, so that f = f Tyg on K for sufficiently
small y.

Cross-ambiguity function. The cross-ambiguity function of f, g ∈ L2(Rd) is

A(f, g)(x, ω) =

∫
Rd

f
(
t+

x

2

)
g
(
t− x

2

)
e−2πit·ω dt = eπix·ωVgf(x, ω), x, ω ∈ Rd.

Hence A(f, f) = A(f) is the ambiguity function of f . It is easy to see that A(f, g)
is a continuous function in R2d and vanishes at infinity. Moreover, by the Cauchy-
Schwarz inequality,

|A(f, g)| ≤ ∥f∥L2∥g∥L2 .

The following estimate from [10, Corollary 4.2] will play a crucial role:

(2.5) ∥A(f, g)∥W(L2,L∞) ≲ ∥f∥L2∥g∥M∞ ,
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where of course the space W(L2, L∞) is understood in R2d. While we only need
(2.5) for f, g ∈ L2(Rd), the formula is still valid for f ∈ L2(Rd) and g ∈ M∞(Rd).
(In that case, A(f, g) is a priori defined only as a temperate distribution, and part
of the content of (2.5) is that A(f, g) is in fact locally in L2 when the right-hand
side is finite). Thus, as in many other parts of the article, we are concerned with
L2(Rd) equipped with the M∞ (norm) topology, but not with genuine distributions
in M∞(Rd).

We finally recall from [20, Chapter 4] or [13, Proposition 175 and Corollary 217]
the covariance property for the cross-ambiguity function: if A is a (real 2d × 2d)
symplectic matrix we have

(2.6) A(UAf, UAg)(z) = A(f, g)(Az) z ∈ R2d, f, g ∈ L2(Rd)

for a suitable unitary operator UA on L2(Rd) (called metaplectic operator).

2.3. Tools from concentraction compactness. Concentration compactness is a
general paradigm to study optimization problems when compactness arguments fail
due to invariance under the action of a non-compact group (see e.g. [34, 35, 48, 46]).
We recall some basic facts specialized to the (projective) representation given by the
time-frequency shifts. The main conclusion is that any bounded sequence in L2(Rd)
has a subsequence with a special profile decomposition.

Time-frequency shifts as dislocations in L2. It is easily checked that time-frequency
shifts satisfy the following important dislocation property :

(2.7)
If f ∈ L2(Rd) and zn ∈ C is a sequence with |zn| → +∞,
then π(zn)f converges weakly to 0 in L2(Rd).

The dislocation property allows us to apply the theory of concentration compactness,
because it implies that the time-frequency shifts {π(z) : z ∈ R2d} define a so-called
dislocation set of unitary operators in L2(Rd) ([48, Definition 3.2]). Whereas we do
not need to recall the general (technical) definition here, we observe that, according
to [48, Proposition 3.1], it is sufficient to check that

(2.8)
If for some sequences zn, z

′
n ∈ R2d, the sequence of operators π(z′n)

∗π(zn)
does not converge weakly to zero (as bounded operators on L2(Rd)),
then it has a strongly convergent subsequence.

To see that property (2.8) holds, note first that, by (2.1) and (2.2), π(z′n)
∗π(zn) =

c(zn, z
′
n)π(zn − z′n), with |c(zn, z′n)| = 1. Hence, if π(z′n)

∗π(zn), does not converge
weakly to zero, by (2.7), |zn− z′n| does not tend to +∞, and therefore has a conver-
gent subsequence. By passing to a further subsequence, the phase factors c(zn, z

′
n)

will also converge, and the conclusion follows from the strong continuity of the rep-
resentation R2d ∋ z 7→ π(z).

D-weak convergence. Associated with the set of dislocations {π(z) : z ∈ R2d}, there
is a corresponding notion of weak dislocation convergence — D-weak convergence
for short [48, Definition 3.1]): a sequence fn in L2(Rd) D-weakly converges to f ∈
L2(Rd) if for every g ∈ L2(Rd):

sup
z∈R2d

|⟨fn − f, π(z)g⟩| → 0.
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Letting g be a window function for the short-time Fourier transform (2.3) one sees
that D-weak convergence implies convergence in M∞(Rd).

Profile decomposition. The general theory of concentration compactness in Hilbert
spaces (see e.g. [48, Theorem 3.1 and its proof] or [46, Theorem 4.5.3]) now yields
the following: Let f (n) be a sequence in L2(Rd) with lim supn→∞ ∥f (n)∥L2 ≤ 1, then
there exists a subsequence (that we still denote f (n)) and profiles fj ∈ L2(Rd),
j = 1, 2, . . . , such that the following profile decomposition holds for k = 1, 2, . . .:

(2.9) f (n) =
k∑

j=1

π
(
z
(n)
j

)
fj + w

(n)
k

for suitable z
(n)
j ∈ R2d, w

(n)
k ∈ L2(Rd), where

(2.10) |z(n)j − z
(n)
j′ | → +∞ as n → ∞, if j ̸= j′ and fj ̸= 0, fj′ ̸= 0,

(2.11)
k∑

j=1

∥fj∥2L2 + lim sup
n→∞

∥w(n)
k ∥2L2 ≤ 1,

(2.12) lim
k→∞

lim sup
n→∞

∥w(n)
k ∥M∞ = 0.

Moreover,

(2.13) π
(
z
(n)
j

)∗
w

(n)
k → 0 weakly in L2, as n → ∞, for each k ≥ 1 and 1 ≤ j ≤ k,

and

(2.14) lim
n→∞

∥∥∥ k∑
j=1

π(z
(n)
j )fj

∥∥∥2
L2

=
k∑

j=1

∥fj∥2L2 .

Remark 2.1. As a consequence of the decomposition, we see that π
(
z
(n)
k

)∗
f (n) con-

verges weakly to fk in L2, as n → ∞, for each k ≥ 1.

For simplicity, we have introduced the time-frequency profile decomposition as an
application of the abstract theory of dislocation sets [48]. Alternatively, it would
have also been possible to derive the decomposition from the theory of dislocation
groups [46, Section 4.5.2], by considering the reduced Weyl-Heisenberg group {λπ(z) :
z ∈ R2d, |λ| = 1} and by exploiting the compactness of the set of phase factors λ.

3. Proof of the main result (Theorem 1.1)

In the following lemmas we deal with k-tuples h = (h1, . . . , hk) of functions on a
measure space endowed with a σ-finite measure and we use the notation ℓr(Lp) for
the corresponding vector-valued norm:

∥h∥ℓr(Lp) =

(
k∑

j=1

∥hj∥rLp

)1/r

.(3.1)

The following result provides a version of the classical Riesz-Thorin interpolation
theorem for linear operators defined only on some finite dimensional subspace of
simple functions.
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Lemma 3.1. Let N be a positive integer and let E1, . . . EN be disjoint measurable
sets of finite measure. Let

X = XE1,...,EN
= spanC{χE1 , . . . , χEN

}.

Let 1 ≤ p0, q0, p1, q1, r0, r1, p, q, r ≤ ∞ and 0 < θ < 1, with 1/p = (1−θ)/p0+θ/p1,
1/q = (1− θ)/q0 + θ/q1, 1/r = (1− θ)/r0 + θ/r1, p, r < ∞.

Let T : Xk → Lq0 + Lq1 be a linear operator and M0,M1 > 0 such that

(3.2) ∥Th∥Lq0 ≤ M0∥h∥ℓr0 (Lp0 )

and

(3.3) ∥Th∥Lq1 ≤ M1∥h∥ℓr1 (Lp1 )

for every h ∈ Xk. Then

(3.4) ∥Th∥Lq ≤ M1−θ
0 M θ

1∥h∥ℓr(Lp)

for every h ∈ Xk.

Proof. A function h = (h1, . . . , hk) ∈ Xk can be written uniquely as

hj =
N∑
i=1

aij χEi
,

with aij ∈ C. In terms of the coefficients, the norm (3.1) reads

∥h∥ℓr(Lp) =
( k∑

j=1

( N∑
i=1

|aij|p|Ei|
)r/p)1/r

.

Therefore, the conclusion follows from standard interpolation results with respect
to weighted sequences spaces; see, e.g., [4, Theorems 5.1.1, 5.1.2, and 5.6.3]. Alter-
natively, one can see that the standard proof of the Riesz-Thorin theorem can be
carried out within the space Xk. □

Remark 3.2. Lemma 3.1 fails if the sets E1, . . . , En are not disjoint. In par-
ticular, the conclusion does not generalize to all finite dimensional subspaces X
of simple functions. For example, let k = 1 (scalar case), the measure space
{0, 1, 2} be endowed with the counting measure, E1 = {0, 1}, E2 = {1, 2} and
X = spanC{χE1 , χE2}, Th = (h(0)+h(1)+h(2))χ{0} for h ∈ X, 1 ≤ q0, q1, r0, r1 ≤ ∞
arbitrary, p0 = 1, p1 = ∞, p = 1/θ = 2. Then, (3.2) holds with M0 = 1 and (3.3)
holds with M1 = 2, while the function h = χE1 + χE2 provides a counterexample to
the corresponding estimate (3.4).

As an application of Lemma 3.1 we obtain the following asymptotic interpolation
estimate for sequences of operators.

Lemma 3.3. With the same notation of Lemma 3.1, let Tn : ℓr0(Lp0) + ℓr1(Lp1) →
Lq0 + Lq1, n ∈ N, be a sequence of linear operators.

Suppose that Tn is bounded ℓr0(Lp0) → Lq0 for every n ∈ N, with

(3.5) lim sup
n→∞

∥Tnh∥Lq0 ≤ M0∥h∥ℓr0 (Lp0 ),
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and, for every n ∈ N,

(3.6) ∥Tnh∥Lq1 ≤ M1∥h∥ℓr1 (Lp1 ).

Then

(3.7) lim sup
n→∞

∥Tnh∥Lq ≤ M1−θ
0 M θ

1∥h∥ℓr(Lp).

Proof. First, we prove that (3.7) holds when h is a k-tuple of simple functions; hence
h belongs to some space Xk, with X = XE1,...,EN

and E1, . . . , EN of finite measure
and pairwise disjoint, as in Lemma 3.1.

The family of operators Tn : ℓr0(Lp0) → Lq0 is equicontinuous by the uniform
boundedness principle, hence the estimate (3.5) holds uniformly with respect to h
when h belongs to a compact subset of ℓr0(Lp0). Precisely, for every ϵ > 0 there
exists n0 ∈ N such that

∥Tnh∥Lq0 ≤ M0∥h∥ℓr0 (Lp0 ) + ϵ

for every n ≥ n0 and every h in a compact subset of ℓr0(Lp0). In particular, this
holds for functions h normalized in ℓr0(Lp0) and in the finite dimensional space Xk,
with X = XE1,...EN

as above. By homogeneity, we deduce that for every ϵ > 0 there
exists n0 ∈ N such that

∥Tnh∥Lq0 ≤ (M0 + ϵ)∥h∥ℓr0 (Lp0 )

for h ∈ Xk, n ≥ n0. By (3.6) and Lemma 3.1 we obtain

∥Tnh∥Lq ≤ (M0 + ϵ)1−θM θ
1∥h∥ℓr(Lp)

for h ∈ Xk, n ≥ n0, which implies (3.7) for h ∈ Xk.

Since p is assumed to be finite, the set of simple functions is dense in Lp and the
family of operators Tn : ℓr(Lp) → Lq is equicontinuous (by the assumptions and
complex interpolation), so that (3.7) holds for every h ∈ ℓr(Lp). □

Remark 3.4. It is is easy to see that the conclusion of Lemma 3.3 still holds if (3.6)
is replaced by the assumption that Tn is bounded ℓr1(Lp1) → Lq1 for every n ∈ N,
with

lim sup
n→∞

∥Tnh∥Lq1 ≤ M1∥h∥ℓr1 (Lp1 ),

but we will not need this fact.

We are now ready to prove our main result.

Proof of Theorem 1.1. Step 1. Profile decomposition.

Let L be the supremum in (1.2). Since Ω has positive measure, we have L > 0.
(Indeed, it is easy to see that there exists f ∈ L2(Rd) such that A(f) ̸= 0 on Ω;
see, for example, the proof of Proposition 1.2 below for details.) Moreover, from the
pointwise estimate |Af | ≤ ∥f∥2L2 we obtain L ≤ |Ω|1/p, hence L is finite.

Let f (n) be a maximizing sequence, that we can assume normalized without loss of
generality, that is ∥f (n)∥L2 = 1. After passing to a subsequence, we apply the profile
decomposition described in Section 2.3. We use the notation introduced there and
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we also set F
(n)
k :=

∑k
j=1 π

(
z
(n)
j

)
fj, so that f (n) = F

(n)
k + w

(n)
k . Observe for future

reference that by (2.11) and (2.14) we have

(3.8) ∥F (n)
k ∥2L2 + ∥w(n)

k ∥2L2 ≤ 2, n ≥ nk,

for some nk ∈ N depending on k.

Using the sesquilinearity of the cross-ambiguity distribution, we can write

A(f (n)) =
k∑

j=1

A(π(z
(n)
j )fj) +

∑
1≤j,j′≤k

j ̸=j′

A(π(z
(n)
j )fj, π(z

(n)
j′ )fj′)(3.9)

+ A(F
(n)
k , w

(n)
k ) + A(w

(n)
k , F

(n)
k ) + A(w

(n)
k ).

We now study the asymptotic behavior, as n → ∞, of the Lp(Ω)-norm of the terms
on the right-hand side of (3.9).

Step 2. Asymptotic decoupling. A simple computation gives

(3.10) A(π(z
(n)
j )fj) = M

Jz
(n)
j
A(fj)

where J =

(
0 I
−I 0

)
is the canonical symplectic matrix and M stands for the

modulation operator (here in R2d).

For fixed k ≥ 1 and n ∈ N, consider the operator

T
(n)
k : L2(Ω)k → L2(Ω), T

(n)
k (h1, . . . , hk) =

k∑
j=1

M
Jz

(n)
j
hj,

where the hj’s are understood extended by zero on R2d \ Ω. By (2.10) and the
Riemann-Lebesgue lemma

lim
n→∞

∥∥∥T (n)
k (h1, . . . , hk)

∥∥∥2
L2(Ω)

= lim
n→∞

k∑
j,j′=1

⟨hjhj′ ,MJ
(
z
(n)
j −z

(n)

j′

)χΩ⟩L2(R2d)

=
k∑

j=1

∥hj∥2L2(Ω).

(3.11)

In addition, for any 1 ≤ p1 ≤ ∞,∥∥∥T (n)
k (h1, . . . , hk)

∥∥∥
Lp1 (Ω)

=
∥∥∥ k∑

j=1

M
Jz

(n)
j
hj

∥∥∥
Lp1 (Ω)

≤
k∑

j=1

∥hj∥Lp1 (Ω).(3.12)

We now use Lemma 3.3 to interpolate between (3.12) with p1 = 1,∞ and (3.11),
and obtain

lim sup
n→∞

∥∥∥ k∑
j=1

M
Jz

(n)
j
hj

∥∥∥
Lp(Ω)

≤

(
k∑

j=1

∥hj∥p
∗

Lp(Ω)

)1/p∗

,

with

p∗ = min{p, p′}.
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Applying this estimate to hj = A(fj) and combining it with (3.10) we obtain the
following asymptotic decoupling estimate:

(3.13) lim sup
n→∞

∥∥∥ k∑
j=1

A(π(z
(n)
j )fj)

∥∥∥
Lp(Ω)

≤

(
k∑

j=1

∥A(fj)∥p
∗

Lp(Ω)

)1/p∗

.

Step 3. The error terms in (3.9).

Proceeding with the analysis of the other terms in (3.9), we have

(3.14) |A(π(z(n)j )fj, π(z
(n)
j′ )fj′)| = |A(fj, π(z(n)j′ − z

(n)
j )fj′)|.

Since A(f, g) → 0 at infinity if f, g ∈ L2(Rd), we see by (2.10) and the dominated
convergence theorem (the expression in (3.14) is ≤ 1 in R2d), that

(3.15) ∥A(π(z(n)j )fj, π(z
(n)
j′ )fj′)∥Lp(Ω) → 0 as n → ∞, (j ̸= j′).

Second, concerning the term A(F
(n)
k , w

(n)
k ) in (3.9), in view of the embedding (2.4)

and the estimate (2.5) we deduce that, for every compact K ⊂ R2d,

∥A(F (n)
k , w

(n)
k )∥L2(K) ≲K ∥A(F (n)

k , w
(n)
k )∥W(L2,L∞)

≲ ∥F (n)
k ∥L2∥w(n)

k ∥M∞ ,

where the implied constant is independent of k, n. Using (3.8) we see that, for
n ≥ nk,

∥A(F (n)
k , w

(n)
k )∥L2(K) ≲K ∥w(n)

k ∥M∞

and

(3.16) ∥A(F (n)
k , w

(n)
k )∥L∞(R2d) ≤ ∥F (n)

k ∥L2∥w(n)
k ∥L2 ≤ 1.

Hence, by Hölder’s inequality, we conclude that, for n ≥ nk,

∥A(F (n)
k , w

(n)
k )∥Lp(K) ≲K ∥w(n)

k ∥θpM∞ ,

where θp = 1 for 1 ≤ p ≤ 2, and θp = 2/p if 2 < p < ∞. We claim that this implies

(3.17) lim
k→∞

lim sup
n→∞

∥A(F (n)
k , w

(n)
k )∥Lp(Ω) = 0.

Indeed, this is clear from (2.12) if Ω is compact. When Ω is merely a measurable set
with finite measure we can choose a compact subset K ⊂ Ω with |Ω \K| arbitrarily
small and use again the uniform bound (3.16) on Ω \K.

The same argument shows that

(3.18) lim
k→∞

lim sup
n→∞

∥A(w(n)
k , F

(n)
k )∥Lp(Ω) = 0,

and

(3.19) lim
k→∞

lim sup
n→∞

∥A(w(n)
k )∥Lp(Ω) = 0.

Step 4. Existence of optimizers.
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By the very definition of f (n), (3.9), the triangle inequality and (3.13), (3.15),
(3.17), (3.18), (3.19), letting first n → ∞ and then k → ∞, we obtain

L = lim
n→∞

∥A(f (n))∥Lp(Ω) ≤

(
∞∑
j=1

∥A(fj)∥p
∗

Lp(Ω)

)1/p∗

.

On the other hand, by the very definition of L, we have

(3.20) ∥A(fj)∥Lp(Ω) ≤ L∥fj∥2L2

so that from (2.11) we obtain

L = lim
n→∞

∥A(f (n))∥Lp(Ω) ≤

(
∞∑
j=1

∥A(fj)∥p
∗

Lp(Ω)

)1/p∗

≤ L

(
∞∑
j=1

∥fj∥2p
∗

L2

)1/p∗

≤ L

∞∑
j=1

∥fj∥2L2 ≤ L.

We then see that all these inequalities must be equalities. If p > 1, so that p∗ > 1,
this is possible only if fj = 0 except for one j, say j = 1, and ∥f1∥L2 = 1. Hence f1
is a maximizer.

Moreover, concerning the claim in the statement for 1 < p < ∞, from (2.9) we

have f (n) = π(z
(n)
1 )f1 + w

(n)
1 . Since, by Remark 2.1, π

(
z
(n)
1

)∗
f (n) converges weakly

to f1 in L2, and ∥f (n)∥L2 = ∥f1∥L2 = 1, we deduce that π
(
z
(n)
1

)∗
f (n) converges to f1

in L2. Finally, by passing to a subsequence, the cocycles in (2.2) can be assumed to

converge, σ(z(n),−z(n)) → c, and therefore π
(
−z

(n)
1

)
f (n) converges to the maximizer

cf1.

If p = 1, then p∗ = 1, and the same chain of equalities implies, together with
(3.20), that equality holds in (3.20) for all j. Since fj ̸= 0 for at least one j, such a
fj will be a maximizer for the problem (1.2). The proof is then concluded. □

Remark 3.5. If one is only interested in the existence of a maximizer, even in the
case p > 1, the conclusion would follow as in the case p = 1, that is, by applying the

triangle inequality to
∑k

j=1A(π(z
(n)
j )fj) - hence ignoring the oscillations and without

using Lemma 3.3. The more elaborated argument given above is rewarded with the
stronger conclusion for 1 < p < ∞.

4. Proofs of Propositions 1.2 and 1.3

Proof of Proposition 1.2. It is clear that ∥A(f)∥L∞(Ω) ≤ ∥f∥2L2 . On the other hand,
consider a point (x0, ω0) ∈ Ω of positive Lebesgue density for Ω (which exists since
|Ω| > 0). Using the covariance property of A(f) under symplectic transformations
recalled in (2.6) and the transitivity of the linear symplectic group on R2d \ {0},
we can suppose ω0 = 0. Let f(x) = 2d/4e−π|x|2 and fλ(x) = λ−d/2f(x/λ), λ > 0.
Explicit computations show that ∥fλ∥L2 = 1 and

|A(fλ)(x, ω)| = |Vfλfλ(x, ω)| = e−
π

2λ2
|x|2−πλ2

2
|ω|2 ,
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see, e.g., [20, Proposition 1.48 and Appendix A]. Since A(fλ) is continuous at the
point (x0, 0), of positive Lebesgue density for Ω,

∥A(fλ)∥L∞(Ω) ≥ e−
π

2λ2
|x0|2 ,

which implies

lim inf
λ→+∞

∥A(fλ)∥L∞(Ω) ≥ 1.

Concerning the existence and characterization of maximizers, we invoke the following
radar correlation estimate:

|A(f)(x, ω)| < A(f)(0, 0) = 1, if ∥f∥L2 = 1;(4.1)

see, e.g., [25, Lemma 4.2.1]. Hence, if |Ω ∩ Br| > 0 for every r > 0, it follows from
the continuity of A(f) that every f ∈ L2(Rd) \ {0} is a maximizer.

If instead there exists r0 > 0 such that |Ω ∩Br0| = 0, then

∥A(f)∥L∞(Ω) = ∥A(f)∥L∞(Ω\Br0 )
≤ sup

(x,ω)∈Ω\Br0

|A(f)(x, ω)|.

Since A(f) vanishes at infinity, in view of (4.1), this last supremum is still < 1,

because it is attained at some point of the closed set Ω \Br0 , which does not contain
the origin. □

Proof of Proposition 1.3. Let us first prove (1.5). From the trivial pointwise esti-
mate |⟨f, Txf⟩| ≤ ∥f∥2L2 it is clear that the supremum in (1.5) is ≤ |Ω|1/p. On
the other hand, for λ > 0 let Bλ be the open ball in Rd with center 0 and ra-
dius λ and denote by χλ its characteristic function. For K ⊂ Ω compact, set
MK = max{|x| : x ∈ K}.

Then, for x ∈ K and λ ≥ MK we have

⟨χλ, Txχλ⟩ ≥ |Bλ−MK
|

so that, for λ ≥ MK ,(∫
Ω
|⟨χλ, Txχλ⟩|pdx

)1/p
∥χλ∥2L2

≥
(∫

K
|⟨χλ, Txχλ⟩|pdx

)1/p
∥χλ∥2L2

≥ |Bλ−MK
||K|1/p

|Bλ|
,

which implies

lim inf
λ→+∞

(∫
Ω
|⟨χλ, Txχλ⟩|pdx

)1/p
∥χλ∥2L2

≥ |K|1/p

as λ → +∞. Since |Ω \K| can be arbitrarily small, (1.5) is proved.

Let us now prove that there is no extremal function. Suppose on the contrary
that f ∈ L2(Rd) \ {0} is such an extremal function, which we can further assume to
be normalized in L2: ∥f∥L2 = 1. Then∫

Ω

|⟨f, Txf⟩|pdx = |Ω|,

which together with the estimate |⟨f, Txf⟩| ≤ 1 implies that

|⟨f, Txf⟩| = 1



14 F. NICOLA, J. L. ROMERO, AND S. I. TRAPASSO

for almost every x ∈ Ω. Hence, since |Ω| > 0, there exists x0 ∈ Rd, x0 ̸= 0, c ∈ C,
|c| = 1, such that

Tx0f = cf.

Taking the Fourier transform we obtain that f = 0, hence a contradiction. □

5. Optimization with fixed window

To put our main result into context, we now mention the problem of the optimiza-
tion of the cross-ambiguity when one of the arguments is kept fixed (or, equivalently,
the optimization of the short-time Fourier transform with a fixed window). As we
show below, the existence of optimizers is in this case much easier to prove — while
the characterization of such extremizers with, for example, the Gaussian window, is
a challenging subject [39].

Proposition 5.1. Let g ∈ L2(Rd) \ {0} and Ω ⊂ R2d be a measurable subset of
finite, positive measure. Let 1 ≤ p < ∞. Then the supremum

(5.1) sup
f∈L2(Rd)\{0}

(∫
Ω
|A(f, g)(x, ω)|pdxdω

)1/p
∥f∥L2

is attained. Moreover, any maximizing sequence that is normalized in L2(Rd) has a
subsequence that converges in L2 to a maximizer.

Proof of Proposition 5.1. We claim that the functional f 7→ ∥A(f, g)∥Lp(Ω) is se-

quentially weakly continuous on L2(Rd). Indeed, if f (n) converges weakly to f ∈
L2(Rd), it follows at once from the definition of the cross-ambiguity function that
A(f (n), g) → A(f, g) pointwise in R2d, and moreover |A(f (n), g)| ≤ ∥f (n)∥L2∥g∥L2 ≲
1 on R2d, so that the claim follows from the dominated convergence theorem.

Let f (n) be a maximizing sequence with ∥f (n)∥L2 = 1, and let L be the supremum
in (5.1). Since |Ω| > 0 and g ̸≡ 0, it follows that L > 0. Indeed, it is sufficient
to consider a point z0 ∈ Ω of positive Lebesgue density for Ω and observe that the
function A(π(z0)g, g) is continuous and |A(π(z0)g, g)(z0)| = ∥g∥2L2 > 0.

Then f (n) has a subsequence, that we still denote by f (n), weakly convergent
to some f ∈ L2(Rd), and, by the above mentioned sequential weak continuity,
∥A(f, g)∥Lp(Ω) = L. Since L > 0, f ̸= 0. In addition, ∥f∥L2 ≤ lim infn→∞ ∥f (n)∥L2 ≤
1, so that f is a maximizer and ∥f∥L2 = 1. As a consequence, f (n) → f in L2. □

Remark 5.2. For p = 2, the existence of a maximizer for the problem (5.1) also
follows from the spectral properties of the non-negative bounded operator V ∗

g χΩVg on

L2(Rd). Indeed, |A(f, g)| = |Vgf |, so that∫
Ω

|A(f, g)(x, ω)|2 dxdω = ⟨V ∗
g χΩVgf, f⟩.

Since |Ω| < ∞, the operator V ∗
g χΩVg is compact (in fact, trace class [9, 50]), so that

any eigenfunction corresponding to the maximum eigenvalue is a maximizer for the
problem (5.1) (with p = 2).
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We emphasize that for the optimization problem in Theorem 1.1 we could not
have argued as in the proof of Proposition 5.1, because of the lack of sequential
weak upper semicontinuity of the corresponding functional, as shown below.

Proposition 5.3. Let Ω ⊂ R2d be a measurable subset of finite, positive measure.
The functional ∥A(f)∥L2(Ω) on L2(Rd) is not sequentially weakly upper semicontin-
uous at any point.

Proof. The computations in the proof of Proposition 1.2 show that there exists
g ∈ L2(Rd) - in fact, a Gaussian function - such that ∥A(g)∥L2(Ω) > 0, since |Ω| > 0.

Let now f ∈ L2(Rd). Then f + π(z)g converges weakly to f as |z| → +∞. On
the other hand,

∥A(f + π(z)g)∥2L2(Ω) = ∥A(f) + A(f, π(z)g) + A(π(z)g, f) +MJzA(g)∥2L2(Ω),

where we used (3.10).

Since A(f, π(z)g) + A(π(z)g, f) → 0 in L2(Ω) as |z| → +∞, by arguing as in
(3.11) we obtain

lim
|z|→+∞

∥A(f + π(z)g)∥2L2(Ω) = ∥A(f)∥2L2(Ω) + ∥A(g)∥2L2(Ω) > ∥A(f)∥2L2(Ω),

which gives the desired conclusion. □

6. Variations on the main result

6.1. The optimization problem in modulation spaces. We now derive a vari-
ant of Theorem 1.1, where the function is optimized over the modulation space
M q(Rd), 0 < q < 2. For the precise formulation, fix a window function g ∈
S(Rd) \ {0} and 0 < q ≤ ∞; then M q(Rd) is defined as the space of temperate
distributions f ∈ S ′(Rd) such that

∥f∥Mq := ∥Vgf∥Lq(R2d) < ∞.

Different windows g give rise to the same space with equivalent norms. Moreover,
M2(Rd) = L2(Rd) with equivalent norms, and M q1(Rd) ↪→ M q2(Rd) if and only if
0 < q1 ≤ q2 ≤ ∞; see [3, 24] and [25, Chapter 10] for background.

Thus, a modulation-space norm estimate ∥f∥Mq ≤ 1 prescribes a certain integra-
bility and decay for a function f . The next result allows one to incorporate such
constraints into the optimization of the ambiguity function.

Theorem 6.1. Let Ω ⊂ R2d be a measurable subset of finite, positive measure, and
1 ≤ p < ∞, 0 < q < 2. Then the supremum

(6.1) sup
f∈Mq(Rd)\{0}

(∫
Ω
|A(f)(x, ω)|pdxdω

)1/p
∥f∥2Mq

is attained. Moreover if f (n) is any maximizing sequence normalized in M q(Rd),
then there exists a subsequence (still denoted by f (n)) and z(n) ∈ R2d such that
π(−z(n))f (n) converges in M q to a maximizer.
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Proof of Theorem 6.1. Step 1. Profile decomposition in M q.

The first part of the proof is similar to (in fact, simpler than) the one of Theorem
1.1 and it will only be sketched. Let L be the supremum in (6.1); as in the proof of
Theorem 1.1, we note that L > 0 since |Ω| > 0.

Consider a maximizing sequence f (n), now normalized inM q: ∥f (n)∥Mq = 1. Since
0 < q < 2, we have M q ↪→ L2, so that the sequence f (n) is bounded in L2 and we
can apply (after passing to a suitable subsequence) the profile decomposition in L2

as described in Section 2.3, albeit with minor modifications; cf. [46, Theorem 4.5.3]
or [48, Theorem 3.1 and its proof]. The formulas (2.9), (2.10), (2.12) and (2.14)
hold, whereas (2.11) is now replaced by

k∑
j=1

∥fj∥2L2 + lim sup
n→∞

∥w(n)
k ∥2L2 ≤ C

for some C > 0, since lim supn→∞ ∥f (n)∥L2 is still finite but no longer necessarily
≤ 1. While this is sufficient to prove (3.15), (3.17), (3.18), (3.19), Step 4 of the
proof of Theorem 1.1 requires some modifications. To complete the proof, we will
prove that the profiles fj are not merely in L2(Rd) but actually belong to M q(Rd),
and, moreover, satisfy the following precise norm estimate:

(6.2)
∞∑
j=1

∥fj∥qMq ≤ 1.

Postponing the proof of this fact, let us see how to deduce the existence of optimizers.
We start from the expansion (3.9) for A(f (n)). By the triangle inequality and (3.10),
(3.15), (3.17), (3.18), (3.19) we obtain

L = lim
n→∞

∥A(f (n))∥Lp(Ω) ≤
∞∑
j=1

∥A(fj)∥Lp(Ω).

By the definition of L,

∥A(fj)∥Lp(Ω) ≤ L∥fj∥2Mq ,

and, since q < 2,

L = lim
n→∞

∥A(f (n))∥Lp(Ω) ≤
∞∑
j=1

∥A(fj)∥Lp(Ω) ≤ L
∞∑
j=1

∥fj∥2Mq

≤ L

(
∞∑
j=1

∥fj∥qMq

)2/q

≤ L.

This implies that all fj are zero except one, say f1, and ∥f1∥Mq = 1. Hence f1 is a
maximizer.

Finally, since, by Remark 2.1, π
(
z
(n)
1

)∗
f (n) converges weakly (in L2) to f1, it

turns out that Vg(π
(
z
(n)
1

)∗
f (n)) → Vgf1 pointwise. Moreover ∥Vg(π

(
z
(n)
1

)∗
f (n))∥Lq =

∥f (n)∥Mq = 1 = ∥f1∥Mq = ∥Vgf1∥Lq , so that Vg(π
(
z
(n)
1

)∗
f (n)) tends to Vgf1 in Lq by

the Brézis-Lieb Lemma [5, 32], i.e. π
(
z
(n)
1

)∗
f (n) → f1 in M q. We now invoke (2.2)

and eliminate the cocycles as in the proof of Theorem 1.1.

Step 2. Precise norm estimate for the profiles.
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We now prove (6.2). As noted in Remark 2.1, each fj is indeed the weak limit (in
L2) of (adjoint) time-frequency shifts of f (n), which are assumed to be normalized
in M q(Rd). Since Vgfj is then the pointwise limit of the corresponding short-time
Fourier transforms, we see that fj ∈ M q(Rd) by Fatou’s lemma.

Moreover, (2.13) implies that Vg(π(−z
(n)
j )w

(n)
k )(z) = Vg(w

(n)
k )(z + z

(n)
j ) tends to

zero uniformly on compact subsets of R2d as n → ∞ — due to the strong continuity
of time-frequency shifts.

Suppose first that 1 ≤ q < 2. For fixed k ≥ 1, given ϵ > 0 there exist therefore
compact subsets Kj ⊂ R2d, j = 1, . . . , k, and nk ∈ N such that (Lq standing for
Lq(R2d))

∥Vg(π(z
(n)
j )fj)χR2d\(z(n)

j +Kj)
∥Lq = ∥Vg(fj)χR2d\Kj

∥Lq < ϵ

and
k∑

j=1

∥Vg(w
(n)
k )χ

z
(n)
j +Kj

∥Lq < ϵ

for n ≥ nk. For each such n, by (2.9) and the triangle inequality,

1 = ∥Vgf
(n)∥Lq

≥
∥∥∥ k∑

j=1

Vg(π(z
(n)
j )fj)χz

(n)
j +Kj

+ Vg(w
(n)
k )χR2d\∪k

j=1(z
(n)
j +Kj)

∥∥∥
Lq

− (k + 1)ϵ.

On the other hand, by (2.10), if n is large enough the compact subsets z
(n)
j + Kj,

j = 1, . . . , k, are pairwise disjoint (in the last summation we can consider just the
indices j such that fj ̸= 0), so that∥∥∥ k∑

j=1

Vg(π(z
(n)
j )fj)χz

(n)
j +Kj

+Vg(w
(n)
k )χR2d\∪k

j=1(z
(n)
j +Kj)

∥∥∥q
Lq

≥
k∑

j=1

∥Vg(π(z
(n)
j )fj)χz

(n)
j +Kj

∥qLq

=
k∑

j=1

∥Vg(fj)χKj
∥qLq

≥
k∑

j=1

(∥fj∥Mq − ϵ)q+,

where (·)+ denotes the positive part function.

In conclusion we have
k∑

j=1

(∥fj∥Mq − ϵ)q+ ≤ (1 + (k + 1)ϵ)q.

Since ϵ and k are arbitrary, we have proved (6.2) in the case 1 ≤ q < 2.

The argument needs to be slightly adapted for 0 < q < 1. In this case we choose
the compact subsets Kj ⊂ R2d, j = 1, . . . , k, and nk ∈ N so that

∥Vg(π(z
(n)
j )fj)χR2d\(z(n)

j +Kj)
∥qLq = ∥Vg(fj)χR2d\Kj

∥qLq < ϵ
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and
k∑

j=1

∥Vg(w
(n)
k )χ

z
(n)
j +Kj

∥qLq < ϵ

for n ≥ nk. Again, by (2.9) and the triangle inequality, now for ∥ · ∥qLq ,

1 = ∥Vgf
(n)∥qLq

≥
∥∥∥ k∑

j=1

Vg(π(z
(n)
j )fj)χz

(n)
j +Kj

+ Vg(w
(n)
k )χR2d\∪k

j=1(z
(n)
j +Kj)

∥∥∥q
Lq

− (k + 1)ϵ.

An argument similar to that used in the previous case now gives

k∑
j=1

(∥fj∥qMq − ϵ) ≤ 1 + (k + 1)ϵ,

which implies (6.2) also for 0 < q < 1. □

6.2. Optimization with respect to Gabor systems. While the constraint f ∈
M q(Rd) in Theorem 6.1 is independent of the choice of the window g ∈ S(Rd),
the functional optimized in (6.1) does depend on g because it involves the window-
dependent (quasi-)norm ∥f∥Mq . In practice, such norms are often replaced by certain
discrete counterparts computed in terms of so-called Gabor systems.

Precisely, consider a full-rank lattice Λ ⊂ R2d and g ∈ S(Rd) such that the set of
functions {π(λ)g}λ∈Λ is a frame for L2(Rd), i.e.,

∥f∥2L2 ≲
∑
λ∈Λ

|⟨f, π(λ)g⟩|2 ≲ ∥f∥2L2 .

Then it turns out that the quantity

(6.3) |f |Mq :=

(∑
λ∈Λ

|⟨f, π(λ)g⟩|q
)1/q

(with obvious changes if q = ∞) gives an equivalent (quasi-)norm in M q(Rd), 0 <
q ≤ ∞ [3, 24], [25, Chapter 10]. The next result is an analog of Theorem 6.1 for the
discrete (quasi-)norm (6.3).

Theorem 6.2. The statement in Theorem 6.1 is still valid if (6.1) is replaced by

sup
f∈Mq(Rd)\{0}

(∫
Ω
|A(f)(x, ω)|pdxdω

)1/p
|f |2Mq

.

The derivation of Theorem 6.2 requires minimal adaptations. Indeed, the map
Λ ∋ λ → π(λ) is still a projective unitary representation on L2(Rd), and the cor-
responding operators {π(λ)}λ∈Λ still define a dislocation set. The corresponding
notion of D-weak convergence reads

sup
λ∈Λ

|⟨fn − f, π(λ)h⟩| → 0

for every h ∈ L2(Rd), and still implies convergence in M∞, due to the equivalence
of the | · |M∞ and ∥ · ∥M∞ norms. Thus, profile decompositions as in Section 2.3

exist, now with z
(n)
j ∈ Λ. The proof of Theorem 6.1 adapts almost verbatim — even
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in notation, by replacing the Lq (quasi-)norm in R2d with respect to the Lebesgue
measure by the Lq (quasi-)pseudo-norm in R2d with respect to the Radon measure∑

λ∈Λ δλ. The key point is that such a measure is invariant under the translations

z 7→ z + z
(n)
j , because z

(n)
j ∈ Λ.
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