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Page 1 of 12 Transactions on Electromagnetic Compatibility



interconnects. In particular, the PKBML approaches 
is tested for ANN, SVM, and LS-SVM metamodels 
for thoroughness of analysis. From the detailed 
explorations performed, it is concluded that the 
PKI approach best accelerates the training of all ML 
metamodels provided no noise is in present in the 
data. However, in the presence of noise, the SD 
approach ends up providing better acceleration.
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     Abstract — In this paper, machine learning metamodels have 

been developed in order to predict the per-unit-length (p. u. l.) 

parameters of hybrid copper-graphene on-chip interconnects 

based on their structural geometry and layout. Machine learning 

metamodels within the context of this article include artificial 

neural networks (ANNs), support vector machines (SVMs), and 

least-square support vector machines (LS-SVMs). The salient 

feature of all these machine learning metamodels is that they 

exploit the prior knowledge of the p. u. l. parameters of the 

interconnects obtained from cheap empirical models to reduce the 

number of expensive full-wave electromagnetic (EM) simulations 

required to extract the training data. Thus, the proposed machine 

learning metamodels are referred to as prior knowledge-based 

machine learning (PKBML) metamodels. The PKBML 

metamodels offer the same accuracy as conventional ML 

metamodels trained exclusively by full-wave EM solver data, but 

at the expense of far smaller training time costs. In this paper, 

detailed comparative analysis of the proposed PKBML 

metamodels have been performed using multiple numerical 

examples. 

 
Index Terms— Artificial neural networks (ANN), copper-

graphene interconnects, least-square support vector machine (LS-

SVM), per-unit-length parameters, support vector machine 

(SVM), transient simulation. 

 I.    INTRODUCTION 

hen IC technology nodes scale below the 22 nm mark, 

the performance of on-chip copper interconnects start 

being affected by various scattering mechanisms such 

as grain boundary scattering, surface roughness scattering, and 

sidewall and top/bottom surface scattering [1]. These scattering 

mechanisms significantly increase the value of the per-unit-

length resistance of the interconnects from their nominal bulk 

value. Increase in the resistance of interconnects results in more 

signal attenuation, power losses, and latency [1]-[4]. Moreover, 

when the copper ions from the interconnects get diffused into 

the dielectric layer, dielectric conductivity and leakage losses  
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increases while discontinuities are created in the interconnects 

[5]. As a remedy for the diffusion of copper ions, a barrier layer 

of tantalum (Ta) or tantalum nitride (TaN) is generally placed 

around the copper trace [3], [6], [7]. The conductivity of this 

barrier layer is usually lower than copper, and hence, electrons 

flow is difficult through the barrier layers. In addition, by using 

these barriers layers around the copper trace, the effective 

cross-sectional area of the interconnect is decreased, which 

ultimately results in lowering the current carrying capacity of 

the interconnect.   

      Explorations into better barrier layer materials has led to the 

use of graphene nanoribbons as barrier layers around copper 

interconnects [8]-[12]. Due to the long mean free path of 

graphene compared to copper, the graphene barrier layers 

exhibit lower scattering resistances, and thereby, significantly 

lower the equivalent resistance of the trace plus the barrier 

layers [11], [12]. Moreover, graphene barrier layers being ultra-

thin, they can stop diffusion of copper ions into the dielectric 

without significantly reducing the effective cross-sectional area 

of the interconnect. Finally, graphene barrier layers possess 

good thermal stability at very high temperatures. These 

advantages of using graphene barrier layers around a copper 

trace makes hybrid copper-graphene interconnects a good 

candidate for on-chip applications. 

      When designing hybrid on-chip copper-graphene 

interconnects for peak performance, design space exploration 

of the interconnects in SPICE is essential. Typically, SPICE 

simulation of interconnects is done in two-steps. At the very 

first step, the per-unit-length (p. u. l.) parameters of the 

interconnects are extracted from a quasi-TEM approximation of 

the interconnect structure, usually using full-wave 

electromagnetic (EM) solvers [13], [14]. In the second step, the 

extracted p. u. l. parameters are used in SPICE multiconductor 

transmission lines (MTL) representative models of the 
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interconnects for performing a complete transient analysis [13], 

[14]. In this two-step approach, the computational time cost of 

the first step is usually much larger than that of the second step. 

For the case of design space explorations, the two-step 

simulation process of above needs to be repeated thousands of 

times with different values of the geometrical, physical, and 

material parameters of the interconnects, thus leading to even 

larger simulation time costs.  

     To address the high simulation time costs of design space 

explorations of interconnects, machine learning (ML) 

regression based surrogate models or metamodels have been 

used [30], [34]. Interconnect modeling using artificial neural 

networks (ANNs) and support vector machine (SVM) 

regression have already been reported in several works [22]-

[25]. The basic idea behind these ML metamodels is that once 

they are trained, they can accurately and analytically predict the 

p. u. l. parameters of interconnects for different value of the 

geometrical, physical, and material parameters of the structure 

without having to resort to full-wave EM simulations. 

Therefore, ML metamodels can perform parametric sweeps and 

design space explorations of interconnects at a fraction of the 

time cost required by the aforementioned conventional two-step 

process using SPICE.  

     Despite the obvious advantage of ML metamodels, the one 

challenge they face is that they are very data hungry. In effect, 

they need to be thoroughly trained on massive datasets for them 

to be reliably accurate. These massive training datasets are 

usually generated using many repeated full-wave EM 

simulations at extremely high time costs [22]. To reduce this 

large computational cost of training ML metamodels, a variety 

of methods such as the source difference method [25], prior 

knowledge input method [26], [27], and space-mapping [28], 

[29] have been reported in the literature. The basic requirement 

for all of these methods to work is the availability of 

computationally cheaper empirical models, hereafter referred to 

as low-fidelity models. These low-fidelity models sacrifice 

their predictive accuracy for numerical efficiency. Thus, they 

can give a fast but only an approximate prediction of the p. u. l. 

parameters of interconnects based on the design parameters of 

the structure. These approximate predictions can, however, be 

then refined using ML metamodels trained with very small 

number of full-wave EM solver data. Therefore, ML models 

can be trained more efficiently by strategically using less EM 

solver data and more empirical model data [25]-[30]. These ML 

metamodels are known as prior knowledge-based machine 

learning (PKBML) metamodels. Recently, PKBML 

metamodels using the source difference (SD) method have been 

applied to the problem of predicting the p. u. l. parameters of 

hybrid copper-graphene interconnects [34]. However, one 

possible challenge of the SD method is that it only supports a 

linear correlation between the results of the low-fidelity model 

and those of the full-wave EM simulations. As a result, the SD 

approach does not provide the best possible accuracy. 

    In this paper, three key contributions to the state-of-the-art in 

ML based modeling of the p. u. l. parameters of hybrid copper-

graphene interconnects are presented. 

(i) The above accuracy issue of the SD method is addressed by 

using a more general prior knowledge input (PKI) method for 

predicating the p. u. l. parameters. The PKI method has the 

capacity to include nonlinear correlation between the results of 

the low-fidelity model and those of the full-wave EM 

simulations. As a result, the PKI method can provide smaller 

modeling errors compared to the SD method for the same 

number of training points. The improved performance of the 

PKI method compared to the SD method is demonstrated in this 

paper using various numerical examples. This contribution of 

the paper is based on the authors preliminary work of [31].  

(ii) In this paper, the comparative analysis between the SD and 

PKI methods is performed across different ML metamodels 

such as the ANN, SVM, and least square SVM (LS-SVM) 

metamodels. Such a detailed comparative analysis was not 

included in the earlier work of [34]. In fact, such a thorough 

comparative analysis of different PKBML metamodels for 

interconnects in general and hybrid copper-graphene 

interconnects in particular have not been reported before.  

(iii) Finally, in this paper, the comparative analysis between the 

SD and PKI methods across different ML metamodels is 

conducted both in the presence and absence of simulation noise. 

Such an analysis reveals critical insights as to which 

combination of PKBML method and ML metamodeling 

technique is most suitable depending on the level of noise in the 

training data – something that has not been reported in [34]. 

The organization of this paper is as follows: Section II 

presents a brief overview of the different ML metamodels used 

in this paper (i.e., the ANN, SVM, and the LS-SVM 

metamodels). Section III describes the development of the 

proposed PKI method for the above metamodels and compares 

its performance with conventional ML metamodels as well as 

the SD method. Section IV includes all details of the low-

fidelity model used for the SD and PKI methods specifically for 

hybrid copper-graphene interconnects. Section V covers the 

numerical examples and Section VI concludes the paper. 

II. REVIEW OF CONVENTIONAL MACHINE LEARNING 

METAMODELS FOR INTERCONNECTS 

Performing transient analysis of high-speed interconnects 

using circuit simulators such as SPICE is essential for signal 

integrity verification [13], [14]. SPICE models of interconnects 

are based on the concept of multiconductor transmission lines 

and require the prior knowledge of the p. u. l. parameters of the 

interconnect structure for their solution [35]. Unfortunately, the 

p. u. l. parameters of interconnects are extracted from full-wave 

EM simulations of the interconnect structure at high 

computational time costs [22], [23]. This problem is 

exacerbated during design space explorations where the SPICE 

simulation of the interconnects, and consequently, the p. u. l. 
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parameter extraction has to be repeated for thousands of 

different values of the design parameters of the interconnects.  

In such scenarios, ML based surrogate models or metamodels 

can be employed to emulate the p. u. l. parameters of 

interconnects as analytic functions of the design parameters 

[30], [31], [34]. These metamodels enable the analytic 

calculation of the p. u. l. parameters of interconnects for 

different values of the design parameters free from expensive 

full-wave EM simulations. For this reason, ML metamodels are 

seen as powerful tools for design space exploration of 

interconnects [15]-[21].  

In order to explain how ML metamodels work, consider the 

problem of approximating the unknown output y  of a 

general non-linear system as 
 

( )y M= x                                    (1) 
 

where M is the input-output model of the system and 

1, ,
T N

Nx x=   x K  is a vector containing the normalized 

representation of the system parameters for 1 1ix−    and i = 

1, …, N. For example, in the case of interconnects, the variable 

y can be one of the entries of the p. u. l. resistance, inductance, 

or capacitance matrices of the structure and the vector x can 

represent the geometrical, physical, and material parameters of 

the structure. Now, ML metamodels approximate the input-

output behavior of the nonlinear model M using a closed-form 

analytical map M%. This analytic map is constructed from the 

training dataset ( ) 
1

,
L

l l l
D y

=
= x  extracted using rigorous 

solvers (e.g., a full-wave EM solver for interconnects) such that 
 

( )l ly M x%                                    (2) 
 
Several ML metamodels can be used to identify the analytic 

map M%of (2). This paper will consider three different 

metamodels: the ANN, the SVM, and the LS-SVM regressions 

which are reviewed next. 

A. ANN Metamodels 

     A multi-layer perceptron (MLP) architecture of an ANN is 

illustrated in Fig. 1. The architecture shown in the figure is a 

feed-forward network in which all the neurons are arranged in 

multiple layers. The first layer on the left-hand side is called the 

input layer and the last layer on the right-hand side is called the 

output layer. All the layers in between are called hidden layers. 

The neurons making up each hidden layer are defined by non-

linear activation functions, whereas the activation function of 

the output layer is generally linear. The input layer takes the 

values of x corresponding to a certain design point and 

propagates these values through the hidden layers. In the hidden 

layers, these values undergo nonlinear transformations till the 

output layer predicts the desired output (i.e., ( )ANNy M= x% ). 

Indeed, assuming a single hidden layer, the predicted output 

takes the form 
 

( ) ( )
2,3 1,2

,1 ,

3 1,3 2 ,2

1 1

( )
hN N

i j i

ANN i j

i j

y M b w b w x 
= =

  
  = = + +
  

  

 x%  (3) 

 

In (3), σp refers to the nonlinear activation function used in the 

neurons of the p-th layer, bp,q is the bias value entering the p-th 

neuron of the q-th layer, and ,
,p qw  is the synaptic weight 

linking the α-th neuron of the p-th layer to the  β-th neuron of 

the q-th layer. The goal of the ANN metamodel of Fig. 1 is to 

tune the values of all weight and bias terms in (3) to minimize 

the error loss function [15] 
 

( )
2

, 1

1
( , ) arg min ( )

L

ANN l ANN l

l

f y M
L =

 
= − 

 
 


w b

w b x%       (4) 

 

where (w, b) refer to the real valued set of weights and bias 

terms in the ANN architecture (i.e., the weights and bias terms 

in (3)). This process is referred to as training of the ANN 

metamodel. Typically, the optimization of (4) can be performed 

using standard gradient-based back-propagation techniques 

[22], [33]. In this work, a thorough investigation of all the 

ANNs is done and it is found that the hyperbolic tangent 

activation function is best candidate function for predicting the 

p. u. l. values of hybrid copper-graphene interconnects. This 

activation function takes the form  
 

( )
2

2 2

1

1

z

z

e
z

e


−
=

+
                            (5) 

 

in equation (3). 

B. SVM and LS-SVM Regression Metamodels 

The SVM and LS-SVM regressions admit the same primal 

space formulation given by [36] 
 

( ) ( ) ( ), ,LS SVMy M b =   +x w Φ x        (6) 

 

where ( ) ( ) ( )1 ,...,
T

P =   Φ x x x , 1[ ,..., ]TPw w=w , and b are 

vectors collecting the basis functions, regression coefficients,  

and bias term, respectively. The unknowns w and b are 

estimated by solving the following optimization problem: 
 

                
2

2

1,

1
min ( , , ( ) ),

2

L

l lL lb
y b

=
+   +w w Φ x

w

             (7)   

 

 

Fig. 1: Basic three-layer architecture of ANN 
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where ( , , ( ) )l ly b  +w Φ x  is a predefined error loss function 

computed over the training samples and 𝛾 is the regularizer term 

[36]. The latter is the regression hyperparameter which must be 

tuned during the training phase to reduce the model variance 

and thus prevent overfitting. 

  The difference between the SVM and LS-SVM depends on 

the loss function used. While for the LS-SVM, ℓ(⋅) is the 

traditional squared loss divided by two, the SVM uses the so-

called linear 𝜀-insensitive loss. The latter adds a penalty equal 

to the excess model ℓ1-error with respect to ε. For this reason, 

the region [-ε, +ε] is called ε-insensitive zone. Interested readers 

are directed to the literature [18], [19], [36] regarding the 

differences between SVM and LS-SVM.  

At this point, it is important to remark that the primal space 

formulation in (6) provides a parametric model, i.e., the number 

of coefficients that should be estimated is equal to the number 

of basis functions P . However, both SVM and LS-SVM 

metamodels also allow an equivalent dual space formulation 

expressed as 

                 ( ) ( )
1

( , )
L

l lLS SVM l
y M k b

=
 = +x x x                (8) 

 
where the number of model coefficients 1[ ,..., ]TL =  is 

equal to L (i.e., the number of samples) and
N N( , ) :lk  →x x  is the co-called kernel function. In this 

paper, a traditional radial basis function (RBF) kernel will be 

used to train both the SVM and the LS-SVM regressions. The 

RBF kernel takes the form 
 

( )
2

'

'

2
, exp

2
k



 
− − 

=  
 
 

x x
x x                         (9) 

 

where  𝜎 is the hyperparameter referred to as the width of the 

RBF. 

For the dual-space formulation of (8), the coefficients 𝛼 and 

the bias coefficient 𝑏 can be obtained in a closed form by 

solving a linear system of equations. On the other hand, the 

SVM coefficients are computed numerically as the solution of 

a quadratic convex optimization problem [36]. Importantly, due 

to the 𝜀-insensitive loss function, this optimization leads to a 

sparse solution (i.e., most coefficients 𝛼𝑖 are equal to zero) 

while others are restricted by the condition 𝛼𝑖 ∈ [0, 𝛾].  

III. PROPOSED PRIOR KNOWLEDGE BASED MACHINE 

LEARNING (PKBML) TECHNIQUES 

The main computational expense in constructing ML 

metamodels is in the training of these metamodels. This is 

because in order to achieve good accuracy when working with  

conventional ML metamodels such as the ones described in the 

previous section, the required amount of training data extracted 

from full-wave EM simulations for hybrid copper-graphene 

interconnects can be very large, thereby leading to massive 

training time costs. In this paper, this issue is resolved by 

utilizing prior knowledge-based ML (PKBML) frameworks. In 

such frameworks, the full-wave EM solvers used, which are 

highly accurate but computationally very slow, are referred to 

as the high-fidelity models. In addition to these high-fidelity 

models, approximate empirical models which are 

computationally cheap to solve are also developed and referred 

to as low-fidelity models [34], [22],[25]. Thereafter, 

intelligently combining the data extracted from the low and 

high-fidelity models enables a better accuracy versus training 

time tradeoff than what is possible for conventional ML 

metamodels trained on data from the high-fidelity model alone. 

The metamodels constructed from such PKBML frameworks 

are called PKBML metamodels. Specifically, this work 

presents two PKBML frameworks for hybrid copper-graphene 

interconnect modeling – one based on the source difference 

(SD) technique and another based on the prior knowledge input 

(PKI) technique. 

A. Source Difference (SD) Technique  

The SD technique uses the predictions of the fast empirical 

(low-fidelity) model as prior knowledge to accelerate the 

training of the ML metamodel. In particular, the ML metamodel 

is trained to learn the difference between the predictions made 

by the high-fidelity model y = M(x) and the low-fidelity model, 

say Fy(x), as shown in Fig. 2. Thus, the training dataset used is 

( )( ) 
1

,
L

SD l l
l

D E
=

= x x  where: 
 

( ) ( )l l y lE y F= −x x                         (10) 
 

where ( )l ly M= x  is the prediction obtained via the high-

fidelity model and Fy(xl) is the output calculated via the low-

fidelity model for the same input parameters xl. Now, the 

variance of the error term of (10) is given as 
 

( ) ( ) ( ) ( )( ) ( ) ( ) 2 ( ), ( )y yVar E Var y Var F Cov y F= + −x x x x x   (11) 

 

It is noted from (11) that as the correlation between the 

predicted outputs of the low and high-fidelity models increases, 

the variance of the error quantity of (10) decreases. This, in turn, 

implies that a smaller number of training samples in the dataset 

𝐷𝑆𝐷 will be sufficient to capture the variability of the error 

quantity of (10). So, for an appropriate low-fidelity model, the 

number of training samples required to train a ML metamodel 

 

Fig. 2: Block diagram illustrating how a low-fidelity model and a 

ML metamodel can be utilized in a SD technique. 
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to emulate the error quantity of (10) will be much lower than 

required to emulate the true output y = M(x). Once the error 

quantity of (10) is emulated by any metamodel, the true output 

can be recovered simply as the sum of the predicted outputs 

from the metamodel and the low-fidelity model as (see Fig. 2) 
 

( ) ( ) ( )yy E F= +x x x                               (12) 
 

Therefore, in summary, when correlation between the high-

fidelity model ( )y M= x  and the low-fidelity model Fy(x) is 

high, the SD approach enables a dramatic reduction of the 

number of training samples required during the training phase 

of ML metamodels [22], [25], [34]. In the work of [34], a SD 

approach was developed for the fast ANN based modeling of 

hybrid coper-graphene interconnects.  

B. Prior Knowledge Input (PKI) Technique 

Based on (12), it is observed that the SD technique assumes 

a linear correlation between the low and high-fidelity models. 

However, such a strong assumption might lead to loss of 

convergence of the SD technique when the correlation between 

the low and high-fidelity models is actually nonlinear. In such 

scenarios, the PKI framework as shown in Fig. 3 can be a 

promising technique to overcome the above limitation [31]. The 

underlying concept of the PKI technique is to represent the true 

output as a nonlinear function of the predictions of the low-

fidelity model Fy(x) added to the error quantity of (10) as 
 

( )( ) ( ) ( )yy G F E= +x x x                           (13) 

 

where G(.) is an appropriate nonlinear function. The expression 

of (13) can be expressed even more compactly using a new 

nonlinear function H(.) as 
 

( )( ) ( ),yy H F=x x x                               (14) 

 

From (14), it is concluded that the output of the high-fidelity 

model ( )y M= x is a nonlinear combination of the inputs x and 

the corresponding predicted output of the low-fidelity model 

Fy(x). Therefore, a ML metamodel can be trained to emulate the 

nonlinear function of (14) using a new training dataset 

( ) 
1

,
L

PKI l l l
D y

=
= x  where the new input space is augmented 

as 
 

( )

l

l
y lF

 
=  
 

x
x

x
%                               (15) 

 
According to (14), (15) and as shown in Fig. 3, in the PKI 

formulation it is the output of the low-fidelity model that serves 

as prior knowledge and becomes additional inputs to the ML 

metamodel. This prior knowledge guides the ML metamodel to 

learn the nonlinear function of (14) using much fewer training 

datapoints than what is conventionally required. Moreover, in 

the formulation of (14), it is clear that a generic nonlinear 

correlation exists between the outputs of the low and high-

fidelity models. Therefore, the hard assumption of a linear 

correlation of the SD technique is remedied in the PKI 

framework.  

IV. APPROPRIATE LOW-FIDELITY MODEL FOR COPPER-

GRAPHENE INTERCONNECTS 

In the work of [11], an empirical model was developed to 

study the effect of the input parameters x on the p. u. l. 

resistance (R), inductance (L), and capacitance (C) matrices of 

hybrid copper-graphene interconnects. The hallmark of this 

empirical model was that it was analytic in nature, and hence, 

numerically very efficient to solve. However, in the work of 

[34], it was demonstrated that this empirical model was not very 

accurate for signal integrity verification. So, in this paper, the 

empirical model is considered to be a suitable low-fidelity 

model that can be used in the PKI and SD techniques described 

in Section III. 

In this low-fidelity model, the grain boundary scattering and 

surface scattering mechanisms are assumed to be the primary 

contributors of the p. u. l. resistance of copper interconnects. 

The effects of these scattering mechanisms are modeled by the 

Mayadas-Shatzkes (M-S) and the Fuchs-Sondheimer (F-S) 

models respectively. Thus, using these specific models, first the 

p. u. l. resistance of the copper trace of the hybrid interconnect 

is calculated as [11] 
 

          

( )

( )
( )

0

1

2 3

0

1
1 1.5 3 3 ln 1

, 0.45 1
1

FS MS
Copper

MS

f

FS Cu Cu

g f

F F
R
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F

R w t
F p

wtD R



  



 

−

+
=

  
= − + − +  

  

+
= = −

−

       (16)  

 

     In (16), the term ρ0 is the bulk resistivity of the copper 

conductor, Dg is the grain size of copper, Rf is the reflection 

coefficient at the grain boundary, pCu is the specularity 

parameter, λ0 is the bulk mean free path of copper, and w and t 

are the interconnect width and thickness respectively. Graphene 

possesses a very high mean free path because of limited space 

for the scattering of electrons. Next, for the graphene 

nanoribbons with specularity parameter (p) in the range of 0 to 

1, the p. u. l. resistance of the barrier layers is calculated as [11] 
 

 

Fig. 3: Block diagram illustrating how a low-fidelity model and a 

ML metamodel can be utilized in a PKI technique. 
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1

1
2

m

gr
i effil ch

h L
R

N e N 

−
−

=

  
 = + 

  
  

           (17) 

 

Here, Nl is the number of the graphene layers, Nch is the number 

of conducting channels, and λeffi is the effective mean free path 

of the i-th sub-band given by Matthiessen's rule. Now, by 

combining (16) and (17), the effective p. u. l. resistance 

parameter of the entire copper-graphene conductor in a hybrid 

interconnect is given as [11] 
 

                        
, , ,

1 1 1
k

k t b l rCu gr Copper gr
R R R=−

= +                      (18) 

 

where the quantities  , , ,t b l r
gr gr gr grR R R R in (18) refer to the p. u. l 

equivalent resistance contributions from the top, bottom, left 

and right side of the graphene barrier layers respectively.  

      Next, in the low-fidelity model, the effective p. u. l. 

capacitance and inductance parameters of each conductor of a 

hybrid copper-graphene interconnect is calculated as [11] 

                         

1

, , ,

1

, , ,

1
( )

1

k
Cu gr rec

k t b l r e

Cu gr ek
k t b l r rec

C C
C

L L
L

−

−
=

−

−
=

 
= + 
 

 
= +  
 





                   (19) 

        
where Ce and Le refer to the p. u. l. electrostatic capacitance and 

magnetic inductance components and LeCe = μ0ε0εr. The 

quantities 𝐶𝑟𝑒𝑐
𝑡 , 𝐶𝑟𝑒𝑐

𝑏 , 𝐶𝑟𝑒𝑐
𝑟 , 𝐶𝑟𝑒𝑐

𝑙  and  𝐿𝑟𝑒𝑐
𝑡 , 𝐿𝑟𝑒𝑐

𝑏 , 𝐿𝑟𝑒𝑐
𝑟 , 𝐿𝑟𝑒𝑐

𝑙  in (19) 

refer to the p. u. l. equivalent capacitance and inductance 

contributions from the top, bottom, right, and left side of the 

graphene barrier layers for each conductor, respectively and is 

calculated using the recursive methodology detailed in [11]. 

Once the p. u. l. parameters of each conductor are calculated as 

described above, they can be used to construct the resistance, 

inductance, and capacitance matrices (i.e., the RLC matrices) 

of hybrid copper-graphene interconnects as outlined in [34]. 

V. NUMERICAL EXAMPLES 

     In this section, two numerical examples are presented to 

demonstrate the advantages of the proposed PKBML 

metamodels of Section III over conventional ML metamodels 

and full-wave EM simulations for the signal integrity 

verification of hybrid copper-graphene interconnects. In both 

these examples, at the first step, the SD and PKI metamodels 

presented in Section III are applied to predict the p. u. l. 

parameters of hybrid copper-graphene interconnects. Then, the 

obtained p. u. l. parameters are embedded in SPICE multi-

conductor transmission line (MTL) models to perform transient 

analysis and signal integrity verification of the interconnects. 

All the ANN metamodels used in this section have a single 

hidden layer and are trained using the Levenberg-Marquardt 

optimizer with back-propagation as available in the ML toolbox 

in MATLAB. On the other hand, the SVM and the LS-SVM 

metamodels used in this section are trained in MATLAB via 

built-in functions and the LS-SVMlab v1.8 toolbox [37]. The 

SVM metamodels are optimized using a Bayesian optimizer 

with 5-fold cross-validation (CV) error [18] for a maximum of 

30 iterations while the LS-SVM metamodel uses the same 

Bayesian optimizer with a leave-one-out CV error [36] for a 

maximum of 25 optimization steps. 

    Example 1- Signal Integrity Analysis: In this example, a 3-

conductor hybrid copper graphene interconnect structure is 

considered as shown in Fig. 4(a). The parametric variability for 

this structure is detailed in Table I. In the first part of this 

example, attention is laid on extracting the p. u. l. RLC 

parameter matrices of the interconnects of Fig. 4(a). For this 

purpose, multiple distinct methods are adopted – a commercial 

TABLE I 

DESIGN PARAMETERS FOR THE NETWORK OF EXAMPLE 1 

 
 

Design Parameters 
Nominal 

Values 

% 

Variation 

1 Width(w) 18nm +/- 15 % 

2 Thickness(t) 37.8nm +/- 15 % 

3 Spacing between line 1 and 2 

(s1) 

13nm +/- 15 % 

4 Spacing between line 2 and 3 

(s2) 

17nm +/- 15 % 

5 Height of Interconnect from 

GND layer (h1) 

37nm +/- 15 % 

6 Total height of dielectric (H) 113.8nm +/- 10 % 

7 Barrier layer thickness(tgr) 1nm +/- 15 % 

8 Dielectric constant (ϵr) 3.9 +/- 15 % 

 

        
                                         (a)                                                                                                          (b) 

Fig. 4: Details of the hybrid copper-graphene interconnect network used in Example 1 & 2. (a) Cross-sectional view of the hybrid interconnect 

structure. (b) Schematic of the hybrid interconnect network showing the driver and load circuits modeled as linear RC circuits. 
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full-wave EM solver which in this case is the ANSYS Q3D 

Extractor tool [32], the conventional ANN, SVM, and LS-SVM 

metamodels trained using data obtained from the ANSYS Q3D 

Extractor tool, and the proposed SD and PKI variants of the 

ANN, SVM, and LS-SVM metamodels trained using a 

combination of data obtained from the ANSYS Q3D Extractor 

tool and the low-fidelity model of Section IV [11]. All the ML 

metamodels of this example are trained using the same training 

dataset where the number of points in the dataset is 

progressively increased as L= {15, 25, 35, 70, 140, 350, 700}. 

All these training points are selected using a Latin hypercube 

sampling (LHS) scheme. For testing, all the ML metamodels 

use a single testing dataset comprising of 500 points uniformly 

distributed over the entire input parameter space.  

    Now, for the given training dataset, the decay of the testing 

errors for the R11 and C12 p. u. l. parameters achieved by 

different ML metamodels is shown in Fig. 5. The testing error 

considered in the above plot is the normalized root mean square 

(NRMS) error expressed as:  
 

( )
2

1

2

1

( ) ( )
1

x 100

( )

test

test

N

l l

l
NRMS N

test

l

l

y y

N
y

 =

=

−

=





x x

x

%

,             (20) 

 
where y(xl) is the true result obtained from the full-wave EM 

solver and ( )ly x% is the result predicted by the ML metamodel. 

For this example, a NRMS testing error of less than 2% for all 

p. u. l. parameter implies that the metamodel is sufficiently 

accurate, due to the fact that for such low errors in the p. u. l. 

parameter values, there is virtually no errors in the SPICE 

simulation results [34]. From Fig. 5, the following three 

observations are made.  

(i) Irrespective of the ML metamodel used, their SD and PKI 

formulations converge much faster than their conventional 

formulations. This is to be expected given that the SD and PKI 

approaches exploit the correlation between the results of the 

low-fidelity model and the full-wave EM simulations.  

(ii) For most ML metamodels, the PKI approach shows a faster 

convergence than the SD approach (except for ANNs). This too 

is expected given that the PKI approach assumes a general 

nonlinear correlation between the results of the low-fidelity 

model and the full-wave EM simulations as opposed to the 

 
                            (a)                                         (b) 
Fig. 5: Scaling of the testing NRMSE with increasing number of training points for the values of the R11 (panel (a)) and C12 (panel (b)) p. u. 

l. parameters using the different ML metamodel and their PKI and SD variants. 

 
          TABLE II  

ACCURACY AND TIME COST COMPARISON BETWEEN DIFFERENT METAMODELS FOR TRAINING DATASET OF 35, 140, AND 700 SAMPLES 

  

Method 

L = 35 (Cost = 105 MINUTES) L = 140 (Cost = 420 MINUTES) L = 700 (Cost = 2100 MINUTES) 

Ave. 

RMSE 

(%) 

Max 

RMSE 

Optimization 

time (s) 

Ave. 

RMSE 

(%) 

Max 

RMSE 

Optimization 

Time (s) 

Ave. 

RMSE 

(%) 

Max. 

RMSE 

Optimization 

Time (s) 

 

SVM 

CON 0.85 1.57 190 0.63 1.43 241 0.63 1.42 1804 

PKI 0.77 1.56 205 0.62 1.42 253 0.62 1.41 1790 

SD 0.82 1.61 220 0.63 1.41 285 0.62 1.40 2645 

 

LS-

SVM 

CON 0.81 1.5 2.38 0.62 1.41 5.47 0.64 1.46 157.6 

PKI 0.77 1.56 2.38 0.62 1.42 5.96 0.62 1.41 154 

SD 0.81 1.61 2.07 0.62 1.40 5.41 0.64 1.46 145 

 

ANN 

CON 2.28 4.50 39 1.38 2.79 41 1.16 2.45 45 

PKI 1.24 2.42 31 1 1.84 32 0.92 1.80 35 

SD 1.17 2.71 24 0.90 1.69 32 0.89 1.68 45 
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restrictive linear correlation assumed by the SD approach. This 

is a key conclusion that was not explored in [34]. 

(iii) The SVM and LS-SVM metamodels, whether of the 

conventional or the SD and PKI variety, are much more 

accurate than their ANN counterparts. This is another important 

conclusion that was not explored in the earlier work of [34].    

As further proof of the above observations, Table II provides 

an exhaustive comparison among the considered metamodels in 

terms of their average and maximum NRMSE computed over 

all the entries of the p. u. l. matrices and their training time costs 

for 35, 140, and 700 samples. The training time costs are broken 

into two parts – the time taken to generate the training dataset 

(given at the top of the table) and the time taken to calculate the 

optimal weights and bias values that will minimize the loss 

function (referred to as the ‘optimization time’). The results of 

Table II clearly show that for the same number of training 

samples, the proposed PKI and SD techniques provide a lower 

testing error compared to the conventional metamodels whether 

of the ANN, SVM, or LS-SVM type. This clearly underlines 

the universal improved convergence of the proposed PKI and 

SD techniques. In fact, the PKI and SD variants of ANN 

metamodels are sufficiently well trained using only 35 training 

samples as opposed to the conventional ANN metamodel that 

requires roughly 140 (i.e., 4 times larger) number of training 

samples. 

Regarding the computational time costs, Table II shows that 

the largest time cost is incurred during the generation of the 

training dataset than during the optimization. This is to be 

expected because it is only during the generation of the training 

dataset that the repeated expensive full-wave EM simulations 

have to be performed. For example, the computational time cost 

required by the ANSYS Q3D Extractor tool for generating 35 

training samples is around 6300 seconds, which is more than 31 

times the time required to optimize the slowest metamodel. On 

the other hand, the remarkable fact of all these techniques is that 

the time taken by the metamodels to predict their outputs is 

extremely small – indeed, once trained, all of the metamodels 

take less than one second for predicting the p. u. l. parameter at 

          
(a) 

           
(b) 

Fig. 6: Comparison of the scatter plots for the R11 (panel (a)) and C12 (panel (b)) p. u. l. parameters computed from the prediction of the 

proposed metamodels by using as reference the corresponding values computed via a full-wave EM simulation in ANSYS Q3D Extractor. 

 
Fig. 7: Transient responses at the end of line 1 and crosstalk in the 

at the end of line 2 simulated in SPICE and based on the p. u. l. 

parameters predicted by the different metamodels for the two 

different design points. 
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any design point. This makes these metamodels far better 

suited than full-wave EM simulators for tasks that require 

several evaluations, e.g., uncertainty quantification, design 

space exploration, sensitivity analysis, etc. The results of Table 

II are validated using the scatter plots of Fig. 6.  

In the final part of this example, the values of the p. u. l. 

parameters of the interconnects of Fig. 4(a) predicted by the 

different ML metamodels when trained to below a 2% NRMS 

testing error threshold for ANN metamodels and 1.5% testing 

error threshold for SVM and LS-SVM metamodels are used for 

a SPICE transient analysis. For this purpose, lines 1 and 3 of the 

interconnects are excited by voltage sources with saturated 

ramp waveforms of rise time Tr = 0.1 ps and amplitude 1 V. 

Line 2 is the victim line. The outputs of interest for this example 

are the transient responses at the far-end of line 1 and 2. In Fig. 

7, the transient responses of the interconnects obtained using 

the p. u. l. parameters predicted by the ML metamodels is 

illustrated for two arbitrary points in the normalized input 

parameter space [-0.9860 0.9750 -0.1731 -0.5867 -0.2937 -

0.7857 0.3705 0.7532] and [0.9665 -0.9654 0.7426 0.1931 

0.6529 0.8909 0.8300 -0.0865]. In addition, Fig. 7 also includes 

the transient responses obtained using the p. u. l. parameters 

extracted from full-wave EM simulations for the same two 

points. It is noted from Fig. 7 that the results obtained from ML 

metamodels exhibit very good agreement with the results 

obtained from the full-wave EM simulations. This demonstrates 

that the accelerated training of the ML metamodels provided by 

the proposed SD and PKI approaches does not lead to any loss 

in model accuracy either when predicting the p. u. l. parameters 

of the interconnects or when performing the SPICE simulations.  

Example 2 - Robustness Analysis: In this example, the 

robustness of the different PKBML metamodels of Section III 

to simulation noise is examined. For this purpose, the pristine 

training data of the previous example is now corrupted by 

adding random Gaussian noise as 
 

   ( )( ) ( ) 1noisy l ly y = +x x                         (21) 

 

Where ( )20, n N is a Gaussian random variable whose 

standard deviation lies in the range 1% - 3%, such that in the 

worst-case 99.7% of the noisy realizations falls within ±9% 

 

 

 
 

Fig. 8: Comparison among the NRMS testing errors for C12 

provided by the different metamodels for different number of 

training samples (i.e., L) and noise level 𝜎𝑛. 

 

 

 
 

Fig. 9: Comparison among the NRMS testing errors for R11 provided 

by the different metamodels for different number of training samples 

(i.e., L) and noise level 𝜎𝑛. 

 
 

 
Fig. 10: Transient responses at the end of line 1 and crosstalk in 

the at the end of line 2 simulated in SPICE and based on the p. u. 

l. parameters predicted by the different metamodels for the two 

different design points for noise level σn = 3% 
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variation around the noiseless case.  Next, the p. u. l. parameters 

of the interconnects of Fig. 4(a) are once again predicted using 

the different methods of Example 1. In Figures 8 and 9, the 

scaling of the NRMS testing error of (20) achieved by different 

ML metamodels with respect to the noise level (i.e., the value 

of σ) and the number of training points when predicating the C12 

and R11 p. u. l. parameters is shown. From Figs. 8 and 9, the 

following three conclusions are made.  

 (i) As the noise level increases, for the same number of training 

samples the testing error of each ML metamodel increases. This 

increase in the testing error is noticed for both conventional and 

PKBML formulations.  

 (ii) Even in the presence of noise, the SD and PKI formulations 

are still able to provide a lower testing error relative to the 

conventional ML metamodels for the same number of training 

points. Thus, while the effectiveness of the SD and PKI 

formulations may be diminished by the presence of noise, their 

ability to accelerate the training of ML metamodels remains 

intact. 

(iii) The SD formulation shows significantly lower error than 

even the PKI formulation, and hence, is the most robust among 

the proposed PKBML formulations to simulation noise.  

       In the final part of this example, the values of the p. u. l. 

parameters of the interconnects of Fig. 4(a) predicted by the 

different ML metamodels when trained to below a 2% NRMS 

testing error threshold in the presence of maximum noise (i.e., 

σn = 3%) are used for SPICE transient analysis of the hybrid 

interconnect network depicted in Fig. 4(b). The active and 

victim lines of the interconnects are exactly as used in Example 

1 and excited by the same sources. In Fig. 10, the transient 

responses of the interconnects obtained using the p. u. l. 

parameters predicted by the ML metamodels is illustrated for 

two arbitrary points in the input normalized parameter space 

(different points than those used in Example 1) [0.9857 -0.3199 

0.3784 0.7145 -0.8059 -0.9908 0.5916 0.7275] and [0.1431 

0.9127 0.7862 -0.9728 0.8036 0.9752 0.3177 0.8134]. In 

addition, Fig. 10 also includes the transient responses obtained 

using the p. u. l. parameters extracted from full-wave EM 

simulations for the same two points. It is noted from Fig. 10 that 

the results obtained from ML metamodels exhibit very good 

agreement with the results obtained from the full-wave EM 

simulations even despite the fact that the training data is no 

longer pristine and is corrupted by noise. 

VI. CONCLUSION 

In this paper, two different prior knowledge-based machine 

learning (PKBML) approaches are developed and their 

performance relative to conventional ML approaches and full-

wave EM simulations are explored for predicting the p. u. l. 

parameters of hybrid copper-graphene on-chip interconnects. In 

particular, the PKBML approaches is tested for ANN, SVM, 

and LS-SVM metamodels for thoroughness of analysis. From 

the detailed explorations performed, it is concluded that the PKI 

approach best accelerates the training of all ML metamodels 

provided no noise is in present in the data. However, in the 

presence of noise, the SD approach ends up providing better 

acceleration. Finally, the SVM and LS-SVM metamodels 

generally outperform the ANN metamodels both for the 

conventional and PKBML approaches. 
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Dear Editor,

On behalf of the authors, I take this opportunity to submit our paper titled: Comparative 
Analysis of Prior Knowledge Based Machine Learning Metamodels for Modeling Hybrid 
Copper-Graphene On-Chip Interconnects  in this esteemed journal.

In this paper, three key contributions to the state-of-the-art in ML based modeling of the p. u. 
l. parameters of hybrid copper-graphene interconnects are presented.

(i) The above accuracy issue of the SD method is addressed by using a more general prior 
knowledge input (PKI) method for predicating the p. u. l. parameters. The PKI method has the 
capacity to include nonlinear correlation between the results of the low-fidelity model and those 
of the full-wave EM simulations. As a result, the PKI method can provide smaller modeling 
errors compared to the SD method for the same number of training points. The improved 
performance of the PKI method compared to the SD method is demonstrated in this paper using 
various numerical examples. 

(ii) In this paper, the comparative analysis between the SD and PKI methods is performed 
across different ML metamodels such as the ANN, SVM, and least square SVM (LS-SVM) 
metamodels. Such a detailed comparative analysis was not included in the earlier works. In 
fact, such a thorough comparative analysis of different PKBML metamodels for interconnects 
in general and hybrid copper-graphene interconnects in particular have not been reported 
before. 

(iii) Finally, in this paper, the comparative analysis between the SD and PKI methods across 
different ML metamodels is conducted both in the presence and absence of simulation noise. 
Such an analysis reveals critical insights as to which combination of PKBML method and ML 
metamodeling technique is most suitable depending on the level of noise in the training data.

 In a nutshell, the topics covered in this article are quite comprehensive and align with the wide 
scope of this journal.

Should you have any questions, please feel free to write to me.

Sincerely,

Rohit Sharma

(On behalf of the authors)
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