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Abstract—URLs play an essential role on the Internet, allowing
access to Web resources. Automatically generating URLs is help-
ful in various tasks, such as application debugging, API testing,
and blocklist creation for security applications. Current testing
suites deeply embed experts’ domain knowledge to generate
suitable URLs, resulting in an ad-hoc solution for each given
application. These tools thus require heavy manual intervention,
with the expensive coding of rules that are hard to maintain.

We here introduce URLGEN, a system that uses Generative
Adversarial Networks (GANs) to tackle the automatic URL
generation problem. URLGEN is designed for web API testing and
generates URL samples for an application without any system
expertise, complementing the existing tools. It leverages Long
Short-Term Memory (LSTM) and Convolutional Neural Network
(CNN) architectures, augmented by an embedding layer that
simplifies the URL learning and generation process. We show that
URLGEN learns to generate new valid URLs from samples of real
URLs without requiring any domain knowledge and following a
purely data-driven approach. We compare the GAN architecture
of URLGEN against other design options and show that the
LSTM architecture can better capture the correlation among
URL characters, outperforming previously proposed solutions.

Finally, we show that the URLGEN approach can be extended
to other scenarios, which we illustrate with two use cases, i.e.,
cybersquatting domain prediction and URL classification.

Index Terms—Web API testing, cybersecurity, generative ad-
versarial networks

I. INTRODUCTION

The day-to-day operation of the Internet involves the use of
Uniform Resource Locators (URLs) to address pages, objects,
and API-based web services. Content management systems,
traffic filtering, malicious content blocking, ad-filtering, and
application testing tools require knowledge about the URLs
of specific resources in order to function. Web API testing, in
particular, requires a high level of attention, as relatively naive
mistakes can expose services, leak data, and create serious
vulnerabilities.

Web application and API testing require the verification
and ad-hoc search of errors by experts. Several tools enable
testing of web APIs such as Fiddler [1], Postman [2] and
OWASP ZAP [3]. These tools explore the space of possible
parameters to check the API sanity and the correctness of
the applications’ responses. However, these tools require the
knowledge of specialists who must create custom test patterns
to stress the APIs of the specific application under test.

The research leading to these results has been funded by Smart-
Data@PoliTO center for Big Data technologies.

Machine learning (ML) techniques have also become pop-
ular for URL management in various contexts, including
cybersecurity [4], traffic management [5], and traffic clas-
sification [6]. ML models offer the ability to learn URL
patterns and classify (or predict the values of) URLs. More
recently, Generative Adversarial Networks (GANs) [7] have
emerged as a practical approach to generating new samples
given some training data. In a GAN, a generator generates
candidates, while the discriminator evaluates them as real
or fake. Adversarial training allows the generator to produce
realistic samples, while the discriminator becomes a robust
model for identifying samples of a distribution. Researchers
from various fields have successfully used GANs, from image
to melody and text generation [8, 9, 10].

We here propose URLGEN, an automatic solution that uses
GANs to generate URLs for target web services. Our goal is to
generate URLs for test services, looking for new and possibly
offensive URLs. The process consists of training a model
using examples of valid URLs for a target service and then
applying the generator model to test the application, as shown
in Fig. 1. The training is relatively simple and builds on the
model’s ability to automatically learn the patterns observed in
the URLs and replicate them. Using the trained generator, we
stress the target application with novel (generated) URLs, in a
search for URLs that may trigger application errors. URLGEN
is fully automated, follows a purely data-driven approach, and
requires no specific domain knowledge to generate URLs for
the target application.
URLGEN is able to create novel URLs that can be used for

testing applications, assisting the available knowledge-based
tools. We demonstrate the potential of the URL generation
technique in different scenarios. Specifically, we show that
URLGEN can help generate URL blocklists by producing
offending patterns. In detail, the GAN generative ability is
instrumental for obtaining novel URL samples in a data
augmentation process. Such URLs could be applied, for ex-
ample, to extend blocklists and proactively prevent abuses.
We demonstrate this scenario by generating new domain
names that could be abused by attackers in domain-squatting
operations. Moreover, we show that the ensemble of URLGEN
discriminators – each learned for a different URL – can also
assist URL classification applications.

It is well-known that GANs have problems when applied
to categorical data such as strings. This problem makes the
application of GANs to URL generation more complex than,
for example, image generation, where nearby pixels contain
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Fig. 1: Architecture of URLGEN, our application agnostic Web
API testing tool, showing the training phase and the connection
between the trained model and the tested application.

a significant amount of information about the pixels being
generated. Therefore, we compare URLGEN architecture based
on Long Short-Term Memory (LSTM) and Convolutional Neu-
ral Network (CNN) with simple fully connected architectures
proposed in the past. Moreover, we add a generic embedding
layer that maps characters into a vector space. This step
accelerates the convergence of the GAN while improving the
generative capability of the system and coping with the strict
syntax and semantics of URLs.

All in all, we believe our work is an important step towards
fully automated and application-independent Web API testing.
However, URLGEN is not a complete replacement for existing
expert-based approaches, since it may not cover all testing
cases devised by an expert. Yet, GANs bring the dynamism
missed by the rule-based approaches. To increase URLGEN
impact, we offer it to the community as open-source software,
as a practical tool to complement alternative approaches.1

This work extends [11] offering an improved GAN archi-
tecture, which better adheres to the characteristics of the URL
generation problem. In detail, we add a character embedding
layer that makes the model scalable and robust, and we
specifically focus on the URL generation use case instead
of the simple traffic classification as in [11]. Finally, we
demonstrate our approach’s potential for web API testing and
introduce the use of GANs for domain-squatting prevention.

The remainder of the paper is organized as follows. Sec. II
discusses background. Sec. III presents the proposed approach
for testing Web API using GANs. Sec. IV defines our GAN
architecture, and discusses model choices and training. Sec. V
describes our URL datasets. Sec. VI presents results and the
emerging trade-offs. We demonstrate other applications for the
approach in Sec. VII. Sec VIII present related works while
Sec. IX concludes the paper and present future directions.

II. PRELIMINARIES

We here introduce some background concepts, summarizing
the operation of GANs and the idea of vector representation

1URLGEN is available at https://github.com/SmartData-Polito/urlgen

for strings. The reader with a background in this field can skip
this section.

A. Generative Adversarial Networks

Our goal is to generate realistic URL samples of a particular
class given a set of examples. To this end, we rely on GANs, a
model in which two neural networks compete with each other:
A generative model G competes with a discriminative model
D through a minimax two-player game [12]. The objectives of
the models are conflicting. The generator aims at generating
new samples following the same distribution of the training
data, while the discriminator aims at distinguishing if a sample
comes from the training data or is generated by G.

The generator G learns a probabilistic distribution pg , which
should approximate the distribution px of the training data x.
We define an input noise variable z with probability pz(z).
The generator G is a neural network that maps z to G(z; θg),
where θg are the parameters of G. The discriminator D is a
second neural network that learns to distinguish real samples
in the training data from those generated by G. The output of
D(x; θd) is the probability that x belongs to the training data,
and θd are the parameters of D. We train the discriminator D
to maximize the probability of identifying fake/real instances
while training G to minimize log(1−D(G(z))) – i.e., to bring
pg close to px.

B. Vector Representation

Generating URLs consists in producing sequences of dis-
crete tokens, i.e., characters. GANs, in their simplest form,
are not well-suited to work with discrete data [13] being
them designed to handle continuous, real-valued data. The way
the loss propagates within the model is the reason for this
difficulty. The gradient update calculated at the discriminator
informs the generator how to adjust its weights to generate
more realistic samples. These updates rely on the assumption
that after each change in the weights, the new output converges
to the expected value. This assumption does not hold for dis-
crete tokens and may introduce inconsistent mapping between
tokens and gradient updates. Current solutions to overcome
this limitation consider the sequence generation procedure
as a sequential decision-making process and use gradient
policy updates [13]. Another approach is to convert discrete
tokens to continuous data using an intermediary embedding
process [14, 15]. Here we rely on this second option.

In detail, we use an intermediate vector representation block
to map each string into a sequence of vectors in continuous
space as opposed to a sequence of discrete tokens. In our case,
the vector representation, also called embedding, represents
every character of the URL as a vector in an e-dimensional
space where e is a hyper-parameter defining the number of
dimensions of the resulting embedding. Intuitively, the more
compact the space, the more information one could lose during
the mapping.

The vector representation has two main advantages: (i) it
properly allows gradient propagation; (ii) it allows the model
to generate more realistic samples. The latter is possible by
changing some characters by others in the same category
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(i.e., nearby in the embedded space), while not breaking
the URL syntax. To learn the vector representation, we use
the word2vec skip-gram model, proposed by Mikolov et
al. [16, 17]. Introduced for natural language processing, given
a sequence of words, the skip-gram model tries to predict the
context words for a given target word. This approach allows
for learning effective vector representations. In our case, we
train a model to predict the previous and following characters
given the i-th character in a string (the context). The resulting
embedding maps characters that often appear in the same
context in the same portion of the embedded space.

C. Web API Testing Approaches

There is no standard for Web API testing currently, and
multiple ad-hoc approaches are used according to the specific
application requirements. We here summarize a general set of
steps usually employed in real scenarios.

The first step is to parse the available documentation. Com-
mon documentation formats are OpenAPI/Swagger, GraphQL,
and WSDL. These documents contain service descriptions and
are necessary to collect not only the API endpoints but also
the API parameters and patterns. This task can be automatic
or manual and heavily depends on the documentation quality.

Having the endpoints, an expert can start scanning the API
for common vulnerabilities. This search usually starts with
fuzzing tests, in which a testing software (often automated
or semi-automated) provides random, invalid, and unexpected
data as input to the API. Several tools enable such tests,
such as Fiddler [1], Postman [2], and OWASP ZAP [3]. They
explore the API parameter space to check the API sanity and
the correctness of the application responses.

In the end, the quality of the tests depends on the API
tester’s know-how and on the quality of the API documen-
tation. Conversely, URLGEN requires only the collection of
samples of URLs to start generating possible malformed API.
For this reason, automatic testing tools are important assets to
automate the procedure and add stability to the process, and
complement the domain experts’ driven solutions.

III. URLGEN– AGNOSTIC WEB URL GENERATION

During the development of a web application that exposes
APIs to the public, it is essential to have tools to test the
reliability of the system. Classic testing tools require knowing
the syntax of URLs, e.g., knowing possible parameters and
values they may take, and then generating URLs that mix
parameters and values. Volunteers and companies have to
build these lists – see for example SecLists [18], Assetnote
Wordlists [19], Payloads All The Things Tweet [20] and
FuzzDB [21]. Such an approach is expensive and limited.
Having automatic means to generate test API calls – regardless
of the application-under-test – would reduce the testing costs
while generalizing and increasing the test coverage.

GAN is a natural candidate solution for a task where one
wants to produce new samples that follow given patterns.
Compared to the domain-specific approaches, a GAN could
automatically extract the characteristics of URLs/APIs of
the application-under-test. To describe the approach used in
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Fig. 2: Edit Distance histogram for real and generated data
(without embedding).

URLGEN, we will use the accuweather.com API URLs
described in Table I as an example.

This API consists of a fixed path that identifies the end-
point, search.json, the q= parameter that indicates the
geographical coordinates (latitude and longitude) for which
the client application requests information, a second param-
eter (apikey=) that is the authentication token composed
of 32 characters (different for each user, here anonymized),
and a third (language=) parameter that indicates the API
language. Parameters may appear in a different order. The API
returns weather information about the specific location, which
can be cities or points of interest.

If we compare different valid API URLs, we observe that
they may differ by one element (e.g., the same key, the
same language, but different coordinates) or multiple ele-
ments (e.g., all three fields differ). We quantify such differ-
ences by measuring the Edit Distance [22]2 between pairs
of URLs in a dataset containing volunteers’ real requests to
the accuweather.com API, which we will describe in
detail in Section V. We show the distribution of the Edit
Distance between pairs of URLs for this example in Fig. 2 with
dashed lines. The multiple modes in the distribution reflect the
variability of the real API requests.

Our objective is to use GANs to generate URLs, without
even knowing the strict syntax of the URL and the name of the
parameters. Our best model, which we will describe in detail
in the next section, i) generates URLs that respect the URL
syntax, ii) automatically identifies parameter names, and iii)
mimic parameter values, reflecting the distance between URLs
in the original training data as shown in Fig. 2. In addition,
the URLGEN GAN-based approach still introduces errors in
other parts of the URL, which is the desired behavior for API
testing. For instance, URLGEN generates URLs with an almost
constant and valid API key, learned from the majority of the
URLs present in the training data. However, it sometimes
injects errors in the key, and even in the parameters’ names.

To visualize the quality of URLs generated by URLGEN,
Fig. 3 shows in a map the generated coordinates along with
samples of the original data used to train URLGEN in this

2The edit distance between two strings s1, s2 measures the minimum
number of edits (additions, removals, replacements) that would be required
to transform s1 into s2.
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TABLE I: URL samples of the Accuweather API calls.

Base URL Coordinate API Key Language
api.accuweather.com/locations/v1/cities/geoposition/search.json? q=45.372202,8.1753055 apikey=ANONYMIZED language=it
api.accuweather.com/locations/v1/cities/geoposition/search.json? q=45.3022434,8.4490561 apikey=ANONYMIZED language=it
api.accuweather.com/locations/v1/cities/geoposition/search.json? q=46.0189849,8.2591772 apikey=ANONYMIZED language=en

Fig. 3: Map showing coordinates in valid URLs generated by
the trained model.

example. Considering a total of 1 000 generated URLs, about
300 URLs are unique. Of these unique URLs, 60% results
in valid samples – valid URLs are those that lead to a valid
response from the service.3 None of the valid URLs is present
in the training data. Interestingly, most generated URLs are
formed by coordinates falling in the same area of points in
the training data. While the training proceeds, the generated
URLs vary as shown by samples taken at different training
epochs (see the dot colors).

This example illustrates the benefits of the GAN-based
approach in the context of Web API testing. Without exploiting
any domain knowledge on the application-under-test, the GAN
automatically learns to generate both unseen but valid samples
(e.g., as in Fig. 3), as well as invalid samples that resemble
the real ones (e.g., URLs with wrong API keys), thus useful
for testing invalid API requests.

Next, we dig into the design of URLGEN, exploring different
models and the challenges one faces to build such a GAN-
based approach.

IV. GAN FOR URL GENERATION

We now discuss the methodology used to compose the
architecture of URLGEN. Given a dataset of URLs belonging
to a given class (e.g., URLs belonging to site.com), we train
a GAN where the discriminator network shall distinguish real
samples from samples generated by the adversary network.
URLGEN must be trained for each application-under-test (i.e.,
class of URLs). We build URLGEN using recurrent and con-
volutional neural networks, which are known to be very good

3We use regular expressions and manual inspection to classify URLs.

architectures for this task. Later in Section VI-D we compare
with possible alternatives.

We design our system with an intermediate embedding
layer to transform each character from a traditional one-hot
encoding into a vector representation. When used, the GAN
with the embedding layer operates on sequences of embedded
vectors, both in the generator and in the discriminator models.
We start by discussing how to represent URLs using such an
embedding layer.

A. URL Representation

URLs are encoded using 50 of the American Standard
Code for Information Interchange (ASCII) Character Set [23].
Additional characters not present in the original set may be
encoded by a triplet consisting of the character “%” followed
by the two hexadecimal digits. The HTTP protocol does not
limit URL size, and servers are required to handle any URL
independently of the length. However, RFC 7230 [24] suggests
that URLs should respect a limit length of 2 000 characters,
and in fact, most browsers do not accept entries above this rec-
ommendation. Given these constraints, we remove all unused
characters resulting in a URL representation set composed of
502000 possible sequences.

In text classification, each sentence can be broken into
words and, later, each word is converted to tokens that feed the
model, e.g., via the one-hot-encoding mechanism. In URLs,
this task is not efficient because the structure of a URL is
too diverse when compared to sentences in natural language.
Website names and links might not respect grammar rules.
The domain names, paths, attributes, and parameters might be
composed of letters, numbers, and special characters with a
strict syntax, but loose semantics.

Because of this, we generate and discriminate URLs at
the character level. This decision reduces the vocabulary size
required for the tokenization and avoids retraining when new
words are introduced to the vocabulary. This approach is in
common with other works that tackle URL representation
with machine learning [4, 25]. On the downside, by analyzing
each character independently, we may lose the contextual
information in the sequences of characters that compose the
URL. To alleviate the problem, we use an embedding layer
that encodes part of the contextual information. In addition,
we use a generator architecture based on the Long Short-Term
Memory (LSTM) network, described in Section IV-C, which
is a neural network architecture aware of the context of each
token.
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Fig. 4: Network used to train the embedding. The embedding
vectors are extracted from the Hidden Units. We use a soft-
max layer to predict the next character and evaluate the model.
a is the alphabet size and e the embedding size.

B. Learning the Embedding

We train an embedding layer to represent the 50 ASCII
characters admitted in URLs as e-dimensional vectors.4 We
build on the skip-gram model to learn the mapping from each
character to a vector. We depict the training process in Fig. 4.
The first layer maps characters to vectors using a standard one-
hot encoding map. Each character in the input is embedded
in a e-dimensional space from the initial a = 50 dimension
space. The fully connected layer afterward uses a soft-max to
obtain output probabilities that are chosen to predict the next
character in the URL. In a nutshell, for every character xn,
we train the network to predict the next character xn+1 by
projecting the initial space of a dimensions into an embedding
of e < a dimensions.

We train the embedding layer using URLs that cover mul-
tiple services and APIs. Indeed, the embedding built with
generic URLs will reflect the typical URL characteristics, thus
learning semantics that is generic and applicable to multiple
use cases. To map embedded URLs back to the one-hot
encoding ones, we multiply the embedded URL by the Moore-
Penrose pseudo-inverse of the embedding matrix [26]. Then,
using a dictionary, we convert the obtained one-hot encoding
to ASCII characters.

C. GAN Architecture

The choice for the discriminator D and generator G ar-
chitectures is not straightforward in our case. Intuitively, we
need a generator that is able to reconstruct possible URLs on
a character-by-character basis; and a discriminator that can
compare strings in which the sequence of parameters may be
altered on purpose by the generator.

In general, the generator G receives a random input z and
maps it to a G(z) that shall follow the real data distribution.
The noise is a k-length vector and each element is sampled
from a normal distribution with mean µ = 0 and standard

4Here we consider lowercase characters to reduce the complexity. The
extension to the case-sensitive case is straightforward.

Input
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Fig. 5: Generator model - It receives a noise vector and
generates a URL in the embedded space. z is the noise size; m
is the maximum number of URL characters; and d is the output
dimension, which depends on the use or not of embedding.

deviation σ = 1. The generated output is x̃ → X̃e ∈ Rm×d,
where m is the maximum URL length and d is the dimension
of the encoding. The dimension can be e when the embedding
is used or a for the alphabet size in the one-hot encoding
alternative. URLGEN supports both cases. The discriminator D
receives an URL in the encoded space, and D(xe; θd) outputs
a scalar in the interval [0, 1].

In the following, we describe the neural networks we
employ for the generator G and discriminator D.

1) Generator: Our previous work [11] used a fully con-
nected neural network (FCCN) where all the neurons in one
layer are connected to the neurons in the next layer through
a dropout regularization. In this architecture, each character
is generated independently of the others in the sequence. We
expect this independence to limit the generator’s capability of
producing realistic samples as each character will be drawn
based solely on its position in the URL and independently
on the previous and next characters in the string. In addition,
FCNNs have a very high number of hyper-parameters, as each
neuron holds independent weights, making the training more
complex.
URLGEN instead relies on Recurrent Neural Networks

(RNNs). RNNs are well-suited to operate on sequential data,
which is the case of URLs if interpreted as sequences of
characters. Among the many variants of RNNs, we select
the Long Short-Term Memory (LSTM) [27] units. An LSTM
unit is an element able to remember information for arbitrary
long intervals and use this memory to generate the output. An
LSTM cell has three gates: input, forget, and output. These
gates govern whether or not to allow new input in, forget
old information, and affect output at the current time step,
respectively. Famous applications of LSTMs are in the field
of Natural Language Processing (NLP), such as text genera-
tion [28, 29] and classification [30, 31] and chat bots [32].

We depict the generator architecture in Fig. 5. As a conse-
quence of its design, the LSTM provides an output at every
time step, which depends on the input and on previous states.
Therefore, after the LSTM unit, we use a fully connected layer
that shapes the output to an encoded URL x̃ → X̃e ∈ Rm×d.

2) Discriminator: In [11] we used again a fully connected
neural network (FCNN) for the discriminator (D) because it
was symmetric with respect to the generator. However even
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Fig. 6: Discriminator model - It receives embedded URLs and
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is the maximum number of URL characters; d is the output
dimension, which depends on the use or not of embedding.

though FCNNs are sufficient to discriminate simple URLs,
they are not resilient to shifts in the input, having independent
weights for each neuron. Conversely, we desire URL clas-
sification that is robust to input shifts, as a small variation
in the URL prefix can shift all the remaining characters.
Also, URL parameters can have different orders at different
samples. For instance, www.site.com and www1.site.com, or
site.com?a=b&c=d and site.com?c=d&a=b would result to-
tally different for an FCNN discriminator.

To address these shortcomings, URLGEN includes Convo-
lutional Neural Networks (CNNs) for D. CNNs have a better
ability to detect features with varying positions in the data,
and thus have the desired robustness to shifts. CNNs have
been originally proposed for image classification [33] and for
various tasks of computer vision [34, 35]. Also, they are used
in text [36, 37] and URL classification [4, 38, 39].

Fig. 6 shows the 1-dimensional CNN we use for D over
the sequence of characters of the input URL. The size of
the kernel defines the number of characters the convolutional
unit analyses at each iteration. Following the convolution,
there is a LeakyReLU activation layer and a unidimensional
max pooling to reduce the feature dimension and identify the
most important features. We consider different sizes for the
kernel so that the convolution can process n-grams of different
sizes. Thus, we perform several convolutional operations and
concatenate the max-polling outputs. Finally, a fully connected
layer reduces the output to the single output scalar.

D. Training the GAN

Training GANs is complicated by possible model collapse
and convergence failure. Given that we combine different types
of neural network architectures with different learning speeds,
the training process might easily fall into convergence failure
– e.g., one of the two models prevails. We discuss how to
control this issue when presenting our results in Section VI-C.

Moreover, recall that we target the creation of a GAN for
each class of URLs, i.e., a specific service. This makes the task
of the discriminator simpler, as it can learn specific patterns
present on the real URLs. To produce robust discriminators, we
include some unbiased noise – i.e. a negative dataset – during
training, to make the discriminator less specific. This negative

TABLE II: URL classes.

ID Hostname Type of Service
0 api.accuweather.com Geo API
1 mmsns.qpic.cn Image Repository
2 pcdn.any.sky.it Video Streaming
3 tlu.dl.delivery Software Updates
4 windowsupdate.com Software Updates
5 b.scorecardresearch.com Web Tracking
6 b2everyrai-lh.akamaihd.net Video Streaming
7 gs2.ww.prod.dl.playstation.net Gaming
8 la7livehls-lh.akamaihd.net Video Streaming
9 su.ff.avast.com Software Updates

10 t.nyaatracker.com Torrent Tracker
11 Negative dataset Mixed

dataset contains some random URL samples, extracted from
other services, which are different from the target URLs. The
goal of this modification is to induce the discriminator to recall
not only the samples from the target URL class but also to
differentiate these samples from other samples.

The training process is divided into the following steps.
We first update the discriminator model weights using the
binary cross-entropy loss calculated over (i) real class sam-
ples; (ii) generate samples; (iii) negative samples. Then, we
update the generator model weights with the loss calculated as
(1−D(G(z))). Minimizing this loss means that the generator
creates samples that – for the discriminator – are indistinguish-
able from the real class samples.

We use a batch size of 64, with half a batch of real samples
and half a batch of generated samples. We use the Adam
optimizer with LR = 0.0005, β1 = 0.9, β2 = 0.98, ϵ = 10−9.

We implement URLGEN using Python Keras with the Ten-
sorFlow backend. We run all experiments using a high-end
server with 1 Nvidia Tesla-V100 GPU (16 GB GPU memory).
The running time for each epoch is no longer than a few
seconds. We usually run the training for 10 epochs. As such,
the training for a single service is thus lightweight and can be
completed with off-the-shelf hardware.

V. DATASET

We use real URLs of different services to evaluate URLGEN.
We leverage URLs collected by a set of more than 500
volunteers that we recruited among participants on social net-
works, specialized forums, and in our Universities. Volunteers
installed and kept active a MiTM proxy on their PCs for at
least one month. The MiTM proxy logs all URLs they visit and
uploads this data to a centralized repository on our campus.
The volunteers have explicitly approved our data collection
and they could opt out at any time and impose filtering rules
at their will. Using the MiTM proxy, we gain visibility on all
URLs accessed by the volunteers, regardless of whether they
are served via HTTP or HTTPS.

The dataset contains millions of URLs from thousands of
websites. Among them, we select 11 classes of URLs belong-
ing to specific services that we use to study the effectiveness of
our approach. Our goal is to consider diverse use cases, from
simple API-style URLs to complex services with a multitude
of parameters in the URLs.
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Fig. 7: Edit Distance density between all pairs of URLs
for each class. Each peak represents a dataset mode. The
maximum length is 200 characters.

In Table II we summarize the 11 URL classes. For each
class, we randomly pick 10 000 samples. They belong to
various services that present URLs with a particular structure
that we aim to recreate. Besides the accuweather.com we
used as an example, there are three popular video streaming
services. These APIs encode in the URL the name of the
TV channel, the timestamp of the requested chunk, and the
video quality for multiple-resolution videos. Software update
services instead require the URL to specify the requested
archive using a fixed-size digest. Tracking, gaming, and image
repositories complete our target services, each having very
complex URLs. We complete our dataset with 10 000 random
URLs not belonging to any class that we use to add unbiased
noise during the training process – i.e., the negative dataset.

To illustrate the variability of the URLs in our dataset Fig. 7
presents the distribution of the Edit Distance for each class
(cfr. Fig. 2). We compute the Edit Distance between all pairs
of samples for each class and plot the Probability Distribution
Function using violin plots.

Prominent peaks represent the relevant modes for the URLs
in each class. Indeed, URLs within a class are not necessarily
homogeneous, and we can find some sub-groups as seen for
api.accuweather.com. The peaks in Fig. 7 reflect the subgroups
of URLs/APIs of each group. Most services result in multi-
modal distributions, reflecting pairs of URLs that belong to dif-
ferent subgroups. The next section verifies whether URLGEN
can reproduce this behavior for several classes.

VI. EVALUATION

We now evaluate the performance of URLGEN. First, we
illustrate how the embedding layer is formed and how it
impacts performance. The evaluation of the generative abilities
of a GAN is a complex task and often requires human
interaction. Here we evaluate the generator performance by
quantifying how the generated URLs are similar to the training
examples. Finally, we evaluate the impact of model parameters
and alternative models.
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Fig. 8: tSNE projection in two dimensions of the assigned
vector to each character allowed in a URL. We use different
colors to highlight the difference between letters, digits, and
special characters.

A. Character Embedding

We first show how the embedding layer organizes the
characters in the embedded space. Recall that we create the
embedding by training the neural network to predict the next
character in a string. We use all URLs in our dataset as input
strings so to generate a generic embedded space. The final
embedding maps each character to an e-dimensional latent
space: Characters that often appear close get mapped into the
same portion of the latent space.

To illustrate the embedded space, we use a t-Distributed
Stochastic Neighbor Embedding (tSNE) [40] projection of the
conversion matrix between the original character space and
the embedding space. The result is in Fig. 8. We use different
colors to represent digits, letters, and special characters. The
results clearly show clusters of characters, with digits, letters,
and special characters typically placed in a different portion
of the projected space. Given the peculiarities of URLs, we
notice that some characters are placed nearby each other,
e.g., / and : or % are placed close to digits due to, e.g.,
frequent hexadecimal encoding for special characters in URLs.
Intuitively, we expect the embedding to favor the generation
of URLs by choosing characters that appear to be close with
higher probability than characters that appear far away.

B. Generation

As illustrated in our toy example in Section III, we compute
the Edit distance between all pairs of URLs (i) in the training
dataset; and (ii) in the generated URLs. We compute the
probability density function of the obtained edit distances.
These curves allow us to compare the characteristics of the
URLs present in the training dataset against the generated
ones.

For evaluating the generation procedure we rely on the
visual similarity of the two curves, for real and generated
samples. For this, we compute the Kullback-Leibler (KL)
divergence [41] between the generated and real curves as a
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Fig. 9: Kullback–Leibler divergence between Edit Distance
density curves for all datasets and each architecture.

similarity metric.5 The KL divergence interval is [0, inf], and
the closer to zero, the more similar the two distributions are.
By calculating this metric over different training epochs, we
measure how the generator mimics the real distribution during
training.

Fig. 9a and 9b show the KL divergence evolution during
the training process (on the x-axis). For each class and epoch,
we generate 1 000 URLs, compute the Edit distance between
all pairs and measure the KL divergence from the distribution
of the edit distance among training samples (cfr. Fig. 7).
We thus get 11 measures, one for each class, and we plot
them using boxplots. The central stroke represents the median
class (the sixth in our case), and the box spans from the
third to the ninth class ranked by KL divergence. The two
whiskers represent the class with minimum and maximum KL
divergence, respectively.

Both Fig. 9a and 9b show that the GANs produce URLs
that become more similar to the real ones as the training
advances in all cases. The KL divergence metric, on average,
improves with training. Further proceeding with training leads
to marginal improvements in performance. We observe better
and more stable convergence of the distributions when the
embedding layer is present. These results confirm that offering
the GAN a more structured latent space helps convergence. In
a nutshell, results confirm that the LSTM architecture captures
the string patterns, producing URLs that mimic structures in
the real samples.

To provide a deeper analysis of the generation process and
show how generated URLs converge towards the real ones,
Fig. 10 compares the distribution of the Edit Distance over
epochs. We consider three classes. The solid line represents
the generated data while the black dashed line represents the
distribution of the original URLs that the GAN shall learn to
recreate.

We notice that, as we advance the training, we begin to
see sharper peaks in the distributions of generated URLs

5We take inspiration from [42], which shows that, under some assumptions,
GANs minimize the Jensen-Shannon (JS) divergence, or with a slight modifi-
cation the reverse-KL divergence between the real and generated distributions
of the target variable.

TABLE III: Model Variables.

Variable Suggested values Used Values
Noise Dimension (Z) 10 >= Z <= 20 10
Maximum URL length (m) [100, 200] 200
Embedding size (e) [30,50] 30
Alphabet size (a) 50 50

TABLE IV: Convolutional Hyperparameters.

Hyperparameter Used values
Parallel Blocks 6
Kernel Values (one for each branch) (2, 3, 4, 5, 6, 7)
Pooling size (a) 2
Leaning rate 0.0005

that get more similar to the training URL curves. In the
cases where the training dataset contains only one mode, the
distributions of real and generated URLs mostly overlap –
see scorecardresearch.com for instance. When the training
dataset contains multiple modes with multiple peaks in the
distribution, the generated URLs tend to follow either the
average among the peaks – see accuweather.com – or the
strongest mode – see qpic.cn.

In the case of api.accuweather.com (Fig. 2), the GAN
without embedding focuses on the generation of some URL
parameters (e.g., the coordinates of the location of the weather
query) while keeping fixed other parts of the URL (e.g., the
API key).

Although this behavior can be desirable in some cases, it is
a limitation of the GAN when coupled with this embedding
layer. For completeness, recall Fig. 10 that shows the example
of generation with embedding for accuweather.com. Compare
Fig. 10 b). with Fig. 2 and notice that in the first the generator
tends to replicate only the most predominant mode. While in
the latter the embedding helps the GAN model often mix the
multiple sub-classes in the training data.

C. Complexity and Parameter Impact

One of the drawbacks of GANs and NN in general is
the large set of hyper-parameters that one could explore
to optimize performance. This drawback clearly turns into
much complexity and requires CPU time for training. Here
we summarize our suggested ranges for the hyper-parameter
choice in Tables III, IV and V. For some parameters, we rely
on default values, while for others we run a sensitivity analysis
to give coarse suggestions.

For the creation of the embedding, which is mostly instru-
mental for simplifying the GAN training and convergence, we
test different values of e, and pick the smallest one to reduce
the embedding space dimensions.

TABLE V: LSTM hyperparameters.

Hyperparameter Used values
LSTM Units 1000
Dropout 0.6
Leaning rate 0.0005
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Fig. 10: Edit Distance density for three classes at different epochs during training – URLGEN using a GAN with embedding.
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Fig. 11: Median Kullback–Leibler divergence between Edit
Distance density curves for different architectures. The black
solid line represents the URLGEN architecture.

Conversely, the training of the generator requires careful
parameter tuning to guarantee and speed up the convergence.
We use the training process proposed by Arjovsky et al. [43].
The authors introduce a new hyper-parameter that controls
how fast the discriminator learns in comparison with the
generator. After some tuning, and following the best practice,
we observe the best results with a proportion of 4:1:1 for
training the discriminator with real samples, the discriminator
with negative samples, and the generator, respectively.

D. Architecture Comparison

In URLGEN, the generator model uses an LSTM network,
while the discriminator adopts a CNN. Here we provide a
comparison with possible alternative architectures.

In particular, we compare the URLGEN architecture with
the simple one we used in our previous work [11]. There,
we proposed the usage of fully connected neural networks
with 3 layers for both generator and discriminator, where all
the neurons in one layer are connected to the neurons in the
next layer through a dropout regularization and the hyperbolic
tangent activation function. The layers have different sizes
for each block. We consider this as a baseline model to
compare against. With this architecture, each character is
generated independently of the others in the sequence. We
expect this independence to limit the generator’s capability

of producing URLs, and the discriminator’s to be limited in
distinguishing generated samples as each character will be
compared based only on its position. In URLGEN, LSTM and
CNN architectures instead are able to leverage the information
of the previous and surrounding characters in the string.

For the sake of completeness, we compare URLGEN also
with two architectures in which we change only the generator
or only the discriminator. In total, we consider four possi-
ble architectures for the generator and the discriminator: (i)
G:LSTM D:CNN (i.e., URLGEN), (ii) G:FCN D:FCN, (iii)
G:FCN D:CNN, and (iv) G:LSTM D:FCN.6 Not reported
here, we optimized the hyperparameter of each architecture as
detailed in Sec. VI-C for the URLGEN architecture. We report
the best results for each architecture.

In Fig.11, we show the KL distance between generated and
real samples over the training epochs. Different lines refer to
different architectures, while the y axis reports the median of
the KL distance among the classes of our dataset. The archi-
tecture chosen for URLGEN (solid black line) converges faster
than the others and settles to lower values of KL distance,
meaning generated URLs have similar distributions as real
ones. Architectures adopting a Fully Connected generator (red
and green dashed line) arrive at convergence, even if slower
than URLGEN and with worse KL distance values. Conversely,
the architecture with the LSTM generator and Fully Connected
discriminator (blue line) does not converge, and the generation
capacity to represent the training URL class distribution almost
completely disappears after a few epochs. Our intuition is that
the LSTM architecture cannot compete in the GAN’s two-
player zero-sum game in this case.

E. Final considerations

As we have seen, the choice of a CNN network as a
discriminative model and the LSTM network as a generative
model has many advantages compared with fully connected
networks. These results stem from the intuition that the URL
syntax and formatting rules can be captured by an architecture
that considers the context of character appearance and not only

6We also tested other combinations. As expected we observe those GANs
using LSTM for discriminator tend to quickly collapse (typically during the
first training epoch), while using a CNN as the generator brings useless
complexity.
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their position. The usage of the embedding layer lets the GAN
work in a continuous space where frequently co-occurring
characters are mapped into the same portion of the space.
The embedding layer is also instrumental in stabilizing the
discriminator. The embedding speeds up the GAN convergence
and opens the door to other applications that we illustrate in
the next section.

VII. USE CASES

While URLGEN is designed for API testing, we argue the
approach it relies upon can be applied in other scenarios. Here
we illustrate two other use cases. We first show how URLGEN
can be used to generate new samples of cybersquatting do-
mains. We then show how the discriminator model can support
a URL classifier.

A. Domain Squatting
Phishing is a cyberattack in which the attacker tries to

convince victims to reveal personal information through fraud-
ulent messages. With cybersquatting, the attacker registers
Internet domains similar to legitimate services to fool the
victims in a phishing attempt. The typical defenses consist
of blocklists composed of squatting domains whose timely
collection and update are key to blocking the attack. The
management of these lists is time-consuming and often based
on human intervention, posing scalability and economic issues.
Moreover, they are inefficient against zero-day attacks.

Researchers already investigated methodologies to tackle
the problem. For example, Tian et al. [44] search and detect
squatting phishing domains in the wild using deterministic
tools that enumerate possible domains using their expert
knowledge. They generate more than 600 000 squatting do-
main candidates, about 1 000 of which have been confirmed
to be used for phishing that evaded blocklists.

Here we propose the use of URLGEN to generate domain
squatting candidates, focusing on typo-squatting.7 Our ratio-
nale is that GANs can learn data distributions and generate new
samples from a target domain, reproducing some squatting
techniques. We are not the first to suggest the use of generative
models to augment data used in cybersquatting identification
systems [46]. However, the previous work builds on image
generation, where the domain is converted to an image, and a
GAN generates new images that eventually are used to train
homograph phishing identifier systems. We instead directly
aim at generating phishing URLs as strings.

We focus on three classes of URLs, training a GAN for
each one. We do use the embedding layer in this case, which
we modify to inject variations in the data generation. These
variations are responsible for the typo-squatting candidates.
We thus “move” those characters typically abused for cyber-
squatting so that they are close in the embedded space. For
instance, a “0” is close to a “o” in our modified embedded
space.8 As other examples, we move the pairs (5, s) and (1, l)

7Typo-squatting is the intentional registration of misspellings of popular
website addresses. This attack was first described in [45] and it is still a very
effective type of scamming technique.

8Such vector representation can be learned from data to include errors hu-
mans make with captcha or in textual documents. Exploring such approaches
will be the center of our future work.

TABLE VI: Samples of generated data for 3 brands.

Examples Unique samples
ap1.accuveather.c0m 21
api.accuweathet.com

micro50ft.com 19
m1cros0ft.com

dovnload.w1ndow5update.c0m 489
downl0ad.w1ndow5update.c0m

so that they are closer compared to other pairs in the embedded
space. We let URLGEN generate 1, 000 URLs, from which we
extract only the domain part. Next, we evaluate whether these
generated domains could be realistic cybersquatting candidates
using manual inspection supported by some automatic regular
expression checks and the edit distance values between the
original domain and the generated candidates.

Table VI reports some examples of cybersquatting domains
URLGEN generates. URLGEN creates a limited number of
unique domains. Among these candidates, we have found 2
registered domains for api.accuweather.com, one of
which is likely to be phishing (determined by manual inspec-
tion of the website). Similarly, we found 4 existing domains
for microsoft.com of which 3 appear to be phishing. None
of these domains are present in public blocklists at the time
of writing.

In a nutshell, the generation abilities of URLGEN, coupled
with the flexibility offered by the embedding layer, allows
us to obtain likely squatting domains with almost no domain
knowledge and at low costs when compared to the exhaus-
tive enumeration of all derived strings [44]. This experiment
illustrates the possibility of using a GAN to produce typo-
squatting candidates for target brands and including them into
blocklists even before abuses, thus changing the reactive nature
of the phishing blocklists to a proactive search, anticipating
new attacks.

B. URL Classification

Since URLGEN uses negative samples during the training of
the discriminator, the obtained discriminator turns out to be
a powerful URL identifier. Combining discriminators trained
for multiple services results in a good URL classifier as
a side-product of the GANs. Notice that, by construction,
a discriminator should not be able to distinguish samples
generated by its adversarial generator from the real samples
for the given URL class. Yet, the negative samples lead to a
discriminator that can refute URLs belonging to other classes.

Using the 11 classes in our dataset, we set up the following
multi-class classification problem. For each class, we use 9 000
URLs to train a GAN for the given class, and separate the
remaining 1 000 for a (mixed) test set. To assign a class label
to a URL in the complete test set, we compare the scores
obtained by the 11 discriminators and assign the class with the
largest score to the sample. If no score exceeds the threshold
of 0.5, we classify the URL as belonging to the “Other” class.
To check possible false positives, we include 1 000 URLs not
belonging to any class from our negative dataset to the test set.
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Fig. 12: Classification results for each class and model.

The ensemble of discriminators shall classify these samples as
“Others”.

We show the performance of this classifier built with the
ensemble of discriminators reporting the complete confusion
matrix. Each row represents a given class (true label), and each
column represents the assigned classes. Cells on the diagonal
show the number of samples that are correctly classified, i.e.,
the true positives; cells outside the main diagonal account for
wrong classifications.

As shown in Fig. 12, the performance is almost perfect,
missing only a few samples. In a nutshell, the combination
of multiple URLGEN discriminators can effectively be used as
classifiers for URLs. This is in line with previous findings [4].

VIII. RELATED WORK

We are aware of two works that apply GANs for cyberse-
curity, focusing on the generation of domains. Degani et al.
[47] use GANs to perform subdomain enumeration. They use
GANs to learn the distribution of publicly available datasets,
employing the model to enumerate subdomains for target do-
mains. Authors claim to improve the quality of the enumerator
when compared to deterministic approaches. They propose to
add such a data-driven method to existing workflows, thus
assisting deterministic methods.

Authors of [48] propose PhishGAN to augment and identify
homoglyph phishing attacks. PhishGAN relies on the impreci-
sion of image reconstruction for building a conditional GAN
network. They convert the domain to an image and reconstruct
the image using a conditional GAN, which introduces some
noise to the output image. Later, they use their reconstructed
image to train a homoglyph identifier system and augment
their datasets.

Within the field of computer networks, Lin et al. [49] use
GANs to generate time series of network measurements, such
as bandwidth measurements or web sessions. Yin et al. [50]
use GANs to enhance existing models for botnet detection,
while Lin et al. [51] generate malicious traffic records aiming
to evade the detection at IDSs. In a similar direction, Charlier
et al. [52] propose SynGANs to generate malicious flow

mutations and improve IDS attack detection effectiveness,
while Usama et al. [53] use an equivalent approach to check
how GANs can be used to evade ML-based IDSs.

Ring et al. [54] evaluate different GAN-based approaches
to generate flow records, a challenging task given the presence
of categorical features such as IP addresses and port numbers.
Similarly, Cheng et al. [55] use Convolutional Neural Network
GANs to generate network traffic at the packet level, including
ICMP, DNS, and HTTP flows.

In our preliminary work [11], we show how simple, fully
connected GANs are effective in generating realistic URLs
given a limited set of examples. Here, we dig deeper into this
direction, evaluating the impact of different GAN architectures
and introducing the use of an embedding layer. We contribute
URLGEN for automated Web API testing. Moreover, we show
how GANs can produce new realistic URL samples with
different applications in cybersecurity.

We leverage the vector representation technique word2vec,
proposed by Mikolov et al. [17]. The intuition is that the
embedding produced by analyzing the sequence of characters
results in a more compact representation of URLs than a
classic one-hot encoding. These results are beneficial to speed
up GAN convergence and increase its accuracy in URL genera-
tion. Word2vec has already been used for natural language pro-
cessing [56, 57, 58], in the context of programming code [59]
and mobile app classification [60]. In computer networks,
vector representation has been proposed for grouping domain
names [61, 62], cluster darknet traffic [63] and, again, to
improve IDS performance [64, 65]. Similar to our work, Le
et al. [4] use a vector representation of characters to classify
URLs with convolutional architectures. However, the final goal
is different, as we aim to generate new URL samples given a
limited set of examples.

IX. CONCLUSION

We introduced URLGEN, a system to generate URLs for web
API testing. URLGEN relies on GANs to automatically learn
URL patterns as highly structured sequences of characters. We
use an embedding layer to model the characters in an informa-
tive latent space. Then we employ a CNN discriminator and
an LSTM generator in a typical adversarial training setup. The
generator shows excellent capabilities in generating strings that
mimic the strict syntax of URLs, opening new doors to the
automatic testing of applications with little domain knowledge.
Moreover, we showed other use cases in which URLGEN
delivers promising results. For example, our experiments with
an ad-hoc embedding show that it is possible to use URLGEN
to automatically generate plausible cybersquatting domains at
a minimal cost.

Our future research will explore the use of more complex
network architectures or the stacking of multiple and diverse
layers to face complex web API structures. Indeed, in this
work, we showed that GANs can generate URLs with a well-
defined structure, but we left out more complex cases, e.g.,
web APIs receiving posted parameters of complex types. We
will also explore the other use cases mentioned in the paper, in
particular the application of generative models to other types
of cybersquatting attacks.
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