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Dynamic analysis and performance
assessment of the Inertial Sea Wave Energy
Converter (ISWEC) device via harmonic

balance

Fabio Carapellese 1 , Edoardo Pasta, Nicolás Faedo,
Giuseppe Giorgi

Marine Offshore Renewable Energy Lab., Department of Mechanical
and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy

Abstract: Given the particular energy-maximising performance objective, wave energy con-
verter (WEC) systems are prone to exhibit highly nonlinear behaviour. We present, in this paper,
a detailed dynamic analysis and control synthesis for the Inertial Sea Wave Energy Converter
(ISWEC) system, deriving and considering a comprehensive associated nonlinear model. In
particular, we adopt a harmonic balance (HB) method to achieve this objective, producing the
so-called amplitude-frequency curves (AFC) for the corresponding ISWEC nonlinear model,
derived via a Lagrangian approach. We demonstrate that the system can present a variety of
different behaviours which are completely neglected by its linear model counterpart. Leveraging
both the efficiency, and convenient representation of the HB method, we synthesise so-called
‘passive’ (i.e. proportional) energy-maximising controllers using a variety of input conditions.
We provide a comparison of the obtained control parameters with those arising from standard
linear modelling, showing a consistent improvement in performance by effectively considering
the relevant nonlinear ISWEC dynamics.

Keywords: Modeling, Wave energy converters, Application of nonlinear analysis and design,
Modeling for control optimization, Energy systems

1. INTRODUCTION

Harnessing the high density power of the ocean is a clean,
innovative, and sustainable way to curtail carbon pollu-
tion. Developing and up-scaling tailored technologies, such
as wave energy converter (WEC) systems, represents a
significant challenge. For this purpose, high fidelity mod-
els can help estimate the device performance and energy
conversion capability. As such, availability of accurate, yet
computationally efficient, models, represents a fundamen-
tal tool for a variety of optimization procedures, aiming at
improving the performance of WEC systems within real
scenarios (Windt et al., 2018; Faedo et al., 2020; Giorgi
et al., 2021).

One particularly relevant application, which virtually al-
ways requires a parsimonious model, i.e. with a suitable
trade-off between accuracy and computational demand,
is the development of so-called energy-maximising con-
trol technology. Control systems for WEC devices aim
at maximising the energy absorbed from the incoming
wave field, hence directly contributing in lowering the
associated cost of energy (Faedo et al., 2021). Given the
(often significant) computational burden required by such
strategies, researchers tend to consider overly simplified
linear WEC models, aiming at alleviating the cost associ-
ated with real-time control implementation. Nonetheless,
as demonstrated in e.g. (Ringwood et al., 2019), such

1 Corresponding author - e-mail: fabio.carapellese@polito.it.

controllers can be particularly sensible to modelling er-
rors: the infinitesimal motion assumptions, used to derive
such linear WEC models, are potentially violated by the
controller itself, which often requires large device motion
to effectively maximise energy extraction.

Among the available WEC energy extraction technologies,
a well-developed concept is that presented in the so-called
inertial sea wave energy converter (ISWEC) (Bracco et al.,
2011). The ISWEC is a self-referenced inertial-based float-
ing WEC, which harvests the wave-induced motion on
the floater to activate a resonant gyroscope connected
to an electric generator. Nonetheless, virtually all studies
regarding dynamic analysis and control of the ISWEC
technology (apart from notable exceptions e.g. see (Novo
et al., 2018)) consider linear models, hindering the highly
nonlinear characteristics of this pitching system, and hence
potentially providing inconsistent controller parameterisa-
tions and performance values.

Motivated by the discussion above, we provide, in this
paper, a detailed dynamical analysis and control synthesis
for the ISWEC system, deriving and considering a com-
prehensive nonlinear structure. In particular, we derive
the corresponding nonlinear model using a Lagrangian
approach, and adopt a harmonic balance (HB) method
to analyse the resulting dynamical model (see e.g. (Krack
and Gross, 2019)), producing the so-called amplitude-
frequency curves (AFC) for the corresponding ISWEC
dynamics. Note that, unlike (Novo et al., 2018), which con-
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siders only simulation studies with a simplified model, we
demonstrate herein that the ISWEC system can present a
variety of different dynamical phenomena which are com-
pletely neglected by its linear model counterpart, including
e.g. bi-stability. Furthermore, leveraging the efficiency and
convenient representation of the HB method, we synthesise
so-called ‘passive’ (i.e. proportional) energy-maximising
controllers using a variety of input conditions. We provide
a comparison of the obtained control parameters with
those arising from linear modelling, showing a consistent
improvement in performance by effectively considering the
relevant nonlinear ISWEC dynamics.

The reminder of this paper is organised as follows. Sec-
tion 2 derives the nonlinear ISWEC model considered,
also including a formal presentation of the adopted HB
procedure. Section 3 presents a dynamical analysis of the
ISWEC system, based upon the introduced model, while
Section 4 provides both control synthesis based upon HB
procedures, and consequent performance of the controlled
system in terms of energy absorption. Finally, the conclu-
sions of our study are elucidated in Section 5.

2. ISWEC MODEL

The ISWEC device is essentially composed of a gyroscopic
system, mounted inside a floating hull, as in Figure 1.
The floater pitch motion ‘activates’ the gyroscopic system,
which hence oscillates, according to an angle ε : t 7→ ε(t),
due to the forces generated by the incoming wave field.
Note that, it is well-known (see e.g. (Townsend and Shenoi,
2013)) that a gyroscopic system is parametrically excited
if it is induced to rotate with respect to the set of axes

defined by the reference frame
−−−→
Gxyz. Such gyroscopic

motion is then converted into electrical energy by means
of a dedicated power take-off (PTO) actuator system.

Fig. 1. Schematic representation of the ISWEC device

With respect to the floater hydrodynamics, we assume that
the ISWEC system is allowed to rotate with respect to its
y-axis, with a pitch rotation δ : t 7→ δ(t) ∈ R (as in e.g.
(Bracco et al., 2011)). Note that, as described in (Bonfanti
et al., 2020), we consider a recall mass mp, mounted under
the gyroscope gimbal at a proper distance lp from the
precession axis ξ, which results in an elastic effect due to
gravity, as a reactive component in the system.

2.1 Nonlinear mechanical model

We derive, in this section, the fundamental nonlin-
ear mathematical model describing the dynamics of the
ISWEC device. In particular, we compute the full non-
linear equation of motion of the gyroscope, including the
recall mass excited with respect the floater y-axis. To begin
with an appropriate definition of such a model, we define
the corresponding reference frames describing ISWEC:

•
−−−−−−→
OX0Y0Z0 is the inertial reference frame,

•
−−−→
Gxyz is the hull fixed reference frame,

•
−−−→
Gξηζ is the gyroscope fixed reference frame.

Let q : t 7→ q(t) ∈ R2, with q(t) = [δ(t) ε(t)]T, be the gen-
eralized motion vector. We can obtain the corresponding
equation of motion for the ISWEC system by means of the
Lagrange equations in terms of q, i.e.

d

dt

∂T
∂q̇
− ∂T
∂q

+
∂U
∂q

=
∂D

∂q̇
, (1)

where T (q, q̇) ∈ R and U(q) ∈ R are the system kinetic and
potential energy, respectively. The map D in (1) denotes
the Rayleigh’s dissipation function, defined as

D(q̇) =
1

2
q̇Tctotq̇, (2)

where ctot ∈ R2×2 is the corresponding damping matrix,
defined as

ctot =

[
0 0
0 cfric + cPTO

]
, (3)

where cPTO ∈ R+ is the (PTO) control parameter, ad-
justed to maximise energy conversion according to each
corresponding sea state (see Section 4), and cfric ∈ R+

is the constant friction coefficient due to the sliding and
rolling component of the precession shaft on the support
bearings. The total angular velocity in the gyroscope ref-
erence frame of the gimbal [ωξ ωη ωζ ]

T, and the flywheel
system [Ωξ Ωη Ωζ ]

T, are defined in terms the pitch floater
velocity projection, and the angular velocity of the mech-
anism ε̇, i.e.

ωξ = ε̇, ωη = δ̇cε, ωζ = −δ̇sε,
Ωξ = ωξ, Ωη = ωη, Ωζ = ωζ + ϕ̇,

(4)

where, from now on, the notation cα and sα, with α ∈ R,
stands for cosα and sinα, respectively. Moreover, note
that the flywheel and the gimbal have a zero linear
velocity vector, since we have assumed that the floater
is exclusively excited in pitch, and that the center of
mass of both bodies and the floater coincide. In contrast,
the pendulum mass has a non-zero linear velocity vector

[vξ vη vζ ]
T with respect to the

−−−→
Gξηζ frame, defined in terms

of the pendulum arm lp as

vξ = −lpδ̇cε, vη = lpε̇, vζ = 0. (5)

We now subsequently define the corresponding inertia
matrix of each subsystem characterising the ISWEC device
as follows:
Is = diag(Is,x, Is,y, Is,z), If = diag(If,x, If,y, If,z),

Ip = diag(Ip,x, Ip,y, Ip,z), Ih = diag(Ih,x, Ih,y, Ih,z),
(6)

where {Is, Ip, If} ⊂ R3×3 are the inertia matrix of the
gimbal, recall mass, and flywheel system, respectively,
while Ih ∈ R3×3 is the inertia matrix of the hull. With
the definitions provided up until this point, the nonlinear
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equation, which fully describes the motion of the gyroscope
system with respect the precession axis, is given by[

I3 0
0 I1

] [
δ̈
ε̈

]
=

[
fεδ

fδε + TPTO

]
, (7)

where

fεδ = −2I2δ̇ε̇cεsε+If,zϕ̇ε̇cε −mplpgc
2
εsδ,

fδε = −cfricε̇+ I2δ
2cεsε−If,zϕ̇δ̇cε−mplpgsεcδ,

TPTO = −cPTOε̇,

(8)

and the inertia terms {I1, I2, I3} in (7)-(8) are defined as

I1 = Is,x + If,x + Ip,x +mpl
2
p,

I2 = Is,z + If,z + Ip,z − Ig,y − Is,y − Ip,y −mpl
2
p,

I3 = Ih,y + (Ig,y + Ip,y + Is,y +mpl
2)c2ε

+ (Ig,z + Ip,z + Is,z)s
2
ε,

(9)

with g the acceleration due to gravity.

2.2 Hydrodynamic model

With the assumption that the fluid is inviscible and incom-
pressible, and the fluid flow is irrotational, the so-called
linear potential flow theory (Falnes, 2002) provides an
approximation of the fluid-structure interaction through a
time-domain system of Volterra integro-differential equa-
tions, written as

Σ :
{
I3δ̈ = fw + fh + fr + fεδ, (10)

where fw : R+ → R defines the (uncontrollable) wave
excitation force, fr : R+ → R is the so-called the
radiation force, and fh : R+ → R describes the hydrostatic
restoring force acting on the floater. Such a force is defined
proportional to the device (pitch) motion, and can be
hence written as fh = −Shδ, where Sh ∈ R is the so-called
hydrostatic stiffness coefficient.

The radiation force fr is modelled using the well-known
Cummins’ equation, i.e.

fr(t) = −
(
m∞δ̈(t) +

∫
R+

hr(t− τ)δ̇(τ)dτ

)
, (11)

where the first term in the summation, proportional to
the device acceleration in pitch, corresponds to an inertial
increase due to the water displaced when the body moves,
while the second term corresponds with the dissipative
force, proportional to the body velocity. In particular, m∞

represents the so-called added-mass at infinite frequency,
given by the relation m∞ = limω→+∞Ar(ω), where
Ar(ω) is the so-called frequency-dependent added-mass
coefficient (see Falnes (2002)).

2.3 Coupled mechanical-hydrodynamic model

Within this section, we provide the coupled mechanical-
hydrodynamic model Σ, by considering the inherent me-
chanical coupling between the gyroscope and the floater,
and the hydrodynamic (pitch) motion of the device acti-
vated by the wave input force, i.e.

Σ :

{
q̈ =

[
δ̈
ε̈

]
=

[
fw + fh + fr + fεδ

fδε + TPTO

]
. (12)

For the sake of completeness, and given the comparison
study provided in Sections 3 and 4, we provide, in the

following, the definition of a linear approximation of Σ. In
particular, considering a small oscillation of the gyroscope
about the equilibrium position (ε, δ) = (0, 0), the ISWEC
dynamics Σ in (12) can be approximated in terms of the
following linear structure:

Σ̃l :

{
q̈ =

[
δ̈
ε̈

]
=

[
fw + fh + fr + If,zϕ̇ε̇

−If,zϕ̇δ̇ −mpglpε+ TPTO

]
. (13)

Finally, note that, given the nonlinear model Σ in (12),
and considering the (passive) control PTO force TPTO =
−cPTOε̇ (as defined in equation (8)), we can compute
the total absorbed mechanical power Pa for a given time
interval Ξ = [0, T ] ⊂ R+ as

Pa =
1

T

∫
Ξ

cPTOε̇(t)
2dt =

1

T

∫
Ξ

Pi(t)dt, (14)

where T corresponds to the wave period, and Pi = cPTOε̇
2

is the associated instantaneous mechanical power.

2.4 Harmonic Balance approach

Harmonic balance (HB) is a widely used technique for
dynamic analysis of nonlinear systems, such as the ISWEC
device presented in (12), and is based upon an approximate
harmonic representation of the corresponding system vari-
ables (Krack and Gross, 2019). In this section, we briefly
describe the particular HB implementation considered in
our paper, which is based upon the theory presented in
e.g. (Giorgi and Faedo, 2022).

We begin by noting that equation (12) can be re-written in
terms of a continuous-time, state-space, system, defining
the dynamics of the ISWEC device such that

Σ : { ẋ = f(x, fex), (15)

where x(t) = [q(t)T q̇(t)T]T ∈ Rn, with q as in equation
(1) and, hence, n = 4, denotes the state-vector of (15),
fex(t) = fw(t) ∈ R represents the forcing term, and
f : Rn × R → Rn is the corresponding state-transition
map (which can be straightforwardly derived from (12)).
The forcing function fex is considered as a trigonometric
polynomial with a given amplitude Fex ∈ R+ and associ-
ated fundamental frequency ω ∈ R+, i.e.

fex(t) = Fexcωt, (16)

where, from now on, we refer to T = 2π/ω as the
fundamental period of (16). As per standard harmonic
balance theory, we assume the (steady-state) solution of
(15) can be approximated in terms of a finite-dimensional
space H = span(X ), with

X = {cpωt, spωt}Np=1, (17)

where the set X is complete, and H ⊂ L2(Ω), with
Ω = [0, T ] ⊂ R+. To be precise, xi ≈ x̃i, where x̃i ∈ H ,
can be expanded in terms of a linear combination of the
elements composing X , i.e.

x̃i(t) =

N∑
p=1

αpi cpωt + βpi spωt, (18)

with i ∈ Nn, and {αpi , β
p
i }Np=1 ⊂ R. To provide a compact

representation of (18), let us define the auxiliary variables

Xi =
[
α1
i β

1
i . . . α

N
i βNi

]
,

Υ(t) = [cωt sωt . . . cNωt sNωt]
T (19)
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where {XT
i ,Υ(t)} ⊂ RN , ∀i ∈ Nn, and hence the approxi-

mation x̃ of the full state-vector can be written as

x̃(t) =
[
X

T
1 . . . X

T
n

]T
Υ(t). (20)

Furthermore, note that fex in (16) can also be written in
terms of Υ by use of an appropriate inclusion map, i.e.

fex(t) = Fexcωt = [Fex 0] Υ(t) = FΥ(t), (21)

with F
T ∈ RN .

Let us now define the so-called residual function R as

R(X,F ,Υ) ≡ ˙̃x− f(x̃, fex) = XΥ̇− f(XΥ, FΥ), (22)

and let Dc = {δ(t − tj) = δj}qj=1 ⊂ Ω, with q >
nN , be a set of shifted generalised Dirac-delta functions.
Using the standard inner product in L2(Ω), the expansion
coefficients X, defining the approximating solution x̃, can
be computed via a Galerkin (pseudospectral) approach,
where the projection of the residual function (22) onto the
set Dc is forced to be zero, i.e.

〈R, δj〉 = 0, (23)

for j ∈ Nq. Note that, as long as f ∈ C in Ω, for any fixed

F , the set of algebraic equations in (23) can be written in
a compact form as

R(X) =

 XΥ̇(t1)− f(XΥ(t1), FΥ(t1))
...

XΥ̇(tN )− f(XΥ(tN ), FΥ(tN ))

 = 0. (24)

By way of example, and to provide a graphical appraisal
of the solution computed via the adopted HB method,
Figure 2 shows time-domain snippets for ε and ε̇, com-
puted according to the nonlinear model (12), using a time-
advancing Runge-Kutta (RK) scheme (solid line), and the
corresponding solution via HB with N = 15 (dashed line).
It can be appreciated that, after the transient period extin-
guishes, both solutions are virtually identical, effectively
illustrating the validity of the proposed HB approach in
reconstructing the steady-state response of (12).

0 5 10 15
-4

-2

0

2

4

0 5 10 15
-4

-2

0

2

4

Fig. 2. Time-domain comparison of solutions computed
via a time-advancing scheme (Runge-Kutta), and the
approximating steady-state response via HB.

3. AMPLITUDE-FREQUENCY CURVE DEFINITION

We present, in this section, the so-called amplitude-
frequency curves (AFC) for the nonlinear ISWEC model
derived in Section 2. We begin by providing the corre-
sponding definition of ‘amplitude’ in terms of the HB
procedure described in Section 2.4.

In particular, throughout this section, we set N = 1 in
(18), i.e. we consider the same input frequency ω for the
approximation of the state variables associated with the
ISWEC system and, consequently, for the definition of
the residual equation in (24). Furthermore, we analyse the
dynamics of the device in uncontrolled conditions, i.e. with
cPTO = 0, so as to: a) demonstrate the intrinsic nonlinear
behaviour of the ISWEC system, and b) provide an open-
loop AFC of the system, which can be used a-posteriori
for control design purposes following (Faedo et al., 2022).

For the subsequent analysis, we focus on pitch and gyro-
scope displacement, i.e. the variables δ = x1 and ε = x2.
We can now provide a definition of amplitude as a function
of the input frequency as follows: Given an excitation input
fex with frequency ω and amplitude Fex (as in (16)), and
the corresponding HB solution for N = 1, we define the
associated set of amplitudes {δ̄, ε̄} ⊂ R+ as

δ̄ = max|x̃3| =
√
α12

3 + β12

3 ,

ε̄ = max|x̃4| =
√
α12

4 + β12

4 .
(25)

Based upon the amplitude definition provided in (25),
Figure 3 shows the so-called AFC for both ε and δ, nor-
malised in terms of each corresponding input amplitude
Fex. Note that such input amplitude, which effectively de-
pends upon the chosen frequency ω, is computed in terms
of the so-called excitation force kernel (see e.g. (Falnes,
2002)), taking into consideration a unitary free-surface
elevation. Furthermore, note that Figure 3 also includes
the amplitude boundaries {εcon, δcon} corresponding to the
maximum allowed values for ε and δ, respectively, imposed
by intrinsic physical limitations of the device components.

100
-150

-140

-130

-120

-110

-100

100
-160

-150

-140

-130

-120

Fig. 3. AFC of the (uncontrolled) ISWEC referred to the
PTO axis (left) and floater pitch motion (right).

The AFC plots presented in Figure 3 are computed based
upon both a sweep-up (solid-grey line) and sweep-down
(dashed-green line) frequency-dependent procedure: in the
case of the former, the HB procedure is initiated from the
lowest frequency component considered, and its associated
solution is used as a starting point for the following
(up) frequency, until the highest frequency value studied
is reached. The latter is performed analogously, but in
the opposite sense. As can be appreciated in Figure 4,
the linear model effectively over-estimates the gyroscope
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precession oscillation and, for the range of frequency close
to the gyroscope natural frequency ωn, the amplitude of
the response surpasses the limit value set by εcon.

In the considered (uncontrolled) conditions, the ISWEC
nonlinear system exhibits different dynamical behaviour
for the sweep-up and sweep-down HB procedures. In par-
ticular, multi-stability exists within the frequency range
delimited by points A and B in Figure 3. By way of
example, and focusing at the natural frequency of the
system, two solutions, indicated with points C and D, can
be derived via the considered HB procedure. As illustrated
in Figure 4, this indicates that two different solutions co-
exist for the considered input signal, depending on the
initial condition of system (12). In particular, Figure 4
(top) shows the steady-state solution for system (12), and
its associated phase-portrait, corresponding with point
C in Figure 3, while the solution presented in Figure 4
(bottom) corresponds to point D in Figure 3.

100 120 140 160 180 200
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-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2
-4

-3
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2

3

100 120 140 160 180 200
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-2

-1

0

1

2

3

4

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

Fig. 4. Phase portraits representing the bi-stable condition
of the ISWEC device.

4. PERFORMANCE ASSESSMENT

Based upon the dynamic analysis provided in Section
3, we now analyse the performance of the device in
terms of gyroscope rotation ε̄, and corresponding output
power, as a function of the normalized input frequency
and (scaled) PTO damping c0 = cPTO/copt, where copt

denotes the optimal damping value for each analysed
frequency. Figure 5 presents an appraisal of the rotation
performance, evaluated in terms of two key indicators:
ε0, which corresponds to the ratio between ε̄ and the
maximum allowed rotation εcon, and Pa0 , which denotes
the absorbed power Pa (as in (14)) scaled by the maximum
power achieved within the presented analysis.

Note that the linear model consistently overestimates both
the device motion, and the system performance, having
a direct impact on the optimal control parameter c0.
Furthermore, the maximum power achievable according

to the linearised model, while respecting the correspond-
ing motion constraints in ε0, is effectively higher than
the output power evaluated through the actual nonlinear
model, resulting in a optimal damping value at resonance
which is almost half of that arising from the corresponding
nonlinear model. Therefore, the control parameters com-
puted based upon the linear ISWEC model can lead to
severly suboptimal results in terms of energy-maximising
performance, when applied to the actual fully nonlinear
system. At this point, it is worth to highlight that, unlike
the uncontrolled case presented in Section 3, the nonlinear
ISWEC model converges to the same AFC when controlled
via its corresponding optimal energy-maximising damping,
independently from the HB sweep direction.
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Fig. 5. Contour plot of the scaled rotation ε0 (left column)
and scaled power (right column) as a function of ω/ωn
and c0. The dashed line represents the optimal energy-
maximising damping for each frequency.

100
-150

-140

-130

-120

-110

-100

100
-160

-140

-120

-100

Fig. 6. Amplitude-frequency curve considering the optimal
control parameter cPTO derived from the linear model
(left) and nonlinear model (right).

Figure 6 shows the AFC for the ISWEC system when
applying the optimal damping derived from Figure 5 at the
natural frequency of the system, i.e. when ω/ωn = 1, for
both linear, and nonlinear system models. In both cases,
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the behaviour of the nonlinear model seems to approach
the linear behaviour, since the damping somewhat ‘alle-
viates’ the main nonlinear effects acting on the system.
Nonetheless, the motion resulting from the linear model
always presents an overestimation with respect to the
realistic nonlinear dynamics.

Figure 7 shows time-series of scaled velocity of the gyro-
scope ε̇0, and scaled instantaneous power Pi0 . Such signals
are compared considering different cPTO parameters, de-
fined in terms of both the linear ISWEC model, and the
corresponding fully nonlinear system. In the case of the lat-
ter, we determine two different optimal control parameters
c0: one optimised via HB considering only the first input
harmonic (N = 1), and the second parameter obtained
via optimization on the fully non-linear model, simulated
in time-domain via RK. The maximum mean power value,
represented in terms of horizontal lines in Figure 7 (right),
is obtained via the optimal damping derived from the
time-domain RK approach. We do note, although, that
the optimal PTO damping computed via HB with N = 1
provides a good compromise for controller design, given
that the mean power obtained is effectively very close to
that computed via RK (which requires a full solution of the
nonlinear differential equation (12)). Finally, note that the
PTO damping value, computed using the linear ISWEC
model, effectively overestimates the system response, lead-
ing to suboptimal control parameters.
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Fig. 7. Time series of the scaled gyroscope velocity ε̇0 and
the instantaneous power for different value of cPTO.

5. CONCLUSION

Given the intrinsic nonlinear behaviour of the ISWEC
system, we present, in this paper, the derivation and
subsequent dynamic analysis of a comprehensive nonlin-
ear model for such technology, including also appropriate
a passive control synthesis procedure. Such objective is
accomplished via a HB approach, where the nonlinear
behaviour of the WEC is compared with respect to its
linear modelling counterpart, highlighting a number of fun-
damental differences, which are shown to have an impact
in control synthesis and performance assessment. In par-
ticular, we show that neglecting nonlinear behaviour can
lead to a significant loss in power absorption capabilities,
with control coefficients largely deviated from those which
are optimal for the derived nonlinear model.
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