
01 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

“On the Foundation of Transport-Driven Diffusion for Neutron Transport Problems” / Picca, Paolo; Furfaro, Roberto;
Dulla, Sandra; Ravetto, Piero. - In: JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT. - ISSN 2332-
4325. - 51:5(2022), pp. 305-328. [10.1080/23324309.2022.2110897]

Original

“On the Foundation of Transport-Driven Diffusion for Neutron Transport Problems”

Publisher:

Published
DOI:10.1080/23324309.2022.2110897

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973492 since: 2022-11-30T10:22:30Z

TAYLOR & FRANCIS INC



Title: “On the foundation of transport-driven diffusion for neutron transport problems” 

 

Authors:  

o Paolo Picca (corresponding author), University of Arizona, Department of Systems and 

Industrial Engineering, P.O. Box 210020 - Tucson, AZ 85721, USA; 

ppicca@email.arizona.edu 

o Roberto Furfaro, University of Arizona, Department of Systems and Industrial 

Engineering, P.O. Box 210020 - Tucson, AZ 85721, USA; 

robertof@email.arizona.edu  

o Sandra Dulla, Politecnico di Torino, Dipartimento Energia, NEMO group, Corso Duca 

degli Abruzzi, 24 - 10129 Torino, Italy 

Sandra.dulla@polito.it 

o Piero Ravetto, Politecnico di Torino, Dipartimento Energia, NEMO group, Corso 

Duca degli Abruzzi, 24 - 10129 Torino, Italy 

Piero.ravetto@formerfaculty.polito.it 

 

Figures: 11 

 

Tables: 3 

 

mailto:ppicca@email.arizona.edu
mailto:robertof@email.arizona.edu


ABSTRACT 

 

The paper presents the foundation of a novel methodology developed for the solution 

of the neutron transport equation, named the transport driven-diffusion approach, 

which can be considered as an evolution of the classic multiple collision method. The 

idea behind this method is based on the expansion of the full solution in terms of the 

contributions of the particles emitted by successive collisions plus a residual term, 

accounting for particles which have undergone more than a predefined number of 

collisions. In order to determine the contribution at each collision order, a transport 

equation with a source term is solved, while the estimation of the residue is based on a 

diffusion theory model. The physical rationale for the choice of the diffusion model 

for the residue is discussed and justified, as physics suggests that the diffusion 

assumptions become more applicable for the description of the particles having 

suffered a certain number of collisions rather than to the original transport problem. 

Some results are presented for a set of steady-state and time-dependent test cases. 

Their analysis shows the remarkable advantage of the method proposed in terms of 

accuracy and computational time, when compared to standard diffusion and multiple 

collision at the same order.  
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1. INTRODUCTION 

The simulation of neutral particle transport in a scattering, absorbing and/or multiplying medium is 

rigorously described by the linear Boltzmann equation (LBE). Due to the integro-differential 

mathematical nature of the transport equation (Davison, 1957; Case and Zweifel, 1967), its solution in 

a closed-form is possible only for a very limited number of problems, often of purely academic 

interest. For real applications, in particular to reactor physics simulations, in the past decades a variety 

of approximations were devised to reduce the computational burden of the solution of the LBE. For a 

large class of problems, the diffusion model represents a reasonable approximation of the transport 

process, which adequately describes the behavior of the bulk of the particle field determined by the 

collision process (typically far from strong sources and absorbers and from system boundaries). The 

connection between transport and diffusion models clearly appears from a theoretical point of view. 

As an example, using the singular eigenfunction expansion method (Case, 1960), it can be shown that 

the complete solution of the linear transport equation can be written as the sum of a diffusive term and 

a transport term rapidly decreasing moving away from the source.  

For steady-state problems, several approximate methodologies show an inherent connection with 

diffusion. For example, when using the spherical harmonics expansion method (PN method; 

Meghreblian and Holmes, 1960), the diffusion equation corresponds to the P1 approximation in a 

general geometry setup, whereas for the discrete ordinate approach (SN method) the S2 approximation 

leads to diffusion in one-dimensional slab geometry (Bell and Glasstone, 1970). The diffusion theory 

can also be derived from the LBE via asymptotic analysis for both steady-state and time-dependent 

transport problems in general multidimensional geometry in case of isotropic emissions (e.g., Larsen, 

1980). Additionally, in the past hybrid methodologies were also explored for the solution of the LBE 

with domain decomposition (e.g., Ball, 2002a; 2002b), combining diffusion solution in diffusive 

regions (i.e., highly scattering materials in regions far from boundaries) with a transport solution in 

non-diffusive areas (i.e., “clear” regions). The idea of using diffusion to accelerate a transport solution 

has been also adopted in connection with Monte Carlo simulations, by obtaining statistical information 



on the particle behavior through a diffusive solution in specific sub-domains, to accelerate the Monte 

Carlo sampling (e.g. see an application to radiative transfer in Gentile, 2001). 

More recently, a novel solution technique for the LBE was proposed in (Picca and Furfaro, 2014). The 

so-called transport-driven diffusion (or TDD) is based on heuristic considerations, which recognize 

that the bulk of the particle field is dominated by a diffusion model describing the contribution of the 

particles that have suffered a high number of collisions and correct its inaccuracy with a transport 

description of the particles that have experienced only few collisions. Results show that the intuition is 

fundamentally correct and the advantage of TDD versus pure diffusion is evident even at low orders 

(i.e., considering only particles having suffered a low number of collisions). Similarly, a multi-

collision scheme was proposed in the past for improving the efficiency of Monte Carlo simulation 

when dealing with diffusive media (Densmore, 2006).  

In addition to the use of a diffusion model to enhance the solution of a transport problem, it is also 

important to call the attention on a powerful method to accelerate to source iterations process that is 

widely used in standard deterministic computational tools, i.e. the Diffusion Synthetic Acceleration 

(DSA), see Adams and Larsen (2002) for a comprehensive review. However, present approach 

significantly differs from DSA, as: 

• DSA is a method for accelerating the original solution of transport equations, while TDD 

provides a model approximation of the solution of the linear Boltzmann equation; 

• DSA couples a diffusion solver to a full transport code (e.g. discrete ordinates), while, as will 

be shown in this work, the transport-like part of the solution in TDD is obtained by a simple ray 

tracing for the first collisions contributions, without the need to converge on the collision source. 

The motivation of the present paper is to provide a more robust mathematical background to TDD, 

based on asymptotic analysis. Additionally, the paper also discusses a possible metric to measure the 

distance from the diffusive regime, which can be helpful in the practical implementation of TDD to set 

the truncation order (i.e., the transition from transport to diffusion).  



The remainder of the paper is organized as follows. The derivation of the diffusion model as a first-

order asymptotic expansion of the LBE is recalled in Sect. 2 with a review of the basic hypothesis for 

the scaling used. Section 3 derives the TDD method using the multiple collision approach via 

asymptotic analysis, detailing the critical parameter for the transition from transport to the diffusive 

behavior. The efficiency and flexibility of TDD are proven considering several test cases in Sect. 4, 

before drawing some final remarks and suggestions for future work in Sect. 5. 

 

 

2. ASYMPTOTIC DERIVATION OF THE DIFFUSION MODEL FROM THE 

LINEAR BOLTZMANN EQUATION 

The time-dependent linear Boltzmann equation for monoenergetic particles of velocity v  in the 

Cartesian coordinate system with isotropic scattering and source emission is written as (e.g., Davison, 

1957; Case and Zweifel, 1967; Bell and Glasstone, 1970): 

[
1

v

𝜕

𝜕𝑡
+ 𝛀 ∙ 𝛁 + Σ(𝐫)] 𝜓(𝐫, 𝛀, 𝑡) =

Σ𝑠(𝐫) + νΣ𝑓(𝐫)

4𝜋
∮ 𝜓(𝐫, 𝛀′, 𝑡) 𝑑𝛀′ +

1

4𝜋
𝑞(𝐫, 𝑡), (1) 

 

where 𝜓 is the angular flux and the other symbols used have their standard meaning. The boundary 

and initial conditions can generally be written as: 

𝜓(𝐫𝒔, 𝛀, 𝑡) = 𝑓(𝐫𝒔, 𝛀, 𝑡)       𝑓𝑜𝑟      𝛀 ∙ 𝐧𝒔 < 0, 

𝜓(𝐫, 𝛀, 𝑡 = 0) = 𝜓0(𝐫, 𝛀), 

(2) 

where 𝐫𝒔 is the boundary of the system and 𝐧𝒔 is the outward-oriented unit vector normal to the 

surface. The function 𝑓 defines a given boundary source term. 

The diffusion approximation of the linear transport equation can be obtained via asymptotic analysis 

(Larsen, 1980), considering the following scaling in terms of the small parameter 𝜀: 



1

v
→

𝜀

v
   , (3a) 

Σ →
Σ

𝜀
   , (3b) 

Σ𝑠 →
Σ

𝜀
− 𝜀Σ𝑎    , (3c) 

νΣ𝑓 → 𝜀νΣ𝑓  , (3d) 

𝑞 → 𝜀𝑞. (3e) 

 

The scaling of the velocity as the inverse of 𝜀 in Eq. (3a) implies a high velocity of particles and hence 

the perturbation effects are smoothened by the fast propagation of signals. The relations in Eqs. (3b)-

(3c) is based on the assumption of a medium characterized by a large collisionality and a low 

absorption. The scaling of the source in Eq. (3e) implies a small contribution of the external source 

with respect to the scattering emission term. In this derivation, the fission term is considered to scale 

with 𝜀, as the external source. 

The solution of Eq. (1) can be expressed with the following asymptotic expansions in the parameter 𝜀: 

 

𝜓(𝐫, 𝛀, 𝑡) = 𝜓0(𝐫, 𝛀, 𝑡) + 𝜀𝜓1(𝐫, 𝛀, 𝑡) + 𝜀2𝜓2(𝐫, 𝛀, 𝑡) + ⋯ = ∑ 𝜀𝑛𝜓𝑛(𝐫, 𝛀, 𝑡),

∞

𝑛=0

 (4a) 

Ψ(𝐫, 𝑡) = Ψ0(𝐫, 𝑡) + 𝜀Ψ1(𝐫, 𝑡) + 𝜀2Ψ2(𝐫, 𝑡) + ⋯ = ∑ 𝜀𝑛Ψ𝑛(𝐫, 𝑡)

∞

𝑛=0

, (4b) 

where the scalar flux is defined with 

Ψ(𝐫, 𝑡) = ∮ 𝜓(𝐫, 𝛀, 𝑡) 𝑑𝛀. 

Substituting Eq. (4) into Eq. (1), the following equalities are obtained at the various order of 𝜀: 

𝜀−1 → 𝜓0(𝐫, 𝛀, 𝑡) =
1

4𝜋
Ψ0(𝐫, 𝑡), (5a) 



𝜀0 → 𝛀 ∙ 𝛁𝜓0(𝐫, 𝛀, 𝑡) + Σ(𝐫)𝜓1(𝐫, 𝛀, 𝑡) =
Σ(𝐫)

4𝜋
Ψ1(𝐫, 𝑡), (5b) 

𝜀1 →
1

v

𝜕

𝜕𝑡
𝜓0(𝐫, 𝛀, 𝑡) + 𝛀 ∙ 𝛁𝜓1(𝐫, 𝛀, 𝑡) + Σ(𝐫)𝜓2(𝐫, 𝛀, 𝑡)

=
νΣ𝑓(𝐫) − Σ𝑎(𝐫)

4𝜋
Ψ0(𝐫, 𝑡) +

Σ(𝐫)

4𝜋
Ψ2(𝐫, 𝑡) +

1

4𝜋
𝑞(𝐫, 𝑡), 

(5c) 

From Eq. (5a), it can be seen that 𝝍𝟎 is independent of 𝛀 (i.e., it is isotropic). Re-arranging Eq. (5b) as 

follows: 

𝜓1(𝐫, 𝛀, 𝑡) =
1

4𝜋
Ψ1(𝐫, 𝑡) −

1

Σ(𝐫)
𝛀 ∙ 𝛁𝜓0(𝐫, 𝛀, 𝑡), (6) 

and substituting into Eq. (5c), the following equation is obtained: 

1

4𝜋v

𝜕

𝜕𝑡
Ψ0(𝐫, 𝑡) +

1

4𝜋
𝛀 ∙ 𝛁 [Ψ1(𝐫, 𝑡) −

1

Σ(𝐫)
𝛀 ∙ 𝛁Ψ0(𝐫, 𝑡)] + Σ(𝐫)𝜓2(𝐫, 𝛀, 𝑡)

+
Σ𝑎(𝐫) − νΣ𝑓(𝐫)

4𝜋
Ψ0(𝐫, 𝑡) −

Σ(𝐫)

4𝜋
Ψ2(𝐫, 𝑡) =

1

4𝜋
𝑞(𝐫, 𝑡). 

(7) 

Integrating Eq. (7) over 𝛀 and noticing that 

∮ 𝛀 𝑑𝛀 = 0 

this equation becomes: 

1

v

𝜕

𝜕𝑡
Ψ0(𝐫, 𝑡) − ∮ 𝛀 ∙ 𝛁

1

Σ(𝐫)
𝛀 ∙ 𝛁Ψ0(𝐫, 𝑡) 𝑑𝛀 + [Σ𝑎(𝐫) − νΣ𝑓(𝐫)]Ψ0(𝐫, 𝑡) = 𝑞(𝐫, 𝑡). (8) 

 

The second term in the l.h.s. in Eq. (7) can be written as: 

1

4π
∮ 𝛀 ∙ 𝛁

1

Σ(𝐫)
𝛀 ∙ 𝛁Ψ0(𝐫, 𝑡) 𝑑𝛀 = 𝛁

1

3Σ(𝐫)
∙ 𝛁Ψ0(𝐫, 𝑡). (9) 

Using Eq. (9) in Eq. (8), the following equation is obtained: 

1

v

𝜕

𝜕𝑡
Ψ0(𝐫, 𝑡) − 𝛁D(𝐫) ∙ 𝛁Ψ0(𝐫, 𝑡) + [Σ𝑎(𝐫) − νΣ𝑓(𝐫)]Ψ0(𝐫, 𝑡) = 𝑞(𝐫, 𝑡), (10) 



which is the well-known diffusion equation, where D(𝐫) = 1 3Σ(𝐫)⁄  is the diffusion coefficient. 

Equation (10) proves that the diffusion equation stems from a first-order asymptotic expansion of the 

linear transport equation, provided that the scaling in Eqs. (3) are physically meaningful. 

Although it is generally known that in several cases diffusion theory offers a convenient 

approximation of linear transport problems, there are conditions for which the first-order 

approximation is not sufficient and/or the scaling in Eqs. (3) is not suitable. Typically, the diffusion 

model is inaccurate in the description of particle field: 

• close to the external boundaries, 

• in the presence of strong sources and absorbers, 

• in the presence of strong cross section variations, 

• when simulating strong excursions of source terms, and 

• when considering relevant anisotropic scattering effects. 

 

3. DERIVATION OF THE TRANSPORT-DRIVEN DIFFUSION METHOD 

In the following, the transport-driven diffusion model is derived from LBE using a multiple collision 

approach (Section 3.1) and the solution of the residue is discussed, explaining how the considerations 

in Section 2 makes diffusion theory more suitable in a TDD framework than when used for the overall 

simplification of the original LBE. 

 

3.1 Formulation of the transport equation in the multiple collision fashion 

The solution of Eq. (1) is decomposed in terms accounting for the contributions of different numbers 

of collisions, i.e.: 

𝜓(𝐫, 𝛀, 𝑡) = 𝜓[1](𝐫, 𝛀, 𝑡) + 𝜓[2](𝐫, 𝛀, 𝑡) + 𝜓[3](𝐫, 𝛀, 𝑡) + ⋯ = ∑ 𝜓[𝑗](𝐫, 𝛀, 𝑡),

∞

𝑗=1

 (11) 



where j is the collision order (e.g., j=1: uncollided; j=2: first collision; j=3: second collision). The 

equation for the uncollided component reads: 

[
1

v

𝜕

𝜕𝑡
+ 𝛀 ∙ 𝛁 + Σ(𝐫)] 𝜓[1](𝐫, 𝛀, 𝑡) =

1

4𝜋
𝑞(𝐫, 𝑡), (12) 

 

whereas for j≥1 the following equation applies: 

[
1

v

𝜕

𝜕𝑡
+ 𝛀 ∙ 𝛁 + Σ(𝐫)] 𝜓[𝑗](𝐫, 𝛀, 𝑡) =

Σ𝑠(𝐫) + νΣ𝑓(𝐫)

4𝜋
∮ 𝜓[𝑗−1](𝐫, 𝛀′, 𝑡) 𝑑𝛀′. (13) 

 

For each collision, the propagation of particles along different directions is decoupled and the angle 𝛀 

simply becomes a parameter and not an independent variable, i.e.:  

𝜓[𝑗](𝐫, 𝛀, 𝑡) = 𝜓𝛀
[𝑗]

(𝐫, 𝑡), (14) 

and the initially integro-differential equation (see Eq. (1)) turns into a partial differential equation, i.e.: 

[
1

v

𝜕

𝜕𝑡
+ 𝛀 ∙ 𝛁 + Σ(𝐫)] 𝜓𝛀

[1](𝐫, 𝑡) = 𝑞𝛀
[0](𝐫, 𝑡), 

[
1

v

𝜕

𝜕𝑡
+ 𝛀 ∙ 𝛁 + Σ(𝐫)] 𝜓𝛀

[2]
(𝐫, 𝑡) = 𝑞𝛀

[1]
(𝐫, 𝑡), 

⋮                                   ⋮ 

[
1

v

𝜕

𝜕𝑡
+ 𝛀 ∙ 𝛁 + Σ(𝐫)] 𝜓𝛀

[𝑗]
(𝐫, 𝑡) = 𝑞𝛀

[𝑗−1]
(𝐫, 𝑡), 

⋮                                   ⋮ 

(15) 

where the source terms are defined as: 

𝑞𝛀
[𝑗=0]

(𝐫, 𝑡) =
1

4𝜋
𝑞(𝐫, 𝑡) (16) 

and: 

𝑞𝛀
[𝑗]

(𝐫, 𝑡) =
Σ𝑠(𝐫) + νΣ𝑓(𝐫)

4𝜋
∮ 𝜓[𝑗−1](𝐫, 𝛀′, 𝑡) 𝑑𝛀′     𝑓𝑜𝑟      𝑗 ≥ 1. (17) 



The initial and boundary conditions for the uncollided particles are: 

𝜓[𝑗=1](𝐫𝒔, 𝛀, 𝑡) = 𝑓(𝐫𝒔, 𝛀, 𝑡)       𝑓𝑜𝑟      𝛀 ∙ 𝐧𝒔 < 0, 

𝜓[𝑗=1](𝐫, 𝛀, 𝑡 = 0) = 𝜓0(𝐫, 𝛀), 

(18) 

whereas for successive generations these conditions become: 

𝜓[𝑗>1](𝐫𝒔, 𝛀, 𝑡) = 0       𝑓𝑜𝑟      𝛀 ∙ 𝐧𝒔 < 0, 

𝜓[𝑗>1](𝐫, 𝛀, 𝑡 = 0) = 0. 

(19) 

The price to pay for the simplification of the mathematical nature of the equations (from integro-

differential as is the original full transport equation to purely differential) is that a set of infinite equations 

needs to be solved. Hence, a truncation becomes necessary in order to make the approach numerically 

manageable, i.e.:  

𝜓(𝐫, 𝛀, 𝑡) ≈ ∑ 𝜓[𝑗](𝐫, 𝛀, 𝑡),

𝑇

𝑗=1

 (20) 

where T is the truncation order. This assumption is equivalent to disregard the contributions of collisions 

with orders higher than T.  

In the past, solving the linear transport equation directly via a multiple collision procedure recalling the 

Neumann approach to solve integral equations was attempted and interesting theoretical investigations 

were published (e.g., Ganapol and Grossman, 1973; Ganapol, 1982a, 1982b, 1985, 1999). Depending 

on the medium properties, a different number of collisions have to be considered to achieve the same 

accuracy. In case of a system with a small number of secondaries per collisions (i.e., 
Σ𝑠

Σ⁄ ≪ 1), the 

convergence of the series is rather fast and the multiple collision approach can be a feasible solution 

strategy. When dealing with highly scattering media, the truncation order has to be consistently 

increased, with a considerable limitation for computational performances.  

 

3.2 Transport-driven diffusion  

In the recent past, a different approach was proposed, namely the transport-driven diffusion (Picca and 



Furfaro, 2014). The idea is to start from the multiple collision formulation of the LBE and introduce a 

residue after truncation, i.e.: 

𝜓(𝐫, 𝛀, 𝑡) = ∑ 𝜓[𝑗](𝐫, 𝛀, 𝑡) + 𝑧(𝐫, 𝛀, 𝑡).

𝑇

𝑗=1

 (21) 

The equation for the residue is written as: 

[
1

v

𝜕

𝜕𝑡
+ 𝛀 ∙ 𝛁 + Σ(𝐫)] 𝑧(𝐫, 𝛀, 𝑡) =

Σ𝑠(𝐫) + νΣ𝑓(𝐫)

4𝜋
[∮ 𝑧(𝐫, 𝛀′, 𝑡) 𝑑𝛀′ + ∮ 𝜓[𝑇](𝐫, 𝛀′, 𝑡) 𝑑𝛀′]. (22) 

The above equation retains the same mathematical nature as the original linear Boltzmann problem in 

Eq. (1). Based on physical considerations, Picca and Furfaro argued in (2014) that the residue can be 

approached by a simplified approach, such as the diffusion equation. Their analysis proves that this 

intuition is fundamentally correct, presenting results that show how the accuracy is considerably 

improved with respect to the classical diffusion approximation of Eq. (1). Expanding the residue in Eq. 

(13) as in Eqs. (4), the diffusion equation for the residue can be finally written as:  

1

v

𝜕

𝜕𝑡
𝑍(𝐫, 𝑡) + 𝛁 ∙ D(𝐫)𝛁𝑍(𝐫, 𝑡) + [Σ𝑎(𝐫) − νΣ𝑓(𝐫)]𝑍(𝐫, 𝑡) = Ψ[𝑇](𝐫, 𝑡), (23a) 

where  

𝑍(𝐫, 𝑡) = ∮ 𝑧(𝐫, 𝛀, 𝑡) 𝑑𝛀, (23b) 

Ψ[𝑇](𝐫, 𝑡) = ∮ 𝜓[𝑇](𝐫, 𝛀, 𝑡) 𝑑𝛀, (23c) 

and the diffusion problem for 𝑍(𝐫, 𝑡) is complemented with standard radiative boundary 

conditions, assuming an extrapolation length equal to 0.71 mfp. We can define an order of the 

TDD approximation, based on the collision order T (i.e. TDDT)  

 

3.3 Analysis of the residue equation  

This section discusses in detail why the diffusion model is more suitable for the description of the 

residue than for the solution of the general problem. For this purpose, a function  , defined as the 

ratio of the particle density after T collisions and the residue, is introduced: 



𝛼𝑇(𝐫, 𝑡) =
Ψ[𝑇](𝐫, 𝑡)

𝑍(𝐫, 𝑡)
. (24) 

Numerical results show that the difference between the spatial distribution of Ψ[𝑇] and  𝑍 narrows 

when increasing the order of collision j, i.e. the distribution tends to stabilize when sufficiently “far” 

(in terms of collisions) from the external source. Intuitively, this is the result of the first generations 

being strongly influenced by the external driving term and, after several generations, the spatial 

distribution being determined only by the physical and geometrical properties of the medium. The 

establishment of an asymptotic behavior in general may take several generations due to the migration 

process, especially in optically thick systems. As a result of this, 𝛼 tends to a constant when increasing 

the collision order in diffusion-dominated regions (e.g., far away from interfaces and boundaries). If 

such condition is met, the residue can be written in terms of Ψ[𝑇], explicitly: 

𝑍(𝐫, 𝑡) ≈
1

𝛼̅
Ψ[𝑇](𝐫, 𝑡), (25) 

where 𝛼̅ is an appropriate constant value. 

Using Eq. (24) in Eq. (23a), the equation for the residue becomes: 

[
1

v

𝜕

𝜕𝑡
+ 𝛀 ∙ 𝛁 + Σ(𝐫)] 𝑧(𝐫, 𝛀, 𝑡) = (1 + 𝛼𝑇(𝐫, 𝑡))

Σ𝑠(𝐫) + νΣ𝑓(𝐫)

4𝜋
𝑍(𝐫, 𝑡), (26) 

 

which is in the form of a source-free LTE with a fictitiously increased number of secondaries per 

collision: 

Σ𝑠(𝐫) + νΣ𝑓(𝐫) = 𝑐Σ(𝐫) → 𝑐Σ∗(𝐫) = (1 + 𝛼𝑇(𝐫, 𝑡))𝑐Σ(𝐫). (27) 

 

It is clear that in general the applicability of the scaling in Eq. (3) better suits the residue equation in 

Eq. (13) than the initial transport equation in Eq. (1) as: 

- the collisional component is larger than in the original problem; 

- there is no external source term.  

Note that in the case of a strong fission contribution, higher orders of TDD are needed to achieve the 

same accuracy, as it is discussed in the result section. 



In practical applications, 𝛼𝑇 cannot be evaluated as it requires the full solution of the LBE, Eqs. (1). A 

potential surrogate of 𝛼𝑇 which is more easily available during computation, is the ratio between the 

solutions of the last two collisions: 

 

𝛾𝑇(𝐫, 𝑡) =
Ψ[𝑇+1](𝐫, 𝑡)

Ψ[𝑇](𝐫, 𝑡)
 (28) 

 

In order for 𝛼𝑇 to show the asymptotic behavior described above, the value of  𝛾𝑇 is expected to 

become spatially constant (i.e., at convergence, the shape of the next generation resembles the 

previous one) and its value is related to the inverse of the number of secondaries per collision.  

 

4. RESULTS 

4.1 Test cases: problem set up and computational parameters 

The concept presented in previous sections is now tested in several problems. Figure 1 presents a 

summary of the different configurations analyzed. For demonstration purposes, a 1D system is 

considered, as the multidimensionality of the problem is not expected to influence the generality of the 

findings. Two configurations are considered: a homogeneous medium and a heterogeneous system, 

more representative of an accelerator-driven system (ADS). Table 1 presents the set of test cases 

considered.  

The solution adopted as reference for the comparisons is evaluated solving the transport equation with 

standard SN (Lewis and Miller, 1993). Ten discrete directions are used for the steady-state solution and 

100 directions for the time-dependent cases, to cope with ray effects. Finite volumes are used for space 

discretization (400 meshes) and Implicit Euler finite differences for the time variable (time mesh 0.05 

mft, defined as the time a particle takes to cover 1 mean free path). The scattering term is treated via 

source iterations with convergence tolerance on the L-infinity norm of the flux set to 1e-6. The 

diffusion equation is solved using finite volumes for space and finite differences for the time variable 

using the same spatial and time discretizations used for the solution of the transport equations at each 



collision order. In Section 4.2 and Section 4.3 the steady-state and the time-dependent comparisons are 

presented. 

  



 

 

 

 

 

 

a) homogeneous medium  

   

 

 

 

 

b) heterogeneous medium  

Figure 1. Description of the configurations considered. Additional data: v=1 cm/s; A=1/16 H; 

B=3/4 H. 

 

Table 1. Summary of the test cases considered. 

Case ID Geometry H [cm] keff 

(adjusting 𝝂) 

Source 

distribution 

Objective of 

the test 

case(s) 

A  

 

homogeneous 

2  

 

0 

 

uniform, 

constant in 

time 

 

testing effect 

of dimensions 
B 10 

C 20 

D 100 

E  

 

 

 
20 

0.5 testing effect 

of keff F 0.9 

G1  

 

heterogeneous 

 

 

0.97 

 

localized, 

constant in 

time 

reference case 

for steady-

state 

G2 localized, 

1 mft pulse 

reference case 

for time-

dependent 

 

  

A 
B 

loc. 

symm. 

source 

H 

Σ=1 cm-1 

Σs=0.9 cm-1  

Σf=0.01 cm-1 

υ=2.43 

 

Σ=1 cm-1 

Σs=0.75 cm-1  

Σf=0 cm-1 

 

Σ=1 cm-1 

Σs=0.5 cm-1 

Σf=0 cm-1 

υ=2.43 

Σ=1 cm-1 

Σs=1 cm-1  

Σf=0 cm-1 

 



4.2 Steady-state solutions 

Figures 2 and 3 present the steady-state solution for the homogeneous cases to study the effect of 

different system dimensions. It can be seen that the convergence of the multiple collision approach 

requires a larger value of T for optically larger systems (top graphs), while the behavior of the 

indicators 𝛼𝑇 and 𝛾𝑇 tends to flatten with increasing collision contribution, thus indicating that TDD 

works better than diffusion in reproducing the reference solution. On the computational side, it must 

be pointed out that 𝛾𝑇 can be easily computed during the code execution, while the evaluation of 𝛼𝑇 

requires that the solution is known. Consequently, 𝛾𝑇 can be used in practical applications as a 

surrogate of 𝛼𝑇. 

In Figure 4 the solution for the same homogeneous problem with fixed dimension H=20 is reported, 

introducing a fission emission contribution, leading to two different values of keff. Clearly, the 

presence of the fission phenomenon leads to the requirement of a larger number of collisional terms, 

while the behavior of the indicators 𝛼𝑇 and 𝛾𝑇 is consistent with the previous cases. 

Figure 5 presents the results for a heterogeneous configuration, simulating a source-driven system 

situation. The heterogeneity is clearly affecting the spatial flux distribution and the value of keff 

impacts on the order of collision expansion T. 

The various solution approaches for the configuration G1 are compared in Figure 6, varying the 

collision order T adopted. It appears that, in general, TDD outperforms both the diffusion and the 

multiple collision solutions, and the efficacy of TDD improves as the truncation order increases. 

Table 2 reports the computational times, normalized to the reference, for case G1, to highlight the 

significant advantage of TDD as compared to the reference transport solution. Whilst the diffusive 

approach turns out to be more computationally efficient, as expected, it is far less accurate (see Figure 

6) compared to TDD. TDD also proves to be very competitive compared to the reference solution, 

even at high order (e.g., the computational time for TDD200 is less than a third of that for the full 

transport inversion). 



The trend of γT as a function of the parameter  𝑇 (Figures 2 through 5), as well as the general trend in 

the reduction of the error when increasing 𝑇 (Figure 6), suggest the possibility to automate the 

selection of the order 𝑇 to target a certain accuracy, which will be the object of further investigations.  

 

  



 

 

 
Case ID: A (H=2 cm)    Case ID: B (H=10 cm) 

 

Figure 2. Total flux 𝚿, αT and γT for cases A and B. In the top graphs the multiple collision 

solution is also presented. 

 

  



 

 

 

 
 

 

Case ID: C (H=20 cm)    Case ID: D (H=100 cm) 

 

Figure 3. Total flux 𝚿, αT and γT for cases C and D. In the top graphs the multiple collision 

solution is also presented. 

 



 

 

 
 

Case ID: E (H=20 cm, keff=0.5)    Case ID: F (H=20 cm, keff=0.9) 

 

Figure 4. Total flux 𝚿, αT and γT for cases E and F. In the top graphs the multiple collision 

solution is also presented. 

  



 

 

 

Figure 5. Total flux 𝚿, αT and γT for case G1 (H=20 cm, keff=0.97, localized source). In 

the top graphs the multiple collision solution is also presented. 

  



 

 

 

Figure 6. Comparison of various solution techniques for the steady-state problem G1 

(H=20 cm, keff=0.97, localized source). Solid line: reference transport; dotted line: diffusion; 

dashed line: multiple collision; dash-dotted line: TDDT. Left: flux distributions; right: 

percentage relative error with respect to the reference. 

  



Table 2. Comparison of computational performances for steady-state case. The computational 

time in the table is normalised to the reference SN transport solution. 

solution method normalized computational time 

Diffusion 0.03 

multiple collision (T=50) 0.04 

TDD50 0.07 

multiple collision (T=100) 0.08 

TDD100 0.11 

multiple collision (T=200) 0.23 

TDD200 0.26 

 

 

 

4.3 Time-dependent solution 

 

In this section the the time-dependent case G2 is studied. The system is injected with a source pulse of 

duration 1 mft. The details on the location and characteristics of the source are provided in Figure 1a. 

In Figure 7 the error associated to the solution approaches as compared to the reference are evaluated 

in the center of the system and presented as a function of time, assuming different values of T, in order 

to highlight the significant advantage of TDD also in time-dependent situations. The graphs on the 

right show that a variable number of collision terms may be needed as the transient evolves, as 

expected from the physical point of view as the contribution of collisions increases over time. In 

Figure 8 the same set of results are plotted in a position within the fissile region. As can be seen, the 

error of the diffusion solution becomes more relevant since the diffusion model cannot account for the 

finite velocity of the particles moving off the source. These effects are enhances moving farther from 

the system center, as visible in Figure 9.  

The convergence pattern of TDD with increasing values of T is reported in Figure 10. It is interesting 

to see that TDD error is relatively large at the beginning of the transient because of the diffusion 

contribution and its propagation velocity. As time progresses, the TDD error reduces drastically, the 

reduction being faster for larger values of T. It is worth noting that diffusion is always far more 

inaccurate at the beginning of the transient, whilst multi collision is relatively accurate at the 



beginning of the transient before becoming largely inaccurate when the error due to truncation 

becomes significant (i.e. multi-collided particles becomes more relevant after several collision time in 

the transient). 

At last, Figure 11 shows the spatial behavior of the indicator 𝛾𝑇 at two different time instants during 

the source transient. The flattening of the shape of 𝛾𝑇 is clearly visible, although it is not homogeneous 

across the transient (see effect of T on the error as a function of time in Figure 10). 

Table 3 evidences the limits of the TDD approach for time-dependent problems, as a high value of T 

leads to a penalization of the computational burden. This is due to the fact that for the reference 

solution source iteration at later times in the transients can require less then T iterations, making TDD 

less computationally advantageous. However, with small values of T, the TDD algorithm is more 

efficient than a direct solution (see Table 3) and more accurate that multiple collision and diffusion 

(see Figure 10). Whilst additional investigations are needed, it is expected that the computational 

performance of higher order TDD can be improved by introducing a variable order TDD, with T 

decreasing as time passes and the transport effect becomes less relevant. 

Whilst Figure 11 show how the absolute value of γT reduces and the curve flattens as T increases, the 

adaptive selection of T based on γT remains to be explored in future work.   



  

   

 
Figure 7. Left: relative percentage error of TDD, transport and diffusion evaluated in 

the system center (inside the source region) of case G2 for different values of T; dotted line: 

diffusion; dashed line: multiple collision; dash-dotted line: TDD. Right: transport (triangle) and 

diffusion (circle) contributions in the TDD solution evaluated in the system center of case G2 for 

different values of T. 

  



  

  

 
Figure 8.  Left: relative percentage error of TDD, transport and diffusion evaluated at 

coordinate x=5 cm (outside the source, in the multiplicative region) of case G2 for different 

values of T; dotted line: diffusion; dashed line: multiple collision; dash-dotted line: TDD. Right: 

transport (triangle) and diffusion (circle) contributions in the TDD solution evaluated at 

coordinate x=5 cm of case G2 for different values of T. 

 

  



 

 

  

  
 

 

    
Figure 9. Left: relative percentage error of TDD, transport and diffusion evaluated at 

coordinate x=7.5 cm (interface between fissile material and reflector) of case G2 for different 

values of T; dotted line: diffusion; dashed line: multiple collision; dash-dotted line: TDD. Right: 

transport (triangle) and diffusion (circle) contributions in the TDD solution evaluated at 

coordinate x=7.5 cm of case G2 for different values of T. 

  



 
 

Figure 10. Relative percentage error of TDDT solutions of various orders at x=7.5 cm 

(interface between fissile material and reflector) of case G2. Dashed line: multiple collision 

(T=10); dash-dotted line: TDD. 

  



 

 

 
Figure 11. Spatial behavior of γT at two instants during the source transient of case G2 for 

different values of T. 

  



 

 

Table 3. Comparison of computational performance for the time-dependent case G2. The 

computational times in the table are normalised to reference SN transport solution. 

solution method normalized computational time 

Diffusion 0.01 

multiple collision (T=3) 0.60 

TDD3 0.61 

multiple collision (T=5) 0.95 

TDD5 1.05 

multiple collision (T=10) 1.65 

TDD10 1.76 

TDD20 3.56 

TDD30 5.60 

 

 

 

  



5. CONCLUSIONS 

The foundations of the hybrid transport-driven diffusion method are presented and physically 

interpreted. The method is based on a combination of a transport solution accounting for various order 

of collisions, with a diffusion correction for the residual. The analysis presented in this paper provides 

an explanation of the rationale behind transport-driven diffusion, based on the observation of the 

evolution of the spatial distribution of each collision and on the assumptions of the diffusion model. 

The limitation of classical diffusion for approximating the transport equation are reviewed, presenting 

how modeling of the first few collisions with transport helps creating conditions for which diffusion is 

a suitable approximation. 

The method is applied to a set of test cases in steady-state and transient conditions, comparing the 

transport-driven diffusion results with reference calculations, in terms of accuracy and computational 

effort. The advantages of the method proposed are shown using different indicators. The method 

proves to be advantageous with respect to a direct multiple collision approach in terms of accuracy, as 

it provides an efficient closure of the collision process using a diffusion estimation of the residual. 

Equally, TDD is also more accurate than standard diffusion, especially in time-dependent situations 

where the effect of the infinite propagation velocity is limited by using multi-collision transport for the 

first collisions. In the time-dependent case, an adaptive approach for the selection of the truncation 

order of TDD, e.g., based on the analysis of the trend of γT, may be required, which will be subject of 

future investigations. 

The paper provides interesting physical insights in how neutrons propagate in scattering and 

multiplying media, highlighting how multiple-collided neutrons manifest a collective diffusive 

behavior, as compared to uncollided particles and those that have suffered a small number of 

collisions. TDD may thus offer a viable alternative option for the solution of transport problems. 
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