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Abstract— Tight integration of low-cost Ultra-Wide Band
(UWB) ranging sensors with mass-market Global Navi-
gation Satellite System (GNSS) receivers is gaining at-
tention as a high-accuracy positioning strategy for con-
sumer applications dealing with challenging environ-
ments. However, due to independent clocks embedded
in Commercial-Off-The-Shelf (COTS) chipsets, the time
scales associated with sensor measurements are mis-
aligned, leading to inconsistent data fusion. Centralized,
recursive filtering architectures can compensate for this
offset and achieve accurate state estimation. In line with
this, a GNSS/UWB tight integration scheme based on an
Extended Kalman Filter (EKF) is developed that performs
online time calibration of the sensors’ measurements
by recursively modeling the GNSS/UWB time-offset as
an additional unknown in the system state-space model.
Furthermore, a double-update filtering model is proposed
that embeds optimizations for the adaptive weighting of
UWB measurements. Simulation results show that the
double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration
with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world
experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%,
respectively.

Index Terms— Global Navigation Satellite System (GNSS), Extended Kalman Filter (EKF), tight integration, time calibra-
tion, Ultra-Wide Band (UWB).

I. INTRODUCTION

NOWADAYS, hundreds of applications in the mass-market
segment are pushing the demand for continuous and de-

pendable Positioning, Navigation and Timing (PNT) services,
and geo-positioning sensors such as the Global Navigation
Satellite System (GNSS) are key enablers to satisfy these
growing needs [1], [2]. Whilst different applications often pin-
point diverse requirements, enhanced accuracy and availability
of the navigation solution are crucial for reliable positioning
and guidance of agents. As a matter of fact, the robustness
of the standalone GNSS technology is severely compromised
in harsh environments, such as dense urban areas or wooded
zones; the interplay between manifold impairing phenomena
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contribute to degrade the quality of GNSS standalone PNT
solutions [3]–[5]. Hence, the design of GNSS-based naviga-
tion units in the mass-market segment has been increasingly
addressing customizable, embedded architectures integrating
low-cost ranging sensors [6], [7].

Latest proliferation in consumer electronics of Ultra-Wide
Band (UWB) Impulse Radio (IR) transceivers - featuring small
size and low power consumption - makes it an appealing candi-
date for hybridisation with GNSS signals [8], [9]. As a carrier-
free, spread-spectrum communication technology transmitting
non-sinusoidal pulses with nanosecond life-cycle, UWB can
ensure centimetre-level accurate ranging in dense, cluttered en-
vironments thanks to supreme time resolution and remarkable
obstacle penetration capabilities [10]. For outdoor applications,
on-site deployment of georeferenced UWB beacons - acting
as local environment landmarks - can help relative localisation
and dynamic tracking of mobile receivers in areas with reduced
GNSS availability [11].

Traditional signal processing methods for centralised sen-
sor fusion, such as recursive Maximum a-Posteriori (MAP)
filters based on Bayesian estimation algorithms, assume ac-
curately timestamped and synchronised measurements from
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different sensors to deliver trustworthy state-estimation per-
formance [12], [13]. However, in the framework of low-cost
GNSS/UWB tight integration, commercial UWB transceivers
and mass-market GNSS chipsets operate as self-contained sub-
systems carrying independent, asynchronous clocks. Hence,
GNSS and UWB measurements are timestamped with respect
to different time-scales, and timing disturbances such as la-
tency jitters or spurious clock drifts can affect the times-
tamping precision with respect to the true sampling instant.
Moreover, at each estimation epoch, a lag exists between the
measurements’ timestamp and the time instant at which the
integration filter (also known as hybridisation, or navigation
filter) processes the measurements. In particular, this lag is
different for GNSS and UWB measurements because sampling
rates are different and clocks are independent. Consequently,
an unknown time-offset exists between the GNSS observables’
timestamps and the UWB measurements’ timestamps which
models the relative misalignment between the GNSS and
UWB time-scales as well as the shift of these scales with
respect to the integration filter time-scale [14]. If neglected,
this time-offset injects an inconsistency bias into the hy-
bridisation algorithm which may jeopardise state-estimation
accuracy [15], [16]. This study aims at proposing a novel
time calibration method to guarantee a consistent GNSS/UWB
tight integration [12], thus enhancing the benefits introduced
by UWB superior ranging accuracy over short distances.

In multisensor systems’ literature, different methodologies
have been explored to handle synchronisation among self-
contained sensor units. On the one hand, hardware-level syn-
chronisation - especially popular in the framework of GNSS-
aided strapdown Inertial Navigation System (INS) systems
[17], [18] - typically exploits the Pulse-Per-Second (PPS)
signal from the GNSS receiver as triggering reference, and it
cross-references the timing signals from the coupled sensors
in order to establish a shared event base in the integration
engine [19], [20]. As a preferred alternative when integrat-
ing Commercial Off-The-Shelf (COTS) sensors which feature
limited access to the hardware, software-based strategies are
put in place; they operate a time calibration process involving
accurate time-offset estimation in the integration architec-
ture by leveraging sensors’ measurement models [21], [22].
Consequently, software-based solutions can vary significantly
depending on the sensors which are taken into account and the
associated sensor integration models. In the existing literature,
most of the proposed techniques address time calibration as a
registration task, where time-offsets are estimated through an
offline, pre-processing step. For example, [23]–[25] suggest
a continuous-time batch formulation of the time calibration
problem, fitting with the framework of maximum likelihood
estimation. Moreover, [26], [27] perform visual-inertial time
calibration by temporally aligning orientation curves sensed by
the independent sensors. Yet joint multisensor optimisation-
based calibration strategies are explored in [28], [29]. As
opposed to offline techniques, online temporal calibration via
filtering-based methods (i.e., filtering-based calibration) is a
promising alternative [30], [31]; this strategy models and re-
cursively estimates the time-offset as an additional state-vector
unknown under the hybridisation filter state-space formulation

[31], [32]. In this paper, filtering-based time calibration is
implemented in the context of GNSS/UWB tight integration
and, at the time of writing, applications of online GNSS/UWB
calibration are still missing in the literature.

After exploring the impact of uncalibrated time-offset on
state-estimation performance via plain Extended Kalman Filter
(EKF) hybridisation, an EKF-based filtering model supporting
time-offset calibration is established for GNSS/UWB tight
integration. Nonetheless, the naive EKF-based time calibration
model suffers pitfalls that can compromise integration perfor-
mance under peculiar kinematic conditions [30]. In fact, the
local identifiability [33] of the time-offset - i.e., the accurate
and unique estimation of such an unknown timing parameter
based on the available observables - can be undermined by
the relative geometry between the mobile receiver and the
UWB nodes, thus leading to an ineffective time calibration.
Therefore, a novel, double-update EKF architecture with an
optimized weighting of UWB covariance statistics is put
forward in order to mitigate the impact of the relative UWB
anchors’ geometry on accurate time-offset estimation. The
proposed double-update EKF model is experimentally assessed
to demonstrate the improved positioning accuracy against both
plain EKF integration (i.e., without time-offset calibration)
and EKF integration with naive time-offset calibration. To this
end, after identifying critical kinematic conditions leading to
performance deterioration induced by uncalibrated time-offset,
experiments with simulated data are carried out over sample
vehicular scenarios characterised by considerable variability
of the observable processes. In addition, the effectiveness and
practicability of the proposed time calibration methodology
for GNSS/UWB tight integration are further validated with a
real-world assessment for a vehicular trajectory in a suburban
area.

The paper outline is organized as follows: Section II lays the
mathematical foundations for a discrete-time filtering model
fitting with GNSS/UWB tight integration. After that, Section
III introduces a convenient GNSS/UWB time-offset formula-
tion and carries out a mathematical analysis to highlight the
time-offset propagation on EKF state-estimation error. Then,
Section IV, after enhancing the tight integration model for
EKF-based time-offset calibration, presents the novel, double-
update EKF with adaptive weighting of UWB measurements.
Eventually, Section V experimentally quantifies the navigation
accuracy degradation caused by plain EKF tight integration
and carries out a statistical performance assessment of the
proposed calibration methodology both with simulated and
real-world data.

II. EKF-BASED GNSS/UWB TIGHT INTEGRATION

Addressing the problem of recursive estimation of the time-
varying state of a dynamic system, along with the continuous
flow of noisy observation information, the hybridisation filter
builds upon a Discrete-Time System State Space (DSS) for-
mulation. The latter models the dynamic state evolution of the
tracked mobile agent and the measurements, jointly with the
associated noise statistics [34].
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A. GNSS code-based ranging model

In the observation model for GNSS/UWB tight integration,
GNSS ranging data include raw pseudorange and Doppler-shift
observables. As a matter of fact, pseudorange measurements
carry GNSS satellites-to-receiver ranging information cor-
rupted by the contributions of receiver clock bias, atmospheric
delay, and other impairments affecting the GNSS Signal-in-
Space (SIS) propagation [35]. After compensation of modelled
bias components, the pseudorange measurement equation for
the i-th GNSS satellite at generic epoch k can be written in
metric units as [36]:

ρ
(i)
G,k =

√
(x

(i)
G,k − rx,k)2 + (y

(i)
G,k − ry,k)2 + (z

(i)
G,k − rz,k)2︸ ︷︷ ︸

r
(i)
k

+δtu,k + ϵ
(i)
G,k (1)

where:
• r

(i)
k is the true, geometric range from satellite i to receiver

at epoch k;
• r

(i)
G,k =

(
x
(i)
G,k, y

(i)
G,k, z

(i)
G,k

)
is the k-th epoch position

vector of satellite i expressed in Earth-Centred Earth-
Fixed (ECEF) coordinates;

• ru,k = (rx,k, ry,k, rz,k) is the k-th epoch receiver posi-
tion vector expressed in ECEF coordinates;

• δtu,k is the receiver clock bias term at epoch k;
• ϵ

(i)
G,k is the residual error in the pseudorange measurement

from i-th satellite.
Doppler-shift measurements, instead, bring information

about the relative dynamics between each GNSS satellite
and the receiver; hence, they are relevant to the estimation
of both the receiver velocity and the receiver clock drift.
By differentiating (1), the Doppler-shift model for the i-th
GNSS satellite at generic epoch k can be obtained in terms of
satellite-to-receiver range variation rate [36]:

ρ̇
(i)
G,k = ṙ

(i)
k + δfu,k + ϵ̇

(i)
G,k (2)

where:
• ρ̇

(i)
G,k is the k-th epoch pseudorange-rate measurement

from satellite i;
• ṙ

(i)
k is the rate of change of the true, geometric range

from satellite i to receiver at epoch k;
• δfu,k is the receiver clock drift;
• ϵ̇

(i)
G,k is the residual error in the pseudorange-rate mea-

surement from i-th satellite.
As a matter of fact, the range-rate ṙ

(i)
k can be thought as

the projection of satellite-to-receiver velocity vector on the
transmitter-receiver Line-Of-Sight (LOS) [36]:

ṙ
(i)
k = (v

(i)
G,k − vu,k) · I(i)

k (3)

where:
• v

(i)
G,k =

(
ẋ
(i)
G,k, ẏ

(i)
G,k, ż

(i)
G,k

)
is the k-th epoch velocity

vector of satellite i expressed in ECEF coordinates;
• vu,k = (vx,k, vy,k, vz,k) is the k-th epoch receiver veloc-

ity vector expressed in ECEF coordinates;
• I

(i)
k is the k-th epoch LOS unit vector from the receiver

position to the i-th satellite position expressed in ECEF
coordinates.

Moreover, ρ̇(i)G,k can be also expanded as [36]:

ρ̇
(i)
G,k = −λcf

(i)
d,k (4)

λc being the nominal carrier wavelength of the transmitted SIS
and f

(i)
d,k being the k-th epoch received Doppler-shift from

satellite i. It follows that, by substituting (3) and (4) into
(2), the Doppler measurement model can be expressed as a
function of the unknown receiver velocity and clock-drift states
[36]:

ρ̇
(i)
G,k − v

(i)
G,k · I(i)

k︸ ︷︷ ︸
d
(i)
G,k

= −I
(i)
k · vu,k + δfu,k + ϵ̇

(i)
G,k (5)

B. UWB measurement model
UWB leverages time-based protocols to pursue peer-to-peer

ranging. Adopting a Time-Of-Arrival (TOA)-based ranging
model [37], the baseline UWB ranging equation to the j-th
UWB anchor at generic epoch k can be written as:

ρ
(j)
U,k =

√
(x

(j)
U,k − rx,k)2 + (y

(j)
U,k − ry,k)2 + (z

(j)
U,k − rz,k)2 + ϵ

(j)
U,k (6)

where:
• ρ

(j)
U,k is the measured two-way range from the receiver to

the j-th UWB anchor node;
• r

(j)
U,k =

(
x
(j)
U,k, y

(j)
U,k, z

(j)
U,k

)
is the k-th epoch position

vector of UWB anchor j expressed in ECEF coordinates;
• ϵ

(j)
U,k is the residual error due to additive noise, Non-Line-

of-sight (NLOS) propagation, and further unmodelled
effects [38].

C. GNSS/UWB state-space model
For the GNSS/UWB tight integration architecture under

study, a total-state implementation is considered which esti-
mates absolute properties of the system [39], [40]. Under the
established framework of a discrete-time, EKF-based MAP
tracking filter model [41]–[43], the state-vector at generic
epoch k can be defined:

xu,k =
[
ru,k vu,k au,k δtu,k δfu,k

]T
(7)

where au,k = (ax,k, ay,k, az,k) is the receiver acceleration
vector expressed in ECEF coordinates. As proven in Section
III, GNSS/UWB time calibration is especially required in high-
dynamic scenarios. Therefore, a constant acceleration model
[44] is necessary to ensure enough accuracy of the system
model to finely track the state-vector evolution.

1) GNSS/UWB system model: The discretisation method of
the state-transition function from a continuous-time Linear
Time-Invariant (LTI) system is given in [40]. Given a constant
acceleration model for state dynamics [44], the state-transition
matrix Fk - obtained as the first-order truncation of the power-
series expansion of the linearised system matrix about the
state-vector estimate - can be written as:

Fk =


I3×3 I3×3∆t 0.5I3×3∆t2 03×1 03×1

03×3 I3×3 I3×3∆t 03×1 03×1

03×3 03×3 I3×3 03×1 03×1

01×3 01×3 01×3 1 ∆t
01×3 01×3 01×3 0 1

 (8)
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where ∆t is the time between consecutive epochs (i.e., the
time discretisation step) and I3x3 is the third-order identity
matrix.

The system (or process) noise covariance matrix Qk - which
can also be obtained from the inference method when discretis-
ing the state-transition function [40] - gathers any disturbance
in the state characterization [42], and it can be split into two
terms. By fixing a Cartesian direction (e.g., x-direction) in the
ECEF reference frame, the process noise covariance for the
corresponding navigation components

[
rx,k vx,k ax,k

]T
in

(7) can be expressed as:

Qx,k =

 1
20Sjx∆t5 1

8Sjx∆t4 1
6Sjx∆t3

1
8Sjx∆t4 1

3Sjx∆t3 1
2Sjx∆t2

1
6Sjx∆t3 1

2Sjx∆t2 Sjx∆t

 (9)

where Sjx is the Power Spectral Density (PSD) of acceleration
noise in the ECEF-frame for x-direction. Specifically, formu-
lation (9) is valid under the assumption that process noise
realizations come from a band-limited white noise process as
long as the sampling rate is much less than the double-sided
process noise bandwidth [40]. Equivalent modelling applies to
the other Cartesian directions as well. Similarly, the process
noise covariance for the timing parameters

[
δtu,k δfu,k

]T
in

(7) can be written as:

Qc,k =

St∆t+Sf
∆t3

3
Sf

∆t2

2

Sf
∆t2

2
Sf∆t

 (10)

where St and Sf are the PSDs of clock-bias and clock-drift
noise, respectively.

2) GNSS/UWB observation model: Moving ahead in the
DSS characterisation, the measurement vector for GNSS/UWB
tight integration embeds raw GNSS pseudorange and Doppler-
shift observables (Section II-A) as well as UWB-based auxil-
iary ranging information (Section II-B); at epoch k, it can be
formulated as:

yk =
[
ρ
(1)
G,k ... ρ

(n)
G,k d

(1)
G,k ... d

(n)
G,k ρ

(1)
U,k ... ρ

(m)
U,k

]T
(11)

where n is the number of tracked GNSS satellites and m is
the number of auxiliary UWB anchors. Then, the linearised
observation matrix - which models how measurements can
affect the dynamic system state and which is determined from
the known properties of the system [40] - can be written as:

Hk =

HG
n×3 0n×3 1n×1 0n×1

0n×3 HG
n×3 0n×1 1n×1

HU
m×3 0m×3 0m×1 0m×1

 (12)

In (12), the term HG
n×3 identifies the Jacobian matrix resulting

from first-order linearisation of (1) and (5). It can be written
as:

HG
n×3 =

∂(h1, ..., hn)

∂(rx, ry, rz)
=



−(x
(1)
G − rx)

r(1)
−(y

(1)
G − ry)

r(1)
−(z

(1)
G − rz)

r(1)

−(x
(2)
G − rx)

r(2)
−(y

(2)
G − ry)

r(2)
−(z

(2)
G − rz)

r(2)
...

...
...

−(x
(n)
G − rx)

r(n)
−(y

(n)
G − ry)

r(n)
−(z

(n)
G − rz)

r(n)


(13)

where r(i) is the true geometric range from the receiver to
satellite i. In particular, the i-th row of HG

n×3 collects the
Cartesian components of the unit steering vector pointing from
the receiver position to the i-th satellite position. Similarly, the
term HU

m×3 is the Jacobian matrix for UWB ranging model
(6) and, in row j, it collects the Cartesian components of
the unit steering vector from the receiver position to the j-th
UWB anchor position. Overall, HU

m×3 has a similar structure
to HG

n×3.

III. THE IMPACT OF TIME-OFFSET ON GNSS/UWB
TIGHT INTEGRATION ACCURACY

In this section, after establishing a mathematical formulation
for GNSS/UWB time-offset, a theoretical analysis is carried
out to investigate its impact on EKF-based state-estimation.

A. Time-offset definition
As mentioned in Section I, given independent rates and

time-scales between the GNSS receiver clock and the UWB
transceiver clock, an unknown time-offset exists between the
timestamps of raw GNSS observables and the timestamps of
auxiliary UWB ranging measurements [31].

At a generic epoch k, the tight integration filter combines
GNSS and UWB measurements in the observation model at a
time instant tk tagged to the integration time-scale. Then, two
quantities are identified:

• δtG,k expresses the unknown lag between the available
set of GNSS measurements (timestamped in the GNSS
time-scale) and tk;

• δtU,k expresses the unknown lag between the available
set of auxiliary UWB measurements (timestamped in the
UWB time-scale) and tk;

Then, the GNSS/UWB time-offset is defined as:

td,k = δtU,k − δtG,k (14)

which expresses the misalignment of the timestamp associated
to the set of auxiliary UWB measurements (tagged to the
UWB time-scale) with respect to the GNSS time-scale. The
time-offset td,k includes the shift - under the GNSS time-
scale - between the timestamping times of GNSS and UWB
measurements and it can can be either a positive or a negative
quantity at any epoch.

As a matter of fact, td,k accounts for two time-varying
effects:

• the relative misalignment between the GNSS and UWB
measurements because of the different sampling rates and
clocks of the independent sensors;

• the lag of GNSS and UWB time-scales with respect to
the time-scale of the centralized processing unit running
the GNSS/UWB tight integration algorithm.

While the former effect embeds non-idealities of individual
sensor clocks (e.g., clock drift and latency jitters), the latter
effect is contributed by manifold sources such as data-transfer
latencies, hardware-level processing and software overhead
in the centralised processing unit. Furthermore, under the
assumption of high UWB sampling rate and small drift of
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sensor clocks, td,k can be modelled as a constant between
consecutive estimation epochs. Hence, the GNSS/UWB time-
offset prediction at epoch k matches with the a-posteriori time-
offset update at previous epoch.

A graphical interpretation of the described framework is
provided in Fig. 1. The three subplots are referred to a
common time-scale, i.e. the integration time-scale. The top and
middle subplots show the instants at which GNSS and UWB
measurements are dumped, respectively. The bottom subplot
shows which measurements the integration filter is processing.
In case the measurements were provided at high rate from at
least one of the sensors, and the integration took place at a
time tk at which the low-rate measurements are available, this
time-offset would be negligible. However, in this work, the aim
is to directly estimate td,k as part of the system state, hence
proposing a low-complexity strategy which relaxes constraints
on measurements rates or related assumptions.

𝑡𝑡𝑑𝑑,𝑘𝑘

𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 [𝑠𝑠]

𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈 [𝑠𝑠]

𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼 [𝑠𝑠]

𝜌𝜌𝐺𝐺,1
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𝑛𝑛
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𝑛𝑛

𝜌𝜌𝑈𝑈,1
(𝑗𝑗)
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𝑚𝑚
𝜌𝜌𝑈𝑈,2

(𝑗𝑗)
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𝑚𝑚
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𝑚𝑚
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𝛿𝛿𝑡𝑡𝑈𝑈,𝑘𝑘

Fig. 1: Diagram of the time-offset between GNSS and UWB
measurements involved in a GNSS/UWB tight integration
scheme. For readability, GNSS and UWB time axis are as-
sumed aligned to the integration time axis (bottom).

B. Mathematical Analysis

In light of the framework discussed in Section III-A,
the GNSS/UWB measurement vector (11) collects observ-
ables which are not temporally consistent. In fact, at tk,
the set of available GNSS ranging observables

{
ρ
(i)
G,k

}n

i=1
carry information about the mobile user position rGu,k =(
rGx,k, r

G
y,k, r

G
z,k

)
at a time instant which lags tk by δtG,k. Con-

versely, the available set of auxiliary UWB ranges
{
ρ
(j)
U,k

}m

j=1

bring information about the mobile user position rUu,k =(
rUx,k, r

U
y,k, r

U
z,k

)
at a time instant which lags tk by δtU,k.

Therefore, according to (14),
{
ρ
(j)
U,k

}m

j=1
is not time-aligned

with
{
ρ
(i)
G,k

}n

i=1
.

Focusing on the auxiliary range to the j-th UWB anchor,

(6) can be reframed as:

ρ
(j)
U,k =

√
(x

(j)
U,k − rUx,k)

2 + (y
(j)
U,k − rUy,k)

2 + (z
(j)
U,k − rUz,k)

2 (15)

which clearly highlights the mapping onto rUu,k. For ease of
analysis, the residual error term, ϵ(j)U,k, is neglected hereafter.
Leveraging a continuous-time motion model for state dynam-
ics [45], rGu,k can be related to rUu,k as follows:

rGx,krGy,k
rGz,k

 =


rUx,k +

∫ tk+δtU,k−td,k
tk+δtU,k

vx(t)dt

rUy,k +
∫ tk+δtU,k−td,k
tk+δtU,k

vy(t)dt

rUz,k +
∫ tk+δtU,k−td,k
tk+δtU,k

vz(t)dt

 =

rUx,krUy,k
rUz,k

+

εrx,kεry,k
εrz,k

 = rUu,k + ϵr,k (16)

where vu (t) = (vx (t) , vy (t) , vz (t)) expresses the instanta-
neous speed of the receiver and ϵr,k identifies the displacement
vector along the mobile user trajectory induced by td,k. Given
(16), the UWB range to the j-th UWB anchor time-aligned
to the available GNSS ranging observables (i.e., lagging tk by
δtG,k) can be expressed as:

ρ
(j)′

U,k =
√√√√(x

(j)
U,k − (rUx,k + εrx,k))

2︸ ︷︷ ︸
rGx,k

+(y
(j)
U,k − (rUy,k + εry,k))

2︸ ︷︷ ︸
rGy,k

+(z
(j)
U,k − (rUz,k + εrz,k))

2︸ ︷︷ ︸
rGz,k

(17)

Hence, a UWB ranging error term caused by td,k can be
introduced:

ϵ
(j)
ρ,U,k = ρ

(j)′

U,k − ρ
(j)
U,k =

(
ρ
(j)′

U,k

)2

−
(
ρ
(j)
U,k

)2

ρ
(j)′

U,k + ρ
(j)
U,k

(18)

Substituting (17) and (15) at the numerator of (18), the
following expression is obtained:

ϵ
(j)
ρ,U,k =

∥ϵr,k∥2 − 2(r
(j)
U,k − rUu,k) · ϵr,k

ρ
(j)′

U,k + ρ
(j)
U,k

(19)

which shows that, except for a positive scaling factor at the
denominator, ϵ(j)ρ,U,k depends on two terms:

1) the squared length of the position displacement (i.e., the
squared norm of ϵr,k) induced by td,k;

2) a term which is proportional to the length of the pro-
jection of ϵr,k onto the LOS to the j-th UWB anchor
position r

(j)
U,k.

By manipulating (18), ϵ
(j)
ρ,U,k for each of the m UWB

anchors can be seen as an additive term to the set of auxiliary
UWB range measurements. Consequently, it is possible to
rewrite (11) as:

yk =



ρ
(1)
G,k
...

ρ
(n)
G,k

d
(1)
G,k
...

d
(n)
G,k

ρ
(1)
U,k
...

ρ
(m)
U,k



=



ρ
(1)
G,k
...

ρ
(n)
G,k

d
(1)
G,k
...

d
(n)
G,k

ρ
(1)′

U,k
...

ρ
(m)′

U,k



−



0
...
0
0
...
0

ϵ
(1)
ρ,U,k

...
ϵ
(m)
ρ,U,k


= y

′

k − ϵρ,U,k (20)

where y
′

k collects time-aligned GNSS and UWB ranging
observables. From (20), it is clear that td,k introduces an
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additive error factor ϵρ,U,k in the GNSS/UWB observation
model. This error then propagates on the a-posteriori state-
estimation error delivered by the tight integration filter.

The EKF innovation vector [41] can be written as:

ỹk = yk − h(x̂−
u,k) (21)

where x̂−
u,k is the EKF a-priori state-estimate (i.e., the pre-

dicted state) at epoch k [41]. By expanding (21) according
to (20), the EKF a-posteriori state-estimate (i.e., the updated
state) at epoch k [41] is obtained as:

x̂+
u,k = x̂−

u,k +Kk

y
′

k − ϵρ,U,k︸ ︷︷ ︸
yk

−h
(
x̂−
u,k

) (22)

Kk being the Kalman gain [41], [42] and ϵρ,U,k being the
k-th epoch UWB ranging error term.
Eventually, the a-posteriori state-estimation error due to td,k
can be obtained from (22) as:

ϵρ,x,k = x̂+′

u,k − x̂+
u,k = Kkϵρ,U,k (23)

where x̂+′

u,k and x̂+
u,k are the a-posteriori state-estimates ob-

tained using y
′

k and yk, respectively.
Analysing (23), both Kk and ϵρ,U,k contribute to introduce

errors in the integrated navigation solution. In particular,
Kk amplifies the UWB ranging error propagation on the a-
posteriori state-estimation. In fact, when Kk converges to
an all-zeros matrix - a condition signalling that the EKF is
trusting more the state-prediction than sensors’ observation
information - the impact of ϵρ,U,k is largely mitigated. On
the contrary, the state-estimation performance degradation due
to td,k exacerbates when the integration filter puts very high
confidence on the observables’ set. Moreover, according to
(19), the components of ϵρ,U,k depend upon ϵr,k which, in
turn, is function of vu (t) according to (16). Therefore, when
the components of vu (t) take small values, the a-posteriori
state-estimation error contributed by td,k reduces accordingly.
Oppositely, ϵρ,x,k is expected to grow in high dynamics.

IV. ENHANCED EKF-BASED TIME-OFFSET CALIBRATION
WITH DOUBLE-UPDATE FILTERING

From the analysis presented in Section III-B, td,k can affect
the state-estimation performance as the tight integration filter
processes observables which are not time-consistent. Hence,
the baseline GNSS/UWB tight integration model of Section
II is first improved in order to enable time calibration via
EKF architecture. Then, a novel, double-update EKF filtering
framework is put forward which enhances time calibration
accuracy by adaptively accounting for the local identifiability
of td,k over consecutive epochs [33].

A. Improved GNSS/UWB model for EKF-based
time-offset calibration

An extended state-vector is defined at epoch k:

xu,k =
[
ru,k vu,k au,k δtu,k δfu,k td,k

]T (24)

where, compared to (7), the time-offset td,k is introduced.

Based on (24), and by re-applying linearisation of the pro-
cess function about the state-vector estimate and discretisation
[42], the state-transition matrix modifies as:

Fk =


I3×3 I3×3∆t 0.5I3×3∆t2 03×1 03×1 03×1

03×3 I3×3 I3×3∆t 03×1 03×1 03×1

03×3 03×3 I3×3 03×1 03×1 03×1

01×3 01×3 01×3 1 ∆t 0
01×3 01×3 01×3 0 1 0
01×3 01×3 01×3 0 0 1

 (25)

Using (25) in order to approximate the integral involved in the
computation of ϵr,k based on (16), (15) can be rewritten as:

ρ
(j)
U,k =

√
(x

(j)
U,k − (rGx,k − vx,ktd,k − 0.5ax,kt2d,k))

2

+(y
(j)
U,k − (rGy,k − vy,ktd,k − 0.5ay,kt2d,k))

2

+(z
(j)
U,k − (rGz,k − vz,ktd,k − 0.5az,kt2d,k))

2

(26)

which defines an improved UWB measurement model embed-
ding td,k. Examining (26), the receiver position information
brought about by auxiliary UWB ranges (i.e., rUu,k) gets com-
pensated for the displacement locally induced by td,k in order
to geometrically match with the receiver position mapped by
raw GNSS observables (i.e., rGu,k). Moreover, the proposed
modelling takes rGu,k as the unknown receiver position in the
GNSS/UWB state-space formulation. Therefore, rGu,k matches
with ru,k in (24) at every epoch. Further, based on (26),
modifications are required in the Jacobian matrix for UWB
ranging HU

m×3, assuming m UWB anchors [8].

B. Double-update filtering with adaptive optimisation
Comparing (26) against (15), the receiver position mapped

by ρ
(j)
U,k is moved along the dynamic model using a specific,

yet unknown, value of td,k. Hence, the integration filter can
exploit the DSS characterisation to detect the unknown td,k at
tk based on the difference between ρ

(j)′

U,k and ρ
(j)
U,k.

For the j-th UWB anchor, a function of the unknown state
td,k can be introduced:

f (j) (td,k) = ρ
(j)′

U,k

2
−ρ

(j)
U,k

2
= (ρ

(j)′

U,k−ρ
(j)
U,k)(ρ

(j)′

U,k+ρ
(j)
U,k) (27)

which, by its definition, is proportional to the difference
between ρ

(j)′

U,k and ρ
(j)
U,k, except for a positive amplifying

factor ρ
(j)′

U,k + ρ
(j)
U,k. Given that, after a rough calibration of

UWB transceiver clock [46], td,k takes values of few tens of
milliseconds, (27) can be expanded by substitution of (26) and
(17) and a first-order approximation applies:

f (j) (td,k) = 2td,k(r
(j)
U,k − rGu,k) · vu,k (28)

Apparently, f (j) (td,k) is a function that can drive the quality
of td,k estimation at tk. In fact, the sharper the envelope of
f (j) (td,k) is, the more td,k can be accurately and uniquely
inferred from the set of available observables. Conversely, in
case the first-order derivative of f (j) (td,k) approached a null
value for some interval in the support, td,k estimation would
be jeopardised. By differentiating (28), it is obtained:

df (j) (td,k)

dtd,k
∝ (r

(j)
U,k − rGu,k)︸ ︷︷ ︸

h
(j)
U,k

·vu,k (29)
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which highlights that, the smaller is the inner product between
the receiver velocity vector vu,k and the steering vector to
the j-th UWB anchor location h

(j)
U,k, the weaker is the local

identifiability characterising td,k. This is equivalent to say that
the auxiliary UWB ranging observable associated to the j-th
UWB anchor brings little, if any, information to the integration
filter to support accurate td,k estimation. Fig. 2 displays the
addressed geometrical framework. Moreover, when the inner
product h

(j)
U,k · vu,k is small, td,k would not even cause a

significant mismatch between ρ
(j)
U,k and ρ

(j)′

U,k . As a result,
f (j) (td,k) would have little bearing on td,k estimation.
To cope with the aforementioned phenomenon, the covariance
statistics of auxiliary UWB ranging measurements are adap-
tively weighted in the observation model for GNSS/UWB tight
integration. Formally, accounting for the EKF measurement
noise covariance matrix Rk [41], the estimated variance of the
auxiliary UWB range associated to the j-th UWB anchor is
amplified through the following epoch-dependent coefficient:

A
(j)
k = 1 + Ck

√√√√√1−

 h
(j)
U,k · vu,k∥∥∥h(j)
U,k

∥∥∥ ∥vu,k∥

2

(30)

where Ck is an empirically set scaling parameter to rectify the
instantaneous amplification effect of geometry on Rk statistics.
Focusing on the ranging contribution from j-th UWB anchor,
(30) aims at weighting the degree of trust the integration
filter should put on ρ

(j)
U,k to correct the a-priori prediction

of td,k according to the identifiability conditions driven by
the geometry-dependent behaviour of (29). In particular, the
smaller the sine of the angle between h

(j)
U,k and vu,k (i.e., the

stronger the local identifiability of td,k based on ρ
(j)
U,k), the

smaller the value of the weighting coefficient A
(j)
k . Hence,

the corresponding covariance term modelling the error of ρ(j)U,k

would be smaller in order to enhance the contribution of such
auxiliary range to the update of td,k. Conversely, the larger the
sine of the angle between h

(j)
U,k and vu,k (i.e., the weaker the

local identifiability of td,k based on ρ
(j)
U,k), the larger the value

of A(j)
k . In such a case, ρ(j)U,k is poorly informative to perform

the update of td,k and its variance should be enhanced.
Nevertheless, according to Section IV-A, the adaptive

weighting of UWB covariance statistics is expected to affect
the a-posteriori correction of all state variables in (24), not
just td,k. On this matter, it is essential to remark that, by
its technological properties, UWB is able to deliver high-
accuracy auxiliary ranging information [47]–[49] which can

𝒗𝒗𝑢𝑢,𝑘𝑘

𝒓𝒓𝑢𝑢,𝑘𝑘
𝑈𝑈
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𝜌𝜌𝑈𝑈,𝑘𝑘
(𝑗𝑗)′ 𝒓𝒓𝑢𝑢,𝑘𝑘

𝐺𝐺

𝒉𝒉𝑈𝑈,𝑘𝑘
(𝑗𝑗)

Fig. 2: Example of a scenario characterised by small inner
product between the receiver velocity vu,k and the steering
vector h(j)

U,k to the j-th UWB anchor.

significantly contribute to the update of the navigation states in
(24). It follows that the discussed weighting strategy must not
affect the a-posteriori estimation of these states given that (30)
always operates an amplification of UWB ranging observables’
variance. In light of the foregoing, a double-update EKF
architecture is developed which marginalises the adaptive
weighting on UWB covariance statistics to the a-posteriori
update of td,k. For the remainder states in (24), instead, Rk

statistics are estimated by leveraging functional relationships
with the available measurements [50]. The simplified block
scheme in Fig. 3 illustrates the main stages of the proposed
double-update model with embedded optimisations.

Time Propagation 
of State Estimate
(Prediction Step)

A-posteriori 
estimate of 𝑡𝑑,𝑘

(𝒕𝒅,𝒌 Update)

Adaptive weighting of 
UWB covariance 

statistics based on (30)

Merge posterior 
states and state 

covariance𝒚𝑘

Filter Initialization

Measurement Noise 
Covariance Estimation

෡𝑹𝑘

෡𝑹𝑘
∗

A-posteriori update 
of PVT states

ෝ𝒙𝑢,𝑘
𝑃𝑉𝑇 = Ƹ𝑟𝑢,𝑘 , ො𝑣𝑢,𝑘 , ො𝑎𝑢,𝑘 , 𝛿 Ƹ𝑡𝑢,𝑘 , 𝛿 መ𝑓𝑢,𝑘

෡𝑷𝑢,𝑘
𝑃𝑉𝑇

Ƹ𝑡𝑑,𝑘 , ො𝜎𝑡𝑑,𝑘 ,

ෝ𝒙𝑢,𝑘 , ෡𝑷𝑢,𝑘

ෝ𝒙𝑢,𝑘−1, ෡𝑷𝑢,𝑘−1

ෝ𝒙𝑢,𝑘
− , ෡𝑷𝑢,𝑘

−

Fig. 3: Processing stages of the double-update EKF architec-
ture with adaptive weighting of UWB covariance statistics for
the enhanced calibration of td,k. The input measurement vector
yk is highlighted.

V. RESULTS ANALYSIS

In this section, experiments are presented to assess and
validate both the theoretical analysis and the proposed time
calibration methodology. In particular, Section V-B simulates
the impact of uncalibrated td under varying receiver kine-
matics when leveraging plain EKF tight integration. Then,
the following Sections V-C, IV-B compare the simulated
and real-world accuracy performance of the double-update
EKF architecture against both the EKF model with naive
td calibration and the plain EKF hybridisation. For ease of
notation, the discrete-time index k is omitted henceforth.

A. Experimental set-up and methodology
To pursue the forthcoming assessment, sample vehicular

scenarios are first generated through a Radio Frequency (RF)
GNSS simulator - IFEN® Network Constellation Simulator
(NCS) Titan - in view of extracting the reference trajectory
for the simulated vehicular target with a high position update
rate of 250Hz (i.e., 4ms). The simulated trajectory - the
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Bernoullian Lemniscate - is centered in a location specified
by its ellipsoidal World Geodetic System 1984 (WGS84)
coordinates (Latitude 45.063 981°, Longitude 7.659 017°) with
an horizontal extension of 100m. From the trajectory center,
a network of three static UWB anchors are displaced at a
fixed distance of 20m and to an height of 5m (measured
along the vertical direction after taking local tangent plane
approximation in correspondence of the trajectory center). A
snapshot of the considered scenario is provided in Fig. 4a.
For sake of rigorousness, it is remarked that the anchors’
placement has been chosen with the sole purpose of establish-
ing a uniform geometric distribution around the Lemniscate
centre. Nevertheless, despite out of the scope of this study
and left to future investigations, the geometry of the UWB
network must be carefully taken into account since the relative
localisation estimates’ accuracy at each time instant strongly
depends on the local position of the mobile target with respect
to the auxiliary UWB nodes [51]. Finally, the simulated Global
Positioning System (GPS) constellation with the motion track
of the satellites is given in Fig. 4b; an elevation mask of 15◦ is
used in order to prevent GNSS-based positioning performance
deterioration from low-elevation satellites [36].

Based on the addressed scenario, simulations are run by
configuring multiple receiver average speeds: 1m/s, 2m/s,
5m/s, 10m/s, 15m/s, and 20m/s. Over the different sim-
ulations, a shared time-span with a total duration of 3102
epochs is preserved to guarantee consistency in the comparison
of the output results at different target speeds. Raw GNSS
observables are logged via the NCS unit for GPS L1 C/A
signals at 10Hz rate (i.e., 100ms) in RINEX format. To pre-
vent from idealities, ionospheric effects are modeled inside the
GNSS simulator. Logging of ephemeris data is also allowed
by the NCS. On the UWB side, for each 250Hz position fix
in the ground-truth, high-accuracy ranging data to the three
UWB anchors are synthetically constructed by leveraging an
empirical model proposed in [52], which has been prelimi-
nary tested and validated in order to pursue the scopes of
this research. Following this approach, UWB datasets with
intentional td have been constructed. The empirical parameter
Ck in (30) is set to 1 after some tests. Finally, by accounting
for the GNSS/UWB tight integration framework treated in
Section II, a C-language software implementing the EKF-
based filtering architectures presented in this paper is run in
post-processing on the retrieved datasets. For sake of com-
pleteness, Table I specifies relevant settings for matrix Qk used
in the post-processing software and common to all integration
architectures. Moreover, the measurement covariance Rk is
constructed based on [50] and leveraging the synthetic UWB
model [52]. Eventually, state-space domain initialisation for
the involved filters is obtained from a Weighted Least-Squares
(WLS) positioning solution [35].

B. Impact of uncalibrated td on positioning accuracy
under varying receiver kinematics

The purpose of such analysis is to build a positioning
error map which, depending on the mobile receiver kinemat-
ics and on the application-dependent accuracy performance
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Fig. 4: Experimental scenario. Simulated Bernoullian trajec-
tory travelled by the vehicular target T with three static UWB
anchors of opportunity (a). Sky-plot diagram of the simulated
GPS constellation. The red dashed line in the elevation grid
highlights the cutoff elevation angle (b).

TABLE I: Parameter configuration for process noise covariance
matrix Qk used in the GNSS/UWB tight integration post-
processing software.

Parameter Value Physical meaning

Sj,x Sj,y Sj,z 0.4m2/s5 PSD of acceleration noise

St 36 s PSD of clock bias noise

Sf 0.01 s3 PSD of clock drift noise

Sdt 0.01 s PSD of time-offset noise

requirements, can suggest whether it is worth or not imple-
menting td calibration for GNSS/UWB tight integration. To
this end, given the sample vehicular scenarios at different
average speeds (Section V-A), synthetic UWB ranging datasets
affected by diverse nominal td’s are processed.

Fig. 5 shows a heatmap chart of the positioning Root-Mean-
Square Error (RMSE) for horizontal and vertical directions,
respectively. Moreover, the line charts in Fig. 6 highlight both
the horizontal and the vertical RMSE patterns over varying
td, and are parameterised by different average receiver speeds.
The positioning RMSE positively correlates with both receiver
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speed and td, especially when accounting for the horizontal
component (the upper plot of Fig. 6). More precisely, for
td values smaller than 10ms, the measured RMSE is almost
unaffected by the receiver kinematics. However, above 10ms,
it exhibits a nearly exponential increase with the average
receiver speed. Looking at the overall horizontal RMSE pattern
for small receiver speeds, the increase is nearly linear with
td, and this agrees with the mathematical analysis carried
out in Section III-B. At a given estimation epoch, Kk is
mostly the same for different td values. Besides, under low
kinematics, the receiver speed can be considered constant over
a time-span equal to td (which is of the order of tens of
milliseconds). As a result, recalling (23), ϵρ,U,k and ϵρ,x,k
increase proportionally with varying td following a linear
relationship. On the contrary, under higher kinematics, the
receiver speed can not be considered constant any more due
to the larger instantaneous acceleration. Therefore, the RMSE
would not prompt a fixed slope anymore.

Concerning the vertical direction, instead, the RMSE pattern
is apparently less regular. Overall, it grows for increasing td,
but it flattens off as low receiver kinematics are considered.
Furthermore, the vertical RMSE statistics are further penalised

Fig. 5: Heatmap chart of the horizontal and vertical posi-
tioning RMSEs in East North Up (ENU) coordinates under
uncalibrated GNSS/UWB tight integration. The horizontal axis
shows different receiver average speeds. The vertical axis
represents different values of td. RMSE is expressed in units
of metre.

by the UWB anchors’ geometry, and they fluctuate with speed
in low kinematic conditions as well.

Table II specifies the percentage proportion of horizontal
RMSE contributed by uncalibrated td to errors contributed by
other sources. For simulations in low kinematics, td marginally
contributes to the measured RMSE. For instance, for a large
td of 100ms, the RMSE increase amounts to only 12.44%
at 1m/s average speed. However, when the average receiver
velocity increases to 20m/s, the measured horizontal RMSE
enhancement due to uncalibrated td grows up to 545.37%.

C. Enhanced double-update EKF error statistics

In this section, with the aim of pursuing a state-estimation
performance analysis in terms of both positioning error statis-
tics and time-calibration accuracy, the simulated GNSS dataset
for 20m/s average receiver speed is post-processed with a
UWB ranging dataset affected by nominal td = 40 ms. In fact,
under these operating conditions, a remarkable positioning
accuracy degradation has been measured for uncalibrated tight
integration according to Table II.

1) Positioning statistics and time-calibration performance: In
Fig. 7, the time-series of td estimates are outlined for both
EKF with naive td calibration and double-update EKF. In
addition, RMSEs of td estimates are summarised in Table III
for the considered time-calibration architectures. Apparently,
the double-update EKF architecture delivers a smoother td
estimate (i.e., with lower variance) compared to the results
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Fig. 6: Trend of the RMSE on the horizontal and vertical
positions in ENU-coordinates for different values of td. Error
curves are parameterised by the receiver average speed.

TABLE II: Percentage increment of the horizontal positioning
RMSE contributed by uncalibrated td.

td [ms] Average Receiver Speed [m/s]

1 2 5 10 15 20

8 0.51 0.15 -1.07 1.56 0.00 9.33

20 1.53 1.02 2.32 13.63 20.55 57.56

40 3.16 3.66 16.37 52.17 84.01 169.68

60 5.86 8.70 39.29 101.96 159.82 290.67

80 8.87 15.37 66.55 156.56 240.13 420.47

100 12.44 22.19 97.20 213.06 322.71 545.48
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Fig. 7: Time-series of estimated td for the simulated trajectory
at 20m/s average receiver speed. Comparison between EKF
with naive td calibration and double-update EKF. Nominal td
values of 20ms, 40ms and 80ms are considered.

TABLE III: Time-offset estimation RMSE [ms] for different
nominal td values.

Tight integration filter td [ms]

20 40 80

EKF with td-calibration 4.9031 4.8957 4.9460

Double-update EKF 3.6051 3.8301 4.8610

obtained from the EKF with naive td calibration. In particular,
according to Table III for nominal td = 40 ms, the double-
update EKF pursues a time-calibration accuracy - in RMSE
terms - of 3.83ms, which is higher than that achieved by
the EKF with naive td calibration (i.e., 4.90ms) and which
translates into a RMSE improvement of 21.77%.

Fig. 8 highlights the time-series of the positioning error
in both the horizontal and the vertical directions. From a
general standpoint, both filtering architectures implementing
td calibration substantially improve horizontal RMSE statistics
compared to a plain EKF tight integration, although the
vertical gain is moderate due to the poor UWB geometry. More
in depth, accounting for the horizontal positioning accuracy
in RMSE terms, the EKF with naive td calibration reduces
the error from 0.46m to 0.26m compared to a plain EKF
integration, and a further higher error reduction down to
0.18m is obtained through the double-update EKF scheme.

Further, Fig. 9 illustrates the Empirical Cumulative Density
Functions (ECDFs) of the horizontal and the vertical posi-
tioning errors in ENU coordinates. What’s more, Table IV
summarises the horizontal error statistics at few percentiles
of interest. At the 50-th percentile, the double-update EKF
achieves an average horizontal accuracy gain of 69.80% over
the plain EKF and of 33.73% over the EKF with naive td
calibration. At the 95-th percentile, instead, the measured
horizontal accuracy gains amount to 41.60% and 15.43%,
respectively.

Eventually, Table V reports the execution times of involved
filtering architectures based on a laptop with Intel i7-10750H
(2.6GHz) processor and 16 GB memory. The EKF with naive
td calibration keeps almost the same computational complexity
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Fig. 8: Horizontal (top) and vertical (bottom) position error
trend in ENU-coordinates. Comparison between plain EKF,
EKF with naive td calibration and double-update EKF. For
each architecture, horizontal and vertical RMSE levels are
highlighted.
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Fig. 9: Empirical CDF (ECDF) lines of the horizontal (top)
and vertical (bottom) positioning errors in ENU-coordinates.
Comparison between plain EKF, EKF with naive td calibration
and double-update EKF.

TABLE IV: Evaluation of horizontal positioning errors [m]
for the different EKF architectures considering 310 s (3102
epochs) of PVT computation.

Tight integration filter
Error Percentile [m]

50-th 75-th 95-th

Plain EKF (uncalibrated) 0.4443 0.5174 0.6524

EKF with td-calibration 0.2025 0.2925 0.4505

Double-update EKF 0.1342 0.1946 0.3810

as the plain EKF. The proposed double-update EKF increases
34.46% execution time compared to the plain EKF.

2) Horizontal error statistics for different values of td: To
further assess the proposed EKF-based architectures imple-
menting td calibration, multiple UWB ranging datasets are
tightly integrated for different nominal td values: 20ms, 40ms
and 80ms. Looking back at the time-series of the estimated td
in Fig. 7, the double-update EKF always pursues higher time-
calibration accuracy than the EKF with naive td calibration,
and the delivered td estimates have smaller variance. In partic-
ular, according to Table III, the double-update EKF achieves
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TABLE V: Program execution time for the different EKF archi-
tectures considering 310 s (3102 epochs) of PVT computation.

Tight integration filter Program execution time [s]

Plain EKF (uncalibrated) 18.949

EKF with td-calibration 19.113

Double-update EKF 25.479

RMSE accuracy gains of 26.33% and 1.81% for nominal td
values of 20ms and 80ms, respectively.

Table VI summarises the horizontal positioning RMSEs in
units of metre. As it can be seen, the RMSE for a tight
integration via the plain EKF almost doubles for doubling
td, given fixed average receiver speed. Besides, for td = 20
ms, the double-update EKF pursues an average horizontal
accuracy gain of 26.79% RMSE over the EKF with naive
td calibration. Furthermore, for a larger td = 80 ms, the
horizontal gain achieved by the double-update EKF amounts to
14.41%. Globally, with the increase of td, the double-update
EKF positioning accuracy improvement drops slightly, and
measured RMSEs are close to 0.20m.

Eventually, horizontal summary statistics can be observed in
Fig. 10 in terms of error mean, spread and skewness character-
ising the positioning estimates delivered by the analysed filters.
The superior performance of the proposed double-update EKF
algorithm is hence assessed with respect to the other solutions.

3) Horizontal error statistics for varying UWB ranging ac-
curacy: From Section IV, the underlying principle of td
calibration involves the identification of the misalignment
between the position information mapped by GNSS and UWB
ranging observables by leveraging the system dynamic model.
Therefore, the higher the UWB ranging accuracy is, the more
accurate the identification of positions’ misalignment should
be. In turn, td estimation accuracy is expected to improve.

To test the impact of UWB ranging accuracy degradation
on tight integration performance, synthetic UWB datasets
with amplified UWB ranging measurements’ noise standard
deviation are generated for integer scaling factors equal to 1
(i.e., no amplification), 2 and 4. In the analysis, the simulated
kinematic scenario at 20m/s average receiver speed is consid-
ered under fixed td = 40 ms. Table VII collects the horizontal
positioning RMSEs in units of metre. By cross-comparing the
measured RMSEs at td = 40 ms in Table VI, the accuracy
performance of both the EKF with naive td calibration and the
double-update EKF drops when the UWB ranging accuracy
deteriorates. However, the double-update EKF still guarantees
superior positioning accuracy performance for any degree of
UWB ranging accuracy.

D. Real-world test

To validate the performance of the proposed filtering-based
calibration methodology for GNSS/UWB tight integration,
a real-world experiment has been carried out about a car
ride in a suburban area of the Metropolitan city of Turin
(Italy). The maximum achieved average vehicle speed is

TABLE VI: Horizontal positioning RMSE [m] for different
nominal td.

Tight integration filter td [ms]

20 40 80

Plain EKF (uncalibrated) 0.2702 0.4625 0.8926

EKF with td-calibration 0.2503 0.2557 0.2755

Double-update EKF 0.1828 0.1931 0.2358
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Fig. 10: Box plot of the horizontal positioning error statistics
for nominal td values of 20ms, 40ms and 80ms.

TABLE VII: Horizontal RMSE [m] for different UWB ranging
accuracy

Tight integration filter
Multiplied times of ranging
errors’ standard deviation

1 2 4

Plain EKF (uncalibrated) 0.4625 0.4583 0.4615

EKF with td-calibration 0.2557 0.3257 0.4283

Double-update EKF 0.1931 0.2330 0.2948

about 10m/s. Fig. 11 provides a snapshot of the considered
scenario. Although the chosen experimental environment is not
expected to severely degrade the quality of GNSS observables,
the results of the following analysis are still valuable. In
fact, the primary goal of this section is not just validating
GNSS/UWB tight integration per se, but rather to emphasize
the accuracy improvements GNSS/UWB tight integration can
benefit from embedding the proposed time calibration strategy.
Furthermore, good GNSS conditions would even be a worst
case for GNSS/UWB tight integration because auxiliary UWB
measurements might not bring remarkable accuracy gains.

A u-blox ZED-F9P high-precision module has been lever-
aged which integrates multi-band GNSS and Real-Time Kine-
matic (RTK) technology [53]. Such positioning module is
commonly used in the industrial navigation and robotics mar-
kets. In addition, a high-gain, multi-band SinoGNSS AT340
geodetic antenna has been deployed [54]. GNSS noisy pseu-
dorange and Doppler-shift measurements have been logged
through the u-blox module for the GPS constellation at 10Hz
rate. In parallel, the multi-band RTK solution from the high-
precision GNSS module has been retrieved in order to grant a
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Fig. 11: Snapshot of the experimental scenario for the real-
world test campaign. The deployed network of static UWB
anchors is shown. Moreover, the UWB tag and the GNSS
antenna on the road vehicle’s roof are highlighted.
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Fig. 12: Map view of the ground reference for the real-world
dataset used in the validation of the proposed online time
calibration method for GNSS/UWB tight integration.

ground truth (i.e., reference trajectory) useful for the estima-
tion of the error statistics in the tightly integrated navigation
solution. The ground-truth path for the tested trajectory is
shown in Fig. 12.

On the UWB side, consumer EVB1000 boards from Qorvo
Inc. have been employed [55]. In particular, three UWB mod-
ules have been installed on tripods as static anchors and their
positions have been estimated at sub-decimetre level accuracy.
In addition, a fourth UWB module has been operated as tag
and installed on the road vehicle’s roof. The deployement of
both the UWB tag and the GNSS antenna on the vehicle are
further highlighted in Fig. 11. As a remark, efforts have been
made to minimise the lever arm between the phase centres
of the GNSS and the UWB antennas. UWB measurements
to the network of static anchors have been logged through
the EVB1000 tag module at 5Hz rate. When the UWB tag
forwards a new measurement to the laptop via the serial
port, the Universal Time Coordinated (UTC) time from the
laptop is recorded as the timestamp of the corresponding UWB
measurement. Besides, a time-offset of 100ms is intentionally
added to each measurement sample in the UWB dataset in
order to enhance the magnitude of GNSS/UWB time-offset.
Nonetheless, being added to all the UWB measurement sam-
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Fig. 13: Horizontal (top) and vertical (bottom) position error
trend in ENU-coordinates for the real-world dataset. Compar-
ison between plain EKF, EKF with naive td calibration and
double-update EKF.

Fig. 14: Box plot of the horizontal positioning error statistics
in ENU-coordinates for the real-world dataset. Comparison
between plain EKF, EKF with naive td calibration and double-
update EKF.

TABLE VIII: Horizontal positioning RMSE [m] for different
td calibration architectures in the real-world test.

Tight integration filter Horizontal positioning RMSE [m]

Plain EKF (uncalibrated) 0.8043

EKF with td-calibration 0.4947

Double-update EKF 0.3412

ples by the same amount, it does not undermine the method-
ology assessment. Furthermore, due to the inaccuracies and
non-idealities of the laptop’s clock as well as the transmission
delays affecting UWB measurements, it has not been possible
to retrieve the ground-truth for the GNSS/UWB time-offset.
Anyhow, the proposed time-calibration techniques can still be
validated by assessing positioning error statistics w.r.t. to the
ground truth.

Fig. 13 shows the positioning error time-series both for the
horizontal and vertical components in local ENU frame. As a
matter of fact, vertical statistics are penalised by the geometry
of the deployed network of UWB anchors. In addition, the
vertical component of the vehicle speed approaches zero for
most of the trajectory course. Focusing on the horizontal com-
ponent, Table VIII summarises the positioning RMSEs in units
of metre. The double-update EKF achieves horizontal RMSE
improvements of 31.03% and 57.58% compared to the EKF
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with naive td calibration and the uncalibrated tight integration
via plain EKF, respectively. Eventually, horizontal summary
statistics for the real-world dataset are highlighted in Fig. 14
in terms of error mean, spread and skewness characterising the
positioning estimates delivered by the analysed filters. At the
75-th percentile, the double-update EKF achieves horizontal
gains of 38.54% over the EKF with naive td calibration and
of 63.67% over the plain EKF. As such, a globally exhaustive
evidence of the superior performance of the proposed double-
update EKF algorithm for online GNSS/UWB time-calibration
is given. It is worth noticing that the conditions of the exper-
imental environment (i.e., few UWB anchors while generous
open sky visibility of GNSS satellites) do not limit the validity
of the test. The scenario is suboptimal in terms of maximum
achievable accuracy of a tight GNSS/UWB architecture, but it
shows the benefits introduced by the proposed time calibration
technique.

VI. CONCLUSIONS

Time calibration is of great concern in GNSS/UWB tight
integration leveraging centralised EKF hybridisation, and this
paper has explored the impact of uncalibrated GNSS/UWB
time-offset on state-estimation accuracy both theoretically and
experimentally. Based on these premises, an EKF-based frame-
work has been proposed to address time-offset calibration.
First, an improved GNSS/UWB tight integration model has
been presented to enable the modelling of the unknown time-
offset as part of the EKF-based state-space formulation. Then,
after pointing out criticalities in time-offset estimation owing
to local losses of identifiability, an enhanced, double-update
EKF architecture has been put forward which adaptively
weights UWB covariance statistics. Simulation results demon-
strate that, under challenging kinematic conditions causing re-
markable accuracy deterioration for uncalibrated GNSS/UWB
tight integration, the EKF with naive time-offset calibration
can reduce the horizontal positioning RMSE from 0.4625m
to 0.2557m, while the double-update EKF with statistical
modelling optimisations can achieve higher RMSE reduction
down to 0.1931m. Moreover, results obtained with a real-
world dataset further assess the superior double-update EKF
performance by highlighting horizontal gains of 57.58% com-
pared to the uncalibrated tight integration via plain EKF and
of 31.03% over the EKF with naive time-offset calibration.
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