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Autonomous Driving in Highway Scenarios through
Artificial Potential Fields and Model Predictive Control

M. Canale∗, A. E. Belvedere, V. Razza

Abstract— An approach for automated driving in highway
scenarios in the context of a two levels hierarchical architecture
is proposed. In particular, we define suitable artificial potential
functions (APF) combinations that can effectively handle the
most relevant maneuvers of highway driving, such as speed
and distance tracking, lane keeping, overtaking and returning.
Parameters of the APF functions are dynamically tuned accord-
ing to the acquired scenario. The defined APF are included in
the cost function of a Model Predictive Control (MPC) control
problem to generate the path trajectory. A behavioral logic
described by a finite state machine (FSM), based on sensor
acquired data and suitable dynamic conditions is defined to
select the most appropriate maneuver to realize. Extensive
simulation tests are introduced to show the effectiveness of the
proposed approach.

I. INTRODUCTION

In the last decades, advanced driving assistance systems
(ADAS) have gained the attention from both academia and
industry. Car manufactures have equipped their vehicles with
several automated driving features, such as lane keeping and
adaptive cruise control, that are leading to more complex
fully autonomous driving cars. In this perspective, several
manufactures are already facing autonomous vehicles (AV),
e.g., Waymo [1], Tesla [2], and Audi [3]. According to
the society of automotive engineers (SAE) classification
([4]), the safety systems are the lower levels of vehicle
automation.
The key component of autonomous driving is the path
planner, that aims at finding the optimal collision free path
to the target destination. In the literature, several approaches
have been investigated. In low complexity environments, A∗
algorithm is deeply analyzed (see, e.g. [5], [6]).
Another effective approach is based on the use of potential
fields functions, where the final target is represented by
an attractive potential and the obstacles are described by
repulsive potentials. The environment is represented by the
combination of different fields and the path is given by the
minimum energy trajectory. Artificial potential fields (APF)
have been firstly introduced in [7] as a collision avoidance
method for robotic manipulator and mobile robots. The
main advantage of this method is the possibility to adapt
the path generation in closed loop with the environment
([8]). However, the APF approach cannot account for
overall vehicle limitations, e.g., on steering angle ratio and
longitudinal acceleration. These constraints can be taken
into account through customized potential fields (see, e.g.,
[9]), or combining APF scenario description together with
control methodologies well suited for vehicle dynamics
control. In particular, model predictive control (MPC)
is an effective control technique in different automotive
applications, which takes into account the vehicle dynamical
limits ([10]). The possibility to dynamically build the APF
at each sample time can be exploited from the MPC strategy
through its intrinsic receding horizon principle. In [11], the
authors combine APF and MPC for path planning, while
a collision avoidance algorithm is presented in [12]. In
both [11] and [12], path generation and vehicle control are
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performed exploiting a single level hierarchical architecture
where the MPC algorithm performs at the same time as
path generator and motion controller. In particular, in such
approaches, vehicle dynamics are accounted for by a single
track dynamic model, while closed loop stability is ensured
by means of suitable additional constraints in the MPC
underlying optimization problem. Other approaches, instead,
exploit two levels architectures: the upper level, made up
by an MPC path planner, computes the vehicle trajectory
and the speed to be tracked by the vehicle, while the lower
level implements the vehicle longitudinal and lateral control
functions that realize the needed maneuver.
In this paper, we propose an approach for automated
driving in highway scenarios in the context of a two levels
hierarchical architecture. In particular, we define suitable
APFs combinations that can effectively handle the most
relevant maneuvers of highway driving, such as speed and
distance tracking, lane keeping, overtaking and returning.
Parameters of the APF functions are dynamically tuned
according to the acquired scenario. The defined APF are
included in the cost function of an MPC control problem to
generate the path trajectory. A behavioral logic, described by
a finite state machine (FSM) and based on sensor-acquired
information and suitable dynamic conditions, is defined to
select the most appropriate maneuver to realize.

II. VEHICLE MODEL

Here, we assume that an autonomous vehicle, denoted
as the host vehicle (HV), is moving in a highway sce-
nario according to the SAE automation level 3, see [4].
In the considered highway driving scenario, characterized
by maneuvers with small steering angles, the single track
kinematic model described in Fig. 1 appears a reasonable
choice to describe the lateral behavior for path planning
purpose, see, e.g., [13]. Furthermore, in Fig. 1, the frame
(x,y) is introduced to define the vehicle behaviour and
the local frame(X ,Y ) to describe its interaction with the
highway environment. The nonlinear kinematic equations of
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Fig. 1. Single-track kinematic model schematic and frames.



the single-track model are reported below.
ẋ(t) = v(t) cos(θ(t))
ẏ(t) = v(t) sin(θ(t))

θ̇(t) =
v(t)
L

tan(δ (t))
v̇(t) = a(t)
δ̇ (t) = ωδ (t)

(1)

In (1), x, y and θ describe the pose of the HV rear axle in
the frame, v is the longitudinal speed, δ is the steering angle
and L is the wheelbase. The relevant variables in (1), can be
collected in a state vector ξ defined as

ξ = [x,y,θ ,v,δ ]T . (2)

Moreover, the longitudinal acceleration a= v̇ and the angular
speed ωδ = δ̇ acts as exogenous inputs.

In this paper, we assume that the HV is equipped with a
quite complete sensor configuration as described in the list
below.

1) Vehicle dynamic sensor for acquisition of the relevant
longitudinal and lateral variables.

2) Front camera, to detect and reconstruct lane edge and
curvature.

3) Surround view cameras to detect lateral scenarios such
as vehicles in adjacent lanes.

4) Front radar (long and short range) to detect preceding
vehicles relevant variables such as relative distance dR
and speed vR.

5) IMU unit for the most relevant inertial measurements.
6) GPS to locate the vehicle in world coordinate.

III. ARTIFICIAL POTENTIAL FIELDS FOR AUTONOMOUS
DRIVING

Artificial Potential Fields (APF) are an efficient tool to
handle quite complex scenarios in autonomous driving. In
fact, through the definition of suitable virtual attractive or
repulsive forces, APF can generate safe regions to keep the
vehicle trajectory and to reach target locations while keeping
a safety distance to obstacles.
In the considered context, an APF is a real non-negative
scalar function P(X ,Y ) of the local coordinates (X ,Y ). The
negative gradient −∇P(X ,Y ), see, e.g. [14], provides the
resulting virtual force magnitude and direction that the APF
exerts on the HV. The combination of two or more APF can
account for standard maneuvers in highway scenarios such
as lane keeping, overtaking and maintaining target distance
to a preceding vehicle. In the next subsections, III-A, III-B
and III-C, details about how such maneuvers can be handled
through the choice of suitable combinations of APF are
introduced.

A. Lane Keeping
During the lane-keeping phase, the control system drives

the vehicle to track the centre of the lane, keeping the correct
orientation. In terms of APFs, this control feature can be
accounted for through an attractive field such that the virtual
force pulls the vehicle towards the centre of the lane. To this
purpose, the combination P̀ of two second-order Gaussian
functions P̀ l and P̀ r centered at the left and the right border
lane, respectively, is employed as described in (3).

P̀ = P̀ l + P̀ r (3)

where

P̀ i = P0 exp
(
− di

γ0

)4

, i = l,r (4)

with

di =
√
(X−X0i)

2 +(Y −Y0i)
2, i = l,r. (5)

In (4), P0 is the height of the field, γ0 is the width and di
is the Euclidean distance between the vehicle and the left
and right borders of the lane fixed at points (X0l ,Y0l ) and
(X0r ,Y0r) respectively. A suitable selection of the parameters
P0 and γ0 allows one to describe the lane keeping task. In
particular, since the task objective is to prevent the vehicle
from escaping the lane and not to overtake, it is sufficient to
permanently assign P0 a high value. Parameters γ0i , can be
computed by assigning a specific value to the field function
at the target distance dtar. In this case the target distance is
the center of the lane whose width is wL, i.e. when dtar =

wL

2
.

In this way, according to (4) and (5), γ0 can be computed as

γ0i = 4

√√√√√ −dtar

log
(

PLi(dtar)

P0

) . (6)

Fig. 2 shows an example of the resulting APF for a curved
road with width wL = 3.6 m, dtar = 1.8 m and curvature
radius R = 500 m. The other parameters are P0 = 100,
PLi(dtar) = 0.1, i = l,r. In the proposed situation, the right
lane is the road boundary and it is represented by a straight
line. The red line is the center lane reconstruction that
matches with the local minimum of the function P̀ i .

Fig. 2. Lane keeping APF. Blue areas represent low-value points while
yellow areas represent high-value points.

B. Lane Changing
The goal of Lane Changing is to move the vehicle from

one lane to the adjacent one. Similarly as the lane keeping
task, the combination of two repulsive fields is employed
to perform the maneuver. For simplicity, we analyze a lane
change to the left, e.g., for an overtaking maneuver. Similar
considerations hold for the case of right lane change. A first
repulsive field is centered on the right line, while a second
field is responsible for damping and limiting the vehicle
motion as it enters the new lane. As the vehicle enters into the
new lane, the high level logic switches the working mode to
lane-keeping, and the vehicle is driven to the lane center. The
actual implementation employs the same fields proposed for
lane keeping with minor modifications. In particular, since
the first field must push the vehicle to the new lane, a part of
it must overlap the new lane. Thus, γ0 is computed according
to (6) with dtar = wL. In this way, the objective becomes to
track the center of the destination lane. Fig. 3 reports an
example of the APF employed to perform a line change.



Fig. 3. Example of lane change PF built to move on the left line.

C. Obstacle Potential Field

The obstacles APF describes the influence of the obstacle
vehicles (OV) on HV and thus, several fundamental aspects
must be considered when building the APF. Here, it is
assumed that the HV sensors can provide either directly or
indirectly information about the obstacle pose (XO,YO,ψO)
and speed vO. Notice that, with respect to the HV frame, the
obstacle kinematic behavior can be described by a single-
track model similar to the one reported in (1).
The final goal of the obstacle APF is to regulate the HV
speed v to keep a desired distance dtar from a preceding
vehicle that travels at given speed vO. Basically, we consider
the case when an obstacle is in the same lane of the vehicle
and it is not possible to perform an overtaking maneuver
because of the presence of vehicles in the left lane. The
target distance is defined as

dtar,o =

{
d0 + tHvi, v≤ vO

d0 + tHvP +
(v−vO)

2

2adec
, v > vO

(7)

where adec is the desired deceleration magnitude value, d0
is a safety distance that includes the size of the obstacle, vO
is the obstacle speed and tH is the time headway, defined as
tH = dO

v , where dO is the relative distance between the vehicle
and the obstacle. To impose a smooth maneuver during the
target distance approaching, two phases are considered:

1) the vehicle decelerates thanks to a repulsive field;
2) the vehicle tracks the target position through an attrac-

tive field.
Considering the coordinates (XO,YO) and the direction ψO of
the obstacle in the local HV frame, the following first-order
Gaussian function is introduced to describe the repulsive
APF for phase 1) described above

Po,r = P0 · exp
(
−
(
(X̃− X̃O)

2

γ2
X

)
−
(
(Ỹ − ỸO)

2

γ2
Y

))
(8)

where [
X̃
Ỹ

]
= T ·

[X
Y

]
,

[
X̃O
ỸO

]
= T ·

[XO
YO

]
(9)

and

T =
[ cosψO sinψO
−sinψO cosψO

]
. (10)

The parameters γX and γY define the Gaussian function
sizes along the principal obstacle axes, while P0 defines the
function height. A similar procedure, as the one described

by (6), is employed to compute both γX and γY

γX =

√√√√ −dtar,o,X

log

( P0

Po,r(dtar,X )

) , γY =

√√√√ −dtar,o,Y

log

( P0

Po,r(dtar,Y )

)
(11)

Assuming to travel on a semi-straight road, it is reasonable
to choose dtar,o,X = dtar,o, see (7). Notice that dtar,o,X depends
on the relative speed between HV and obstacle. As to dtar,o,Y ,
a suitable fixed value that depends on the obstacle width is
selected. Moreover, Po,r(dtar,X ) = Po,r(dtar,Y ) = P̄o is chosen.
Fig. 4 reports an example of the repulsive obstacle APF,
where the relevant parameter values are: XO = 50 m, YO =
−2.6 m, ψ0 = −4.7◦, vO = 20 m/s, d0 = 2 m, tH = 1.5 s,
P0 = 100, d̄tar,o,Y = 3 m, and P̄o = 0.1. For the second phase,

Fig. 4. Obstacle repulsive field: Blue areas represent low-value points,
while yellow areas high-value points.

the attractive APF function is chosen as

Po,a = P0 ·
(

1− exp
(
−
(
(X̃− X̃ ′O)2

γ2
X

)
−
(
(Ỹ − Ỹ ′O)2

γ2
Y

)))
(12)

where (X̃ ′O,Ỹ ′O)=(XO−dtar, YO). The parameters in (12) are
tuned through the same procedure described for (8).

IV. MPC PATH PLANNER

In this section, we describe how the path planning task is
effectively approached through the use of Model Predictive
Control (MPC) methodologies. Since the MPC control is a
discrete time methodology, the vehicle model (1) has been
discretized using the forward Euler method and sampling
time Ts. In this application, the sampling time is chosen as
Ts = 200 ms. The discretized model is reported in (13).

x(k+1) = x(k)+Ts v(k) cos(θ(k))
y(k+1) = y(k)+Ts v(k) sin(θ(k))

θ(k+1) = θ(k)+Ts
v(k)

L
tan(δ (k))

v(k+1) = v(k)+TS a(k)
δ (k+1) = δ (k)+Ts ωδ (k)

(13)

Given the discrete time setting, the last two equations of the
state representation (13) are written as

v(k+1) = v(k)+∆v(k)
δ (k+1) = δ (k)+∆δ (k)

(14)

where ∆v(k) = Ts a(k) and ∆δ (k) = Ts ωδ (k) represent the
speed and steering angle finite increments respectively. As a
consequence, the control input of (13) becomes

u(k) = [ ∆v(k) ∆δ (k) ]T . (15)



Considering the system state defined in (2) and the control
input introduced in (15), the state equation (13)-(14) are
rewritten in the compact nonlinear form

ξ (k+1) = f (ξ (k),u(k)) (16)

The MPC path planner controller is then designed according
to the following objectives.

1) Track a constant speed vdes in the absence of a pre-
ceding vehicle.

2) Track a (speed-depending) distance from a preceding
vehicle when overtaking is not possible.

3) Keep the center of the lane when travelling in a bend.
4) Perform overtaking of a slower vehicle and returning

in the rightmost lane when overtaking is completed.
At this point, in (17), we introduce a suitable cost function
J as a weighted sum of contributions that account for the
control objectives listed above.

J(U(k))=̇
k+HP

∑
i=k

(‖Po(i)||O +‖Pl(i)||L +‖v(i)− vdes||Q

+‖∆v(i)||R1 +‖∆δ (i)||R2)

(17)

where

U(k) =


∆v(k) ∆δ (k)

∆v(k+1) ∆δ (k+1)
...

...
∆v(k+HP−1) ∆δ (k+HP−1)

 (18)

The cost function J(U(k)), introduced in (17), is defined
over a prediction horizon HP and includes several terms that
describes how the control objectives can be considered. More
specifically:
• ‖Po(τ)||O implements the distance keeping functional-

ity.
• ‖P̀ (τ)||L is responsible for either the lane keeping or

the lane changing feature.
• ‖v(τ)− vdes||Q accounts for the achievements of the

target speed.
• ‖∆v(τ)||R1 and ‖∆δ (τ)||R2 handle intensity and physical

reliability of the control action to guarantee safety,
vehicle stability, fuel consumption optimization and
driving comfort.

Weight matrices O, L, Q, R1 and R2 are chosen to regulate
the desired trade-off among all the control objectives through
a trial and error procedure. Given the cost function (17),
the underlying optimization problem for MPC design is
formulated as

minU(k) J(k)
s.t.
(16)
0≤ v(i)≤ vdes, i = 0, . . . ,HP−1
−∆̄v Ts ≤ ∆v(i)≤ ∆̄v Ts, i = 1, . . . ,HP−1
−δ̄ ≤ δ (i)≤ δ̄ , i = 0, . . . ,HP−1
−∆̄δ Ts ≤ ∆δ (i)≤ ∆̄δ Ts, i = 1, . . . ,HP−1.

(19)

In (19), constraints on the steering angle δ and its rate
∆δ account for physical limitations of the actuator speed.
Limitations on v and ∆v introduce a suitable speed limitation
and comfort performance during acceleration maneuvers.
The desired velocity vdes is chosen as

vdes = min
(
vtar,v0 +amaxTp,

√
alatmax R

)
. (20)

As to the prediction horizon, a value HP = 15 is chosen, that
corresponds to a prediction time TP = HP Ts = 3 s. Further-
more, a control horizon HC = 8 is introduced to reduce the

Parameter Description Symbol Value
Sampling time Ts 200 ms
Prediction horizon HP 15 steps
Control horizon HC 8 steps
Rate limit for v ∆̄v 2.5Ts ms−1

Limit for δ δ̄ 25◦
Rate limit for δ ∆̄δ 0.47Ts

◦ s−1

TABLE I
MPC PARAMETERS.

number of optimization variables. The remaining manipula-
ble inputs are set as U(i) = U(HC), i = HC + 1, . . . ,HP− 1.
The control input is then computed according to receding
horizon principle as the first time component of the optimizer
U∗(k) = arg minU(k) J(k). In particular, at a given sampling
time k, the optimal vehicle speed and the steering angle are
provided as

v(k) = v(k−1)+Ts ∆v(k)
δ (k) = δ (k−1)+Ts ∆δ (k) (21)

Table I resumes the values of the parameters employed in
the MPC path planner design.
The just described MPC problem represents the higher level
of the autonomous driving architecture, that must generate
the path way-points and the speed reference to be tracked
by the low level lane keeping and speed motion controller.
At this point, we recall that the path planner computation
occurs at a lower rate with respect to the lower lever motion
controller. More specifically, the sampling time for the path
planner is Ts = 200 ms, while for the motion controller we
have T m

s = 10 ms. This means that, to allow the low level
controller to run properly at the correct rate, the way-points
provided by the planner must be interpolated at a higher
rate. In this regard, while a simple staircase interpolation
of the speed reference is adopted, such a procedure for the
way-points leads to unsatisfactory performance. For the latter
case, a Bézier polynomial fitting, see, e.g. [15], has been
employed to obtain a smoother generation of the way points,
see for details, [16]. The low level controller, i.e. the one
that realizes the longitudinal and lateral motion controller is
not described here. Basically, such a controller implements
a speed tracking control through a PID regulator and a
lane keeping strategy using Linear Quadratic methodologies
according to the standard approaches described in [17] and
[18].

V. BEHAVIORAL LOGIC

As introduced in Section IV, in highway driving scenarios,
the vehicle must accomplish the following tasks.

1) Track a constant speed vdes in the absence of a pre-
ceding vehicle.

2) Track a (speed depending) distance from a preceding
vehicle when overtaking is not possible.

3) Keep the center of the lane when travelling in a bend.
4) Perform overtaking of a slower vehicle and returning

in the rightmost lane when overtaking is completed.
The switching between one task and another depends on the
driving environment that is read by the on-board sensors.
Thus, a switching logic is introduced to decide:
• whether to track the target speed or a distance with

respect to a preceding vehicle speed;
• to keep the lane if no lateral maneuver is allowed;
• to overtake if a slower preceding vehicle is present and

if left lane is free and to return if the right lanes are
free.



Fig. 5. State diagram of the planner.

The finite-state machine (FSM) introduced in Fig. 5 is used
to describe the combined behavior of lateral and longitudinal
switching logic. Red ellipses represent the finite states of the
planner, while black rectangles the conditions to pass from
one to another. Quantitative switching rules are introduced
to set the state transitions described in Fig. 5. For example,
a lane change maneuver can be activated only if suitable
safety distance exists between the autonomous vehicle and
the surrounding obstacles. The distance di of the vehicle with
respect to the ith surrounding obstacle can be computed as

di = s0 + tH vi±max(0,∓tH(v− vi)) (22)

where tH is a fixed headway time, v is the autonomous
vehicle speed, vi is the corresponding obstacle speed and
s0 a constant safety distance contribution. The sign of the
operation depends on whether the obstacle is located in the
rear or the front lateral area. Thus, if such distances are
greater than a given value, it means that there is free space
to engage a safety lane change maneuver. Fig. 6 shows all
the relevant distances considered performing an overtaking
maneuver. Such spaces must be free before engaging any
lateral maneuver. Another interesting case is the switching
between Lane Keeping / Speed Tracking and Lane Keeping
/ Distance Tracking. Such a case occurs when a vehicle
running at lower speed precedes the autonomous and there
is no chance for overtaking due to the presence of vehicles
in the left lane. This case can be handled as in standard
Adaptive Cruise Control driving. In particular, the hysteresis
logic (23) based on the relative distance d between the
vehicles is employed to switch between the Speed Tracking
(ST) and the Distance Tracking (DT) mode.

mode→
{

ST→ DT if d < dtar−dm1
DT→ ST if d > dtar +dm2

(23)

where dtar = di and dm1, dm2 are suitable thresholds. As the
vehicle approaches an obstacle the working function, the
FSM switches from ST to DT at a distance dtar− dm1. On
the contrary, if the obstacle distance increases over dtar+dm2

Fig. 6. Safe distances during lane changing maneuver.

Fig. 7. Lane keeping performance on curved lane.

threshold, the working function switches from DT to ST.
Based on the selected driving task, the MPC controller
formulation described in (19) must be set accordingly. In this
regard, the contributions in the cost function (17) should be
suitably chosen. In general, for each task described in the
FSM of Fig. 5 there is the corresponding formulation of the
MPC problem.

VI. SIMULATION RESULTS

In this Section, we introduce simulation results aimed at
showing the effectiveness of the proposed approach. The
methodology is tested on a 3 degrees of freedom nonlinear
single-track dynamical model. The MPC optimization prob-
lem is solved through the MatLab function fmincon. With
this strategy, the average computation time is about 65 ms
with a maximum of 120 ms employing an AMDr FX-8350
CPU, 8 GB RAM running at 4 GHz. MatLab Automated
Driving Toolbox is used to create the highway scenario and to
perform the simulation tests. The driving scenario is made up
by a three-lanes road with length 4 km, and it is divided into
three sections introduced to test different driving situations.
In the next subsections, we describe the settings and the
obtained results for each of the considered driving settings.

A. Lane keeping and distance tracking
In the first section, lane keeping and distance tracking are

tested in a bend according to the following setup.
1) The HV placed in the rightmost lane is driving at 100

km/h with both lateral and orientation errors, with
respect to the center of the lane.

2) In the same lane, a vehicle is driving at a lower speed,
about 70 km/h, and precedes HV of about 86 m.

3) A further vehicle is driving in the left lane with speed
variable in the range 75− 80 km/h, preventing to
overtake the preceding vehicle and, thus, HV is forced
to perform a distance tracking maneuver.

4) The whole maneuver is performed in a bend with
length of about 550 m with curvature radius 1 of 500
m.

While the lane keeping logic is working during all the
simulation, the most challenging situation occurs during the
first tract of the driving scenario that includes a bend with
the maximum allowed curvature radius. As a consequence of
the initial error, the trajectory reaches a satisfactory steady
state condition after a settling phase. The trajectory during
the curve is shown in Fig. 7 As it can be seen, the second-
order Gaussian functions provide good results in terms of
lateral precision. The most significant results for the distance
keeping performance are reported in Fig. 8, where the HV

1The minimum radius of curvature allowed in Italian highways is 500 m



Fig. 8. Speed and Distance Plot of HV with respect to preceding vehicle.

Fig. 9. First overtaking maneuver.

speed together with the distance from the preceding vehicle
are reported. Between t = 0.4 s and t = 16 s, the HV
undergoes the effect of the first obstacle field. As a result
of the attractive field action, it decelerates until the actual
speed reaches the preceding vehicle speed. From t = 21 s,
the preceding vehicle starts decelerating before the HV speed
is settled. However, due to the stiff effect of the second field,
the vehicle is forced to keep the imposed distance. As the
preceding vehicle speed settles to vi = 18 m/s, the distance
converges to a value of 29 m. The presented results show a
quite good behavior of distance tracking performance.

B. Double Overtaking and Curve Following
In the second part, overtaking maneuvers are tested in the

following setup.
1) The relative distance between HV and the middle lane

vehicle is increased to allow the overtaking maneuver
of the preceding vehicle.

2) After overtaking of the preceding vehicle, the middle
lane vehicle is slower than HV and the leftmost lane
is free.

3) HV performs overtaking of the middle lane preceding
vehicle and moves to leftmost lane.

Thus, in this phase, HV performs a double overtaking
maneuver. The double overtaking maneuver is made up of 4
stages:

1) Lane changing from lane 1 to lane 2
2) Lane keeping to stabilize the vehicle in lane 2
3) When aligned with lane 2, lane changing from lane 2

to lane 3
4) Lane keeping to stabilize the vehicle in lane 3

In Fig. 9, we show only the trajectory of the first overtaking
maneuver, since the second one follows a similar path. From
Fig. 9, we see that quite good performance are obtained
in terms of smoothness and accuracy of the overtaking
maneuver where the maximum deviation with respect to the
new lane center is εerr < 13 cm.

C. Returning maneuver
After the double overtaking maneuver, the driving scenario

allows the HV to perform a returning maneuver to the
rightmost lane. The maneuver is realized in two steps, i.e.,
the first from the leftmost lane to the middle lane and the
second from the middle lane to the rightmost one. The path
characteristics are similar as in the overtaking maneuvers
described in the previous subsection.

VII. CONCLUSION

An approach for automated driving in highway scenarios
in the context of a two layers hierarchical architecture
has been introduced. Suitable APFs combinations that can
effectively handle the most relevant maneuvers of highway
driving, such as speed and distance tracking, lane keeping,
overtaking, and returning have been defined. The defined
APF are included in the cost function of an MPC control
problem to generate the path trajectory. Parameters of the
APF functions are dynamically tuned according to the ac-
quired scenario. A behavioral logic, described by a FSM and
based on acquired data and suitable dynamic conditions, is
defined to select the most appropriate maneuver to realize.
A quite complete simulation scenario has been realized
to analyze the performances of the proposed method. The
obtained results shows that the introduced approach achieves
quite good performance in all the considered maneuvers.
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