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A B S T R A C T

Blockchain is a technology that creates trust among non-trusting parties without relying on any intermediaries.
Consequently, it has attracted the interest of companies operating in a multitude of sectors. However, due to the
number of different blockchain solutions that have emerged in the last few years and their rapid changes, it is
challenging for such companies to orient their technological decisions. This paper presents a comparative analysis
of the key dimensions—namely, governance, maturity, support, latency, privacy, interoperability, flexibility, ef-
ficiency, resiliency, and scalability—of some of the most-used permissioned blockchain platforms. Moreover, we
present the results of a performance evaluation considering the following frameworks: Hyperledger Fabric 2.2,
Hyperledger Sawtooth 1.2, and ConsenSys Quorum 21.1 (with both the GoQuorum client and the Hyperledger
Besu client). The platforms were tested under similar conditions, and official releases were used, such that our
findings provide a reference for companies establishing their technological orientation.
1. Introduction

At present, companies are undergoing radical transformations based
on information sharing and digitalization. This is known as the Industry
4.0 revolution. The affordability of Internet of Things (IoT) and storage
devices has allowed companies to gather enormous quantities of data.
Such data can then be used to improve and optimize existing business
processes, with huge cost savings. Consequently, data trustworthiness is
fundamental and can be guaranteed by blockchain.

Blockchain is an evolving technology that allows for the creation of
trust among non-trusting parties without relying on any intermediaries
[1]. A blockchain can be described as a shared and distributed database:
each non-trusting party can store and retrieve data from the database
without worrying about tampering attempts [2].

Blockchain systems can be either permissionless or permissioned. In
the former case, anyone can join the system and fully interact with the
database, while in the latter case, it is possible to set up roles and policies
to limit interactions with the database [3]. Permissioned blockchain
frameworks are particularly relevant for the industry: often, companies
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need to share data among themselves while limiting or preventing
external access to such data (e.g., for regulatory reasons).

At present, the blockchain landscape is quickly evolving: many
blockchain-based solutions are available on the market, with new stable
releases published every few months. Consequently, it is difficult for
companies to orient their technological decisions, as keeping track of
frequent updates and evaluating their practical impact is challenging.
However, companies need a constantly updated overview of the various
blockchain solutions in order to establish which ones fit a given use case.
In particular, efficiency is a key factor that considerably limits which
applications can exploit blockchain technology. Consequently, a pro-
cedure that allows for a fair evaluation of the performances of the various
blockchain solutions is fundamental. These requirements have emerged
from a collaboration between Politecnico di Torino and TIM S.p.A., one
of the biggest telecommunication companies in Europe.

In particular, in industrial IoT applications, a specific blockchain so-
lution must be carefully chosen. For example, in logistics, many trans-
actions must be processed in a given time unit [2,4,5]. Contrary to what
occurs in financial applications [6], blockchain must be integrated with
comitalia.it (D. Gotta), danilo.gotta@telecomitalia.it (G. Perboli).
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Fig. 1. The relationships among the distributed database, distributed ledger
technology (DLT), and blockchain technologies. In particular, a DLT is a
distributed database structured as a ledger. A DLT can be decentralized or not,
depending on its governance model. A blockchain is a DLT that uses a list of
blocks to represent the ledger. Each block contains the hash of the header of its
predecessor. Blockchain technology is associated with many interesting prop-
erties, such as immutability; however, such properties only characterize
decentralized blockchains [15].

V. Capocasale et al. Blockchain: Research and Applications 4 (2023) 100113
other technologies: IoT devices are necessary to collect data from phys-
ical assets [7,8], while artificial intelligence, analytics, and granular
computing techniques can extract useful information from the collected
data [9,10].

Nonetheless, comparative analyses of multiple blockchain frame-
works are generally lacking. Due to the rapid nature of technical im-
provements, many comparative analyses and performance evaluations in
the literature are already outdated. Moreover, many articles describe
performance evaluations carried out on a single framework. This pre-
vents a fair comparison among different frameworks, as the different
authors have generally used different configurations and testing
methodologies.

In this study, we fill the aforementioned gaps by providing an updated
comparative analysis and a fair performance evaluation of various per-
missioned blockchain frameworks. The main contributions of this paper
are as follows.

� A comparative analysis is presented, considering some of the most-
used blockchain frameworks, namely, Hyperledger Fabric [11],
Hyperledger Sawtooth [12], and ConsenSys Quorum (with both the
GoQuorum client and the Hyperledger Besu client) [13]. The analysis
assessed the following aspects: governance, maturity, support, la-
tency, privacy, interoperability, flexibility, efficiency, resiliency, and
scalability.

� A methodology is presented for performing a comparative perfor-
mance evaluation of different blockchain frameworks. To the best of
our knowledge, this methodology is the first to focus on the cross-
framework fairness and comparability of the tests. In particular, this
methodology is innovative as it allows for minimizing the differences
among the different frameworks.

� We present one of the most comprehensive cross-framework perfor-
mance evaluations in the literature. To fill the gaps in the literature,
we tested recent releases of the frameworks. Moreover, to minimize
the differences among the various frameworks, similar transactions
were submitted and the same underlying hardware was used.
Different blockchain nodes were deployed over the same industrial
cloud infrastructure (Amazon AWS).

Thus, our findings offer a comprehensive overview of the analyzed
frameworks, and this paper can be used by companies as a guide for their
technological choices.

The remainder of this paper is structured as follows: Section 2 in-
troduces the key concepts related to blockchain technology. Section 3
discusses the relevant literature and the related gaps. Section 4 presents
the comparative analysis, and Section 5 describes the performance
evaluation of the various frameworks. Finally, Section 6 presents our
conclusions and future developments.

2. Background

In this section, we briefly review the main concepts related to
blockchain, consensus algorithms, smart contracts, and performance
metrics. For reader convenience, this section also includes an introduc-
tion to the frameworks analyzed in the context of this work.

2.1. Blockchain

Blockchain belongs to the distributed ledger technology (DLT) class
[14]. A DLT is a distributed database that is structured as a ledger (see
Fig. 1). This means that it records the whole history of modifications (also
called transactions) to the data it stores, and multiple copies of the ledger
are available. Each copy is managed by an entity called a peer.

Blockchain groups transactions into blocks, which are then added to
the ledger, one after the other [16]. As each block contains the hash of its
predecessor, each block cannot be altered without also altering all the
subsequent ones. It is easy to alter a block and all its successors when all
2

the copies of the ledger are managed by a single entity or by trusting
parties. However, altering a block and all its successors can be nearly
impossible when the ledger is managed by multiple non-trusting parties.
For this reason, the properties characterizing a blockchain system change
drastically depending on the governance model in use. This is better
explained in Section 2.2.

A blockchain is usually composed of two databases: the history
database, which is the actual ledger, and the state database, which holds
the current values of the data stored in the history database. It is possible
to create blockchain systems without a state database, but this approach
has significant performance drawbacks. The state database acts as a
cache that allows for fetching the latest values of the data without
needing to read the whole ledger. A blockchain address identifies a
specific portion of the data contained in the state database.

Blockchain frameworks rely on the following key components [16]:

� digital signatures, which allow for authentication of the transactions;
� cryptographic hash functions, which allow for the creation of the
append-only ledger structure;

� consensus algorithms, which are used to decide the order of trans-
actions to process.
2.2. Blockchain governance

Governance describes the power to control, coordinate and direct a
blockchain system [17]. According to its governance model, a blockchain
system can be [18,19]:

� public—Any peer can join the blockchain system and participate in
the consensus protocol. A public blockchain can be used to solve trust
issues among its participants, as any interested party can join the
network, obtain a full copy of the ledger, and autonomously validate
the transactions it contains;

� consortium—The blockchain system is managed by some well-
identified peers who can set the rules for interacting with the
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ledger and for participating in the consensus. A consortium block-
chain can be used to solve trust issues among the consortium mem-
bers, but parties that are external to the consortium still need to trust
the consortium;

� private—The blockchain system is managed by a single party.
Consequently, the system is centralized from a governance standpoint
and requires all the participants to trust the managing party.

As public blockchains do not restrict access to their ledgers, they are
permissionless blockchains. Similarly, private and consortium block-
chains are permissioned blockchains, as they allow access control
mechanisms to be set up. However, private and consortium blockchains
are rarely interchangeable technological solutions and should be used in
different cases.

2.3. Blockchain properties

The following properties make blockchain particularly interesting in
industrial fields [16,19,20]:

� redundancy and persistency—Each peer keeps a copy of the ledger,
which reduces the risk of data losses;

� decentralization—Each peer has control over a single copy of the
ledger, not the ledger itself. Notably, this property is a consequence of
the decentralized governancemodel of a blockchain system and not of
its distributed nature. Consequently, private blockchains are not
decentralized;

� authenticity—Transactions are digitally signed;
� autonomy—Peers can submit transactions without relying on trusted
third parties;

� immutability—Data can only be added to the ledger, but not modi-
fied, as the hash of an altered block would not match the one stored in
its successor. However, rewriting the whole chain of hashes is
possible: in a private blockchain, the managing party may do so
individually; in a consortium blockchain, the consortium should
collude in order to do so; and, in a public blockchain, the majority
should collude in order to do so (51% attack);

� transparency and auditability—Each peer has direct access to its
own copy of the ledger. Moreover, it is possible to know the status of
the ledger at any given point in the past, as the whole history of
modifications is recorded;

� resiliency—To counterfeit the ledger, it would be necessary to
coherently modify the majority of its copies. As observed for the
immutability property, the resiliency of a blockchain system is pro-
portional to its decentralization;

� standardization—As many peers must keep identical copies, they
must all agree on the encoding of data.

2.4. Consensus algorithms

As a blockchain system is managed by many peers, such peers need to
find an agreement on the order of transactions to process. The decision is
made through the use of a consensus algorithm. The decision can have
[21,22]:

� deterministic finality—Once made, the decision is irreversible;
� probabilistic finality—Once made, the probability of reverting the
decision decreases over time.

Moreover, the peers should be able to make a common decision, even
if some of them do not participate in the consensus protocol or try to
disrupt it. Consequently, consensus algorithms can be [21,22]:

� Crash Fault Tolerance (CFT)—The consensus can tolerate the crash
of some peers. Raft [23] and proof-of-elapsed-time CFT (PoET CFT)
[24] are examples of CFT algorithms.
3

� Byzantine Fault Tolerance (BFT)—The consensus can tolerate the
crash of some peers or their malicious behavior. Ethash [25], Clique
[26], Practical Byzantine Fault Tolerance (PBFT) [27], Istanbul
Byzantine Fault Tolerance (IBFT) [28], and proof-of-elapsed-time
SGX (PoET SGX) [24] are examples of BFT algorithms.

Many blockchain frameworks offer the possibility of choosing among
CFT and BFT consensus algorithms; however, it is not possible to assume
the absence of malicious behaviors among non-trusting parties. Thus,
only BFT algorithms should be used in a decentralized blockchain system.
2.5. Smart contracts

Smart contracts can be described as tamper-proof computer programs
[29]. The smart contract concept was introduced before the blockchain
concept [30]; however, as guaranteeing the tamper-proof property is
difficult, smart contracts did not attract much interest at first. By coupling
smart contracts and blockchains, it is possible to process data while
guaranteeing their integrity and availability. Confidentiality can also be
preserved, but it requires implementing additional cryptographic tech-
niques that are rarely available by default. Among other applications,
smart contracts could allow for the automation of legal contracts [31].
2.6. Performance metrics

Once submitted to a blockchain system, a transaction can be in one of
the following states:

� pending—The transaction has not yet been added to a block;
� discarded—The transaction is invalid and has not altered the ledger;
� committed—The transaction is valid and has been added to a block;
� consolidated—The transaction is valid and is permanently stored in
the blockchain. In the case of deterministic finality, a transaction is
consolidated as soon as it is committed. In the case of probabilistic
finality, a transaction is consolidated only after it is committed.

According to Ref. [32], the key metrics for blockchain systems are
read latency, read throughput, transaction latency, and transaction
throughput. In a blockchain system, transaction throughput is defined as
the total amount of transactions consolidated in the time unit, and
transaction latency is defined as the time needed by a transaction to
become consolidated.
2.7. Blockchain frameworks

2.7.1. Hyperledger Fabric
Fabric [11] is an open-source framework designed to address com-

mon industrial needs, such as identity management, the definition of
roles and policies, performance, and data confidentiality. Fabric belongs
to the Hyperledger ecosystem, which is “an open-source community
focused on developing a suite of stable frameworks, tools, and libraries
for enterprise-grade blockchain deployments” [33]. Hyperledger Fabric
offers a modular and scalable architecture. It supports smart contracts
that can be written in a variety of widely adopted programming lan-
guages. To share data with only a subset of the nodes of the blockchain
system, Fabric allows for the sending of private transactions (private data
collections) or the creation of parallel and independent lightweight
chains (channels). Fabric supports the following CFT consensus algo-
rithms: Raft, Kafka (deprecated), and Solo (deprecated). A BFT consensus
is planned for the future [34]. At the time of writing, version 2.3.2 was
the latest available.

Fabric distinguishes between two types of nodes: orderers and peers.
Peers are in charge of executing transactions and keeping a copy of the
ledger, whereas orderers are in charge of creating blocks. Fabric pro-
cesses transactions in three steps:
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� execute—Each type of transaction is associated with an endorsement
policy. The endorsement policy defines which peers must execute a
given transaction. To submit a transaction, a client has to send it only
to the endorsing peers. This allows for the sacrifice of decentralization
for scalability. The endorsing peers process the transaction without
updating their copy of the ledger. Then, they send a signed message
back to the client, which must be delivered to the orderers;

� order—The orderers create blocks by ordering the endorsed trans-
actions received. Once created, a block is broadcast to all the peers of
the channel;

� validate—Each peer checks the correctness of each transaction within
the received block and updates its copy of the ledger. Among other
checks, transactions that have a read or write conflict with a previous
transaction of the same block are considered invalid.

2.7.2. Hyperledger Sawtooth
Sawtooth [12] is an open-source framework designed for flexibility

and separation of concerns; it abstracts the application layer from the
security layer. This allows for the easy creation of blockchain systems
that rely on dynamically replaceable components. As with Fabric,
Sawtooth is a Hyperledger framework. Sawtooth offers the possibility of
writing smart contracts in a variety of programming languages. It also
offers a parallel scheduler that can improve the performance of the
framework. Sawtooth supports both BFT (PBFT and PoET SGX) and CFT
(PoET CFT and Raft) consensus algorithms. The transaction processing
strategy applied by Sawtooth is the standard order—execute—validate.
Moreover, Sawtooth processes transactions in batches (i.e., groups of
transactions that must all be completed together or not at all). At the time
of writing, version 1.2.6 was the latest available.

The Sawtooth framework offers the following modules:

� validator component, which schedules transactions and manages the
ledger;

� consensus engine, which implements the consensus algorithm;
� REST API component, which simplifies the interaction of the clients
with the validator component;

� transaction processor (TP), which implements the smart contract
logic.

2.7.3. ConsenSys Quorum
Quorum [13] is an open-source blockchain protocol based on the

Ethereum protocol. It allows for the design of high-performance per-
missioned blockchain systems that provide support for data confidenti-
ality. Quorum can also be used for interactions with the Ethereum
network. Moreover, Ethereum smart contracts can be effortlessly
migrated to Quorum. Quorum comprises two distinct blockchain pro-
jects: the first is based on GoQuorum [35], an Ethereum client originally
developed by J.P. Morgan and currently maintained by ConsenSys (that
renamed it from Quorum to GoQuorum), which is implemented in Go.
The Tessera module can be used to send private transactions and keep
data confidential. GoQuorum supports the following consensus algo-
rithms: Raft (CFT), Clique (BFT), and IBFT version 1.0 (BFT). At the time
of writing, version 21.4.2 was the latest available. The second project is
based on Hyperledger Besu [36], an Ethereum client implemented in
Java. As with Fabric and Sawtooth, Besu is a Hyperledger project. The
Orion module can be used to send private transactions and to keep data
confidential. Besu supports the following BFT consensus algorithms:
Ethash, Clique, and IBFT (versions 1.0 and 2.0). At the time of writing,
version 21.1.7 was the latest available.

In this paper, when both projects share a common feature, the generic
word Quorum is used, while the words GoQuorum and Besu are used to
refer to one of the two specific implementations. Quorum's transaction
processing strategy is the standard order-execute-validate.
4

3. Related work

Permissioned blockchain frameworks have been increasingly
receiving interest from various companies. However, such frameworks
must process production workloads to replace existing solutions. Thus,
many studies have addressed the topic of assessing the performance of
existing blockchain frameworks.

For the sake of brevity, Table 1 summarizes the main performance
evaluations available in the literature. For each paper, the table presents
the analyzed framework(s). Moreover, the table shows which studies
analyzed more than one framework, which performed an experimental
performance evaluation, which used recent releases of the frameworks,
and which ones described a methodology to minimize the differences
among the different frameworks.

Performance evaluations of permissioned blockchain frameworks
appeared in the literature early on. Pongnumkul et al. provided a per-
formance evaluation of Fabric v0.6.0 and enterprise Ethereum (Geth
v1.4.18) on a single blockchain node, which is not relevant for industrial
use cases [43]. Dinh et al. introduced Blockbench, a tool for analyzing
permissioned blockchain frameworks. The authors used their tool to
evaluate the performance of the following blockchain frameworks: Fabric
v0.6.0-preview, Geth v1.4.18, and Parity v1.6.0 [42]. Unfortunately,
such performance evaluations are outdated, as suggested by the versions
of the employed frameworks.

In many cases, authors tried to improve the official framework re-
leases. Sousa et al. introduced a BFT algorithm for Fabric v1.0. The
related performance evaluation, however, was focused on Fabric's
ordering service [40]. Thakkar et al. presented an in-depth study on
Hyperledger Fabric v1.0 and showed how the various configuration pa-
rameters affected the overall performance. The authors also suggested
some improvements that were subsequently adopted in Fabric v1.1 [38].
Gorenflo et al. introduced FastFabric, an optimized version of Hyper-
ledger Fabric 1.2, which allowed the authors to process almost 20,000
transactions per second. However, some of the proposed optimizations
may raise concerns (e.g., keeping the state database in volatile memory)
[39]. Kwon and Yu proposed some optimizations for the order and
validated phases of Hyperledger Fabric v1.3. A performance evaluation
on a network of four nodes and one Kafka orderer was used to show the
benefits of the proposed optimizations [57]. However, stable and
long-term supported releases are often preferred for industrial applica-
tions. Thus, performance evaluations performed on official releases are
more appreciated.

Some authors focused on the analysis of the performance of a single
framework instead of comparingmultiple ones. Baliga et al. conducted an
in-depth performance evaluation of Quorum (GoQuorum client v2.0)
with both IBFT in a four-node network and Raft in a three-node network.
The authors tested both private and public transactions and used four
different workloads [41]. Similarly, Mazzoni et al. studied Quorum with
all Raft, IBFT, and Clique consensus [6]. Mera conducted a performance
evaluation of Quorum (GoQuorum client v2.2.1) with Raft consensus on
a network of three nodes in three different settings (local nodes, cloud
nodes, and virtual nodes) [37]. Wang and Chu evaluated Fabric v1.4.3.
The authors tested all the consensus algorithms available in Fabric (Solo,
Kafka, and Raft) and the impact of different endorsement policies [54].
Nakaike et al. introduced HLF-GLDB, a benchmark tool that allows
simulating the database access patterns of Hyperledger Fabric. The au-
thors used HLF-GLDB to discover some bottlenecks in the Fabric v1.4.4
platform [53]. Guggenberger et al. conducted an in-depth performance
evaluation of Fabric 2.0. In their work, the authors examined the effect of
various network sizes and underlying hardware, crashing nodes, network
delays, private transactions, and varying workloads [56]. Shi et al.
evaluated Sawtooth v1.1 with PoET CFT. The authors tested the trans-
action throughput under different conditions (network size, underlying



Table 1
Summary of the studies dealing with tests on blockchain frameworks.

Ref. Framework Multiple
frameworks

Experimental performance
evaluation

Recent
releases

Cross-framework
methodology

[15] Sawtooth v1.0.5 with PoET CFT No Yes No No
[37] GoQuorum v2.2.1 No Yes No No
[38] Fabric v1.0 No Yes No No
[39] Fabric v1.2 No Yes No No
[40] Fabric v1.0 No Yes No No
[41] GoQuorum v2.0 No Yes No No
[42] Fabric v0.6.0-preview, enterprise Ethereum (Geth) v1.4.18, Parity v1.6.0 Yes Yes No No
[43] Fabric v0.6.0 and enterprise Ethereum (Geth) v1.4.18 Yes Yes No No
[44] Fabric v0.6 and Fabric v1.0 No Yes No No
[45] Fabric v1.2 No Yes No No
[46] Fabric v1.4 No Yes No No
[47] Fabric v1.0 No Yes No No
[48] Sawtooth v1.0 No Yes No No
[49] GoQuorum v2.0.2 No Yes No No
[50] Sawtooth v1.0.5 No Yes No No
[51] Fabric, Sawtooth, Burrow, BigchainDB, MongoDB (Sep 2019) Yes Yes No No
[52] Sawtooth v1.1.2, enterprise Ethereum (Geth) v1.8.21, enterprise EOS

v1.5.3
Yes Yes No No

[53] Fabric v1.4.4 No Yes No No
[54] Fabric v1.4.3 No Yes No No
[55] Sawtooth v1.1 with PoET CFT No Yes No No
[56] Fabric v2.0 No Yes Yes No
[57] Fabric v1.3 No Yes No No
[58] Fabric v1.4.4, Sawtooth v1.2, Indy v1.12.0, Parity v2.5.10, GoQuorum

v2.3.0, enterprise Ethereum (Geth) v1.9.8
Yes Yes No No

[59] Fabric v2.2.2 and Sawtooth v1.2.3 Yes Yes Yes No
This
work

Fabric v2.2.2, Sawtooth v1.2.3, Besu v21.1, GoQuorum v21.1 Yes Yes Yes Yes

Details about which studies analyzed more than one framework, which presented an experimental performance evaluation, which used recent releases of the frame-
works, and which described a methodology to level the differences among the different frameworks are also provided. PoET: proof-of-elapsed-time, CFT: crash fault
Tolerance.
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hardware, network bandwidth, cloud service, and datacenter location)
[55]. Such works provide meaningful insights into the configuration of a
given framework but are less useful for comparing different frameworks.

Some authors evaluated the performance of multiple frameworks.
Polge et al. presented a comparative analysis of Fabric, enterprise
Ethereum, Quorum, MultiChain, and Corda in the following dimensions:
community activity, adoption, performance, and privacy support. The
authors, however, did not perform an experimental performance evalu-
ation but conducted their analysis according to the results presented in
other studies [60]. Monrat et al. performed a performance evaluation on
the following frameworks: enterprise Ethereum, Corda, Fabric, and
Quorum (GoQuorum client). The authors used the Microsoft Azure
Platform for deploying networks of various sizes. However, except for
Corda, they did not provide framework versions [61]. Benahmed et al.
compared Sawtooth v1.1.2, enterprise Ethereum (Geth v1.8.21), and
enterprise EOS (client v1.5.3). The authors described the usability, sup-
port, and documentation of the platforms they studied and tested their
throughput, scalability, CPU, and memory usage [52]. Rasolroveicy and
Fokaefs studied blockchain frameworks and MongoDB for IoT-based
applications. The study focused on Fabric, Sawtooth, Burrow, and Big-
chainDB (Sep 2019) [51]. The results provided by such studies are not
comparable, as different testing methodologies are employed.

In addition to Blockbench [42], other blockchain benchmark tools are
available in the literature. A few of the previously discussed studies [6,
41,61] used Hypeledger Caliper [62], which provides a set of predefined
workloads and is compatible with multiple frameworks. BCTmark [63]
focuses on abstracting the underlying blockchain frameworks and
improving benchmark portability and was used by its creators to perform
a performance evaluation of enterprise Ethereum and Hyperledger Fab-
ric. Nonetheless, the tool is in the experimental stage, lacks clearly
defined performance metrics, and does not offer standard workloads
[64]. The Distributed Ledger Performance Scan (DLPS) [58] allows
setting up blockchain networks relying on different frameworks and
5

submitting standard workloads to them. The DLPS defines clear metrics
for the evaluation of blockchain systems and uses an adaptive testing
strategy that matches the output throughput to the input one. The au-
thors claim that such an approach allows for maximizing the perfor-
mance of the tested frameworks: Hyperledger Fabric, Hyperledger
Sawtooth, Hyperledger Indy, Quorum (GoQuorum client), and Ethereum
(Geth and Parity clients). Ref. [64] summarizes the main benchmark
tools for permissioned blockchain frameworks.

While all such benchmark tools allow the generation of similar
workloads on different frameworks, they do not provide insights into
how to set up blockchain networks to obtain similar degrees of security,
distribution, and decentralization across different frameworks. Thus, the
results obtained on different frameworks with such tools may not be
comparable, as frameworks allow for trading security and decentraliza-
tion for efficiency. This paper tries to overcome such a limitation by
proposing a cross-framework methodology to level the differences
among different frameworks, which enables meaningful comparisons
among their performances.

We partnered with TIM, one of the biggest telecommunication com-
panies in Europe. TIM has multiple business units working on
blockchain-related topics. According to our partner, choosing the right
blockchain framework can be challenging due to the lack of comparative
analyses. Another international partner and other studies [65] sustained
such a hypothesis. Moreover, our review of the literature highlights the
following gaps:

� comparative analyses are scarce;
� some analyses focus on very specific applications;
� often, tweaked versions of the frameworks are tested. Therefore, the
results of such tests are not particularly useful when only official and
supported releases of the frameworks are used;

� the frameworks are tested using different methods and under
different conditions, preventing any comparison (even qualitative);
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� some analyses are outdated and are no longer meaningful.

Nonetheless, the problem of assessing the performance of the various
blockchain frameworks is important, as demonstrated by the large
number of articles addressing this issue. We respond to these needs by
presenting a general methodology for evaluating blockchain frameworks
in industrial use cases. We used this methodology to conduct a perfor-
mance evaluation of some of the most commonly industrially adopted
blockchain frameworks.

4. Comparative analysis

This section presents a comparison of the blockchain frameworks
considered in this study from a functional and high-level point of view.
We underline that such an analysis is meant to highlight similarities and
differences across the frameworks, not to elect winners.
4.1. Governance

As discussed in Section 2.2, governance describes the power to con-
trol, coordinate, and direct a blockchain system [17]. In blockchain
systems, decisions are made by majority voting, and consensus algo-
rithms are voting mechanisms [66]. Thus, analyzing consensus algo-
rithms is fundamental for understanding the governance model of a
blockchain system. We listed the consensus algorithms offered by each
framework in Section 2.7.

As it currently lacks an official implementation of a BFT consensus
algorithm, Fabric must be considered a private blockchain, even if the
execution and validation steps can be fully decentralized. “Hyperledger
Fabric is not reliable in an environment where an ordering service may be
hacked” [67].

Sawtooth and Quorum, if deployed with a BFT consensus, can be used
to build both public and consortium blockchain systems. Consequently,
they can be used by non-trusting parties to resolve their trust issues.
4.2. Maturity

Maturity identifies the production readiness of blockchain frame-
works. Fabric, Sawtooth, and Quorum are all production ready, accord-
ing to their documentation and version numbers [34,35,68]. Fabric is
probably the most widespread and used technology among the three, as
proved by its number of implemented use cases [69,70]. Quorum is also
used commonly in industry [13,69]. Sawtooth is somewhat less adopted
Fig. 2. Blockchain developer activity (e.g., commits, pull requests, forks, and so on)
active in the blockchain landscape. Sources: [74,75].
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in the industry [69,70] but has been widely adopted in the academic
world [15,71–73].
4.3. Support

In this study, support describes to what extent blockchain frameworks
streamline adoption in terms of both technological improvements and
user experience.

Fabric, Quorum, and Sawtooth are all active projects, and they are
supported by both official and unofficial channels.

In our opinion, the Fabric framework is well documented. However,
setting up a system from scratch may be a non-trivial task. The official
documentation on this matter can possibly be improved.

In our opinion, the Sawtooth framework is well documented and easy
to set up. The documentation provides tutorials to set up a test system
and describes the majority of the options needed to configure a custom
production system in detail. Sawtooth nicely abstracts and separates the
various blockchain layers (e.g., networking, security, and smart con-
tracts). Consequently, it is an excellent framework for understanding
blockchain technology.

In our opinion, the Quorum framework is partially documented: it
relies on the Ethereum documentation for many core concepts, whereas it
focuses its documentation on its peculiarities (e.g., privacy features).
Different from Fabric, it provides many tutorials for setting up a test
system, clearly explaining each step of the process. Overall, the Quorum
documentation is not as detailed as that of Fabric or Sawtooth and fo-
cuses on a more practical approach.

Concerning the community activity, a depiction is given by the
GitHub developers' analysis reported in Refs. [74,75]. As witnessed by
Fig. 2, Fabric and Besu are gaining support, GoQuorum is stable, and
Sawtooth is experiencing a downtrend. As Sawtooth's data in 2020 are
not present in the reports, we extracted them directly from GitHub and
represented the approximate trend with a dashed line.
4.3. Latency

We defined latency in Section 2.6. We note that transaction finality
can be probabilistic or deterministic, depending on the consensus algo-
rithm used. Probabilistic finality improves scalability and offers a higher
transaction throughput, but also has a higher transaction latency [76].
PBFT [27], IBFT [28], and Raft [23] have deterministic finality, whereas
Clique [26], Ethash [25], and PoET (both CFT and SGX) [24] have
probabilistic finality.
on GitHub in 2017–2020. The image shows which communities were the most
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4.5. Privacy

In this paper, privacy refers to the possibility of sharing data with only
a subset of the participants of a blockchain system. The main strategies
applied to accomplish this goal are as follows [12]:

� share the hash of the data with all of the peers, and the actual data
only with those of interest—This is the underlying strategy of Fabric's
private data collections [77] and Quorum's Orion and Tessera mod-
ules [78];

� create a separate system—This is usually costly and may pose security
concerns due to the reduced size of the system. To mitigate the cost
drawback, Fabric offers the possibility of creating channels. Channels
are separate blockchains, each with its own ledger; however, channels
can reuse some common components. Consequently, multiple chan-
nels are less demanding in terms of hardware requirements,
compared to separate blockchain systems [11];

� store ciphered data—This is always possible, but the encryption
process must be handled by the client and cannot be managed by the
framework. In Sawtooth, this is the only possible strategy [12].

4.6. Interoperability

Interoperability refers to the possibility of atomically transferring
data across multiple blockchains [79]. Cross-chain communication is
similar to interoperability but does not require atomicity [80]. The
interested reader may find formal definitions of the two concepts in more
technical studies [79,80]. The analyzed frameworks do not offer any
features that simplify blockchain interoperability or cross-chain
communication.

Interoperability can be partially achieved by leveraging cross-chain
communication protocols or additional assumptions based on game
theory and the trustworthiness of third parties. Protocols such as notary
schemes or hash-locking [81] belong to such a category and have some
major drawbacks. In particular, they are limited to some specific use
cases, are very inefficient, introduce trusted third parties, or violate the
atomicity of cross-chain transactions. Moreover, they do not allow the
transfer of the history of an asset across different blockchain systems,
which hinders their transparency and verifiability properties.

Full blockchain interoperability is impossible to achieve or requires
merging the existing ledgers [79]. Similarly, cross-chain communication
is impossible without relying on trusted third parties [80].

4.7. Flexibility

Flexibility refers to the possibility of replacing existing components or
adding features to a blockchain framework.

Sawtooth is the most flexible, as it is composed of several components
that can be dynamically replaced. Moreover, it allows for the specifica-
tion of the settings both on- and off-chain. On-chain settings can be
dynamically configured. Sawtooth allows for the specification of de-
pendencies among transactions and submitting batches, which are
groups of transactions that must be performed as a whole [12].

Quorum is flexible, as it allows for the configuration of many pa-
rameters, including the consensus algorithm. Moreover, both Quorum
clients support the installation of plugins, which extend their set of
functionalities [35,36].

Fabric is flexible, as it allows for the configuration of many parame-
ters, including the consensus algorithm and the state database (LevelDB
or CouchDB). Moreover, smart contracts are run as a separate component
[11].

4.8. Efficiency

Efficiency indicates the quantity of information that a blockchain
7

framework can process in the time unit and is analyzed in more detail in
Section 5. For convenience, we report some observations here:

� the choice of the smart contract programming language has a relevant
impact on the overall performance;

� Fabric and GoQuorum perform well in all tests;
� Besu performs well with light transactions but suffers a significant
performance decay for heavier tasks;

� Sawtooth performs poorly, but much better results can be obtained by
submitting larger batches [59]. Furthermore, due to the limited
number of vCPUs used, Sawtooth's parallel scheduler has not been
properly exploited.
4.9. Resiliency

Resiliency is the property of withstanding unexpected errors and
malicious attacks. As discussed in Section 2.4, consensus algorithms can
be CFT or BFT. At present, Fabric only offers official implementations of
CFT algorithms, whereas Sawtooth and Quorum offer both possibilities.

It should be noted that elliptic-curve cryptography, which is the
commonly accepted standard in blockchain systems and is used by all
frameworks, is not quantum-safe [82].
4.10. Scalability

Scalability identifies the possibility of increasing the size of a block-
chain network while minimizing the negative impacts on the other
properties of the system (e.g., efficiency). According to the scalability
trilemma, the scalability of a blockchain system can only be improved by
sacrificing decentralization or security [2]. Using a CFT instead of a BFT
algorithm is an example of a tradeoff between decentralization and
scalability, which Fabric, Quorum, and Sawtooth all allow.

Fabric's endorsement policies can be considered another method for
improving scalability: different nodes can be used to execute distinct sets
of transactions in parallel. Additionally, channels can be used to improve
scalability. This approach is equivalent to creating separate blockchain
systems [11].

Quorum's IBFT consensus algorithm allows the set of nodes partici-
pating in the consensus protocol to be dynamically changed. This can be
used to keep a small (and, thus, efficient) set of consensus nodes while
giving all peers the possibility of being part of such a set for a limited
amount of time [28].

As the set of consensus nodes in Sawtooth's PBFT is an on-chain
setting, it can be dynamically updated, producing a behavior similar to
that of Quorum's IBFT.

5. Performance analysis

As stated in Sections 1 and 3, a standard methodology to compare the
performance of multiple blockchain frameworks was still missing, such
that deciding which blockchain to use is difficult. Moreover, the limited
interoperability among the different blockchain solutions makes this
choice even more important.

This section describes the testing environment and the tests per-
formed on the various frameworks. Notably, the tests relied on the same
type of virtual machine, while the smart contract had to be implemented
in every framework. Moreover, the configurations of the various frame-
works were not tuned, as different frameworks offer different configu-
ration settings, which modify the behavior of the system in different
ways.

Concerning the frameworks used in the tests, we considered some of
the most-used blockchain frameworks: Hyperledger Fabric, Hyperledger
Sawtooth, and ConsenSys Quorum (with both the GoQuorum client and
the Hyperledger Besu client).



Fig. 3. The testing environment architecture used in this study. A network of
four virtual machines was created on the AWS, where each virtual machine had
multiple components. Components that belonged to the same framework are
represented by the same color. The Sawtooth node was composed of a validator,
a consensus engine, a REST API, and two transaction processors: one to manage
on-chain settings and one to process the transactions of the tests. The Fabric
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5.1. Testing environment

To perform the tests, we constructed a network consisting of four
AWS instances. The instances belonged to the same availability zone and
to the same virtual private cloud (VPC). Each instance was an r5a.large
virtual machine, with 2 vCPUs, 16 GB of RAM, and 50 GB SSD. The
testing environment infrastructure is shown in Fig. 3.

The following settings describe the test environment used for the
performance evaluation.

� Number of instances: 4.
� Network topology: complete graph, with instances hosted in the same
availability zone.

� Instance type: AWS r5a.large.
� CPU (single instance): AMD EPYC 7000, 2.5 GHz, and 2 vCPUs.
� RAM (single instance): 16 GB.
� DISK (single instance): 50 GB gp2 SSD (EBS volume).
� OS: Ubuntu 20.04.2 LTS.
� Docker: 20.10.3, build 48d30b5.
� Docker-compose: version 1.28.4, build cabd5cfb.
� Node: v10.24.
� Go: go1.13.
� Java: openjdk v1.8.0_292.
� Solidity: 0.8.0þcommit.c7dfd78e.Emscripten.clang.
node was composed of a peer, an orderer, and a certificate authority. Both the
GoQuorum and Besu nodes consisted of a single component.
5.2. Methodology

As discussed in Section 4.10, blockchain frameworks allow sacrificing
decentralization and security for efficiency and scalability. It is easy to
prove that a given framework is more efficient than another when the
former is configured to scale while the latter is configured to be secure
and decentralized. Thus, comparing the performances of different
frameworks is meaningless unless similar conditions are guaranteed
across all the frameworks. Guidelines are available for the performance
evaluations of a single framework [32], and some multi-framework
benchmark tools have been implemented [42,58]. However, such
guidelines and tools do not provide a methodology for setting up
equivalent testing environments for the performance comparison of
different blockchain frameworks. To fill this gap, we introduce a new
methodology. We address the following concerns.

� Node functional requirements—Frameworks are composed of multi-
ple modules, which must be assigned to hardware resources. How-
ever, some frameworks are more modular than others. Thus, it is
necessary to define a blockchain node in terms of its functional re-
quirements, which allows the creation of classes of equivalent mod-
ules across different frameworks. This allows for the assignment of
modules to hardware resources following a consistent method across
multiple frameworks. To the best of our knowledge, no other study
has tackled this issue.

� Distribution requirements—It is necessary to use the same network
topology and geographic distribution of nodes across multiple
frameworks. We underline that enforcing the same geographic dis-
tribution is only possible after providing a cross-framework definition
of a blockchain node.

� Resiliency requirements—The same degree of security, decentral-
ization, and replication must be required across multiple frameworks.
This is particularly true for the execution of smart contracts and
participation in the consensus protocol.

� The number of ledgers—It is necessary to fix the number of separate
ledgers managed by each blockchain system and the workload to
which each ledger is subject. Deploying multiple ledgers is an easy
method to increase the throughput of a blockchain system.

� Standardized workloads—A suite of standardized tests must be
designed. This allows for the assessment of an upper bound of the
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performance of a generic production system. Standardized workloads
are also used by Hyperledger Caliper and the DLPS.

Concerning the functional requirements of nodes, Fabric differenti-
ates among endorsing nodes, ordering nodes, and validating nodes.
Similarly, Sawtooth separates the layers for ledger management,
consensus protocol, and smart contract processing. However, a single
Quorum node performs all three operations. Consequently, we provide
an abstract definition of a blockchain node in terms of its functional re-
quirements, which allows assigning framework modules to hardware
resources consistently across the frameworks. An abstract blockchain
node represents a non-trusting entity in a blockchain network and should
perform all the relevant operations autonomously. We define an abstract
blockchain node as a set of components performing all of the following
tasks:

� peering and networking management (i.e., networking with other
peers);

� consensus management (e.g., mining, fork resolution);
� transaction management and smart contract execution, which in-
cludes ordering, scheduling, and processing transactions;

� database management, which includes updating the ledger and the
state database;

� security management, which includes cryptographic operations and
privacy management.

We created networks of four nodes with each framework. We
assigned four virtual machines to each network. Thus, we assigned a
different virtual machine to each node. For each framework, we assigned
modules to virtual machines to comply with the functional requirements
of our definition of an abstract blockchain node, as shown in Fig. 3 and
Table 2. Our tests do not involve private transactions. Thus, a single Besu
or GoQuorum node satisfies the definition of an abstract blockchain
node. Sawtooth offers many modules, as discussed in Section 2.7.2. In
particular, a Sawtooth validator must always be connected to the trans-
action processor managing the on-chain settings. We also deployed the
consensus engine and the transaction processor managing the trans-
actions of our tests on the same virtual machine. We created four Fabric



Table 2
Test environment for each blockchain framework, highlighting the main differ-
ences among the various frameworks.

Fabric Sawtooth Besu GoQuorum

Version 2.2.2 (Jan 2021) 1.2.3 (Oct 2019) 21.1 (Feb
2021)

21.1 (Feb
2021)

Components
per instance

1 peer, 1
orderer, 1
Fabric
Certificate
Authority

1 validator, 1
consensus engine, 1
REST API, 1 settings
transaction processor,
1 test contract
transaction processor

1 Besu
node

1
GoQuorum
node

Consensus Raft Raft, PBFT IBFT 2.0 Raft, IBFT
1.0

Smart Contract Go, Java Go Solidity Solidity
State Database LevelDB LMDB RocksDB LevelDB
Batch Size – 1 transaction – –

Endorsement
Policy

All peers must
endorse each
transaction

– – –

Number of
channels

1 – – –

Table 3
Configuration of the parameters of the transactions for each type of test.

Test No. addresses Payload size (kB) No. iterations

Concurrency 1, 100, max 0.1 1
Size max 0.1, 1, 10, 20, 50 1
Iteration max 0.1 1, 10, 100, 1000

In the concurrency test, the number of different addresses accessed ranged from
one to the number of transactions submitted. In the size test, the payload size of
the transactions ranged from 0.1 kB to 50 kB. In the iteration test, the number of
read and write operations ranged from 1 to 1000.
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organizations, as organizations in Fabric represent non-trusting parties.
We deployed one peer and one orderer on a single virtual machine for
each organization, as an abstract node must handle both transaction
processing and consensus management.

Concerning the geographic distribution, for each framework, all the
nodes were fully connected and deployed in the same VPC.

Concerning the resiliency requirements, all the nodes must partici-
pate in the consensus and execute each transaction. Consequently, in
Fabric, transactions must be endorsed by all four nodes, as we want to
execute each transaction exactly four times, once per node. When
possible, we used equivalent consensus algorithms across the frame-
works: Raft is implemented in all of the frameworks, whereas PBFT and
IBFT behave similarly when consensus nodes are not dynamically
replaced.

Concerning the number of ledgers, a single ledger was assigned to
each blockchain system. Consequently, a single channel was used for
Fabric.

For the workload simulation, the following scenarios were
considered:

� the presence of parallelizable and sequential trans-
actions—Sequential transactions are commonwhen a process must be
executed in steps, whereas parallel transactions are common when
multiple independent processes occur at the same time, as in the case
of sensors monitoring multiple assets;

� the presence of transactions writing a varying amount of data to the
ledger—For example, this is common when using different IoT
devices;

� the presence of transactions updating a varying number of
objects—For example, a single sensor monitoring a cargo may need to
update the data related to a single good or all the shipped goods
simultaneously.

A single transaction type was defined for the performance evaluation.
The transaction performed the following operations:

� loading a data structure from the ledger. The data structure contains a
counter and a string;

� increasing the counter and replacing the string with its own payload;
� storing the data structure back to the ledger at its original address;
� repeating all previous steps for a certain number of iterations.

Consequently, each transaction was characterized by the following
parameters:
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� blockchain address, which is the location where the data structure is
stored. When transactions target the same address, a sequential
workload is generated. When transactions target different addresses,
a parallelizable workload is generated;

� payload size, which specifies how much data are to be copied in the
data structure modified by the transaction;

� number of iterations, which specifies howmany times the transaction
continues loading and storing data.

Three types of tests were performed on the frameworks, each of which
focused on one of the aforementioned parameters:

� In the concurrency test, transactions read from and wrote to a varying
number of different addresses. As such, it was possible to observe the
behavior of the frameworks when transactions were sequential (i.e.,
they read from and wrote to the same address) or were parallelizable
(i.e., they read from and wrote to completely different addresses).

� In the size test, transactions read from and wrote to the ledger a
varying amount of data. As a single hash is usually no shorter than 0.1
kB, this value was used as the minimum payload size during the tests.

� In the iteration test, each transaction performed a varying number of
load and store operations. This was used to simulate transactions by
updating the state of one or more assets.

Table 3 summarizes the configuration used in each test. Each test was
repeated ten times with each set of parameters. Transactions were sub-
mitted to one of the four nodes at a rate of 500 TPS (transactions per
second). We chose such an input rate because it is higher than the
maximum throughput reached by the frameworks, thus allowing us to
highlight the different behaviors of the frameworks under the same
workload. The performance was measured by a client external to the
blockchain system under test. Consequently, time was measured by the
client from transaction submission to transaction consolidation. Trans-
actions were consolidated after a single block confirmation, as we used
deterministic consensus algorithms. We underline that our objective is to
measure the performance of the various frameworks under similar con-
ditions. The results we obtained do not represent the maximum
throughput of the frameworks. Measuring the maximum throughput
would require solving a multi-dimensional maximization problem. Such
problems are often non-polynomial and rarely solved exactly [83–85].
5.3. Environmental similarities and limitations

The frameworks were tested on the same hardware. Moreover, the
configurations of the frameworks were not tuned. Depending on the
programming languages supported by each framework, similar smart
contracts were written in Go, Java, and Solidity. However, some differ-
ences existed due to the unique APIs offered by each framework. The
main differences between the frameworks are reported in Table 2. For
each framework, the table describes the version, the components
instantiated on each virtual machine, the consensus protocol, the pro-
gramming language used to implement the smart contracts, the default
state database, the batch size (for Sawtooth), and the endorsement policy
and the number of channels (for Fabric).
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5.4. Results

This section presents the results obtained from the performance
evaluation.

The results of the concurrency test are shown in Fig. 4. Fabric did not
perform well for sequential transactions: many of the transactions failed
the validation step, as explained in Section 2. However, in the vast ma-
jority of use cases, transactions are parallelizable, and both Fabric and
Quorum performed well. Sawtooth's performance was affected by the
choice of small batches. In a similar test with larger batches [59],
Sawtooth attained a TPS value half that achieved by Fabric. Moreover, in
contrast to a previous study [59], Sawtooth's parallel scheduler did not
provide any benefit. This was likely due to the choice of AWS instances
with only two vCPUs. For Fabric, the choice of smart contract program-
ming language was important, as those written in Java did not perform
the same as those written in Go. CFT consensus algorithms boosted
performance in all the frameworks, but on small networks, such as the
one used for the tests, the performance gain did not justify the sacrifice of
decentralization. However, by increasing the number of nodes, the per-
formance advantages of using CFT algorithms on fully connected net-
works should become considerable, as they have lower message
complexity. As the number of exchanged messages is relevant and not the
total number of nodes, performances are unlikely to decay on large
Fig. 4. Concurrency test: TPS for different levels of transaction parallelizability. Thre
parallelizable transactions (up to 100 parallel transactions), and independent transa

Fig. 5. Size test: TPS for different payload sizes. Various sizes were tes
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networks if each node is connected to a limited number of peers. This
strategy is adopted by probabilistic consensus algorithms and impacts
latency and finality instead of efficiency.

Fig. 5 presents the results of the size test, which confirmed the be-
haviors observed during the concurrency test. In addition, the perfor-
mance of Besu rapidly decayed for heavier transactions. Overall, when
increasing the size of the payload of the transactions, the TPS value
decreased as the quantity of data stored per second increased.

Fig. 6 presents the results of the iteration test, which confirmed the
performance decay of Besu under longer-lasting transactions. Overall, by
increasing the number of load and store operations per transaction, the
quantity of read and write operations per second increased, even if the
TPS value decreased. Moreover, none of the frameworks seemed to be
optimized for multiple read and write operations on the same address
within the same transaction. In such cases, only the first read and the last
write operations should be performed. This should be considered when
writing smart contracts.

The results of our performance evaluation differ from those obtained
by other studies. Such a condition is common to almost all the studies
that use different tools, configurations, and testing methodologies. Thus,
comparing our results to those in the literature is challenging. To limit
such variability, we compare our results to those that use official versions
of the frameworks. Moreover, we discard the studies that used outdated
e scenarios were tested: sequential transactions (parallelizability ¼ 1), partially
ctions (max parallelizability).

ted, ranging from 0.1 kB (approximately a 128-bit hash) to 50 kB.



Fig. 6. Iteration test: TPS for different read/write amounts. A pair of read/write operations (iteration ¼ 1) represents an update on a single asset. A set of multiple
read/write operations represents a transaction updating multiple assets.

Table 4
Results of the performance evaluation.

No.
addresses

Payload size
(kB)

No.
iterations

Fabric (Raft,
Go)

Fabric (Raft,
Java)

Sawtooth
(Raft, Go)

Sawtooth
(PBFT, Go)

Besu (IBFT 2.0,
Solidity)

GoQuorum (Raft,
Solidity)

GoQuorum (IBFT,
Solidity)

1 0.1 1 (3.0� 0.2)�
10�1

(1.7� 0.3)�
10�1

(3.1 � 0.1) �
10

(2.9 � 0.1) �
10

(1.8 � 0.3) �
102

(1.2 � 0.03)� 102 (1.33 � 0.07) �
102

100 0.1 1 (2.4� 0.2)�
10

(1.7� 0.3)�
10

(3.2 � 0.1) �
10

(3.2 � 0.5) �
10

(1.7 � 0.4) �
102

(1.46 � 0.05) �
102

(1.32 � 0.05) �
102

max 0.1 1 (1.95 �
0.02) � 102

(1.68 �
0.02) � 102

(2.9 � 0.2) �
10

(2.8 � 0.4) �
10

(1.6 � 0.5) �
102

(1.44 � 0.04) �
102

(1.26 � 0.08) �
102

max 0.1 10 (1.48 �
0.05) � 102

(9.6� 0.2)�
10

(1.0 � 0.1) �
10

(7 � 1) (1.3 � 0.2) �
102

(1.30 � 0.03) �
102

(1.13 � 0.05) �
102

max 0.1 100 (6.8� 0.6)�
10

(2.25 �
0.93) � 10

(4.07 � 0.02)
� 10�1

(3.7 � 0.1) �
10�1

(2.2 � 0.3) �
10

(7.2 � 0.3) � 10 (3.18� 0.02)� 10

max 0.1 1000 (7.2 � 0.1) (2.63 �
0.05)

(1.26 � 0.02)
� 10�1

(1.12 � 0.03)
� 10�1

(2.3 � 0.1) (9 � 1) (4.9 � 0.5)

max 1 1 (1.85 �
0.02) � 102

(1.56 �
0.02) � 102

(2.5 � 0.1) �
10

(2.6 � 0.2) �
10

(3.0 � 0.6) �
10

(1.18 � 0.06) �
102

(1.01 � 0.07) �
102

max 10 1 (1.24 �
0.03) � 102

(1.02 �
0.03) � 102

(1.1 � 0.8) �
10

(1.1 � 0.4) �
10

(4 � 1) (5 � 2) � 10 (4 � 1) � 10

max 20 1 (8.9� 0.3)�
10

(7.5� 0.2)�
10

(7 � 5) (7 � 2) (2.2 � 0.5) (2.6 � 0.8) � 10 (2 � 1) � 10

max 50 1 (5.1� 0.5)�
10

(4.3� 0.1)�
10

(4.6 � 0.5) (4 � 1) (1.1 � 0.5) (1.2 � 0.4) � 10 (1.1 � 0.5) � 10

Each row represents one of the tests performed. For each test, the configuration used and the results obtained are reported.
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versions, as technological evolution may cause important differences in
the measures.

Sedlmeir et al. [58] obtained much better results in terms of trans-
action throughput across all the frameworks. However, the author used
more performing hardware. Moreover, even slight differences in the
configuration of the frameworks may have a huge impact on the per-
formance of the system. For example, we noticed that the performance of
GoQuorum doubles when logging is disabled.

Guggenberger et al. [56] focused on Fabric only and used a different
testing methodology based on an adaptive strategy that tries to match the
input transaction rate to the output transaction rate. We believe such a
strategy cannot be employed in a cross-chain comparison, as different
frameworks would be subject to different input workloads. We prefer to
use the same workload for different frameworks. Moreover, the authors
used eight peers instead of the four we used. Thus, when four endorsers
are busy validating a transaction, the other four can execute a different
one, which doubles the overall throughput even when both studies use
the same endorsement policy. Thus, the numerical values of the two
studies are different. Nonetheless, there are some similarities in the
overall behavior of the frameworks. In particular, the performance decay
11
follows a similar pattern when the payload size increases.
Mazzoni et al. [6] did not provide information on the version of

Quorum used in their experiments. Nonetheless, their paper was pub-
lished recently. As the authors used Caliper to conduct their experiments
on Quorum, transactions have a different complexity compared to ours.
Moreover, the authors used a single virtual machine. Nonetheless, such a
machine is more performing than the combined four used by us. Thus,
even if some results may seem consistent between the two papers (e.g.,
4-node Raft and 4-node IBFT), there are profound differences in the
testing methodologies that prevent generalizations.

The obtained results are also provided in Table 4. Each row of the
table represents one of the tests performed. For each test, the table re-
ports the configuration used and the results obtained.

6. Conclusions and future developments

Blockchain is a rapidly evolving technology that has attracted the
interest of many companies. However, many blockchain frameworks
have emerged in the last few years. As such, choosing the most suitable
framework is often a challenging task due to the general lack of updated
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comparative analyses. In this study, after explaining why blockchain is
important to the industry and why not all blockchains are equal, we
focused on the following blockchain frameworks: Hyperledger Fabric
v2.2.2, Hyperledger Sawtooth v1.2.3, and ConsenSys Quorum (with both
the GoQuorum v21.1 client and the Hyperledger Besu v21.1 client). In
particular, we performed a comparative analysis and evaluated the per-
formance of the frameworks. Our findings can be used as a general
reference for the industry. Overall, Fabric is efficient but lacks a BFT
consensus algorithm; Sawtooth is flexible but not as efficient; and finally,
Quorum performs well, offers a BFT consensus algorithm, and supports
private transactions.

Future work will be aimed at improving the test methodology to
overcome some of the limitations of the one proposed in this paper. For
example, latency and read throughput could be included among the
metrics to monitor. Moreover, as new frameworks emerge, similar ana-
lyses will need to be performed to provide a clear view of the blockchain
landscape for both the industrial and academic worlds.
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