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Abstract
This thesis deals with the development of computer algorithms and their software
implementation for the design of optimal energy management strategies (EMSs)
for hybrid electric vehicles (HEVs) in an offline environment.

Currently, optimal control techniques for EMS design are unable to handle
complex simulation models because they are computationally over demanding.
This limits the ability of automotive manufacturers and researchers to explore the
complexity of hybrid electric powertrains in the design phase and therefore to
fully exploit their benefits. The underlying goal of this work is to overcome these
shortcomings by developing offline optimal control methods suitable for higher-
fidelity models. This goal is pursued in two research branches, corresponding to
the two parts that compose this thesis.

The first part is centered around the well-established technique of dynamic
programming. First, an open-source MATLAB toolbox for dynamic program-
ming is developed. The toolbox includes state-of-the-art methods to overcome
the potential numerical issues of the technique which typically arise in practical
implementations. Then, we shift our focus from algorithmic aspects to model-
ing aspects to investigate the interaction between powertrain modeling choices
and the algorithm. We conduct a systematic analysis and define ad-hoc evalua-
tion criteria. We then develop a case study and we perform extensive numerical
experiments to support our analysis and we conclude with a set of recommenda-
tions that can be drawn from the evidence. Both of these contributions constitute
an improvement to the existing practice of optimal EMS design with dynamic
programming.

The second part is centered around a less known but promising technique
called differential dynamic programming, with the prospect of overcoming the
curse of dimensionality while keeping the benefit of guaranteed optimality. The
relevant literature is reviewed to lay out the theoretical foundations of the algo-
rithm. The theory is then used to develop a software implementation making use
of modern computational techniques and tools to enable the technique’s applica-
tion to a real-life engineering problem, which constitutes anothermajor contribu-
tion of this thesis. Finally, a EMS design application for a series hybrid powertrain
is presented using the software, in order to test its robustness and computational
capabilities. The results show great promise towards the ambitious goal of devel-
oping a broad-purpose offline EMS design tool capable of handling high-fidelity
simulation models.
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1
Introduction
In this chapter, we attempt to briefly frame the issue of optimal energy manage-
ment strategies (EMS) design for hybrid electric vehicles (HEVs) and outline amap
for navigating this thesis. The reader who is already familiar with EMS design
and the most common techniques developed to address it can confidently skip
to Part I.

First and foremost, we need to set a starting point for our discussion. Here,
we assume that the reader is already well accustomed to the importance of devel-
oping solid technology to enable the green transition of the transport sector and
the relevance of hybrid electric vehicles to this purpose. What is surely less widely
known to the general audience† is the importance for HEVs of an energy man- †We refer here to a general audience

among engineers and researchers work-
ing in the transport sector.

agement strategy to control the various powertrain components so as to meet the
driver’s power demandwhile satisfying complex physical constraints associated to
the powertrain components, all the while minimizing some important objective
such as CO2 or pollutants emissions, or both.

Before we move on, let’s start with an informal definition of the energy man-
agement strategy. In a conventional vehicle, the driver uses the accelerator pedal
to control the acceleration of the vehicle; the pedal position can be converted into
a torque demand at the engine and a low-level controller called an engine control
unit then controls the various engine actuators (injectors, valves, spark plugs, etc.)
to meet this demand. Similarly, for a battery electric vehicle, the torque demand
is fed to a motor control unit which controls the power electronics of the electric
motor in order to meet this demand.

In an HEV, where there are at least two sources of torque, these low-level con-
trol units are not enough. A high-level control unit must also be designed to de-
cide how to satisfy the driver’s torque demand using the power sources available,
as visualized in Figure 1.1. This controller implements what is generally called the
energy management strategy‡. For example, in a simple parallel hybrid, the EMS ‡Other common names are super-

visory control and hybrid control unit
(HCU).

must decide whether to split the torque demand between the engine and the e-
machine, satisfy it with one of them only, or use the engine to satisfy it while also
providing additional power to the em-machine in order to charge the battery.

In doing this, the EMS must take into account the physical constraints of the
components and other performance requirements; for example, it should moni-
tor the battery’s state of charge (SOC) and current to ensure it is not stressed in a
way that could lead to premature aging. In addition to fulfilling similar physical,
safety- and performance-related constraints, the EMS should also aim at mini-
mizing fuel consumption and/or pollutant emissions in order to maximize the
benefits of hybridization. This is where optimal control plays a role in the EMS
design.

Properly designing and implementing an energy management strategy are
very complex taskswhich hide a complexmathematical problemand several prac-
tical engineering problems. However, it is of utter importance for at least twomain
reasons:

• The extent to which the potential decarbonization and emission-reducing
potential of an HEV is fulfilled depends on how close the vehicle can get to
the true optimal EMS.

• It is hard to predict the theoretical performance of an HEV design in early
design phases. This, coupled with the high dimensionality of an HEV pow-
ertrain design operation arising from variations in topologies and compo-
nent characteristics and sizes, makes the optimal design of HEV power-
trains a very challenging task.

3
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Figure 1.1: The role of the EMS in an hybrid vehicle.

The topics that are then left to discuss before we can dive into the core of this
thesis are:

• A formal definition of the optimal design of an EMS.

• An overview of the most common techniques adopted.

• A focus on dynamic programming techniques.

1.1 Energy management strategy optimization

In order to discuss solutionmethods for the design of energymanagement strate-
gies, let us first introduce a formal definition of the optimal EMS design problem,
formulating it as an optimal control problem. First, we assume that either a set of
differential equations or a simulation model is available that describes the evolu-
tion of the powertrain’s state:

ẋ = f(x,u; t), (1.1)

with some initial conditions

x(t0) = x0. (1.2)

The powertrain’s state, described by a vector of state variables x(t), must encode
all information required to characterize the physical quantities that are relevant
to our problem. For example, variables that should be tracked may include those
that are relevant for the definition of the cost functional (1.3) or that must satisfy
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Figure 1.2: Powertrain layout for a simple p2 architecture. eng: engine, em: e-
machine, batt: battery, transm: transmission (gearbox), fd: final drive.

some constraint at any time. The control variables u(t) represent those physical
quantities we can directly act on in order to influence the system’s evolution and
therefore the incurred cost.

The objective of optimal EMS design is to minimize a total cost J(x0; t0),
which is composed by a running costL(x,u; t) and/or a terminal cost F(x(tf); tf):

J(x0; t0) =
∫︂tf
t0

L(x,u; t) dt+F(x(tf); tf).J(x0; t0) =
∫︂tf
t0

L(x,u; t) dt+F(x(tf); tf).

(1.3)

Finally, the problem is subject to various constraints determined by the phys-
ical limitations of the powertrain components or by other requirements. For ex-
ample, in order for our solution to be useful we have to ensure that we do not ask
the thermal engine and e-machines more torque than they can actually provide.
Moreover, in order to protect the battery from premature aging, we want to re-
strict its state of charge (SOC) to stay within a desirable range. Finally, we may
want to ensure charge-sustaining operation, that corresponds to ensuring that, af-
ter a given drivingmission, the battery’s state of charge will be equal to its starting
value.

In order to clarify the meaning of the definitions we have just given, let us
make a simple example. Assume that we want to optimize the fuel economy of
the p2 HEV powertrain depicted in Figure 1.2. At any given moment, the driver
will transmit an acceleration demand to the vehicle’s controller by pushing the
accelerator pedal. After transforming this acceleration demand into a torque de-
mand at the powertrain, the question that must be addressed by the EMS is: how
to split this torque demand between the thermal engine and the electricalmachine
in order to minimize fuel consumption while satisfying the aforementioned con-
straints on the engine, e-machine and battery?

In this example, we would set some torque-related quantity as a control vari-
able. For example, we may define a torque-split ratio as the ratio between the
engine torque and the torque demand.

We would then realize that, in order to formulate constraints on the battery’s
state of charge, we need to be able to track its evolution in time andwe would then
set it as a state variable. The fuel consumption would obviously be our running
cost.

After setting up the problem in this manner, we would have to derive a simu-
lation model to obtain the SOC dynamics and the fuel consumption as a function
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of the SOC itself, the torque-split ratio and some other time-dependent quan-
tities; the fuel consumption could be our running cost. We would then have a
proper formulation of an optimal EMS design problem. What we would need at
this point is a technique to solve it.

1.2 Online vs offline EMS

In the problem formulation presented in the previous section, we neglected one
major distinction between EMS design problems. In (1.3), we define our total cost
over a finite time horizon from t0 to tf ; moreover, although we did not explicitly
state it, we implied that we know what the driver’s acceleration demand will be
over this time horizon. The vehicle controller, in general, does not know this
(actually, neither does a human driver); nor do we know what this time horizon
is, i.e. when the driver will have reached its destination.

Typically, there are several ways to address this problem:

• Assume that the speed trace of the vehicle is known in advance, defined by
a driving mission.

• Assume that the speed of the vehicle can be forecast over a short time in-
terval starting from the present. Define this time interval as the control
horizon.

• Do not rely on any future information, and treat the problem as an instan-
taneous optimization.

Since it relies on information that is not actually available in a real driving
scenario, the first choice restricts our solution to the class of offline control, which
means that the method cannot be directly implemented in an actual vehicle con-
troller. The remaining two choices instead allow to design online controlmethods,
which can be theoretically implemented in a vehicle controller†. Obviously, on-†Offline and online controllers are

sometimes also called non-causal and
causal respectively [28].

line control methods must also meet stringent requirements on computational
complexity, robustness and reliability in order to be actually implemented in a
real-time controller. A thorough discussion on the different characteristics and
roles of offline and online control methods can be found in several sources in the
literature, notably [68, 82]; we attempt here to present a brief overview of the topic.

Due to the limited information available, online controlmethods are generally
not able to achieve truly optimal operation; offline control techniques on the other
hand can theoretically achieve this goal, at the expense of implementability and,
typically but not necessarily, computational cost. While the role of online control
methods is clear, the reader who is not familiar with the topic may wonder what
the role of offline control methods is. It turns out that there are many.

The first thing that we should consider is that there actually is one situation
where the speed trace of the vehicle is known in advance, and that is the case of
type-approval testing for the certification of new vehicles over regulatory drive
cycles such as those prescribed by the Worldwide Harmonised Light Vehicles
Test Procedure in the EU or the Federal Test Procedure in the US. Offline control
strategies can therefore provide the theoretical best performance that a givenHEV
powertrain can achieve on a given regulatory drive cycle, which is an application
of obvious interest for vehicle manufacturers.

This also suggests a second application: applying offline control to a given
powertrain sets a benchmark that engineers designing the online EMS must tar-
get; it provides both a measure of the sub-optimality of their EMS design and an
upper threshold which they cannot hope to surpass. Inspecting and understand-
ing the behavior of an optimal controller is also obviously beneficial in order to
design better performing controllers.
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At the beginning of this chapter, we mentioned that some difficulties in the
design of hybrid powertrains are related to the EMS; let us now elaborate a bit
more on that. The design of the EMS is strongly influenced by the characteris-
tics of the powertrain itself, and these characteristics can vary widely in terms
of topology†, components size and technologies. When attempting to design an †Essentially, the number and posi-

tion of the electrical machines with re-
spect to the driveshaft.

HEV powertrain, all these variations generate a very large andmulti-dimensional
design space, which can only be explored by evaluating a large number of design
candidates. Typically, amongst the most important metrics by which these design
candidates will be evaluated are their fuel consumption and emissions, which de-
pends on the EMS design; but the EMS design depend on the powertrain design
itself.

Hence, since many design candidates must be evaluated, any optimal power-
train design tool needs to embed an automatic EMS design tool. Moreover, this
EMS design must ensure a fair comparison between candidates: it is not possible
to simply design an EMS for a typical powertrain and then use that EMS with
other candidates. The most sound solution is therefore to adopt the optimal EMS
for each design candidates, which can be obtained by some offline EMS optimiza-
tion algorithm which is flexible enough to adapt to any HEV powertrain.

1.3 Optimal energy management strategy methods

In the early era of HEVs commercialization, the focus was on developing heuris-
tic control strategies [4]. A theoretical framework for treating the EMS design
as an optimal control problem was lacking and engineers focused on achieving
simple yet robust control strategies powered by engineering intuition. Then, the
academia picked up the issue and many methods have been developed over the
years to design and implement HEV energy management strategies, both by im-
proving on existing methods and by opening entirely new methodologies. In this
Section, we list the most widespread approaches that can be found in the litera-
ture. Interested readers can find more thorough overview of the topic in [82, 83,
36, 69].

1.3.1 Rule-based control strategies
Rule-based control strategies encompass a variety ofmethodologies that share the
characteristic that they are not designedwithin an optimal control framework, but
rather implement a set of rules that were designed for a particular HEV topology
and then calibrated for a specific powertrain.

These rules may be heuristic or obtained through a rule-extraction algorithm
from some dataset. Heuristic rules can be implemented in the form of simple for-
mulas purely based on engineering judgment ‡, or as a fuzzy logic controller [78, ‡See for example the extensive treat-

ment of such strategies in [22, Chap-
ters 10 and 11].

80]. Non-heuristic rules on the other hand can be obtained by processing large
datasets of simulation results which implement an optimal control-based EMS
such as dynamic programming, either by visual investigation [12, 53, 73] or by
a machine-learning approach [21, 64]. These types of control methodologies at-
tempt to translate the performance of optimal control techniques into implement-
able, real-time capable controllers.

Nonetheless, they rely heavily on the results of optimal control techniques
which must be first run offline in a simulation environment. Therefore, their
performance is tied to the implementation of sophisticated optimal control tech-
niques and accurate simulation models.

The most common approach by far is to obtain these optimal results using
dynamic programming, as it is the only truly optimal control technique currently
available for EMS design. However, as we will later discuss throughout this thesis,
dynamic programming is not suitable for high-dimensional simulation models.
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1.3.2 Equivalent Consumption Minimization Strategies
Halfway in between heuristic and optimal control are a group of methods going
under the name of ECMS, which is the shorthand for Equivalent Consumption
Minimization Strategy.

These methods were first introduced by Paganelli et al. [72, 70, 71] and are
based on the instantaneous minimization of an equivalent fuel consumption
ṁf,eq, which is formulated as the sum of the current fuel flow rate ṁf(t) and
an electrical consumption ṁf,el.

ṁf,eq = ṁf(t) + ṁf,el. (1.4)

The electrical term is formulated as the electric motor power multiplied by a
constant equivalence factor:

ṁf,eq = ṁf(t) + sPem. (1.5)

This equivalence factor s is defined as the product of the (mean) efficiencies
that characterize the conversion of the chemical energy stored in the fuel into
electrical energy stored in the battery or vice versa, depending on whether the
e-machine is working in motor or generator mode.

This procedure obviously does not ensure that the battery’s SOC will stay
within feasible bounds or that its value at the end of a givenmissionwill be close to
its initial value; several methods have been proposed to overcome this limitation.

The original approach was to penalize deviations from a reference SOC level
by adopting an arbitrary penalty function which multiplies the equivalence fac-
tor [70] or by shifting the operating point in order to minimize or maximize the
battery current as the SOC gets higher or lower than the reference SOC, while not
exceeding some maximum extra-cost induced [71].

Another approach consists in using some tuning procedure of the equivalence
factors over a given driven cycle until the values which ensure charge-sustaining
operation are found. While this approach is preferable in offline control, it is un-
suitable for an online implementation for at least two reasons. Firstly, these opti-
mal values are strongly dependent on the initial SOC. Secondly, if constant equiv-
alence factors are used, the SOC trajectory is very sensitive to small variations in
the factors [20].

Therefore, online ECMS approaches in the literature generally adopt some
form of an adaptive or robust equivalence factors scheme, in the spirit of the orig-
inal approach; many examples can be found with varying degrees of calibration
effort, robustness and ease of implementation (see e.g. [81, 19]).

Finally, other approaches have been proposed that involve exploiting future
driving information in order to periodically adapt the equivalence factor. For
example, Musardo et al. [65] propose using a vehicle speed predictor based on
GPS data to generate information with which an adaptor algorithm can evaluate
the equivalence factors that will ensure charge-sustaining operation over a given
control horizon.

1.3.3 Model Predictive Control
Model Predictive Control is a general method that relies on amodel of the system
dynamics which is used to evaluate the state’s evolution over a given prediction
horizon.

At each time step, a control strategy is evaluated for the whole prediction hori-
zon in order to minimize the cost function. However, only this strategy is only
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implemented for one time step†, after which the control strategy is recomputed †Alternatively, over a control hori-
zon shorter than the prediction horizon.based on the newly observed state. This makes MPC suitable for online control.

In general, one needs at least two ingredients for anMPC: a dynamical system
with its cost function and a suitable optimization algorithm. For applications to
the EMS problem, where future driving conditions are very relevant to the state
dynamics and cost, some form prediction algorithm is also needed.

Often, the state dynamics are linearized to a linear time-varying model with
the power demand being treated as a disturbance. If the cost is also formulated as
quadratic, this allows to solve the optimization problem with quadratic program-
ming solvers, which are generally fast. Examples of this approach are [16] for a
parallel hybrid and [18] for a series hybrid, where the torque demand and vehicle
speed or the power demand are treated as measured disturbances, respectively.
Others have also experimented with more complex optimization algorithms such
as a layered DP-PMP algorithm [67] coupled to a non-linear HEV quasi-static
model.

As for the prediction algorithm, a wide range of solutions has been proposed.
Two of the most popular approaches are to consider an exponentially decaying
torque demand and subsequently evaluate the vehicle speed with the powertrain
model [16]‡ and Markov chains [42, 63], which can also be trained online by ‡or vice-versa, see e.g. [87].
adapting the transition probabilities [18]. Various neural networks architectures
have also been proposed [87].

1.3.4 Pontryagin minimum principle

Theminimumprinciple is a useful tool that can be used to derive necessary condi-
tions of optimality for control problems. While it does not guarantee finding the
optimal solution, it can help in greatly narrowing down the solution to a small
set. For simple problems, it may even be possible to identify the structure of the
optimal solution analytically§. §Notable examples in EMS design

are [1, 54].For more complex problems, the conditions provided by the minimum prin-
ciple can still be useful by solving them numerically. These conditions generally
produce a two-point boundary value problem, which is a set of differential equa-
tions to be solved coupled with an initial and a final condition (the boundary
conditions). Methods following this approach are often called indirect methods
in optimal control.

Unfortunately, boundary value problems, or BVPs, are generally hard to solve
and require iterative techniques which may not converge at all if a good initial
guess of the optimal solution is not provided. This may prove in practice to be a
daunting task: theminimumprinciple characterizes the optimal solution in terms
of the co-state trajectory. Since the co-state may not have a practical physical in-
terpretation, making a good guess of its optimal trajectory is not always possible.

Furthermore, the optimality conditions must still be derived analytically, ei-
ther by hand or with the assistance of some computer algebra system, which is
a cumbersome task. Thus, the method is not very flexible as it must be carefully
adapted to the specific control problem at hand and even small variations in the
problem may require to re-work the conditions from scratch.

Finally, there is no guarantee that the obtained solution is globally optimal,
only that it is locally optimal in some neighborhood of the initial guess; although
global optimality can be checked a posteriori using the sufficient condition pro-
vided by the Hamilton-Jacobi-Bellman equation∥. ∥We will introduce this in § 2.3.3.

Aside from its applications in computing numerical solutions to the EMS de-
sign problem, theminimumprinciple is also a useful analytical tool to analyze the
underlying structure of candidate optimal solutions. Most notably, the principle
can be used to derive the ECMS and justify its effectiveness [84, 83, 28].
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1.3.5 Dynamic programming
Dynamic programming is perhaps themost widespread technique for offline con-
trol, owing to its many advantages. First and foremost, it is the only technique
that guarantees optimality regardless of the structure of the optimal control prob-
lem. Complex control problems with highly non-linear dynamics and constraints
characterized by both discrete and continuous control variables can be handled.
Little to no insight of the underlying physics is required to adapt the optimization
algorithm to a given EMS design problem, making it very flexible.

The price to pay for all these advantages is that dynamic programming is com-
putationally expensive for high dimensional control problems; the computational
cost explodes as the number of state and control variables increases. This limits
our ability to use models that accurately simulate the powertrain behavior. This
is a central point in this thesis and the motivating factor for the subject treated in
Part I, where we essentially attempt to alleviate the numerical inefficiencies of DP
algorithms, and Part II, where we seek an alternative method based on the same
principle of standard DP which does not suffer from the curse of dimensionality.



Part I

Dynamic Programming





2
Optimal control problems

In this thesis we discuss optimal control techniques for nonlinear dynamic sys-
tems and we apply them to develop methods for obtaining optimal energy man-
agement strategies for hybrid electric vehicles.

In this first chapter, we lay out a framework for the general description of op-
timal control problems and some useful terminology that will be used throughout
this text. Then, we briefly introduce the two fundamental principles that were de-
veloped in optimal control theory: the minimum principle and the principle of
optimality. The latter forms the basis for the dynamic programming algorithms
developed in this thesis.

2.1 Formulation of an optimal control problem

The objective of the optimal control problems treated in this thesis is to control
the evolution in time of a dynamical system, whose state is defined by its state
variables x, by acting on one or more control variables u. By controlling u, we
want to minimize some additive cost J.

Optimal control problems can be formulated in discrete or continuous time,
depending on whether the system is described as a system which evolves through
discrete stages or continuously in time.

2.1.1 Continuous time
In continuous time, we assume that a model is available that characterizes the
state dynamics (typically a set of ODEs) of the form

ẋ = f(x,u; t), (2.1)

with some initial conditions

x(t0) = x0. (2.2)

The state dynamics are written as f(x,u; t) if they are explicitly time-dependent
or f(x,u) otherwise†. †Explicitly time-dependent systems

are called time-varying, as opposed to
time-invariant or autonomous.

The state vector x(t) and the control vector u(t) are n-dimensional andm-
dimensional vector functions of time, respectively‡. The system’s evolution is ob-

‡Weoften omit the time dependence
of x(t) andu(t) for conciseness.

served and controlled over a finite control horizon [t0, tf ].
If, in addition, the terminal state of the system is also defined, i.e.

x(tf) = xf . (2.3)

the problem is said to be fixed endpoint, as opposed to free endpoint.
The total cost incurred J is composed by an instantaneous or running cost L,

which can be a function of the state and control variables and time, and a terminal
cost F, which is a function of the terminal state§ and final time exclusively. The §I.e. the value of the state variables

at final time.total cost is additive in that the instantaneous cost is integrated throughout the
whole time interval [t0, tf ].

J(x0,u) =
∫︂tf
t0

L(x,u; t) dt+ F(x(tf); tf). (2.4)

Note that, given the initial state, the total cost is a function of the control trajec-
tory, which is itself a function. Hence, J(x0,u) is a functional, a function of

13
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functions. The objective of an optimal control problem is to find the optimal con-
trol trajectory uo(t) that minimizes the total cost (2.4), where the state trajectory
is obtained by applying uo(t) to the state dynamics (2.1). This optimal solution is
also called an extremum of the cost functional.

In the most general case, the state dynamics and cost are defined as being
explicitly dependent on time, but there may be systems which are only implic-
itly time dependent through the state and control variables; these are sometimes
called autonomous systems.

Several constraints can also be formulated on the state variables and variables,
which can be formalized in many different ways. One very general notation is to
restrict the control variables to belong to a feasible control set U, which can be
both time- and state-dependent:

u(t) ∈ U(x,u; t). (2.5)

An alternative notation, which may be convenient in some optimal control
frameworks†, is to formulate our constraints in the form of equality or inequality†As we will do in the context

of differential dynamic programming
in Part II.

constraints:

• state constraints

g(x; t) ⩽ 0, (2.6)

• control constraints

g(u; t) ⩽ 0, (2.7)

• mixed state-control constraints

g(x,u; t) ⩽ 0. (2.8)

Inequality constraints of the form of (2.6) to (2.8) can be used to set constraints on
the state and control variables throughout the system’s evolution. Constraints on
the terminal statemay be formulated by completely constraining it with a terminal
condition

ψ(x(tf); tf) = x(tf) − xf = 0, (2.9)

or by defining some target set, as we will do in § 3.1.5. We will see in both § 3
and § 5 that this type of constraint is generally more challenging and it requires a
separate treatment.

2.1.2 Discrete-time systems
In discrete time, the system is characterized by a set of difference equations of the
form

xk+1 = fk(xk,uk), k = 0, 1, . . . ,N− 1, (2.10)

and some initial condition x0. The role of the terminal time tf is taken by a con-
trol horizon (a number of stages) N, which is equal to the number of times the
control variables must be selected. The state and control trajectories, rather than
functions of time, are now sequences.

The total cost is expressed, for a given control sequenceπ = {u0,u1, . . . ,uN−1},
as

J(x0,π) =
N−1∑︂
k=0

Lk(xk,uk)+F(xN).J(x0,π) =
N−1∑︂
k=0

Lk(xk,uk)+F(xN). (2.11)
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Note that the state dynamics fk and the running cost Lk are written as being de-
pendent on the stage k. This is somewhat analogous to defining them as explicitly
depending on time in the continuous-time case; similarly, if they do not depend
on the stage k the system is said to be autonomous.

The goal for discrete-time problems is to find an optimal control sequence
πo = {uo0 ,uo1 , . . . ,uoN−1} that minimizes the total cost. Constraints can be for-
mulated similarly to the continuous-time case, with the only difference that the
constraint functions and the feasible control set will be stage-dependent rather
than time-dependent, e.g. uk ∈ Uk(xk).

2.2 Pontryagin’s minimum principle

The minimum principle (historically developed in its maximum form [15]) is a
global optimization technique which is useful to derive necessary conditions for
optimality which must be satisfied by any optimal solution [13]. Originally devel-
oped in the Soviet Union in the late 1950s [13, Chapter 16], it has since become a
milestone in optimal control theory due to its versatility.

Let us define the Hamiltonian† of the controlled system (2.1) as: †ThisHamiltonian is also referred to
as the control Hamiltonian, in order to
distinguish it from the Hamiltonian of
mechanics from which it was originally
inspired.

H(x,u,p; t) = L(x,u; t) + pTf(x,u; t), (2.12)

where p(t) is ann-dimensional vector known as the costate or adjoint vector. The
Hamiltonian can be seen as analogous to the Lagrangian used in static optimiza-
tion, as it combines the cost function with the state equations through a set of
multipliers.

The minimum principle must be formulated in different ways based on the
structure of the problem‡. Perhaps the simplest form can be written for a fixed- ‡See e.g. [14, 52].
time, fixed-endpoint problem with a cost function of the form (2.4) and no state
or control constraints.

In this case, if xo,uo are optimal trajectories, there must exist a costate vector
function p(t) satisfying the adjoint equations

ṗ = −Hx(x
o,uo,p; t)§ (2.13)

such that the Hamiltonian minimization condition is satisfied: §Throughout this chapter, Hx and
Hp stand for the Jacobian ofH with re-
spect to x and p.H(xo,uo,p; t) = min

u
H(xo,u,p; t). (2.14)

Since x ∈ Rn and p ∈ Rn, the necessary conditions we just wrote generate a
set of 2n differential equations which therefore require 2n boundary conditions.
These conditions are given by the initial and terminal state: xo(t0) = x0 and
xo(tf) = xf .

In some sources, the minimum principle is rewritten in terms of the Hamil-
tonian form:{︄

ẋo = Hp(x
o,uo,p; t), xo(t0) = x0,

−ṗ = Hx(x
o,uo,p; t).

(2.15)

The first expression is simply an alternative way to incorporate the system equa-
tions (2.1) and the second constitutes the adjoint equations. This Hamiltonian
form coupled with the minimality condition is equivalent to the set of necessary
conditions we saw earlier.

If we consider the same problem but let the final state be free, the principle
introduces an additional condition. In this case, if xo,uo are optimal trajecto-
ries, there must exist a costate vector function p(t) satisfying the adjoint equa-
tion (2.13) and such that the following necessary conditions are satisfied:
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1. Hamiltonian minimization

H(xo,uo,p; t) = min
u
H(xo,u,p; t). (2.16)

2. Transversality condition

p(tf) − Fx(x
o(tf)) = 0. (2.17)

Note that this transversality condition replaces the n boundary conditions that
we lost by removing the terminal state constraint xo(tf) = xf .

If the Hamiltonian form of the principle is used, the transversality condition
must be included in the set of equations:⎧⎪⎨⎪⎩

ẋo = Hp(x
o,uo,p; t), xo(t0) = x0,

−ṗ = Hx(x
o,uo,p; t).

p(tf) = Fx(x
o(tf)).

(2.18)

Many other formulations are possible for problems which include additional
constraints or that are defined over a variable time interval (i.e. tf is not fixed).
Since theminimum principle is not the focus of this thesis, we do not report them
here.

In any case, we remark that applying the principle generally leads to write a
set of 2n equations with 2n boundary conditions. These boundary equations are
not all enforced at either t0 or tf; rather, they are split between the time interval’s
endpoints. Hence, the principle translates into a boundary value problem, which
are generally hard to solve as we discussed in § 1.3.4.

2.3 Dynamic programming and the HJB equation

Dynamic programming is essentially a technique for solve multi-stage decision
problems, i.e. problems where decisions must be made in stages in order to min-
imize a certain total cost. In the context of optimal control, it can very effectively
be used to deal with discrete-time systems of the sort that we described in § 2.1.2;
for these problems, the principle of optimality provides a recurrence relation that
is well suited for a computer solution.

2.3.1 The principle of optimality

The dynamic programming approach can be applied to a very wide class of prob-
lems with a variety of algorithms. What these algorithms have in common is that
they are all based on the principle of optimality, which was introduced by Richard
Bellman [8].

The principle can be formulated in many ways. Perhaps one of the most ef-
fective is Bellman’s own statement in [9, p. 15]:

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

We can intuitively prove the principle by contradiction as follows†. Consider†This derivation is loosely based on
[46, ch. 3]. the problem of reaching node d from node a in Figure 2.1, and suppose that the

optimal path‡ is to go from a to d through b only; thus incurring in an optimal‡We refer here to optimal in the
sense of minimum cost. cost Joad = Jab + Jbd. The principle of optimality then tells us that b-d is the

optimal path from b to d, with optimal cost Jobd = Jbd.
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d

Jbd

Jbc

Jcd

Figure 2.1: Optimal path and suboptimal paths from a to d.

Suppose that this is not true, i.e. there is a path b-c-d, with cost Jbc + Jcd <
Jbd, that is optimal from b to d. Then:

Jab + Jbc + Jcd < Jab + Jbd = Joad, (2.19)

which violates the hypothesis that Joad is the optimal cost. This simple example
also motivates the following equivalent statement of the principle which can be
found in [10, p. 7]:

The tail of an optimal sequence is optimal for the tail subproblem.

This statement is perhaps more evocative of a method for iteratively building the
optimal sequence by recursively solving increasingly long tail subproblems.

2.3.2 A recursive relationship in dynamic programming
Suppose we have a two-stage decision problem, exemplified in Figure 2.2, where
the state evolves from an initial node a to a terminal node h. Depending on the
decisions we take on each of the two stages, we may get there by going through
nodes b, c or d at the first decision stage and through nodes e, f or g at the second
decision stage.

a

b

d

e

f

g

hc

1st stage 2nd stage

9 1

7

Figure 2.2: A two-stage decision problemwith an arbitrary (non-optimal) control
sequence.

Depending on the decisions we take, we incur in some arc-cost for each deci-
sion stage which depends on the decision itself. After the second (and last) stage,
we also incur a terminal cost which is the cost of reaching node h. An arbitrary
path is depicted in Figure 2.2 to exemplify the process. The first decision leads
from a to c with an arc-cost cac = 9, the second decision leads from c to e with
cost cce = 1, and finally a terminal cost ceh = 7 is incurred to drive the system
from e to h, for a total cost of 17.

Suppose we have all the information we need to determine the arc-costs in-
curred as a result of taking each decision as well as the terminal arc-costs. How
can we exploit the principle of optimality to build the optimal path from a to h?
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Figure 2.3: Terminal costs for the two-stage problem.

We start by considering the terminal cost which we may incur based on the
state (the node) we are at the last stage, which we represent in Figure 2.3. At this
time, no decision must be taken as we must simply get to the terminal node h.
The optimal cost for each of the nodes we may be at (i.e. e, f or g) is simply the
terminal cost we incur to go from that node to h. We call this optimal cost the
cost-to-go and we mark this with the superscript o (e.g. Joe is the optimal cost to
go from e to h).
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hc
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3

7

2
2

3
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Figure 2.4: Optimal paths for the last stage.

Now let us step back one stage as in Figure 2.4. Suppose that, as a result of our
previous choices, we are at node b. We can obtain the optimal cost needed to get
to h by trying out all three of the decisions we can take at this stage and sum the
corresponding arc-cost and the cost-to-go of the node we end up to as a result of
the same decision; we keep the minimum cost and discard the others.

For example, starting from b in Figure 2.4, we may decide to go to e, f or g;
the corresponding total costs required to ultimately get to h will be

cbe + J
o
e = 10,

cbf + J
o
f = 7, (2.20)

cbg + J
o
g = 5.

Hence, the cost-to-go at node b is Job = 5.
We may now consider nodes c and d and find the corresponding costs-to-go

by repeating the same operation, which we can formalize as:

Joα = min
β

[︁
cαβ + Joβ

]︁
. (2.21)

Equation (2.21) expresses in essence a recursive procedure for constructing
the cost-to-go at a given stage as a function of the state of the system. Once we
have obtained the costs-to-go for nodes b, c and d, we can step back one stage to
the initial node a as in Figure 2.5. Once again, we can apply (2.21) to obtain the
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Figure 2.5: Optimal paths for the whole two-stage problem.

cost-to-go for node a, which is also the solution to our original problem, i.e. the
optimal cost required to go from a to h.

It is easy to see that this algorithm can be readily extended to any multi-stage
decision problem regardless of the number of stages. For each stage (2.21) can be
applied to build costs-to-go until the first stage is reached and the optimal solution
is found.

The algorithm is also suitable for discrete-time systems, as these can be obvi-
ously viewed as multi-stage decision problems. Let us the replace the cost-to-go
Jo with the value function† Vk(xk), which explicitly expresses its dependence on †Note that the terms cost-to-go and

value function are essentially synonyms.the value of the state variables x at a given stage k. Let us also replace the arc-cost
with the running cost Lk and let us obtain the value of the state at the next stage
using the state equations fk. We then obtain the following recursive relationship:

Vk(xk) = min
uk

[Lk(xk,uk) + Vk+1 (fk (xk,uk))] . (2.22)

This relationship forms the basis for building a dynamic programming algo-
rithm to deal with discrete-time optimal control systems of the form in § 2.1.2.
However, there are some additional challenges in case the state and/or the control
variables are not inherently discrete as in this example and in case the problem is
constrained. This additional complexity will be treated in § 3.

Continuous-time systems can be treated as well by discretizing the time in-
terval [t0, tf ] inN time increments ∆t. The state equations can then be rewritten
in approximate form as

x(t+ ∆t) = x(t) + ∆t f(x(t),u(t); t), (2.23)

or, using the index k to identify the k-th time increment, so that t = k∆t:

xk+1 = fk(xk,uk)
def
= x(k∆t) + ∆t f(x(k∆t),u(k∆t);k∆t). (2.24)

Similarly, the running cost is discretized so that the integral cost can be translated
into a summation.

2.3.3 The Hamilton-Jacobi-Bellman equation
When dealing with continuous-time systems, the dynamic programming algo-
rithm that we just introduced requires that the state dynamics are approximated
by difference equations and that the cost is approximated by a summation. We
will now see an alternative way to deal directly with these systems.

The same principle of optimality that lies at the basis of dynamic program-
ming can also be used to derive the Hamilton-Jacobi-Bellman equation, which is
essentially the infinitesimal form of (2.22):

−
∂V

∂t
(x; t) = min

u
[L(x,u; t) + ⟨Vx(x; t), f(x,u; t)⟩]‡ (2.25)
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with the boundary condition‡Throughout this text, ⟨·, ·⟩ denotes
the scalar product of two vectors.

V(x(tf); tf) = F(x(tf); tf). (2.26)

Theoretically, the HJB equation can provide an analytical solution to continuous-
time optimal control problems. In practice, this is not possible and some numeri-
cal technique must be used; this would also generally involve using some numer-
ical integration scheme. Hence, when dealing with continuous-time systems, two
alternative methods based on the principle of optimality arise:

• directly treat the original problem with the HJB equation, which must be
(approximately) solved numerically;

• approximate the original control problem with a discrete-time equivalent
and obtain the exact solution with dynamic programming.

Hence, as noted by Kirk in [47, ch. 3], we can either obtain an approximate solu-
tion to the exact optimal control problem using the HJB equation or obtain the
exact solution to a discrete approximation of the original control problem using
dynamic programming. In the following chapter we will treat the latter approach,
while in the second part of this thesis we will implement a technique based on the
former.



3
Dynamic programming algorithms

In the previous chapter, we introduced the formalism used in optimal control the-
ory to define control problems, we took a quick detour through Pontryagin’s min-
imum principle, and we finally explored the principle of optimality, developing it
by intuition. We also saw how the principle of optimality can be used to char-
acterize the optimal solution in terms of value functions, which we can build in
a dynamic programming algorithm using a convenient recursive relationship or
with the more computationally challenging Hamilton-Jacobi-Bellman equation.

In this chapter, we will focus on dynamic programming. In particular, we
will formalize a proper dynamic programming algorithm and we will treat the
additional complexity that is needed to move from the shortest-path problem we
used to illustrate the principle of optimality to the applications we typically find
in energy management strategy design. This discussion forms the basis for the
development of a flexible open-source toolbox for dynamic programming, which
is an original contribution of this thesis work and whose presentation constitutes
the second half of this chapter.

3.1 Practical implementation of a DP algorithm

In § 2.3.2, we intuitively introduced the concept which allows us to build recursive
dynamic programming algorithms using a shortest-path problem. That example,
however, does not immediately resemble the sort of optimal control problems we
described in § 2.1. Rather than having a dynamical system whose state evolves in
time, we had a problem where the decisions we take define the path we take from
an initial node to a final node. Aside from the terminal condition, we did not
enforce any constraints.

Additionally, we had an inherently a discrete system, where at each stage† we †In most control problems, stages
are identified as discrete time steps; in
this text, the two terms are used inter-
changeably.

were allowed to select decision (i.e. controls) from a discrete control set which led
to one state among a discrete state space; Equation (2.21) is suitable for those prob-
lems. If we want to accommodate systems that are characterized by continuous
states and/or controls, we need something slightly more elaborate than that.

In this section, we will describe an algorithm to deal with the optimal control
problems introduced in § 2.1 and we will discuss some important computational
hazards that often arise.

3.1.1 The fundamental DP algorithm
Let us first consider discrete-time systems as in § 2.1.2; these problems are easier
to deal with DP recursion because they are inherently cast as multi-stage decision
processes, where each discrete time step corresponds to one stage.

Suppose that πo = uo0 ,uo1 , . . . ,uoN−1 is the optimal control sequence that
minimizes the total cost

J(x0,π) =
N−1∑︂
k=0

Lk(xk,uk) + F(xN). (3.1)

Then, the principle of optimality tells us that the truncated optimal control se-
quenceuol , . . . ,u

o
N−1 is optimal for the tail sub-problemwherewe start from stage

l and state xol , i.e. it is the control sequence that minimizes

Ll(x
o
l ,ul) +

N−1∑︂
k=l+1

Lk(xk,uk) + F(xN). (3.2)

21
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As we anticipated in § 2.3.2, we can use the principle to recursively construct
a sequence of value functions

VN(xN),VN−1(xN−1), . . . ,V0(x0), (3.3)

where each Vk(xk) expresses the minimum cost required to reach the terminal
state starting from state xk at time k. Note that V0(x0) gives the optimal cost of
our control problem.

First, wemust initialize the value function at stageN. Obviously, this is simply
equal to the terminal cost F(xN):

VN(xN) = F(xN). (3.4)

Then, we step one stage back and we update the value function. As we did
in § 2.3.2, for all possible values of xk we try all possible controls uk. We sum the
running cost incurred and the value function evaluated at the state fk (xk,uk)
that will be reached at the next stage; we keep the minimum over the controls uk
and we assign this value to Vk(xk).

Vk(xk) = min
uk

[Lk(xk,uk) + Vk+1 (fk (xk,uk))] . (3.5)

Although it is more complete, this formulation of the DP recursion algorithm
is also a bit cumbersome, and a few clarifications are in order. First, we note that
the running cost Lk(xk,uk) is expressed as a function of both the current state
and the control variables. This running cost plays the same role of the arc-costs
in § 2.3.2, but is more general†.†The arc cost is usually intended as

the cost associated with the transition
from one discrete state to another, while
the running cost may also be associated
with transitions to states that do not be-
long to a discrete computational grid.

Next, we note that the argument of the value function at the next stage is writ-
ten as fk (xk,uk). This simply the value that the state variables will have at the
next stage if the current state is xk and the control variable is set to uk for the
current stage, evaluated with the state equations (2.10), i.e. xk+1 = fk (xk,uk).

Also, note that (3.5) makes it explicit that, once we have constructed the value
function Vk+1(xk+1) in a previous iteration, the argument of the minimization
depends only on the value of the current state xk and the selected control vari-
ables uk. Once we perform the minimization over uk, it is evident that the result
only depends on xk; which once again justifies our writing of the value function
Vk(xk) as a function of the current state only.

Once we have constructed value functions for all stages k applying (3.5)
recursively over the whole state space, we can easily extract the optimal con-
trol sequence uo0 ,uo1 , . . . ,uoN−1 and the corresponding optimal state trajectory
xo1 , . . . , xoN given an initial state x0. First, we set xo0 = x0. Then, we evaluate the
optimal control for the first stage using:

uo0 (x0) = argmin
uk

[Lk(xk,uk) + Vk+1 (fk (xk,uk))] , (3.6)

and we advance the simulation by one step by using (2.10):

xok+1 = fk(x
o
k,u

o
k); (3.7)

the process is repeated until the last stage is reached.
This second phase of the algorithm is called the forward phase, while the first

phase is called the backward phase. For the sake of clarity, we reinstate that the
output of the backward phase is a sequence of value functions Vk(xk), one for
each stage of the control problem. These value functions can then be used in
the forward phase to determine the optimal control sequence with (3.6) while
advancing the simulation with the state equations (2.10).

Until now, we have implicitly assumed that:
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• There are no constraints on the state and control variables.

• We are dealing with a free-endpoint problem (there is no terminal state
constraint).

• We can always somehow represent and store Vk(xk) exactly.

In the following subsections, we are going to remove these assumptions.

3.1.2 Constrained state and control spaces
Dealing with control and state constraints in a dynamic programming algorithm
is actually pretty straightforward in theory. All we have to do is to restrict the
minimization (3.5) to:

Vk(xk) = min
uk∈Uk(xk)

[Lk(xk,uk) + Vk+1 (fk (xk,uk))] . (3.8)

Rather than minimizing over any uk, we restrict uk to be in a feasible control set
Uk(xk). The fact that this control set can be state-dependent means that we can
incorporate state variable, control variable andmixed constraints in the sameway.
This possibility is one of the most powerful features of dynamic programming,
due to the resulting flexibility in modeling.

If the control variables are continuous, changing (3.5) to a constrained op-
timization may pose some challenges; although it may be possible to overcome
these by using a sufficiently robust NLP (non-linear program) solver, this may
prove to be too computationally demanding in practice. On the other hand, if the
control variables are discretized, the minimization (3.5) becomes a simple mini-
mization over a discrete set of values and the constraints can be easily dealt with
by excluding those values ofuk that violate the constraints from the solution. This
is the approach that will be used in this chapter.

3.1.3 Continuous state spaces
In order to construct the value function at a given stage k, we said that we have to
apply (3.5) over the whole state space, i.e. for all values of xk that the system may
have. For systems with a discrete state space, this does not pose any theoretical
challenge. On the other hand, if the state space is continuous, we are puzzled with
the issue of applying (3.5) for all xk; clearly, this is not doable†. Therefore, wemust †Unless we have an analytical repre-

sentation of fk, Lk and Vk, but we as-
sume here that this is not the case.

discretize the state space and obtain Vk(xk) for the whole discretized state space.
This in turn poses another issue: if the state space is not inherently discrete

but rather a discretized continuous state space, then xk+1 = fk(xk,uk) will not
in general belong to the discretized state space. Thus, we are unable to evaluate
Vk+1 (fk (xk,uk)): at the previous iteration, we only computed its values for each
xk on the discrete state space. In order to deal with these issue we can follow one
of two approaches:

Parametric approximation. Approximate the value function V(xk) with a class
of functions V(xk, rk) that depend on a set of parameters rk which are
adjusted in order to provide a good approximation of V(xk)‡. ‡See [10, ch. 3] for an extensive treat-

ment.
Interpolation. Compute and store the value function over the discretized state

space, which defines a computational grid, and obtain V(xk)when needed
by interpolation between the closest grid points.

Clearly, interpolating the value function means that the corresponding DP
algorithmwill be an approximate formof the exact DP algorithm, whose accuracy
depends on the accuracy of the interpolation itself; which is therefore crucial.
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σk+1 = fk(σk,uk)

Vk+1

V∞

σlb

σn

σn-1

σn+1

σn+2

Figure 3.1: Value function interpolation issues near to the feasible state space
boundary.

The accuracy of the interpolation depends, in general, on the discretization of
the state space. A finer grid will improve accuracy at the cost of increased com-
putational time and required storage. Moreover, the selection of the interpolation
scheme may also have an effect; if value function forms a regular shape with re-
spect to the state variables at any given shape, choosing an interpolation scheme
that fits that shape well may allow to achieve the same accuracy with less grid
points.

For example, Larsson et al. [51] showed that, for a parallel HEV architecture,
it may be possible to achieve high accuracy with a reduced grid size by approxi-
mating the value function with cubic splines†. rather than linear interpolation, to†More precisely, the authors approx-

imate the derivative of the value function
with respect to the state. That this deriva-
tive is what actually drives the optimal
trajectory, as claimed by the authors, is
also easily deduced by comparing with
theVx term in the HJB equation (2.25).

an extent which outweighs the increased cost due to computing splines.
Finally, when dealing with constrained state spaces, interpolation in the prox-

imity of the constraints might be the source of numerical errors and it requires
some extra care, as we will see in the next section.

3.1.4 Numerical issues associated to constrained state spaces

When dealing with optimal control problems with continuous state variables and
state variable constraints, it may happen that the value of xk+1 = fk(xk,uk)
while evaluating the value function update (3.5) ends up violating those con-
straints. Clearly, we want to exclude those points from the minimization so that
decisions leading to unfeasible states are avoided. The most common approach
in EMS design literature [88, 90] is to assign a very large penalty cost (possibly
infinity) to those decisions.

This approach effectively enforces state variable and control-dependent state
variable constraints of the forms (2.6) and (2.8); however, it introduces some nu-
merical issues in the practical implementation of the algorithm.

Consider the basic EMS optimal design problem for a p2 HEV introduced
in § 1.1. We want to set inequality constraints on the battery SOC σ such that it



3.1 Practical implementation of a DP algorithm 25

does not exceed a lower and an upper threshold σlb and σub:{︄
σk ⩽ σlb,
σk ⩾ σub,

(3.9)

for all stages k†. †I.e. at any time t.
Now let us use (3.5) at some stage k to update the value function during the

backward phase of the DP algorithm. Ideally, Vk+1(σk+1) should be equal to the
minimum fuel consumption required to drive to the end of a drivingmission‡ for ‡Or some other finite quantity with

a physical meaning associated with our
cost function.

σk+1 satisfying (3.9), and equal to infinity otherwise.
In practice, since we use an interpolation scheme to obtain Vk+1(σk+1), its

value will be influenced by the infinity value for all σk+1 sufficiently close to σlb
or σub; for those values, the interpolation will be greatly inaccurate and the value
function update will incorrectly penalize those states.

For example, let us name σn the smallest element of the SOC grid higher
than σlb, as in Figure 3.1, and let us approximate the value function with a linear
interpolation scheme. Let us use a large cost V∞ to penalize unfeasible states.
For all σk+1 = fk(xk,uk) between σn and σlb, the value function Vk+1 will be
obtained by interpolating between Vk+1(σ

n) and the cost penalty V∞. The larger
V∞, the more inaccurate the approximation will be.

The problem can be strongly mitigated by selecting a penalty cost which is
large enough with respect to typical values taken by the value function to effec-
tively enforce the constraint but small enough that the interpolation inaccuracy
at the state space boundary is kept to a minimum; the obvious drawback is that
this requires a very thorough understanding of the physical system under inves-
tigation.

3.1.5 Treating fixed-endpoint problems
In general, there is no formal way to treat fixed-endpoint problems in a dynamic
programming algorithm, nor to accommodate terminal state constraints. How-
ever, these can be accommodated by using the terminal cost F(xN) to penalize
undesirable values of the terminal state, i.e. those values that do not meet our
constraints.

When dealing with problems with fully discrete state and controls, one can
simply exclude at the last stage all actions that do not lead to the desired terminal
state, e.g. by assigning an infinite (or very large) terminal cost to all values that
violate the constraints and this does not cause any particular issue.

Unfortunately, whenwe are dealing with continuous state variables with value
function interpolation, several issues and limitations arise. The target terminal
state cannot be a single point but it must be defined as a set because since the
controls are either discrete or discretized, it would be impossible to hit a target
point exactly. We will define this target set T ⊆ Rn as the set of all states for
which all state variables xi are within their lower and upper bound xilb and x

i
ub

§: §An equivalent definition is found
in [23].

T =
{︁
x ∈ Rn | xilb ⩽ x

i ⩽ xiub, i = 1, . . . ,n
}︁
. (3.10)

We may then consider using an artificial cost to penalize all terminal states
which lie outside of the target set. However, this will inevitably also affect the cost
that we evaluate by interpolation for all nearby states, and it turns out that this
error can dangerously propagate during the backward phase. In order to see this,
we can introduce the concept of the reachable state space.

Define the reachable state space at stage k as the space of all states fromwhich
it is possible to reach the terminal set at stageN using feasible controls only. Typ-
ically, the reachable state space will grow as we move backwards in time from the
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last stage†. If we choose to characterize unfeasible states as having infinite cost, we†For example, the reachable SOC
range for a typical EMS design problem
will grow based on the energy content of
the battery and themaximum charge and
discharge currents (including the engine
and e-machine’s limitation) that can be
drawn.

can implicitly define the reachable state space at stage k as the space of all states
for which the value function is finite:

Rk = {xk | Vk(xk) <∞} . (3.11)

The reachable state space then essentially propagates itself backwards in time dur-
ing the backward phase, starting from RN = T , with the value function up-
date (3.5).

In practice, there are numerical issues that arise due to the discretization of
the state space. When a control leads to a state that is very close to the reachable
state space, the algorithm will attempt to evaluate the value function at k + 1 by
interpolating between a finite and an infinite value. More precisely, this happens
when fk(xk,uk) produces at least one state xik+1 that lies between an unfeasible
and a feasible gridded state.

When this happens, the value function Vk+1 will be infinite as well even
though the state belongs theoretically to the reachable state space. These states
and the corresponding controls will be excluded from the value function up-
date (3.5) and they are not allowed to have an influence on Vk. This negatively
affects the backward propagation of the value function by unnecessarily exclud-
ing feasible controls and by artificially restricting the reachable state space. At the
extreme, if the state discretization is very coarse, this may even cause the state
space to tend to the null space.

The first way to mitigate this issue is to adopt a large number V∞, rather than
infinity, to penalize unfeasible states, as we discussedwhen dealing with state con-
straints. Even then, interpolation close to the boundary of the reachable space will
be biased by V∞; selecting a value that is large enough that the constraints are ef-
fectively enforced but small enough that the interpolation issues have a negligible
impactmay be a very challenging task andmust be tailored to the specific optimal
control problem at hand.

The problem can be treated more effectively by adopting either the level set
method [23] or the boundary line method [89], which is restricted to scalar state
spaces but may yield more satisfactory results. The boundary line method essen-
tially involves pre-calculating the exact‡ boundary of the reachable state space for‡In the sense that the state is not dis-

cretized. all stages, which is described by two boundary lines as the state is restricted to be
scalar.

The level set method uses a level set function for each stage to explicitly char-
acterize the reachable state space and adds a level set update step in the backward
phase of the dynamic programming algorithm. The level set functions thus con-
structed are then used in the forward phase to exclude controls that drive the state
outside of the reachable space. Since the implicit characterization of the reachable
state space via the value function is replaced by an explicit characterization using
the level set functions, there is no need to adopt large penalties to enforce the
terminal state constraint.

3.2 The DynaProg toolbox

As we saw in the previous chapters, the apparent simplicity of the dynamic pro-
gramming principle hides many numerical issues that may arise when translating
it into a computer algorithm. The first part of this thesis is mostly concerned with
a discussion on how to treat and avoid these issues as well as mitigate the curse of
dimensionality.

We also saw that, in general, one needs to tailor the algorithm to a specific
application in order to obtain satisfactory results. However, it would not be rea-
sonable to expect that every engineer wanting to exploit dynamic programming
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for his own application of interest also becomes an expert in these highly specific
topics.

Hence, there is a clear need for a software tool that guides the user in develop-
ing dynamic programming applications. For these reasons, a MATLAB toolbox
called DynaProg was developed. This section presents some important imple-
mentation aspects of the toolbox and then details its inner working. Through-
out this section, code listings are extracted from the source code. Note that, for
the sake of readability, this listings do not include all code, but only the funda-
mental steps. The full source code is currently† hosted on a GitHub repository at †At the time of this thesis’s submis-

sion.https://github.com/fmiretti/DynaProg.

3.2.1 Automatic expansion

One of the fundamental steps of the backward phase of the DP algorithm is
to evaluate the updated state variables xk+1 = f(xk,uk) and the stage cost
L(xk,uk) for all gridded xk and all admissible uk.

Suppose that the grids for each of then state variables xi containsNi elements
and that each of them control variables uj is quantized intoMj elements. In any
software implementation, a natural representation of xk+1 is then as a (n+m)-
dimensional array with size (N1×N2× ...×Nn×M1× ...×Mm). Each element
of this array is obtained by one evaluation of the state dynamics f(xk,uk), which
is a user-supplied function.

In any programming language, these evaluations can be easily implemented
using loop constructs. In MATLAB, it is far more computationally efficient to
vectorize the function call. There are at least two ways to do this:

• Expanding the computational grids for xk and uk to (n+m)-dimensional
arrays with size (N1×N2× ...×Nn×M1× ...×Mm), and passing these as
inputs to the function. We will collectively call these the full computational
grids.

• Exploiting MATLAB’s implicit array expansion.

The first approach is easily understood: we generate all possible combinations
of the state and control variables belonging to their computational grids and we
evaluate the function for all of these combinations. This approach is implemented,
for example, in [90]. However, this approach can be inefficient, especially as the
number of state and control variables grows.

Inmany control problems, not all variables influence all state dynamics and/or
the cost. Consider for example, the applications in [85, 93, 45], where we have one
state variable σ and one or more state variables to represent the temperature of
one or more catalysts, say, θSCR. Suppose also we have one control variable for
the gear number γ and one to control the power-split α.

In this problem, each of two the state’s dynamics is only influenced by that state
itself and the two control variables. In other words, the dynamics of the two states
are decoupled. Therefore, if we compute them on the full computational grid, we
are wastingN1× (N2 − 1)×M1×M2 evaluations of σk+1 and (N1 − 1)×N2×
M1 ×M2 evaluations of θSCR,k+1 in evaluating exactly the same values.

More generally, the system dynamics will be described by a sequence of equa-
tions. Not all these equations have to be evaluated on the full computational grid.
Even in a simple application such as the one in § 4, there is a first sequence of steps
that is entirely independent of the state and control variables; a second sequence
that only depends on the gear number; a third sequence that depends on both
control variables; and finally, a final sequence which also depends on the state of
charge‡. ‡I.e. the battery model.

https://github.com/fmiretti/DynaProg
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It is most efficient to evaluate all these equations only for those combinations
of the state and control grids that effectively influence their result, expanding them
as needed. This second approach is one of the distinctive features of DynaProg.
Rather than expanding xk anduk to the full computational grid, we represent the
grid for each state variable xi as an (n+m)-dimensional array were the only non-
singleton dimension is the i-th dimension and the grid for each control variable
uj as an (n+m)-dimensional array were the only non-singleton dimension is the
j-th dimension.

For example, in a problem with two state variables and one control variables,
the grid for x1k would be represented as an array with sizeN1 × 1× 1× 1, the grid
for x2k would be represented as an array with size 1×N2 × 1× 1, and the grid for
u2
k would be represented as an array with size 1× 1× 1×M2.

Then, DynaProg takes advantage of MATLAB’s implicit array expansion to
automatically expand the variables that are computed within the model function
only when needed. Since most binary operators and functions support implicit
expansion, this generally requires no code modification by the user. If uncom-
mon functions are needed, these can generally be accommodated easily with little
modification.

Additionally, DynaProg also allows to use the first approach using a dedicated
option called safe mode.

3.2.2 Exogenous inputs
Until now, we have expressed the state dynamics as in (2.10):

xk+1 = fk(xk,uk), (3.12)

where fk is a commonly used formulation that serves to cover all cases where the
state dynamics change from one stage to another.

An alternative formulation is to write the state dynamics as being explicitly
dependent on a third variable, the exogenous inputsw:

xk+1 = f(xk,uk,wk)†. (3.13)

Clearly, these exogenous inputs must be entirely independent of the state and†Note how this formulation closely
resembles that of a time-varying
continuous-time system f(x,u; t).

control variables. This formulation is particularly useful in the context of EMS
design, where the exogenous inputs can be used to encode a drive cycle, such as
the vehicle’s speed and acceleration.

In the same way, the running cost can be reformulate from a generic stage-
dependent cost

Lk(xk,uk) (3.14)

to a cost dependent on some exogenous inputs:

L(xk,uk,wk). (3.15)

The exogenous inputs are essentially external data that have to be loaded or
somehow created by the user. An efficient algorithmmust have some interface to
efficiently pass them to the system dynamics and cost functions as needed with
minimal overhead, allowing the user to generate them before the optimization
algorithm is run.

3.2.3 Additional inputs
In any control problem of real-life interest, the state dynamics and running cost
will be dependent on the state and control variables by means of some parame-
ters or other data. For example, any powertrain model used for EMS design will
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require a certain amount of data characterizing its components. This data may
be needed in the form of simple parameters (e.g. a speed ratio or a constant ef-
ficiency) or more complex structures, such as interpolation data for fuel maps or
torque limit characteristics.

In any case, this data has to be either created or loaded and then possibly
processed before it can be used. A naive approach would be to include these op-
erations in the same context† of the state dynamics. Considering that the state dy- †I.e. in the same function in the

code.namics are evaluated by the dynamic programming algorithm a very large num-
ber of times, it is evident that this is a very questionable approach‡. ‡Also, note that data loading opera-

tions are typically quite expensive in any
programming language.

A much better approach is to generate all relevant parameters and data that
are required to evaluate the systemdynamics and cost but are not stage-dependent
outside of the dynamic programming algorithm. One then needs a method for
efficiently passing this data to the function that evaluates f and L.

3.2.4 Model split
Themodel split is an alternative to implicit expansion to reduce the computational
effort by exploiting the problem’s structure. The method consists in splitting the
system dynamics into an external§ and an internal function: §The reason why they are called this

way is that it fext is run outside of the
backward phase of the dynamic pro-
gramming algorithm, while fint is run
within it.

xk+1 = fint(xk,uk,wk, fext(uk,wk)). (3.16)

The external function fext performs all calculations where the state variables
are not involved, and it evaluates some intermediate variables v:

vk = fext(uk,wk). (3.17)

The internal function then evaluates the state update using these intermediate
variables, the state variables (as well as uk andwk, if needed):

xk+1 = fint(xk,uk,wk, vk). (3.18)

Similarly, the stage cost can be split by redefining it as a function of the interme-
diate variables:

L(xk,uk,wk, vk). (3.19)

The advantage of splitting the model function is that the external model func-
tion, being state-independent, can be run before the backward phase of the dy-
namic programming algorithm in order to generate the intermediate variables on
computational grids that are atmost (M1×...×Mm)-dimensional, for each stage.
Then, only the internal model is run on the full computational grids∥. Clearly, ∥As defined in § 3.2.1.
this approach is only beneficial if the automatic expansionmethod in § 3.2.1 is not
used.

3.2.5 The code
This section serves to illustrate the inner workings of the DynaProg toolbox. Al-
though a brief introduction from the user perspective is provided, the main focus
of this description is the structure of the source code itself, from a developer per-
spective. The objective is twofold:

1. to highlight the contributions brought about by this thesis work;

2. to serve as a guide for those researchers who wish to develop their own
dynamic programming algorithms, either by branching DynaProg’s code
(taking advantage of its modular design), or by re-implementing some or
all of its features in another software.
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The core

DynaProg is implemented as a MATLAB class. An instance of DynaProg rep-
resents an optimal control problem; its properties define the algorithm settings
and all relevant information that define the problem andmethods are available to
solve the problem and plot results.

Listing 3.1 shows how a simple optimal control problem is defined as a Dy-
naProg problem. A point unit mass moving on a frictionless plane is subject to
an external forceu(t)whichmust be controlled in order to drive the system from
an initial position s0 = 0 to a final position sf = 0.7 at rest (with initial and final
speed v0 = vf = 0) in 1 second, while minimizing the energy spent in applying
the external force, i.e.

J(u) =

∫︂tf
t0

u2(t) dt. (3.20)

The system’s state is characterized by the mass position and speed, and the state
dynamics are:

ẋ1 = x2, (3.21)
ẋ2 = u. (3.22)

Listing 3.1: Creating a DynaProg problem.
1 %% Set up the problem
2 % State variables (position, speed) grid
3 x_grid = {0:0.01:1, -0.2:0.01:1.2};
4 % Initial state
5 x_init = {0, 0};
6 % Final state constraints
7 x_final = {[0.69, 0.71], [-0.02, 0.02]};
8 % Control variable (thrust) grid
9 u_grid = {-5:0.05:5};
10 % Number of stages (time intervals)
11 Nint = 10;
12
13 % Create DynaProg object
14 prob = DynaProg(x_grid, x_init, x_final, u_grid, Nint, @cart);
15
16 % Solve the problem
17 prob = run(prob);
18
19 % Set some other properties
20 prob.StateName = {'Position', 'Speed'};
21 prob.ControlName = 'Thrust';
22 prob.CostName = 'Energy';
23
24 % Plot results
25 figure
26 plot(prob);

To create the problem object, the class constructor DynaProg is called with
its mandatory input arguments, that are the essential building blocks of the prob-
lem. One important input is a function handle to the model function, which in
this example is the function cart shown in Listing 3.2. The model function is a
user-supplied function which takes the state and control variables and exogenous
inputs as input arguments and returns the updated state variables, the running
cost and an unfeasibility array as outputs.
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The unfeasibility array is a logical array used to set constraints by specifying
which combinations of controls and states must be excluded, setting the corre-
sponding element to True.

The model function can also accept additional inputs, as defined in § 3.2.3,
and return additional outputs, for which the optimal trajectories are returned by
DynaProg after the problem is solved.

Listing 3.2: Sample model function.

1 function [x_next, stageCost, unfeas] = cart(x, u, ~)
2 dt = 0.1;
3
4 x_next{1} = x{1} + x{2}.*dt;
5 x_next{2} = x{2} + u{1}.*dt;
6
7 % Stage cost
8 stageCost = (u{1}.^2).*dt;
9
10 % unfeasibility
11 unfeas = [];
12 end

The user can then solve the problem using the run method, after which he
can retrieve the solution of the control problem† in the problem’s properties and †I.e. the optimal state and control

trajectories and corresponding cost.visualize results using the plot method. Additional properties can be specified
either as additional arguments to the class constructor or later using dot nota-
tion, as shown in Listing 3.3 for setting some properties that affect the results plot
appearance.

Listing 3.3 lists the most important methods defined by the class. Except for
the class constructor, themethod definitions shown in Listing 3.3 only define their
signature and their attributes‡; the method themselves are implemented in sep- ‡Such as the Hidden attribute.
arate files with the same name. Not shown in the listing are also the properties’
set/get methods.

Listing 3.3: Main methods of DynaProg.

1 classdef DynaProg
2
3 ⟨Properties declaration⟩
4
5 methods
6 % Constructor method
7 function obj = DynaProg(StateGrid, StateInitial, StateFinal,

ControlGrid, Nstages, varargin)
8 ⟨...⟩
9 end
10 % Methods in external files
11 obj = run(obj)
12 t = plot(obj)
13 end
14
15 % Methods in external files, hidden
16 methods (Hidden)
17 obj = create_grids(obj)
18 obj = create_intVars(obj)
19 obj = backward(obj)
20 obj = forward(obj)
21 [states_next, stageCost, unFeas, addOutputs] = model_wrapper(obj,

state, control, exoInput, IntermediateVars)
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22 [obj, cv_opt_idx, cost_opt] = updateVF(obj, k, states_next,
stageCost, unFeas, vecdim_cv)

23 [obj, cv_opt, exoInput, intVars_opt] = optimalControl(obj, k,
state_next, stageCost, unfeas, vecdim_cv, intVars)

24 obj = check_StateFinal(obj)
25 obj = checkModelFun(obj, name, mode)
26 end

Themethod homonymous to the class is the class constructor. This method is
invoked whenever an object is instantiated† and its inputs include both manda-†I.e. a problem is created.
tory and optional arguments. The first five mandatory arguments are:

• StateGrid: the state variable(s) grid(s).

• StateInitial: the initial state.

• StateFinal: the target set for the terminal state constraint(s), if present.

• ControlGrid: the control variable(s) grid(s).

• Nstages: the number of stagesN.

In addition to these, there is one additional mandatory argument, that is the
system and cost function. If themodel split method § 3.2.4 is used, this is replaced
by twomandatory arguments for the external and internal function names. In any
case, the functions must be passed as function handles. Note that the argument
varargin is used in MATLAB for specifying a variable number of inputs, in the
forms of a cell array. In DynaProg, the first of these arguments is the model func-
tion, or if using the model split the first two.

Themodel splitmethod is automatically enabled by passing two function han-
dles as the sixth and seventh positional arguments (rather than just one as the
sixth argument); this sets the hidden UseSplitModel property to true. In any
case, all subsequent arguments must be name-value arguments.

The remaining arguments allow to set other properties by using a name-value
pair syntax:

1 DynaProg(_, 'Property1', Value1, . . ., 'PropertyN', ValueN)

The class constructor and the run and plotmethods are the only non-hidden
methods, and they constitute the user interface to the problem together with its
public properties. The runmethod (Listing 3.4), is used to run a problem by call-
ing the create_grids, create_intVars (if needed), backward and forward
methods. The plot method, once a problem has been solved, can be used to
quickly visualize the optimal state, control and cumulative cost trajectories.

Listing 3.4: runmethod.
1 function obj = run(obj)
2
3 % Create computational grids
4 obj = create_grids(obj);
5 if obj.UseSplitModel
6 obj = create_intVars(obj);
7 end
8 % Generate value functions
9 obj = backward(obj);
10 % Generate optimal trajectories
11 obj = forward(obj);
12
13 end
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The remaining methods are hidden methods, meaning that they are not
normally visible by the user. The backward and forward methods are de-
scribed in § 3.2.5 and § 3.2.5. If the model split method (§ 3.2.4) is used, the
create_intVarsmethod uses the external function to generate and store the in-
termediate variables. The methods updateVF and optimalControl are used in
the backward and forward phase respectively to perform the value function up-
date (3.5) and to evaluate the optimal control variable for the current stageuok(xk)
using (3.6).

The create_gridsmethod creates the computational grids for the state and
control variables that are needed at later stages. These are:

• StateFullGrid, ControlFullGrid: the full computational grids for the
state and control variables; they are only created if safe mode is enabled.

• StateGridCol: the state grids in column vector form. This is needed for
merely technical reasons to create the value function interpolants in the
backward phase, due to MATLAB’s built-in interpolants syntax.

• ControlCombGrid: the control variables expanded to (M1 × ... ×Mm)-
dimensional grids. These are used in the forward phase to select the optimal
control as well as other places if safe mode is enabled. We will sometimes
refer to these grids as the combined control grids.

Additionally, create_grids initializes the terminal value function based on
the problem’s settings. First, the terminal value function is evaluated for the whole
state grids using the terminal cost F(xN), which can be defined by the user using a
function handle and assigning it to the property TerminalCost. If this property
is left unspecified, VN(xN) is set to zero for all xN.

Then, a penalty termΨ(xN) is added to enforce the terminal state constraints
(if present):

VN(xN) = F(xN) + Ψ(xN). (3.23)

There are currently two built-in methods to define Ψ(xN), which are selected
by setting the VFPenalty property to either 'linear' or 'rift'. The 'rift'
option sets the penalty term to a large value V∞ for all values of the terminal state
that violate the terminal state constraints set by StateFinal:{︄

Ψ(xN) = V∞ if xN < xlb ∨ xN > xub,
Ψ(xN) = 0 otherwise.

(3.24)

The term V∞ can be modified by the user using the myInf property.
The 'linear' option defines a linear penalty term proportional to the dis-

tance from the target set:{︄
Ψ(xN) = V∞ if xN < xlb ∨ xN > xub,
Ψ(xN) = p

T
Ψ min

(︁
(xN − xlb)

|·|, (xN − xub)
|·|)︁ otherwise†.

(3.25)

Thevector of proportionality factorspΨ can bemanually set using theVFPenFactors †Here, v|·| denotes element-wise ab-
solute value of all elements of the vector
v.

property.

The backward phase

The fundamental steps of the backward phase of the DP algorithm are: evaluat-
ing the updated state variables xk+1 = f(xk,uk) and the stage cost L(xk,uk),
evaluating the value function for stage k + 1 at state xk+1, evaluating the value
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function at stage k by minimizing (3.5) for all gridded xk, and constructing the
corresponding approximating function.

In an initialization phase, the appropriate state and control grids are retrieved,
depending on whether safe mode is enabled or not, and the dimensions corre-
sponding to control variables are identified; these are later needed for the mini-
mization in the value function update.

The main iteration of the backward phase then starts. First, the intermediate
variables and exogenous inputs are retrieved (if present) or set to empty arrays.
Then the user’smodel function is called using as inputs the state and control grids.
The model_wrapper function is used to ensure that the model function is called
correctly regardless of its signature†. This enables to handle the flexibility that†The first line of the function decla-

ration, which defines the number of in-
puts and outputs.

DynaProg leaves to the user in defining his own model function(s).
This step produces the updated states f(xk,uk)‡, stage cost L(xk,uk) and

‡Let us neglect the presence of ex-
ogenous inputs and/or intermediate vari-
ables.

unfeasibilties. If the unfeasibilities are not used by the user (and therefore are not
an output of the model function), they are set to false. As explained in § 3.2.1,
these outputs are not by default evaluated on the full computational grids; hence,
they are expanded at this point if needed. Note that states_next is a cell array
where each cell contains the values of xk+1 = f(xk,uk) for each state variable.

Listing 3.5: The backwardmethod.

1 function obj = backward(obj)
2 % Run the optimization algorithm backward phase
3
4 if obj.SafeMode
5 state = obj.StateFullGrid;
6 control = obj.ControlFullGrid;
7 else
8 state = obj.StateGrid;
9 control = obj.ControlGrid;
10 end
11
12 % Vector dimensions corresponding to CVs
13 vecdim_cv = (length(obj.N_SV)+1):(length(obj.N_CV)+length(obj.N_SV));
14
15 % Backward Loop
16 for k = obj.Nstages:-1:1
17
18 intVars = ⟨Retrieve vk⟩
19 exoInput = ⟨Retrievewk⟩
20
21 % State update
22 [states_next, stageCost, unfeas] = model_wrapper(obj, state,

control, exoInput, intVars);
23
24 if ~obj.SafeMode
25 % Expand updated states and unfeas to the combined grid
26 for n = 1:length(states_next)
27 states_next{n} = states_next{n} + zeros([obj.N_SV obj.

N_CV]);
28 end
29 stageCost = stageCost + zeros([obj.N_SV obj.N_CV]);
30 unfeas = unfeas | false([obj.N_SV obj.N_CV]);
31 end
32
33 % Enforce state grids
34 if obj.EnforceStateGrid
35 for n = 1:length(obj.N_SV)
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36 unfeas(states_next{n} > obj.StateGrid{n}(end) |
states_next{n} < obj.StateGrid{n}(1)) = obj.myInf;

37 end
38 end
39
40 % Update the value function
41 [obj, cv_opt] = updateVF(obj, k, states_next, stageCost, unfeas,

vecdim_cv);
42
43 % Store cv map
44 if obj.StoreControlMap
45 obj.ControlMap = ⟨Store uok(xk)⟩
46 end
47
48 end
49
50 end

The user-accessible setting EnforceStateGrid enables a constraint on the
state variables so that they do not exceed the bounds of the state grids.

Then, the updateVF method illustrated in Listing 3.6 is used to perform the
value function update (3.5) and, if the level set method is enabled, the level set
function update as well. If the level set method is disabled, the first step is to
evaluate Vk+1 (by interpolation) for fk(xk,uk), which was previously stored in a
variable called states_next. The value functions are stored as interpolants† in a †Using MATLAB’s

griddedInterpolant objects.cell array VF with N cells; essentially, they can be used as functions whose argu-
ments are the query points. The syntax states_next{:} is used to generate the
arguments as a comma-separated list ‡. This value is then summed to the running ‡For example, if there are two state

variables,
obj.VF{k+1}(states_next{:})

is equivalent to
obj.VF{k+1}(states_next{1},

states_next{2}).
See

https://www.mathworks.
com/help/matlab/matlab_prog/
comma-separated-lists.html
for more information about comma-
separated lists.

cost (thus obtaining Lk(xk,uk)+Vk+1(fk(xk,uk))) and set toV∞ for all unfea-
sible controls. This cost is then minimized over the indexes corresponding to the
control variables to obtain the values of Vk(xk) for all gridded xk (cost_opt).
The final step is to use these values construct the value function interpolants. The
minfunmethod is merely a wrapper for MATLAB’s built-in min function that is
used for compatibility if an older MATLAB release is detected.

If the level set method is enabled, a fewmore steps are needed for the level set
function update, to determine the set of feasible controlsURk(xk) for which xk+1
is within the reachable state space at k + 1, to evaluate the level set-minimizing
controls uLmin

k for each gridded xk, and finally to modify the value function up-
date using uLmin

k whenURk(xk) is empty. All these steps are thoroughly described
in [23].

The final step of Listing 3.5 is to store the optimal control map for the current
stage, if the user requires it by setting the StoreControlMap property to true:

uok(xk) = argmin
uk∈Uk(xk)

[Lk(xk,uk) + Vk+1 (fk (xk,uk))] . (3.26)

Listing 3.6: The updateVFmethod.
1 function [obj, cv_opt_idx, cost_opt] = updateVF(obj, k, states_next,

stageCost, unFeas, vecdim_cv)
2 % Update Level-Set function
3 if obj.UseLevelSet
4 % Read L(k+1)
5 LevelSet_next = obj.LevelSet{k+1}(states_next{:});
6 % Set LevelSet_next to inf for the unfeasible CVs
7 LevelSet_next(unFeas) = obj.myInf;
8 % Update level-set function and find L-minimizing CVs

https://www.mathworks.com/help/matlab/matlab_prog/comma-separated-lists.html
https://www.mathworks.com/help/matlab/matlab_prog/comma-separated-lists.html
https://www.mathworks.com/help/matlab/matlab_prog/comma-separated-lists.html
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9 [LevelSetValue, MinLevelSetCV] = obj.minfun(LevelSet_next,
vecdim_cv);

10 % Check if the set of reachable CVs U^R(x_k) is empty.
11 isempty_UR = LevelSetValue>0;
12 % Construct L approximating function for the current timestep
13 obj.LevelSet{k} = griddedInterpolant(obj.StateGridCol, ...
14 LevelSetValue, 'linear');
15 end
16
17 % Read VF(k+1)
18 VF_next = obj.VF{k+1}(states_next{:});
19 cost = stageCost + VF_next;
20 % Set cost-to-go to inf for the unfeasible/unreachable CVs
21 cost(unFeas) = obj.myInf;
22 % Find optimal control as a function of the current state
23 [cost_opt, cv_opt_idx] = obj.minfun(cost, vecdim_cv);
24
25 if obj.UseLevelSet
26 % For x_k s.t. U^R(x_k) is empty, calculate the VF based on the

cv that minimizes the level-set function
27 cost_MinLevelSetCV = cost(MinLevelSetCV);
28 cost_opt(isempty_UR) = cost_MinLevelSetCV(isempty_UR);
29 end
30
31 % Construct VF approximating function for the current timestep
32 obj.VF{k} = griddedInterpolant(obj.StateGridCol, cost_opt, 'linear');
33
34 end

The forward phase

Similarly to the backward phase, the appropriate control grids are retrieved, de-
pending on whether safe mode is enabled or not. Obviously, the state is not grid-
ded and it is rather initialized to x0.

In the forward simulation loop, the model is evaluated for the current state
and the whole control grids; but first:

• the current state is expanded to the same size as the control grids if safe
mode is enabled,

• the intermediate variables and external unfeasibilities are retrieved if the
model split is used,

• the exogenous inputs are retrieved and also expanded if safe mode is en-
abled.

The model function is then evaluated with these inputs, generating the up-
dated state xk+1, the stage cost Lk and the unfeasibilities for all controls belonging
to the control grids. In addition, xk+1, Lk and the unfeasibilities are expanded to
the combined control grids† if safe mode is enabled.†As defined in § 3.2.5, the com-

bined control grids are the control grids
expanded to (M1 × ... × Mm)-
dimensional grids.

Listing 3.7: The forwardmethod.
1 function obj = forward(obj)
2 % Run the optimization algorithm forward phase
3
4 if obj.SafeMode
5 control = obj.ControlCombGrid;
6 % Vector dimensions corresponding to cvs
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7 vecdim_cv = 1:length(obj.N_CV);
8 else
9 control = obj.ControlGrid;
10 % Vector dimensions corresponding to cvs
11 vecdim_cv = (1:length(obj.N_CV)) + length(obj.N_SV);
12 end
13
14 % Initialize the state
15 state = obj.StateInitial;
16
17 for k = 1:obj.Nstages
18
19 % Expand current state to the combined cv grid
20 if obj.SafeMode
21 for n = 1:length(state)
22 state_exp{n} = state{n} + zeros(size(obj.ControlCombGrid

{1}));
23 end
24 else
25 state_exp = state;
26 end
27
28 intVars = ⟨Retrieve vk⟩
29 exoInput = ⟨Retrievewk⟩
30
31 % Evaluate state update and stage cost
32 [state_next, stageCost, unfeas] = model_wrapper(obj, state_next,

control, exoInput, intVars);
33
34 % Expand updated states and unfeas to the combined cv grid
35 if ~obj.SafeMode
36 for n = 1:length(state_next)
37 state_next{n} = state_next{n} + zeros([ones(1, length(obj

.N_SV)) obj.N_CV]);
38 end
39 stageCost = stageCost + zeros([ones(1, length(obj.N_SV)) obj.

N_CV]);
40 unfeas = unfeas | false([ones(1, length(obj.N_SV)) obj.N_CV])

;
41 end
42
43 % Find the optimal cvs
44 [obj, cv_opt, intVars_opt] = optimalControl(obj, k, state_next,

stageCost, unfeas, vecdim_cv, intVars);
45
46 % Advance the simulation
47 [state, stageCost_opt, unfeas_opt, addout] = model_wrapper(obj,

state, cv_opt, exoInput, intVars_opt);
48
49 % Update the profiles
50 obj.StateProfile(:,k+1) = ⟨Append state⟩
51 obj.ControlProfile(:,k) = ⟨Append cv_opt⟩
52 obj.CostProfile(k) = stageCost_opt;
53 if ~isempty(addout)
54 obj.AddOutputsProfile(:,k) = ⟨Append addout⟩
55 end
56 end
57 end

At this point, the optimalControl method, shown in Listing 3.8, is used to
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obtain the optimal control variable for the current stage uok(xk) using (3.6). If
the level set method is disabled, the first steps are to evaluate the value function
Vk(xk+1) (by interpolation), add the stage cost Lk and set this sum to V∞ for
unfeasible controls. Then, the index of the controls that minimize this sum is
found and used to extract the optimal controls. A final step is also required to
extract the corresponding values of the intermediate variables, if the model split
is used.

If the level set method is enabled, additional steps are required to check
whether the set of feasible controls that lead to reachable statesURk(xk) is empty,
and to set uok to the level-set minimizing controls uLmin

k if this is the case.

Listing 3.8: The optimalControlmethod.
1 function [obj, cv_opt, intVars_opt] = optimalControl(obj, k,

state_next, stageCost, unfeas, vecdim_cv, intVars)
2 %optimaControl find optimal controls for the current stage
3
4 % Get level set - minimizing cv
5 if obj.UseLevelSet
6 % Read L(k+1)
7 LevelSet_next = obj.LevelSet{k+1}(state_next{:});
8 % Set LevelSet_next to inf for the unfeasible cvs
9 LevelSet_next(unfeas) = obj.myInf;
10 % Determine if U^R(x_k) is empty
11 isempty_UR = all(LevelSet_next(:) > 0);
12 end
13
14 % Read VF(k+1)
15 VF_next = obj.VF{k+1}(state_next{:});
16 cost = stageCost + VF_next;
17 if obj.UseLevelSet
18 cost(unfeas) = obj.myInf;
19 cost(LevelSet_next > 0) = obj.myInf;
20 end
21 % Set cost-to-go to inf for the unfeasible cvs
22 cost(unfeas) = obj.myInf;
23
24 % Find optimal control as a function of the current state
25 [~, index_opt] = obj.minfun(cost, vecdim_cv);
26 if obj.UseLevelSet
27 % If no reachable cv was found (isempty_UR), then use the L-

minimizing u
28 [~, MinLevelSetCV] = obj.minfun(LevelSet_next, vecdim_cv);
29 index_opt(isempty_UR) = MinLevelSetCV;
30 end
31 cv_opt = cellfun(@(x) x(index_opt), obj.ControlCombGrid, '

UniformOutput', false);
32
33 % Extract the intermediate variables for the optimal cv
34 intVars_opt = ⟨Retrievewk(uok)⟩
35
36 end



4
Powertrain modeling for dynamic
programming

As we saw in § 1.1, the energy management strategy of a hybrid electric vehicles is
usually tasked with controlling at least one control variable that defines the pow-
erflow from the different power sources to the wheels†. †Possibly, along with other control

variables such as the transmission’s gear
number.

In most cases, the choice of this control variable is not unique and is an im-
portant decision for an engineer working on EMS design. In fact, various dif-
ferent models can be found in the literature for this type of architecture. The
most popular choices appear to be the engine torque [49, 5, 86, 43, 3], the e-
machine torque [50], the e-machine power [74, 37], the battery power [48], an
engine torque-split factor, or an e-machine torque-split factor [91].

When we set up the EMS design as an optimal control problem, all these
choices alter the structure to some extent and they interact differently with the
numerical implementation of any algorithm used to obtain the solution. In this
chapter, we want to investigate the interaction between these modeling choices
and a dynamic programming algorithm.

As a case study, a p2 parallel hybrid‡ was identified, whose main parameters ‡We selected the p2 architecture as it
is arguably the most commonly studied
in the literature.

are reported in Table 4.1, and modeled with eight different control sets. Dynamic
programming was then used for all models to investigate the fuel-optimal EMS.

Part of the contents of this section were published in [62].

Component Parameter Value

Vehicle Mass 1175 kg
First coast-down coefficient 150 N
Second coast-down coefficient 2.24 N/(ms)
Third coast-down coefficient 0.44 N/(ms)2

Tyre radius 0.3 m
Engine Displacement 1.1 l

Rated power 68 kW
Maximum torque 130 Nm

E-machine Rated power 30 kW
Maximum torque 150 Nm

Battery Type Li-ion
Nominal capacity 5.4 Ah
Nominal voltage 204 V

Table 4.1: Main vehicle data.

4.1 Simulation model

The scope of this comparison is to compare different modeling choices that can
be adopted to describe the power flow in a parallel hybrid.

The eight models are all based on standard modeling practice [28, 69] for the
individual components, but they differ in that they characterize the power flow
with the following control variables:

39
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A) The engine torque Teng.

B) The e-machine torque Tem.

C) The battery current ib.

D) The normalized engine torque τeng.

E) The normalized e-machine torque τem.

F) The normalized battery current ιb.

G) The engine torque-split factor αeng.

H) The e-machine torque-split factor αem.

Clearly, each one of these control sets introduces changes in the powertrain
model. In particular, models based on the battery current, i.e. models C)) and F)),
use different equations for the battery model.

Furthermore, each of these control sets requires a different characterization
in terms of lower and upper bounds and different constraints to be enforced.

Nonetheless, all models share a common path up to the evaluation of the
torque demand. A longitudinal vehiclemodel was used to evaluate a tractive effort
Fveh as a function of the vehicle speed vveh. The control effort is then propagated to
evaluate a torque demand at the transmission input. Finally, this torque demand
is split between the engine and the e-machine based on the power flow control
variable.

Omitting the various driveling efficiencies for ease of notation, the torque de-
mand was evaluated as:

Td =
Fveh(vveh)rwh
τfdτgb(γ)

, (4.1)

where rwh is the wheels’ radius, τfd and τgb are the final drive and gearbox speed
ratios, and γ is the gear number.

The battery was modeled with an internal resistance equivalent circuit model,
where the battery power Pb and the battery current ib are related to each other as
follows:

Pb = vbib =
(︁
voc(σ) + Req(σ)ib

)︁
ib. (4.2)

Note that the open-circuit voltage and internal resistance characteristics voc(σ)
and Req(σ) were characterized as SOC-dependent. The battery SOC (σ) is the
only state variable for all models.

The engine fuel consumption and e-machine efficiency were obtained by lin-
ear interpolation on quasi-static map as a function of their speed and torque, as
is common in these sort of models:

ṁf = ṁf(ωeng, Teng), (4.3)
ηem = ηem(ωem, Tem). (4.4)

The fuel consumption constitutes the running cost of the optimal control prob-
lem, so that

J(σ0) = ∆t

N−1∑︂
k=0

ṁf(ωeng,k, Teng,k). (4.5)
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4.2 Evaluation criteria

The goal of this section is to provide insight on the advantages of disadvantages
of the listed simulation models. To structure our discussion, we identified four
areas.

Control bounds definition. To apply dynamic programming, we need to dis-
cretize and define lower and upper bounds for all the continuous control
variables. For some control sets, these bounds are obvious; for others, they
are not. We will sometimes refer to the former as well-posed control set
bounds.

Numerical efficiency. For each simulation time interval, we exclude all controls
that end up violating the constraints that we set on the powertrain com-
ponents. These controls do not contribute to the value function update.
The more controls we have to exclude because of our constraints, the more
numerically inefficient the control set is.

Model complexity. The models which directly control the battery current use
simpler equations for the battery model, which translate into reduced sim-
ulation time.

Interpretability. As engineers, we would like to have a direct correspondence
between the value taken by our power flow control variable and the HEV
operating modes (i.e. pure electric, torque-split, pure thermal and battery
charging)†. This may also be very relevant if the results are to be used by †Pure electric includes regenerative

braking, which is the only allowed oper-
ating mode when the vehicle is braking.

some rule-extraction algorithm to obtain an heuristic strategy or to train a
machine-learning based strategy‡.

‡In particular, classification algo-
rithms.4.3 Control sets

We now turn our attention to the definition of the control sets and we discuss
their individual advantages and disadvantages.

The normalized control sets, i.e. sets D) to F), are different from models A)
to C) in that the control variables are normalized by their maximum values, as
imposed by the operational limits of the corresponding components. The torque-
split factors G) and H) are defined as the ratio between the engine or e-machine
torque and the torque demand (4.1).

4.3.1 Engine torque and normalized engine torque
This model has no particular advantages, if not for the fact that no derived quan-
tity needs to be defined.

This control set obviously has a lower bound at Teng = 0, and an upper bound
at the enginemaximum torque. However, themaximum torque is strongly speed-
dependent; therefore, the upper bound for the control set must be set to the ab-
solute maximum engine torque, which is available at some speedω∗

eng.
Then, a constraint must be set on the engine torque:

Teng ⩽ Teng,max(ωeng). (4.6)

At all times where the engine speed is different from this ω∗
eng, we are wasting

computations on unfeasible controls.
After setting the engine torque, the e-machine torque is simply evaluated as

Tem =
Td − Teng

τtc
. (4.7)
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The, the e-machine power and, subsequently, the battery power can be computed.
The battery current must then be evaluated by solving (4.2), which is quadratic in
ib:

ib =
voc −

√︁
v2oc − 4ReqPb
2Req

. (4.8)

This is the most computationally expensive equation in the whole powertrain
model.

An additional consideration on the lower bound is also in order. Here, we
implicitly assumed that the EMS prevents the engine from working at negative
torque. For powertrain architectures with a low hybridization ratio, this may not
be a reasonable assumption; in that case, the engine torque should be limited to
its motoring torque† Tmot(ωeng), which is strongly speed dependent, leading to†The torque absorbed due to pump-

ing and friction losses when no fuel is in-
jected.

the same sort of issues that we have just discussed for the upper torque limit.
Issues related to the definition of the control bounds can be easily overcome

by defining a normalized engine torque:

τeng =
Teng

Teng,max(ωeng)
. (4.9)

With this definition, and by setting τeng = [0, 1], the dynamic programming al-
gorithm will never waste time in exploring control variables that are unfeasible
because they exceed the maximum engine torque and we can get rid of the corre-
sponding constraint.

Finally, we turn our attention to regenerative braking. With these two control
sets, there is no way to directly control the amount of torque demand that gets
absorbed by the e-machine to charge the battery. This operatingmode is implicitly
defined by setting Teng or τeng to zero and then either let all of the torque demand
be absorbed by the e-machine or adopt some other simple rule (i.e. only absorbed
a fixed or speed-dependent share).

For the sake of simplicity, we set the e-machine torque in regenerative braking
to be only limited by its torque limit curve. In other words, when the torque
demand is negative, Tem is saturated by:

Tem = max
(︃
Td

τtc
, Tem,min(ωem)

)︃
. (4.10)

Note that Tem,min, the limit torque in generator mode, is negative by convention.

4.3.2 E-machine torque and normalized e-machine torque
Thismodel is analogous to the previous one, and it shares a similar issue in that the
maximum torque is speed-dependent; but since the e-machine has twomaximum
torque curves (for generator andmotormode), the issue affects both the lower and
the upper bound for the control set.

The control setmust be bounded at the ratedminimumandmaximum torque.
Then, whenever the e-machine is working in the constant power region, the we
are wasting computations on unfeasible controls.

Issues related to the definition of the control bounds can be easily overcome
by defining a normalized e-machine torque:

τem =

{︄
Tem

Tem,min(ωem)
if τem < 0,

Tem
Tem,max(ωem)

if τem ⩾ 0.
(4.11)

With this definition, and by setting τem = [−1, 1], the dynamic programming
algorithm will never waste time in exploring control variables that are unfeasible
because they exceed the e-machine torque limits.
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With these two control sets, the amount of torque demand that gets absorbed
by the e-machine in regenerative braking can be directly controlled. However, this
is not really an advantage: clearly, the optimal decision when the torque demand
is negative is to regenerate as much as possible, as for the engine-based models,
rather than using the highest feasible torque within our discrete control set. This
also ensures a fair comparison with the engine torque-based models.

4.3.3 Battery current and normalized battery current
An important difference between this model and the preceding ones is that di-
rectly controlling the battery current means that the battery model no longer re-
quires solving a quadratic equation; rather, the battery power is directly computed
from (4.2) and then translated into the e-machine torque which in turn deter-
mines the engine torque.

Thus, the most expensive computation of the powertrain model is avoided
resulting in a slightly faster-running model.

Note that, since we are setting the battery power based on a control variable
and then evaluating the consequent e-machine torque rather than the other way
around, we need a characterization of the e-machine efficiency as a function of
its speed and electrical power. Usually, the e-machine efficiency is characterized
as a function of speed and mechanical torque; transforming from one form to
the other is straightforward and should obviously be done outside of the control
algorithm.

Whether the lower and upper bounds definition requires the same care as for
the previous models depends on how the battery current is limited as well as on
the battery technology and performance.

In some cases, the limit current may be determined by thermal or aging as-
pects, and can generally be set as a constant. In some other cases, the limiting
factor may be the battery voltage limits. Then, if the open-circuit voltage and in-
ternal resistance are SOC-dependent, so are the limit currents:

ib,max(σ) =
voc(σ) − vb,min

Req(σ)
, (4.12)

ib,min(σ) =
voc(σ) − vb,max

Req(σ)
. (4.13)

In these cases, issues related to the definition of the control bounds arise as
for the engine and e-machine torque control sets and they can be easily overcome
by defining a normalized current:

ιb =

{︄
ib

ib,min(σ)
if ιb < 0,

ib
ib,max(σ)

if ιb ⩾ 0.
(4.14)

With this definition, and by setting ιb = [−1, 1], the dynamic programming al-
gorithm will never waste time in exploring control variables that are unfeasible
because they exceed the e-machine torque limits.

Regenerative braking is particularly troublesome with these models. In a
naive approach, one could simply select the highest current within the control
set that meets the battery and e-machine constraints. However, this would make
this model unable to reproduce the same behavior as the other ones, since this
value of the current will not correspond to the maximum torque the e-machine
can absorb.

Suppose that we want to use the approach we have previously used instead.
First, we would saturate the e-machine torque to its generator limit torque, and
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we would then use (4.8) to evaluate the corresponding maximum charge current;
then, we would limit the battery current to this. Doing this however means that
we are essentially giving up on the motivating factors for using this model, that is
to avoid using (4.8).

An alternative is to pre-calculate a minimum current ĩb,min that incorporates
the e-machine torque limits:

ĩb,min(σ,ωem) = max

⎡⎣ib,min(σ),
voc −

√︂
v2oc − 4ReqP̃b
2Req

⎤⎦ , (4.15)

where

P̃b = ηem (ωem, Tem,min(ωem))ωemTem,min(ωem), (4.16)

and use that to saturate the battery current. This is the approach that was used for
this work.

Even with this trick, it is still not possible to saturate the e-machine torque to
the torque demand in regenerative braking and a constraint must be set so that

Tem ⩾
Td

τtc
. (4.17)

4.3.4 Engine torque-split factor

The engine torque-split factor is defined as the ratio between the engine torque
and the torque demand:

αeng =
Teng

Td
. (4.18)

The main advantage of the engine torque-split factor is in its interpretability,
in that any value for αeng can be attributed to one of the HEV operating modes as
shown in Table 4.2.

One issue with this control set is while there is an obvious lower bound for
αeng (i.e. αeng = 0), there is no obvious upper bound:

• at times when Td is small compared to Teng,max, a large upper bound would
be needed to enable using the engine up to its full power to recharge the
battery and a coarse discretization would suffice;

• when Td is close to Teng,max, a small upper bound would be enough but a
finer discretization would be needed;

• if Td is larger than Teng,max, an even smaller upper bound (smaller than 1)
would suffice.

As a result, this control set generally leads to wasting computations on un-
feasible controls whenever the torque demand is relatively high and to an un-
necessarily restricted control set for battery charging when the torque demand is
relatively low.

Regenerative braking is easily dealt with in the same manner as the engine
torque-based models.
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value operating mode

αeng = 0 pure electric
0 < αeng < 1 torque-split
αeng = 1 pure thermal
αeng > 1 battery charging

Table 4.2: Correspondence between the engine torque-split factor and the HEV
operating mode

4.3.5 E-machine torque-split factor

The e-machine torque-split factor is defined as the ratio between the e-machine
torque and the torque demand:

αem =
Tem

Td
. (4.19)

Similarly to the engine-torque split factor, this control set has an unambiguous
relation to the HEV operating modes, as shown in Table 4.3; furthermore, for
similar reasons, there is no obvious lower bound.

value operating mode

αem < 0 battery charging
αem = 0 pure thermal
0 < αem < 1 torque-split
αem = 1 pure electric

Table 4.3: Correspondence between the e-machine torque-split factor and the
HEV operating mode

Regenerative braking is easily dealt with in the samemanner as the e-machine
torque-based models.

4.4 Simulation results

To test the ideas discussed in the previous section, all the listed models were im-
plemented and tested with the DynaProg toolbox. We thus compared the control
sets in terms of accuracy (which is a product of their numerical efficiency and of
the well-posedness of their bounds) and computational time (which is a product
of the model complexity).

For all simulations, the SOC grid was defined as ranging from 0.4 to 0.7 with a
discretization step of 0.003†. The computational grid for power flow control vari- †I.e. withnσ = 101 values.
able was defined by a numberMPF of 11, 21 and 61 quantized values in three sets
of experiments. Therefore, all simulations had the same number of function eval-
uations. Model accuracy was measured in terms of the model’s ability to achieve
the true optimal‡ fuel consumption while reaching the terminal SOC of σ = 0.6. ‡Obtained by running a simulation

with extremely fine discretization grids,
withnσ = 2001 andMPF = 2001.

The gear number was set by a simple gear shift schedule as a function of the
vehicle speed, to ensure that all models deal with the same torque demand. We
will say more about this in § 4.5.
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Model MPF = 11 MPF = 21 MPF = 41

∆mf ψ(σN) tsim (s) ∆mf ψ(σN) tsim (s) ∆mf ψ(σN) tsim (s)

A) Teng 1.94 % 9.2e-04 2.5 1.26 % 1.3e-03 2.6 0.74 % 1.4e-03 2.9
B) Tem 13.15 % 1.0e-02 2.8 2.15 % 4.9e-03 2.8 1.48 % 5.7e-03 3.0
C) ib 3.53 % 3.5e-03 2.8 1.99 % 3.2e-03 3.3 1.17 % 5.2e-03 3.3
D) τeng 1.95 % 1.3e-03 2.6 1.25 % 1.2e-03 2.6 0.71 % 1.2e-03 2.9
E) τem 2.28 % 4.3e-03 2.6 1.52 % 5.1e-03 2.6 0.95 % 4.7e-03 2.9
F) ιb 3.53 % 4.4e-03 3.0 2.01 % 3.8e-03 3.1 1.09 % 3.2e-03 3.3
G) αeng 1.07 % 4.3e-03 2.8 0.61 % 4.4e-03 2.6 0.32 % 3.2e-03 2.8
H) αem 0.91 % 1.1e-03 2.5 0.45 % 1.0e-03 2.7 0.33 % 1.0e-03 2.8

Table 4.4: Accuracy and simulation time of the examined models.

Figure 4.1: SOC trajectories for all models, withMPF = 2001.

Accuracy of the models is therefore reported in Table 4.4 for all tested mod-
els in terms of two quantities: the difference between the fuel consumption and
the true optimal fuel consumption∆mf and the fixed-endpoint errorψ(σN) (i.e.
the difference between the terminal SOC and the desired value). A third column
reports simulation time (tsim). Simulations where the dynamic programming al-
gorithm was unable to find a feasible solution are marked as failed.

The simulation results shown in Table 4.4 raise many points which are worth
discussing. Firstly, the torque-split models appear to be the most robust in that
they allowed to find a feasible solution with accuracy within 1%even with a coarse
discretization grid.

Their good performance is probably explained by the fact that they can ac-
curately reproduce both pure thermal and pure electric modes, thus allowing for
stable operation.

As control set discretization is refined all models tend to the same solution,
both in terms of fuel consumption and in terms of the state trajectory as shown
in Figure 4.1.

Furthermore, inspecting this optimal solution, we also note that it includes
some lengthy portions where the optimal operating mode is pure thermal† and†Especially in the extra-high phase

of the WLTC.
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Figure 4.2: Pure thermal segment. The top plot shows model G) with a fine discretization (MPF = 2001), which serves
as a reference. The middle plot shows how model A) tends to the same solution given the same fine discretization. The
bottom plot shows how the same model fails to reproduce the same pure thermal segments accurately withMPF = 41.

shorter but frequent portions where the optimal operating mode is pure electric.
However, as we saw earlier, the torque-split models are the only two that can

exactlymatch both these two operatingmodes. Consider for example the segment
shown in Figure 4.2. The figure shows the engine, e-machine and battery power
as well as the power demand at the gearbox input.

In this segment, the optimal solution involves going in pure thermal, and both
torque-split models are able to accurately reproduce this behavior. When using
an extremely fine discretization, the engine-torque based models A) and D) are
able to match this behavior almost exactly, as shown in Figure 4.2 for model A).

As we reduce the discretization toMPF = 41, we start seeing how the same
model is unable to run in pure thermal, although it attempts to do so by making
the e-machine torque as small as possible (given the control set quantization).
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Figure 4.3: Pure electric segment. The top plot shows model G) with a fine discretization (MPF = 2001), which serves
as a reference. The middle plot shows how model B) tends to the same solution given the same fine discretization. The
bottom plot shows how the same model fails to reproduce the same pure electric segments accurately withMPF = 41.

A similar issue affects the e-machine- and battery current-based models in
that they cannot exactly reproduce pure electric operation. This time, let us con-
sider the segment shown in Figure 4.3, where the optimal solution involves many
pure electric portions. While the solution for model B) withMPF = 2001 is al-
most identical, since the fine discretization allows it, the solution forMPF = 41
looks very different as the model simply cannot well approximate pure electric.

Instead, it would have used the engine tomeet the torque demand, and it does
so in an inefficient way as an engine’s efficiency is typically low at low load; to the
point where it is sometimes more convenient to just run in pure thermal. A clear
example of this can be seen by comparing the segments going from 344 to 358
seconds in Figure 4.3.

In addition to that, the batter current-based models are also less effective at
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Model MPF = 61 MPF = 121 MPF = 181

∆mf ψ(σN) tsim (s) ∆mf ψ(σN) tsim (s) ∆mf ψ(σN) tsim (s)

A) Teng 0.54 % 9.9e-04 3.0 0.31 % 1.0e-03 3.3 0.24 % 1.0e-03 3.6
B) Tem 1.14 % 5.1e-03 3.3 0.77 % 5.2e-03 3.7 0.45 % 2.8e-03 4.0
C) ib 0.80 % 3.5e-03 3.7 0.48 % 4.1e-03 4.5 0.34 % 3.7e-03 5.2
D) τeng 0.51 % 1.0e-03 3.0 0.31 % 1.0e-03 3.4 0.24 % 1.1e-03 3.8
E) τem 0.75 % 5.1e-03 2.9 0.44 % 3.6e-03 3.5 0.38 % 5.0e-03 3.7
F) ιb 0.79 % 3.4e-03 3.7 0.46 % 3.9e-03 4.8 0.33 % 3.5e-03 4.9
G) αeng 0.26 % 3.4e-03 3.0 0.18 % 3.4e-03 3.5 0.17 % 3.9e-03 3.6
H) αem 0.27 % 1.0e-03 3.0 0.19 % 1.0e-03 3.4 0.20 % 1.0e-03 3.6

Table 4.5: Accuracy and simulation time of the examined models, with finer control set discretization.

regenerative braking, as it is not possible to saturate the e-machine torque to the
torque demand. Hence, when the limiting factor is the torque demand and not
one of either the e-machine limit torque or the maximum charge current, the
current-based models lose some energy with respect to the other ones. This ex-
plains why they generally perform worse than model E).

What is less expected is that they are also unable to provide any reduction in
computational time. On the contrary, they are the worst performing models in
this aspect.

Inspection of the code performance using a dedicated tool† revealed that the †MATLAB’s profiler.
two most time-consuming operations for these models were the interpolations
required to evaluate the e-machine efficiency and engine fuel consumption.

While for all other models these two are only a function of the exogenous
inputs‡ and control variables, the fact that we saturate the battery current using ‡The vehicle speed and acceleration.
ĩb,min defined by (4.15), which is also SOC-dependent, means that we have to do
a significantly higher number§ of interpolations on the two maps. §Preciselynσ times more.

The corresponding increase in computational cost is enough to overcome the
saving induced by avoiding the computation of the battery current with (4.8), as is
further confirmed by the simulation results shown in Table 4.5, where two refined
control set grids were employed.

4.5 Including the gear number in the control set

In the simulations performed so far, the powerflow control variable was set as the
only control variable, while gear number was set with a speed-dependent gear-
shift schedule. This was done to ensure that all models had to deal with the same
torque demand.

If the gear number is set as a second control variable, additional differences
between the models may be introduced. For example, the engine torque-based
models and torque-split models are able to disengage the engine clutch and run
in pure electric with a high gear, whether this is desirable or not. The remaining
models on the other hand cannot disengage the engine clutch, as they cannot truly
run in pure electric: as we saw earlier, they cannot set the engine torque exactly to
zero as they cannot match exactly the torque demand with the e-machine torque
only.

Since the engine operating speed range is typically narrower than the e-
machine’s, especially since it is limited by its idle speed, the latter models hare

https://mathworks.com/help/matlab/matlab_prog/profiling-for-improving-performance.html
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Figure 4.4: Example of the torque demand being slightly higher for the e-machine
torque- and battery current- basedmodels when the gear number is controlled by
dynamic programming, due to the gearbox efficiency.

Model MPF = 11 MPF = 21 MPF = 41

∆mf ψ(σN) tsim (s) ∆mf ψ(σN) tsim (s) ∆mf ψ(σN) tsim (s)

A) Teng 1.94 % 9.2e-04 2.5 1.26 % 1.3e-03 2.6 0.74 % 1.4e-03 2.9
B) Tem 13.15 % 1.0e-02 2.8 2.15 % 4.9e-03 2.8 1.48 % 5.7e-03 3.0
C) ib 3.53 % 3.5e-03 2.8 1.99 % 3.2e-03 3.3 1.17 % 5.2e-03 3.3
D) τeng 1.95 % 1.3e-03 2.6 1.25 % 1.2e-03 2.6 0.71 % 1.2e-03 2.9
E) τem 2.28 % 4.3e-03 2.6 1.52 % 5.1e-03 2.6 0.95 % 4.7e-03 2.9
F) ιb 3.53 % 4.4e-03 3.0 2.01 % 3.8e-03 3.1 1.09 % 3.2e-03 3.3
G) αeng 1.07 % 4.3e-03 2.8 0.61 % 4.4e-03 2.6 0.32 % 3.2e-03 2.8
H) αem 0.91 % 1.1e-03 2.5 0.45 % 1.0e-03 2.7 0.33 % 1.0e-03 2.8

Table 4.6: Accuracy and simulation time of the examined models, with the gear number controlled by dynamic pro-
gramming.

therefore more restricted in selecting the gear number. This means that the en-
gine torque-based and torque-split models may have additional ways to runmore
efficiently, by choosing the gear with the highest transmission efficiency.

The overall effect of this phenomenon on the models’ performance can be
visualized in Table 4.6.
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4.6 Limitations and further work

When considering the results presented in this section, there are many factors
that should be taken into account. Firstly, for simplicity, we did not consider the
engine and e-machine’s inertia. Secondly, we did not model any auxiliaries load.
This means, for example, that the vehicle can keep the state of charge by simply
switching off the engine, and that the e-machine and/or the battery does not have
to bear any additional load when the engine is turned off.

Finally, we only considered one architecture with a hybridization ratio of 0.7† †Defined as:
Peng,max

Peng,max + Pem,max

, as in [5].

and one set of mass and road-load coefficients, corresponding to a small-size pas-
senger car.

All these assumptions and data may somewhat alter the structure of the op-
timal solution, which may in turn stress differently the strengths and weaknesses
of eachmodel. For example, the optimal solution that we inspected in the simula-
tion results makes very scarce use of the battery charging operating mode; hence
the most important weakness of the torque-split models does not show.

There are numerous extensions to this work. The most obvious are reintro-
ducing the engine inertia and/or accessory loads as well as to test a wider range of
vehicles and hybridization ratios. Then, similar analysis may also be repeated for
other powertrain configurations, such as power-split hybrids and series hybrids.
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5
Differential dynamic programming
algorithms

In this chapter, we will first introduce the fundamental ideas behind differential
dynamic programming. Then, after a brief overview of its historical develop-
ment, we illustrate the basic methodology by deriving an algorithm to iteratively
improve a nominal control trajectory for unconstrained problems. We then in-
troduce a variant of this base algorithm which is able to handle more complex,
constrained optimal control problems.

The starting point of all differential dynamic programming algorithms is the
Hamilton-Jacobi-Bellman equation:

−
∂V

∂t
(x; t) = min

u
[L(x,u; t) + ⟨Vx(x; t), f(x,u; t)⟩] (5.1)

The HJB equation can be directly derived using the principle of optimality†, †See Chapter 5 in [52].
and it can be seen as its infinitesimal version. Clearly, it constitutes a better start-
ing point for dealing with continuous-time problems; however, it remains quite
awkward to use because of the challenges and potentially infinite storage space
requirement in representing Vx(x; t).

The underlying idea of differential dynamic programming is to simplify the
problem by using a second-order local expansion of the HJB equation and using
it to iteratively improve the control trajectory, while ensuring that conditions are
met so that the local expansion is reasonably accurate.

5.1 Historical remarks

The very first work on differential dynamic programming was published by
Mayne [58]. Jacobson [34, 32] then developed a series of first-order and second
order algorithms for unconstrained problems and problems control inequality
constraints, both free and fixed endpoint. Jacobson then went on to develop re-
finements of his algorithms to improve convergence of the Lagrange multipliers
associated with the terminal state constraints in fixed endpoint problems [24, 25]
and to better deal with bang-bang control problems [31].

This first set of algorithms, which proved superior to contemporary iterative
optimal control techniques, was published in a compact and comprehensive book
by Jacobson and Mayne [33] which is one of the main sources for the algorithm
presented in this chapter and its derivation.

It should be noted that, at this point, no method for accommodating state
variable or state-dependent control variable constraints of the form (2.6) and (2.8)
was available. Jacobson and Lele [30] later attempted to address these constraints
by augmenting the state of the system with a slack variable in order to convert
the constrained problem into an unconstrained one. This method however does
not appear to be treatable with a differential dynamic programming approach‡ ‡In [30], Jacobson and Lele use a

conjugate gradient method.and is only applicable to a narrower class of optimal control problems. Moreover,
it has the considerable drawback that the transformed problem shows singular
arcs where the state constraints are active, which make convergence very hard to
achieve.

Several extensions and variations to Jacobson’s algorithms were proposed in
the following decades in order to accommodate constraints on the state variables.
Mårtensson proposed a technique to transform any state variable inequality con-
straint into a state dependent control variable inequality constraints and subse-

55
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quently extended Jacobson’s fixed endpoint algorithm to handle this type of con-
straints [57, 55]. This algorithm is further discussed in § 5.4 and forms the basis
for the applications presented in this thesis.

Jarmark experimented with first-order DDP algorithms and introduced a
technique, alternative to Jacobson’s step-size adjustment procedure, to ensure the
convergence of the algorithm [38, 40, 39, 41].

Ruxton introduced another variant using a multiplier penalty function (MPF)
approach to directly deal with state variable inequality constraints [75, 77, 76].
Compared to Mårtensson’s approach, the MPF method does not require trans-
formation of the state constraints into mixed constraints and it modifies the base
DDP algorithm to a lower extent. On the downside, the multiplier penalty func-
tion is characterized by a set of weights which must be determined by the algo-
rithm.

5.2 DDP algorithm for unconstrained problems

In this section, we will derive an algorithm for iteratively improving a nominal
control trajectory until the optimal one is achieved. Wewill deal with continuous-
time problems of the form in § 2.1, but with the assumption that constraints (2.6)
to (2.9) are absent.

The content of this section summarizes the basic methodology used by Jacob-
son and Mayne to derive their first- and second-order algorithms, and it heavily
draws from [33]. Although the derivation does not require particularly sophis-
ticated mathematics and is quite straightforward, the notation can become quite
cumbersome and it can complicate its understanding. Therefore, we divide the
derivation in steps as outlined below.

Expansion of the HJB equation. We redefine the state and control trajectories
in terms of deviations δx and δu from a nominal trajectory and we expand
the HJB equation to second order in δx.

Introducing the Hamiltonian. We introduce the control Hamiltonian into the
second-order expansion of the HJB equation.

Minimization of the RHS. We derive a linear relationship between δx and δu
that minimizes the right-hand side of the second-order expansion of the
HJB equation.

Derivation of the base equations. We use the second-order expansion of the
HJB equation, with the right-hand side minimized, to derive differential
equations in time for the value function and its first and second derivatives
with respect to x.

5.2.1 Expansion of the HJB equation
First, let’s introduce a known nominal control trajectory u which, applying the
state equations (2.1) with initial conditions (2.2) over the time interval [t0, tf ],
produces a nominal state trajectory x and a nominal cost V(x; t)†.†As defined in (2.4).

Let us now introduce a variation in the nominal control trajectory δu and the
corresponding variation in the nominal state trajectory δx; identifying a δu at
each iteration that reduces the total cost will be our goal.

We can rewrite the state equations (2.1), total cost (2.4) and the HJB equa-
tion (5.1) as a function of the new trajectories u = u + δu and x = x + δx:

d(x+ δx)
dt

= f(x+ δx,u+ δu; t); x(t0) + δx(t0) = x0, (5.2)
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J(x0; t0) =
∫︂tf
t0

L(x+ δx,u+ δu; t) dt+ F(x(tf) + δx(tf); tf), (5.3)

−
∂V

∂t
(x+ δx; t) = min

δu

[︁
L(x+ δx,u+ δu; t) +

+ ⟨Vx(x+ δx; t), f(x+ δx,u+ δu; t)⟩
]︁
. (5.4)

Now, we perform a power series expansion of the optimal cost in δx about x:

V(x+ δx; t) = V(x; t) + ⟨Vx, δx⟩+
1
2
⟨δx,Vxxδx⟩+ h.o.t.†; (5.5)

Vx and Vxx are evaluated at x; t. We also expand Vx(x+ δx; t) to †Throughout this text, h.o.t. stands
for higher order terms in δx.

Vx(x+ δx; t) = Vx(x; t) + Vxxδx+ Vxxxδxδx+ h.o.t.‡, (5.6)

where Vx, Vxx and Vxxx are evaluated at x; t. For ease of notation, functions ‡Define

Vxxxδxδx
def
=

n∑︂
i=1

n∑︂
j=1

Vxxixjδxiδxj

.

whose argument is omitted are evaluated at (x+ δx; t).
Suppose that the the nominal control trajectory is applied from time t0 to t

and that the state variables subsequently assume value x = x(t). Let us define
the variable a as the difference between the optimal cost and the nominal cost at
(x; t), so that:

V(x; t) = V(x; t) + a(x; t). (5.7)

Here, V(x; t), the optimal cost at (x; t), is the optimal cost incurred by apply-
ing the optimal controls uo(τ) = u + δu(τ) from time t to tf , i.e. τ ∈ [t, tf ];
whileV(x; t), the nominal cost at (x; t), is the cost incurred by applying the nom-
inal controls u(τ) for τ ∈ [t, tf ].

Let us now substitute V(x; t) as in (5.7) in our power series expansion of the
optimal cost in (5.5):

V(x+ δx; t) = V(x; t) + a(x; t) + ⟨Vx, δx⟩+

+
1
2
⟨δx,Vxxδx⟩ + h.o.t. (5.8)

If we substituted (5.8) and (5.5) into the HJB equation (5.1), we would still
have an exact application of the principle of optimality. However, it is clearly im-
possible from a practical point of view to store an infinite, or even a high-order,
power series expansion of V(x + δx; t), which is a vector-valued function. We
therefore truncate the expansion to second-order and we assume that δx is suffi-
ciently small that the error vanishes. Unless the problem is LQ§, this is obviously §In an LQ (linear-quadratic) prob-

lem, the cost function is quadratic in the
state variables.

an assumption that does not hold in general.
When we will construct an algorithm for iteratively improving the control

trajectory, we will use a method to ensure that δx stays small enough even when
the nominal trajectory is far from the optimal trajectory. For the time being, let
us postpone this issues to § 5.3. Also, from now on, all terms of order higher than
second such asVxxxδxδxwill be neglected with little impact on the algorithms. It
is easily shown [33] that this is legit and that it does not have a significant impact
as the resulting error in the predicted change in cost a(x; t) is third-order. Then,
our second-order expansion of V(x+ δx; t) and Vx(x+ δx; t) simplifies to:

V(x+ δx; t) = V + a+ ⟨Vx, δx⟩+
1
2
⟨δx,Vxxδx⟩ (5.9)
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and

Vx(x+ δx; t) = Vx + Vxxδx+ Vxxxδxδx. (5.10)

Plugging the second-order expansions of V(x+ δx; t) and Vx(x+ δx; t) into
the HJB equation (5.4) we get:

−
∂V

∂t
−
∂a

∂t
−
∂Vx

∂t

T

δx−
1
2
δxT

∂Vxx

∂t
δx =

min
δu

[︁
g(x+ δx,u+ δu; t) + (Vx + Vxxδx)

Tf(x+ δx,u+ δu; t)
]︁

(5.11)

If the nominal trajectory is sufficiently close to the optimal one (or if the prob-
lem is LQ), the minimizing δu in the right-hand side of the HJB equation (5.11)
will be small and so will the resulting δx. If on the other hand the nominal control
trajectory is far from optimal, the resulting δx will be too large for the second-
order expansion of the optimal cost V(x+δx; t) to hold. In particular, since δx is
produced by integrating the state equations in Equation 5.2 on application of the
control u+ δu, it can grow larger as the length of the interval [t, tf ] increases.

In our algorithm, we will use a step-size adjustment procedure developed by
Jacobson and Mayne [33] to restrict the size of δx by applying the minimizing
new controlu+δu only to a small time interval. This procedure is also described
in § 5.3.

Furthermore, note that in replacing the optimal cost in the HJB equation with
its power series expansion, we assume that the cost is smooth enoughwith respect
to the state variables. If the optimal cost presents strong discontinuities with re-
spect to the state variables in the proximity of the optimal trajectory, the algorithm
might struggle to improve the trajectory at some point and it might require a large
number of iterations to achieve convergence.

5.2.2 Introducing the Hamiltonian

In the context of differential dynamic programming, we define the Hamiltonian
as

H(x,u,Vx; t) = L(x,u; t) + ⟨Vx, f(x,u; t)⟩ . (5.12)

Note that this formulation of the Hamiltonian is almost identical to one we saw
in the context of the minimum principle § 2.2, the only difference being that Vx
replaces the co-states.

Introducing (5.12) into the second-order expansion of the HJB equation (5.11),
we get

−
∂V

∂t
−
∂a

∂t
−

⟨︃
∂Vx

∂t
, δx

⟩︃
−

1
2

⟨︃
δx,

∂Vxx

∂t
δx

⟩︃
=

min
δu

[H(x+ δx,u+ δu,Vx + Vxxδx; t)] (5.13)

We now come to another key aspect of the method. So far, we have expressed
the new control u in terms of a deviation from the nominal control trajectory.
We now replace this definition of δu to express the new control u in terms of a
deviation with respect to the control û

u = û+ δu, (5.14)
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where û is defined as the control which minimizes

min
u

[H(x,u,Vx; t)] . (5.15)

Note that (5.15) is equivalent to considering (5.13) for state x = x.
In other words, û would define the optimal control trajectory if x was the

optimal state trajectory. We then reintroduce a correction δu to account for the
fact that the optimal state trajectory differs from the nominal trajectory by an
amount δx. What we want to do next is to find a relationship between this δu and
this δx.

Substituting u = û+ δu into (5.13), the HJB becomes:

−
∂V

∂t
−
∂a

∂t
−

⟨︃
∂Vx

∂t
, δx

⟩︃
−

1
2

⟨︃
δx,

∂Vxx

∂t
δx

⟩︃
=

min
δu

[H(x+ δx, û+ δu,Vx + Vxxδx; t)] . (5.16)

5.2.3 Minimization of the RHS
Let us expand the right-hand side of (5.13) to second order about x, û:

min
δu

[︂
H+ ⟨Hu, δu⟩+ ⟨Hx + Vxxf, δx⟩+

⟨︁
δu, (Hux + fTuVxx)δx

⟩︁
+

+
1
2
⟨δu,Huuδu⟩ +

1
2
⟨︁
δx, (Hxx + fTxVxx)δx

⟩︁ ]︂
(5.17)

Now in order to determine δu, we minimize (5.17) by differentiating its argu-
ment with respect to δu and equating it to zero

Hu +Huuδu+ (Hux + f
T
uVxx)δx = 0, (5.18)

and, sinceHu is obviously zero†: †Because we defined û to minimize
H(x, û,Vx, t).

Huuδu+ (Hux + f
T
uVxx)δx = 0, (5.19)

Hence, we finally come to establish the following relationship between δu and
δx:

δu = −H-1
uu(Hux + f

T
uVxx)δx, (5.20)

which we can also rewrite as

δu = β1δx, (5.21)

with

β1 = −H-1
uu(Hux + f

T
uVxx). (5.22)

For clarity, we remark that what we just derived here is the relationship which
enforces the necessary condition of optimality

Hu(x+ δx, û+ δu,Vx + Vxxδx; t) = 0, (5.23)

which we wrote based on our second-order expansion of the HJB equation and by
neglecting terms of order higher than second; hence, (5.21) withβ1 given by (5.22)
is correct for δx sufficiently small.

Equation (5.21) also highlights that the relationship we found between δu and
δx is linear. Although this might look arbitrary, a clever point made by Jacobson
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andMayne [33] is that there would be no point in seeking a relationship of higher
order. Consider the terms in (5.17) which affect its minimization, that is only the
terms involving δu (except for ⟨Hu, δu⟩ which is zero):

min
δu

[︂⟨︁
δu, (Hux + fTuVxx)δx

⟩︁
+

1
2
⟨δu,Huuδu⟩

]︂
. (5.24)

A linear relationship between δu and δx will produce terms that are quadratic
in δx, and any relationship of order higher than linear will produce additional
terms that are of order higher than quadratic in δx, which are neglected as we
expand (5.17) to second order only.

5.2.4 Derivation of the base equations

In the previous subsection, we obtained a relationship between δu and δx that
allows us to get rid of theminimization in the RHS of our second-order expansion
of the HJB equation. We can substitute (5.21) into (5.17) to obtain:

−
∂V

∂t
−
∂a

∂t
−

⟨︃
∂Vx

∂t
, δx

⟩︃
−

1
2

⟨︃
δx,

∂Vxx

∂t
δx

⟩︃
=

H+
⟨︁
Hx + Vxxf+ β

T
1Hu, δx

⟩︁
+

+
1
2
⟨︁
δx,

(︁
Hxx + f

T
xVxx + Vxxfx − β

T
1Huuβ1

)︁
δx

⟩︁
(5.25)

Since this equality must hold for all δx (sufficiently small), we can equate the
coefficients of the same order in δx, which gives the following set of relationships:

−
∂V

∂t
−
∂a

∂t
= H (5.26)

−
∂Vx

∂t
= Hx + β

T
1Hu + Vxxf (5.27)

−
∂Vxx

∂t
= Hxx + f

T
xVxx + Vxxfx+

−
(︁
Hux + f

T
uVxx

)︁T
Huu

(︁
Hux + f

T
uVxx

)︁
.

(5.28)

At this point, we recall that V = V + a, Vx and Vxx are all functions of x(t)
and t. We derive their total derivatives with respect to time by applying the chain
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rule:
d
dt

(V + a) =

=
∂(V + a)

∂t
+
∂(V + a)

∂x

dx
dt

=

=
∂(V + a)

∂t
+ VT

xf(x,u; t)

dVx
dt

=

=
∂Vx

∂t
+
∂Vx

∂x

dx
dt

=

=
∂Vx

∂t
+ Vxxf(x,u; t)

(5.29)

dVxx
dt

=

=
∂Vxx

∂t
+

1
2
Vxxxf(x,u; t) +

1
2
f(x,u; t)TVxxx.

Substituting Equations (5.29) into (5.26) to (5.28) and once again neglecting
Vxxx and observing thatHu = 0, we finally get to the following set of differential
equations, which we will call the base equations:

−ȧ = H−H (x,u,Vx, t) (5.30)

−V̇x = Hx + Vxx (f− f (x,u, t)) (5.31)

−V̇xx = Hxx + f
T
xVxx + Vxxfx+

−
(︁
Hux + f

T
uVxx

)︁T
Huu

(︁
Hux + f

T
uVxx

)︁
.

(5.32)

As previously, all quantities here are evaluated at x, û unless otherwise stated.
Assuming that we know a nominal trajectory, we can write a set of boundary

conditions for the base equations (5.30) to (5.32). At time t = tf , both the nominal
cost and the optimal cost are equal to V(x, tf) = F(x, tf). Hence:

a(tf) = 0 (5.33)

Vx(tf) = Fx(x(tf), tf) (5.34)

Vxx(tf) = Fxx(x(tf), tf). (5.35)

These base equations constitute one of the main building bricks for the differ-
ential dynamic programming algorithm. Assuming a nominal trajectory is avail-
able, (5.30) to (5.32) can be integrated backwards in time from tf to t0 using the
boundary conditions (5.33) to (5.35); note that this also requires the minimization
ofH(x,u,Vx; t) to obtain û. Once the integration is complete, the state equations
can be integrated forward in time starting from an initial state x0 and by applying
the new control u = û+ β1δx.

Furthermore, the integration of the base equation provides a criterion for con-
vergence. By definition, |a(x; t)| is the improvement in cost resulting from replac-
ing the nominal control with the optimal control, from time t to tf †. Hence, if the †While still using the nominal con-

trol from t0 to t.optimal control is exactly equal to the nominal control, |a(x; t0)| will be equal to
zero. In practice, in our algorithm, we will assume convergence when |a(x; t0)|
becomes smaller than a small quantity η1.



62 Differential dynamic programming algorithms

5.2.5 Extensions of the unconstrained DDP algorithm
The equations we derived in § 5.2 are useful to treat finite-time, unconstrained
optimal control problems. A similar procedure can be used to derive equations for
dealing with fixed-endpoint problems with control inequality constraints, which
will essentially lead to an extended set of base equations. Problems with unknown
final time can also be treated as fixed-endpoint problems by adjoining the final
time to the state vector; the base equations remain unaltered, but their boundary
conditions become a bit more cumbersome.

Finally, we should mention for the sake of completeness that first-order al-
gorithms can be easily derived as special instances of these second-order algo-
rithms. Although these first-order variants offer lower computational complexity
and they also have solid convergence proofs [61], they are generally unable to con-
verge in a reasonable number of iterations apart from specific applications [38, 39].
All these extensions to the base DDP methodology are straightforward† and are†In [30], Jacobson and Lele use a

conjugate gradient method. treated extensively in works by Jacobson [34, 32, 33].
There is one important piece of the puzzle that was not developed in these

works, and that is the ability to incorporate state variable inequality constraints.
As we mentioned in § 5.1, a few alternatives were developed to handle them. For
this thesis’s work, Mårtensson’s [57, 55] variant was used as described in § 5.4.

5.3 The step-size adjustment method

In § 5.2.3, we derived a relationship to improve the nominal trajectories by ap-
plying the new control u = û + β1δx. However, the derivation relied on the
size of the δx produced by the improved controls being small enough, so that our
second-order expansion of the HJB equation is accurate.

In general, this does not necessarily apply, especially for long control horizons.
In fact, the size of δx is ultimately determined by the length of the time span over
which the new control is applied through the state equations:

d(x+ δx)
dt

= f(x+ δx, û+ β1δx; t); x(t0) + δx(t0) = x0. (5.36)

This also suggests that the size of δx can be arbitrarily restricted by restricting
the time interval over which (5.36) is applied. The step-size adjustment method
(proposed by Jacobson [34]) is a method to restrict the size of this time inter-
val until the resulting δx is small enough that a reduction in cost is effectively
achieved.

The underlying idea is to generate the improved trajectory by applying the
nominal controls from find time t0 to a time t1 and then use the new control
u = û+β1δx from t1 to tf , and to set t1 by checkingwhether a good improvement
in cost has been achieved. In order to decide whether a good improvement has
been achieved, one compares the actual improvement in cost

∆V = V(x; t1) − V(x; t1) (5.37)

with the predicted improvement |a(x; t1)|‡‡Recall that, by definition,
|a(x; t1)| is the improvement in cost
resulting from replacing the nominal
control with the optimal control from
time t1 to tf (while still using the
nominal control from t0 to t).

Note that, in (5.37), the nominal cost V(x; t1) is the cost obtained by running
the nominal controls while V(x; t1) is the cost obtained by running the new con-
trols from t1 to tf , starting from x(t1).

The goodness of an improvement in cost can be measured by considering if
the ratio of the actual and the predicted improvement in cost, is larger than a
certain positive quantity C:

∆V

|a(x; t1)|
> C. (5.38)
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This quantity must clearly be larger than zero, as a negative∆V would correspond
to a degradation of the cost, and it cannot be larger than one. Unfortunately, a
good choice of C depends on the structure of the problem. Improvements corre-
sponding to large values may be unattainable if the problem is highly nonlinear
and the trajectory is far from optimal. On the other hand, small values may un-
necessarily produce a bigger number of iterations for convergence.

In the step-size adjustment method, (5.38) is first tested for t1 = t0. If the
inequality is not satisfied, a new value of t1 is chosen and the new controls are
applied in the interval [t1, tf ], and (5.38) is checked again.

In the applications presented in this work, we set C to 0.5, as suggested by
Jacobson andMayne [33]. An improvement on this would be to develop amethod
to adjust the value of C as the algorithm progresses. For example, it may prove
to be practical to use a small value at the first iterations, in order to favor global
changes to the whole trajectory, and increase its value as the algorithm progresses,
to speed up convergence near the optimum by rejecting minor improvements.

Then, one also needs a rule to change t1 when (5.38) is not satisfied. A simple
rule is to try the midpoint of the interval [t0, tf ], and then the midpoint of [t1, tf ]
if necessary. However, it is possible that a nominal trajectory generated by DDP is
also optimal in an interval [teff , tf ]. An improvement to this is therefore to restrict
the choice of t1 so that it never falls [teff , tf ]. Note that this time teff can be easily
identified as the time for which |a(x; t1)| becomes greater than η1.

The general procedure of the step-size adjustment method can summarized
as follows: set t1 = 2t0 − tf †. Update t1 to: †So that the first computed value of

t1 via (5.39) will be t0 .

t1 =
tf − t1

2
+ t1, (5.39)

integrate the state dynamics (5.36) starting from (x(t1); t1) and evaluate the cor-
responding change in cost∆V . If inequality (5.38) is satisfied, replace the nominal
trajectories with the new ones and proceed to the next iteration. Else, update t1
with (5.39) and repeat.

5.4 DDP algorithm for constrained problems

In § 5.2, we outlined the derivation of the basic DDP algorithm for unconstrained
problems. In this section, we briefly describe the main features of an algorithm
for fixed endpoint optimal control problems with pure control inequality con-
straints andmixed state-control inequality constraints of the form g(x,u; t) ⩽ 0,
developed by Mårtensson [57]. Pure state inequality constraints can then be ad-
dressed by transforming them using the constraining hyperplane technique de-
scribed in § 5.5.

A detailed derivation of the algorithm can be found in [57]. The software im-
plementation that was developed for this thesis, along with its peculiarities (some
of which constitute original contributions of this work) is discussed in § 6.

5.4.1 Terminal state constraints
To enforce the terminal state constraintψ(x(tf); tf) = 0, we adjoin it with a set of
Lagrange multipliers b to the cost functional. We therefore define the augmented
cost functional

J(x0,b; t0) =
∫︂tf
t0

L(x,u; t) dt+ F(x(tf); tf) + bTψ(x(tf); tf). (5.40)

Then, there exists a unique set of Lagrange multipliers b for which the solution of
the augmented problem corresponds to the solution of the original fixed-endpoint
problem.



64 Differential dynamic programming algorithms

In fact, there may be problems for which the augmented problem has an ex-
tremal but not aminimum. One solution to this problem is to also add a quadratic
term cψ(x(tf); tf)Tψ(x(tf); tf) to the terminal cost F [57, Part IV, Sec. 4.4]. This
converts the extremal into a minimum and does not alter the optimal solution, as
cψ(x(tf); tf)Tψ(x(tf); tf) is obviously zero if the terminal constraints are satis-
fied. This technique proved crucial for the application presented in § 7.

Clearly, this approach requires that the optimal value of the Lagrange mul-
tipliers b is found. The differential dynamic programming algorithm discussed
in this section includes a procedure for iteratively improving the fixed endpoint
error by updating b, given an initial guess. This modification of the algorithm
extends the base equations with three new terms V̇b, V̇xb and V̇bb. Also, a new
feedback relationship is established between the change in b (with respect to the
nominal value) and the new control to be adopted:

u(t) = û(t) + β1(t)δx(t) + β2(t)δb. (5.41)

The algorithm works in a layered fashion. In an inner layer, the problem is
treated as a free endpoint problem and the augmented cost functional (5.40) is
minimized for a nominal set of multipliers b. Within this inner layer, the multi-
pliers are kept fixed and (5.41) therefore simplifies to

u(t) = û(t) + β1(t)δx(t). (5.42)

In an outer layer, a new set of multipliers b is generated and the new nom-
inal control trajectory is generated with (5.41), which in turn generates a new
nominal state trajectory. The process is repeated until convergence is achieved,
i.e. |a(x; t0)| < η1

† and the endpoint error is less than a small quantity η2, i.e.†As for the unconstrained case;
see § 5.2.4. ψ(x(tf); tf) < η2.

5.4.2 State and control constraints and the multiplier function approach
In this section, we introduce changes to the algorithm caused by the introduction
of state and control constraints. The first relates to the way we define (and eval-
uate) û. The second relates to the way we evaluate β1 and how this introduces
additional terms in the base equations.

Similarly to the unconstrained algorithm, we need to determine the controls
û that minimize the Hamiltonian evaluated at the nominal state trajectory x and
with the nominal multipliers b. This is needed for the integration of the base
equations and to determine the new control trajectory.

This time, however, the minimization must be done over u belonging to the
set of admissible control variables U, which in our framework is defined by a set
of inequality constraints g(x,u; t) ⩽ 0:

H(x, û,Vx; t) = min
u

g(x,u;t)⩽0
[H(x,u,Vx; t)]. (5.43)

For some problems with few control variables and few constraints with a sim-
ple structure, the minimization of (5.43) may be easy to perform. In general how-
ever, this minimization problem is a complex nonlinear program that requires a
dedicated solver. We will deal with this in § 6.4; for now, let us assume we can
always obtain û.

Now let us turn our attention to how β1 and β2, used to generate new trajec-
tories, are obtained in the constrained case. To do this, we must first distinguish
whether the constraints are active at (x, û; t). When minimizing (5.43), we must
also note which (if any) of the constraints are active. These constraints will be
denoted by ĝ and their number by p̂.
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Assume that a number p̂ > 0 of the constraints are indeed active. Similarly
to the unconstrained case, the algorithm relies on establishing a relationship be-
tween δx and δu that enforces the minimization of the RHS of our second-order
expansion of the HJB equation (5.17). In § 5.2.3, we did this by enforcing the nec-
essary condition that its derivative with respect to u be equal to zero

Hu(x+ δx, û+ δu,Vx + Vxxδx; t) = 0. (5.44)

In the constrained case, we use themultiplier function approach introduced by
Mårtensson [56]. Similarly to themethod of Lagrangemultipliers, we reformulate
our objective function (the Hamiltonian) by adjoining the constraints via a set of
multiplier functions µ:

H(x,u,Vx; t) = H(x,u,Vx; t) + ⟨µ(x,u,b; t), ĝ(x,u; t)⟩. (5.45)

Provided that µ is defined properly, necessary conditions for having a con-
strained minimum at u are:

Hu(x,u,µ,Vx; t) + µ(x,u,b; t)Tĝu(x,u, t) = 0, (5.46)
ĝ(x,u, t) = 0. (5.47)

These conditions, expanded to first order, provide us with the relationship we
were looking for. A rather lengthy derivation leads to obtain:

β1 = −(Huu + µĝuu)
-1 Z (Hux + f

T
uVxx + µĝux) −Q

Tĝx, (5.48)

β2 = −(Huu + µĝuu)
-1 Z fTuVxb, (5.49)

whereQ and Z are defined as

Q = (ĝu(Huu + µĝuu)
-1ĝTu)

-1 ĝu (Huu + µĝuu)
-1, (5.50)

Z = Im − ĝTuQ, † (5.51)

and the multiplier function µ is defined as‡ †Im stands for the identitymatrix of
dimension m, i.e. the number of con-
trols.

‡Note that other definitions are pos-
sible.

µ = −(ĝuĝ
T
u)

-1ĝuHu. (5.52)

5.4.3 The base equations
In the constrained algorithm, we have three additional subsets of equations for
V̇b, V̇xb, and we have additional terms in the equations that take the constraints
into account. These are combinations of the derivatives of the active constraints
ĝ and the multiplier function µ.

The full set of base equations becomes:

−ȧ = H−H (x,u,Vx, t) (5.53)

−V̇x = Hx + Vxx (f− f (x,u, t)) + ĝTxµ (5.54)

−V̇b = VT
xb (f− f (x,u, t)) (5.55)

−V̇xb = (fTx + β
T
1f
T
u)Vxb (5.56)

−V̇bb = −βT2(Huu + µĝuu)β2
§ (5.57)

−V̇xx = Hxx + f
T
xVxx + Vxxfx + β

T
1 (Huu + µĝuu)β1+

+ βT1 (Hux + µĝux + f
T
uVxx)β1 + µĝxx. (5.58)
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with boundary conditions:§We define

µĝuu
def
=

p̂∑︂
k=1

µk
∂2ĝk
∂u2

and similarlyµĝux andµĝxx.

a(tf) = 0 (5.59)

Vx(tf) = Fx(x(tf); tf) +ψT
x(x(tf))b (5.60)

Vb(tf) = ψ(x(tf)) (5.61)

Vxb(tf) = ψ
T
x(x(tf)) (5.62)

Vbb(tf) = 0 (5.63)

Vxx(tf) = Fxx(x(tf); tf) + bψxx(x(tf)). (5.64)

5.5 Constraining hyperplane technique

The constrained algorithm that we will implement does not handle state variable
constraints directly. It can, however, handle mixed state-control variable inequal-
ity constraints of the form of the form g(x,u; t) ⩽ 0. In order to deal with pure
state variable inequality constraints of the form g(x; t) ⩽ 0 , we will transform
them into mixed inequality constraints using the constraining hyperplane tech-
nique developed by Mårtensson [57].

Let S(x; t) ⩽ 0 be the feasible region defined by one of our state constraints.
The fundamental idea of the technique is to approximate this region with another
region that explicitly depends on the control variables. Figure 5.1 illustrates this
concept for a first-order constraint.

We define the order of a state constraint S as the lowest order of the time
derivatives of S for which this time derivative is explicitly a function of at least

one of the control variables. In other words, a constraint S if of order q if
dqS
dtq

is
the lowest order time derivative of S which is explicitly a function of at least one
of the control variables [55].

For a first-order constraint, the region for which S(x; t) ⩽ 0 is replaced by a
region in the

(︁ dS
dt ,S(x; t)

)︁
plane

Ω =

{︃(︃
S(x; t),

dS
dt

)︃
| Π ⩽ 0

}︃
(5.65)

generated by the line† Π:†Which is the constraining hyper-
plane for first-order constraints.

Π =

{︃(︃
S(x; t),

dS
dt

)︃
|
dS
dt

+ λ1S(x; t) = 0, λ1 > 0
}︃
. (5.66)

It is intuitively understood that theΩ approximates well the region S(x; t) ⩽
0 if λ1 is large enough. In practice though, the technique works well even for small
values of λ1, which is preferable for a numerical solution.

The constraining hyperplane technique generalizes well to higher-order state
constraints. A qth-order state constraint can be transformed into a mixed state-
control inequality constraint by defining the constraining hyperplane

Π =

{︃(︃
S(x; t),

dS
dt

, . . . ,
dqS
dtq

)︃
|
dqS
dtq

+ λ1
dq−1S

dtq−1 + . . .+ λqS = 0
}︃
, (5.67)

where the parameters λ1, . . . , λq are all real and must satisfy the condition that
the roots p∗i of the polynomial

pq + λ1p
q−1 + . . .+ λq (5.68)
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Π

S

dS/dt

Ω

Figure 5.1: Constraining hyperplane for a first-order state constraint. In this case,
the hyperplane is a line.

are all real and satisfy

p∗1 < p
∗
2 < . . . < p∗q. (5.69)

Furthermore, the constraints must be satisfied at (x0, t0). This last require-
ment is clearly a property of any correctly formulated optimal control problem.
Readers that are interested in the technical motivation for these requirements
should refer to [57, Part II, Ch. 3] and [55].

5.6 The computational trick

So far, we have computed the new controls within one major iteration with (5.42)
as:

u = û+ β1δx,

where β1(t) is obtained during the integration of the base equations (5.59), (5.60)
and (5.64)

According to [33] the termβ1δxmay in practice become too large for the local
expansions in δu to hold, even if δx itself is still small enough for the expansion

Vx(x+ δx; t) = Vx + Vxxδx (5.70)

to be accurate. In that case, we could still improve the new control trajectory by
storing Vx(t) and Vxx(t) and directly minimizing:

u = argmin
u

H(x+ δx,u,Vx + Vxxδx; t). (5.71)

This may improve the convergence of the algorithm, reducing the number of it-
erations. On the downside, this minimization presents the same challenges that
were discussed in § 6.4. Similarly, we replace the evaluation of the new controls
between major iterations (5.41):

u = û+ β1δx+ β2δb

with:

u = argmin
u

H(x+ δx,u,Vx + Vxxδx+ Vxbδb; t). (5.72)





6
Implementation of the DDP algorithm

In this chapter, we describe the differential dynamic programming algorithm that
was implemented in this work for solving fixed-endpoint OCPs with state and
control variable inequality constraints.

More precisely, the algorithm handles problems with pure control variable or
mixed state-control variable inequality constraints of the form

g(x,u; t) ⩽ 0. (6.1)

Pure state variable inequality constraints of the form g(x; t) ⩽ 0 can be trans-
formed intomixed inequality constraints using the constraining hyperplane tech-
nique developed by Mårtensson [57].

The theoretical foundation for the algorithm, which were introduced in the
previous chapter, as well as the general computational procedure, which will be
described in § 6.1, are largely based on the work by Mårtensson [57, 55] and Ja-
cobson and Mayne [34, 33].

The software implementation and some aspects of the algorithm instead con-
stitute original contributions of this thesis’ author. In particular, original aspects
of this work are the inclusion of a non-linear program solver for the minimiza-
tion of the Hamiltonian in (5.43) to evaluate û (§ 6.4) and the implementation of
automatic differentiation (§ 6.3) to evaluate the various derivative terms required
for the integration of the base equations.

These features were developed to handle the complexity of the typical optimal
control problems that arise in energy management strategy design. Moreover,
they constitute the fundamental building bricks that will lead to the culmination
of the second part of this thesis, that is the application that will be presented in
the next chapter (§ 7).

The contents of this chapter are meant to serve a double purpose. The first is
to illustrate how to use the equations and theoretical framework that were intro-
duced in the preceding Chapter to practically build an iterative procedure for the
solution of optimal control problems, while also dealing with practical issues such
as numerical integration of the base equations, minimization of the Hamiltonian
and computing derivatives.

The second purpose is to serve as a guide for the open-source codes that are
provided in this thesis’ repository. For this reason, this chapter also includes code
fragments with break-down of their inner working. Note that these code frag-
ments were largely edited for readability; function names, however, were left un-
changed, so that the interested reader can easily refer to the actual working code
which can be retrieved from its GitHub repository at https://github.com/fmiretti/
ddp-shev.

6.1 Description of the algorithm

In this section, we introduce the computational algorithm in a descriptive man-
ner. Since the algorithm is quite complex, we tackle it at two different levels of
abstraction. First, we will look at it from a very broad perspective, which serves
to illustrate the general procedure. Then, we will tackle it at a deeper layer of
detail. This second description is the foundation for developing our software im-
plementation.
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6.1.1 General structure of the algorithm
The general structure of the algorithm is illustrated in Figure 6.1. The first thing
to note is that the algorithm works with a layered structure. In an inner layer, we
first solve the problem by treating it as a free-endpoint problem. However, rather
than minimizing the cost functional

J(x0,u; t0) =
∫︂tf
t0

L(x,u; t) dt+ F(x(tf); tf), (6.2)

we minimize the augmented cost functional:

J(x0,u,b; t0) =
∫︂tf
t0

L(x,u; t) dt+ F(x(tf); tf) + bTψ(x(tf); tf), (6.3)

for a given value of the Lagrange multipliers b, iteratively improving the control
trajectory until no further reduction in cost is achievable. Initially, the values for
b will have to be guessed.

This procedure is then nested in an outer layer, which reduces the endpoint
error while keeping the cost increase to a minimum generating a new set of La-
grange multipliers b. This is repeated until we meet some convergence criteria on
both the cost and endpoint error.

In the remainder of this thesis, we will refer to iterations of the outer layer,
which correspond to updates of the Lagrange multipliers, as major iterations and
to iterations of the inner layer as minor iterations.

Before the algorithm can start, an initial guess for the Lagrange multipliers b
and a nominal control trajectory umust be supplied. The nominal control trajec-
tory in turn determines a nominal state trajectory x.

Each minor iteration involves integrating ȧ, V̇x, V̇xx backwards in time and
evaluating (and storing) β1(t). Convergence of the inner layer is reached if the
predicted reduction in cost is smaller than a small quantity, i.e. |a(x,b; t0)| < η1.
If it has not, the step-size adjustment method† is used to generate a new nominal†Described in § 5.3.
trajectory with an improved cost, and proceeds to the next minor iteration.

Then, the endpoint error is checked. If it is smaller than a tolerance eta2,
the algorithm stops. Else, it moves to the outer layer to update the Lagrange
multipliers and then moves back to the inner layer. Updating b requires inte-
grating V̇b, V̇xb, V̇bb backwards in time and evaluating (and storing) β2(t). At
this point, it may also be necessary to use the δb adjustment method described
in step 7, § 6.1.2.

Summarizing, each minor iteration corresponds to a run of the step-size ad-
justment method, which updates the nominal state and control trajectories by
applying the new controls

û = û+ β1δx
‡ (6.4)

over the whole time interval [t0, tf ] or a part of it.‡Here,β2δb is not present because
b is kept fixed within minor iterations. Each major iteration corresponds to the integration of V̇b, V̇xb, V̇bb and

a run of the (endpoint) multipliers adjustment method to update the nominal
endpoint multipliers b as well as the nominal state and control trajectories by
applying the new controls

û = û+ β1δx+ β2δb. (6.5)

After each minor or major iteration, ȧ, V̇x, V̇xx are integrated to then check
convergence and to generate β1(t) and β2(t) which are needed if convergence
has not been achieved. This is also done before the very first iteration to start the
algorithm.
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Integrate base 
equations

ȧ, Vx, Vxx
˙ ˙

|a(x0,b;t0)| < η1 ?‾‾

Step-size 
adjustment 

method

|ψ(x(tf),tf)| < η2 ?
Yes

No

Yes

No

Integrate base 
equations

Vb,Vxb,Vbb
˙ ˙ ˙

Multipliers 
adjustment 

method

Guess x,u,b‾ ‾‾

Stop

Figure 6.1: General outline of the differential dynamic programming algorithm.

6.1.2 Detailed structure of the algorithm

In this section, we describe the computational procedure as a detailed sequence
of steps to be taken. Each of these steps expands the flowchart in Figure 6.1.

step 1 Initialization. Define a nominal control trajectory u(t) with t ∈ [t0, tf ]
and a set of nominal Lagrange multipliers b. Integrate the state equations
to calculate the nominal state trajectory x(t)

dx
dt

= f(x,u; t), x(t0) = x0. (6.6)

Calculate the nominal cost V(x0,b; t) with (5.40):

V(x0,b; t) =
∫︂tf
t0

L(x,u; t) dt+ F(x(tf); tf) + bTψ(x(tf); tf). (6.7)

step 2 Base equations (first set). Integrate ȧ, V̇x, V̇xx with the base equa-
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tions (5.53), (5.54) and (5.58) backward in time from tf to t0:

−ȧ = H−H (x,u,Vx, t) ,

−V̇x = Hx + Vxx (f− f (x,u, t)) + ĝTxµ,

−V̇xx = Hxx + f
T
xVxx + Vxxfx + β

T
1 (Huu + µĝuu)β1+

+ βT1 (Hux + µĝux + f
T
uVxx)β1 + µĝxx,

with boundary conditions (5.59), (5.60) and (5.64):

a(tf) = 0,

Vx(tf) = Fx(x(tf); tf) +ψT
x(x(tf))b,

Vxx(tf) = Fxx(x(tf); tf) + bψxx(x(tf)),

while obtaining û by minimizingH(x,u,Vx; t) subject to g(x,u; t) ⩽ 0.

If one or more inequality constraints g(x,u; t) are active, compute Z
with (5.51) andQ with (5.50):

Q = (ĝu(Huu + µĝuu)
-1ĝTu)

-1 ĝu (Huu + µĝuu)
-1, (6.8)

Z = Im − ĝTuQ; (6.9)

else, set Z = Im andQ = 0.

Compute β1(t) with (5.22):

β1 = −(Huu + µĝuu)
-1 Z (Hux + f

T
uVxx + µĝux) −Q

Tĝx.

Store û, β1(t), Z and a(x,b; t) †.†In practice, it is also useful to store
(Huu+µĝuu)

-1 , for later use in step 6.
step 3 Cost convergence. Check convergence of the inner layer: if the predicted

change in cost |a(x,b; t0)| is smaller than a small quantity η1, then u(t)
is the optimal solution of the free endpoint problem with the augmented
cost (5.40); proceed to step 5. Otherwise, proceed to step 4.

step 4 Step-size adjustment method. Start with t1 = t0 and integrate the state
equations with the new controls u = û + β1δx over the whole time in-
terval [t1, tf ].

While integrating the new state trajectory, ensure that the inequality
constraints are not violated. If this happens, determine u by setting
ĝ(x,u; t) = 0.

If the actual improvement in cost

∆V = V(x,b; t1) − V(x,b; t1) (6.10)

is close to the predicted improvement |a(x,b; t1)| in the sense defined
by (5.38), i.e.

∆V

|a(x,b; t1)|
> C‡, (6.11)

replace the nominal trajectories with the new trajectories x(t) and u(t)‡C should be chosen according to
the discussion in § 5.3. and go to step 2. Else, change t1 and repeat until (6.11) is satisfied, and

then go to step 2.
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step 5 Endpoint convergence. Check whether the endpoint error is within the
specified tolerance, i.e.

ψ(x(tf); tf) < η2. (6.12)

If so, the algorithm has converged and x, u, b constitute the optimal so-
lution of the problem. Else, go to step 6.

step 6 Base equations (second set). Integrate V̇b, V̇xb, V̇bb from (5.55) to (5.56)
backward in time from tf to t0:

−V̇b = VT
xb (f− f (x,u, t)) ,

−V̇xb = (fTx + β
T
1f
T
u)Vxb,

−V̇bb = −βT2(Huu + µĝuu)
Tβ2,

with boundary conditions (5.61) to (5.63):

Vb(tf) = ψ(x(tf)),

Vxb(tf) = ψ
T
x(x(tf)),

Vbb(tf) = 0.

Compute and store β2(t) with (5.49):

β2 = −(Huu + µĝuu)
-1 Z fTuVxb.

step 7 Multipliers adjustment method. Start with ε = 1. Evaluate

δb = −εV -1
bb(t0)V

T
b(t0) (6.13)

and integrate the state equations with the new controls u = û + β1δx +
β2δb over the whole time interval [t0, tf ].
First, check whether there was an improvement in the endpoint error, i.e.

||ψ(x(tf); tf)|| < ||ψ(x(tf); tf)||. (6.14)

If it does, check also that the actual change in cost

∆V = V(x,b+ δb; t0) − V(x,b; t0) (6.15)

is close enough to the predicted change in cost.

˜︂∆V = a(x,b; t0) −
(︂
ε−

1
2
ε2
)︂
Vb(t0)

TVbb(t0)Vb(t0), (6.16)

i.e. check that

γ1 ⩽
∆V˜︂∆V ⩽ γ2, (6.17)

where 0 < γ1 < 1 and γ2 > 1.
If both (6.14) and (6.17) are satisfied, replace the nominal trajectories with
the new trajectories x(t) and u(t) and the nominal multipliers with the
new multipliers b+ δb and go to step 2.
Else, set ε = ε

2 and repeat this step. If (6.14) and (6.17) cannot be satis-
fied within a certain number of iterations, repeat this step without check-
ing (6.17).
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Algorithm 1: Fourth order Runge-Kutta integration routine.
1: function rk4(f,y0, t0, tf,N)
2: h← tf − t0

N
▷ Timestep length.

3: t← t0
4: y← y0
5: for n← 1 toN do
6: k1 = f(t,y)

7: k2 = f

(︃
t+

h

2
,y+ k1

h

2

)︃
8: k3 = f

(︃
t+

h

2
h,y+ k2

h

2

)︃
9: k4 = f (t+ h,y+ k3h)

10: y(t+ h) = y(t) +
k1 + 2k2 + 2k3 + k4

6
h

11: end for
12: end function

This procedure entails using the feedback relationship given by β1(t) and
β2(t) to evaluate new controls. If the computational trick described in § 5.6 is
to be used instead, the following modifications must be made:

• step 2 must be modified to store Vx(t) and Vxx(t) rather than β1(t).

• In step 4, the new controls must be determined by

u = argmin
u

H(x+ δx,u,Vx + Vxxδx; t) (6.18)

when integrating the state equations.

• step 6 must be modified to store Vxb(t) rather than β2(t).

• In step 7, the new controls must be determined by

u = argmin
u

H(x+ δx,u,Vx + Vxxδx+ Vxbδb; t) (6.19)

when integrating the state equations.

6.2 Integration of the base equations

Thefirst practical issue thatmust be addressed is the integration in time of the base
equations in step 2 and step 6. A robust numerical integration scheme must be
selected in order to handle the corner points in the control trajectory that may
arise on application of the step-size adjustment procedure† (see § 5.3).†Discontinuities in the time deriva-

tive ofu(t). Another issue is that it may not be possible to use one of the many available
libraries of ode solvers. The base equations of our DDP algorithm are peculiar in
that we must integrate them while simultaneously obtaining û by minimizing the
Hamiltonian. If this cannot be done analytically, this means that a constrained
NLP problem must be solved at each integration time step. Embedding this into
the equations to be integrated may be impossible or impractical with available
general-purpose ode solvers.

For our software, a specific fourth-order Runge-Kutta [29] solver was imple-
mented as in Algorithm 1, which solves the Hamiltonian minimization NLP at
each time step. Here, the integration variables y can as a vectorized form of a and
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the entries of Vx, Vxx for the integration run in step 2 and the vectorized entries
of Vb, Vxb and Vbb for the integration run in step 6.

The same integration routine has also been used to integrate the state equa-
tions forward in time. In this case, the integration variables y are the state vari-
ables.

Listing 6.1 shows the code for the integration of the base equations in step 2.
A time vector ts, defined by the user, is used to define the integration steps. Each
row of the integration variable y contains the elements of a, Vx and Vxx for the
corresponding integration step. The last row is initialized to the boundary condi-
tions, which were previously evaluated as in Listing 6.2.

Listing 6.1: Function for the integration of the base equations ȧ, V̇x, V̇xx.
1 function [ts, y, u_hat, beta1, Z, A] = Vx_bwd(ts, yf, x_nom, u_nom,

hessMinSolver, f, H, g, gb, nx, nu)
2
3 % Initial conditions
4 y(end, :) = yf;
5
6 for n = length(ts):-1:1
7 yy = y(n, :);
8 xx_nom = x_nom(n, :)';
9 uu_nom = u_nom(n, :)';
10 Vx = reshape(yy(2:(1+nx)), [1 nx]);
11
12 [uu_hat, g_hat] = get_u_hat( xx_nom, Vx, ts(n), hessMinSolver,

uu_nom, g, gb);
13 u_hat(n,:) = uu_hat;
14
15 [k_1, beta1(n,:,:), Z(n,:,:), A(n,:,:)] = ...
16 Vx_odefun( ts(n), yy, xx_nom, uu_nom, uu_hat, f, H, g_hat, nx

, nu);
17 if n>1
18 % Timestep
19 h = ts(n-1) - ts(n);
20 % Fourth order runge kutta
21 k_2 = ...
22 Vx_odefun( ts(n) + h/2, yy + k_1*h/2, xx_nom, uu_nom,

uu_hat, f, H, g_hat, nx, nu);
23 k_3 = ...
24 Vx_odefun( ts(n) + h/2, yy + k_2*h/2, xx_nom, uu_nom,

uu_hat, f, H, g_hat, nx, nu);
25 k_4 = ...
26 Vx_odefun( ts(n) + h, yy + k_3*h, xx_nom, uu_nom, uu_hat,

f, H, g_hat, nx, nu);
27 y(n-1, :) = yy + (1/6)*( k_1 + 2*k_2 + 2*k_3 + k_4 )*h;
28
29 end
30
31 end
32
33 end

Listing 6.2: Boundary conditions a(tf), Vx(tf), Vxx(tf).
1 % Evaluate boundary conditions
2 a_f = 0;
3 Vx_f = F.Fx( x_nom(end,:), ts(end) ) + psi.psix( x_nom(end,:), ts(end

) ) .' * b;
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4 Vxx_f = F.Fxx( x_nom(end,:), ts(end) ) + tensor_times_vector(zeros(
npsi,nx,nx), b, 1);

5 yf = [a_f; Vx_f(:); Vxx_f(:)];

Then, the integration loop is run. First, the relevant quantities for the current
integration step are retrieved and renamed for convenience. The nominal state
and controls as well as Vx are also put in column vector form, coherently with the
conventions we adopted throughout this text.

The functionget_u_hat is thenused to obtain ûbyminimizingH(x,u,Vx; t)
subject our state and control constraints, which are stored in g and gb†. This will†gb stores the box constraints on

u, as these are generally treated differ-
ently from the other constraints by NLP
solvers.

be described in § 6.4; for now, let us note that, in addition to û, it also returns the
active constraints (g_hat); and that û is also stored for each integration step for
later use.

Finally, the function integrates one step forward as we just illustrated in Algo-
rithm 1. The function Vx_odefun, shown in Listing 6.3, evaluates the time deriva-
tives ȧ, V̇x and V̇xx for a given time; hence, it can be used by any integrator.
Additionally, it can be used to return β1, Z and A = (Huu + µĝuu)

-1, so that
they can be stored for later usage; obviously, this is done for the time nodes of the
integration steps only and not for intermediate evaluation steps.

Listing 6.3: Function evaluating the time derivatives ȧ, V̇x, V̇xx.
1 function [dydt, beta1, Z, A] = Vx_odefun(t, y, x_nom, u_nom, u_hat, f

, H, g_hat, nx, nu)
2
3 Vx = reshape(y(2:(1+nx)), [1 nx]);
4 Vxx = reshape(y(2+nx:end), [nx nx]);
5
6 % System dynamics and Hamiltonian
7 f = f.fun(x_nom, u_hat, t);
8 H = H.fun(x_nom, u_hat, Vx, t);
9 f_nom = f.fun(x_nom, u_nom, t);
10 H_nom = H.fun(x_nom, u_nom, Vx, t);
11 % System dynamics and Hamiltonian derivatives
12 fx = f.fx(x_nom, u_hat, t);
13 fu = f.fu(x_nom, u_hat, t);
14 Hx = H.Hx(x_nom, u_hat, Vx, t)';
15 Hxx = H.Hxx(x_nom, u_hat, Vx, t);
16 Hux = H.Hux(x_nom, u_hat, Vx, t);
17 Huu = H.Huu(x_nom, u_hat, Vx, t);
18
19 % Number of active constraints
20 p_hat = length(g_hat);
21
22 if p_hat > 0
23 % Constraints derivatives
24 for n = 1:p_hat
25 gx_hat(n,:) = g_hat{n}.gx(x_nom, u_hat, t);
26 gu_hat(n,:) = g_hat{n}.gu(x_nom, u_hat, t);
27 gxx_hat(n,:,:) = g_hat{n}.gxx(x_nom, u_hat, t);
28 gux_hat(n,:,:) = g_hat{n}.gux(x_nom, u_hat, t);
29 guu_hat(n,:,:) = g_hat{n}.guu(x_nom, u_hat, t);
30 end
31
32 % Multiplier function
33 Hu = full( H.Hu(x_nom, u_nom, Vx, t) )';
34 mu = - inv(gu_hat * gu_hat.') * gu_hat * Hu;
35
36 mu_gxx = tensor_times_vector(gxx_hat, mu, 1);
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37 mu_guu = tensor_times_vector(guu_hat, mu, 1);
38 mu_gux = tensor_times_vector(gux_hat, mu, 1);
39
40 % Evaluate Q, Z, beta1
41 A = inv(Huu + mu*guu_hat);
42 Q = inv(gu_hat * A * gu_hat.') * gu_hat * A;
43 Z = eye(nu) - gu_hat.' * Q ;
44 beta1 = - A * Z * (Hux + mu_gux + fu.'*Vxx) - Q .' * gx_hat;
45
46 else
47 % No constraints are active
48 A = inv(Huu);
49 Z = eye(nu);
50 mu = 0;
51 gx_hat = 0;
52 mu_gxx = 0;
53 mu_guu = 0;
54 mu_gux = 0;
55
56 % Evaluate beta1
57 beta1 = - (Z * A) * (Hux + fu.'*Vxx);
58 end
59
60 % Evaluate da/dt, dVx/dt, dVxx/dt
61 a_dot = H - H_nom;
62 Vx_dot = Hx + Vxx * ( f - f_nom ) + (gx_hat.' * mu);
63 Vxx_dot = Hxx + mu_gxx + fx.' * Vxx + Vxx * fx + ...
64 + beta1.' * (Huu + mu_guu) * beta1 + ...
65 + beta1.' * (Hux + mu_gux + fu.'*Vxx) + ...
66 + (Hux + mu_gux + fu.'*Vxx).' * beta1;
67
68 dydt = - [a_dot; Vx_dot(:); Vxx_dot(:)];
69
70 end

Similarly, a function Vb_bwd was defined to integrate the base equations
in step 6, using another function Vb_odefun to evaluate V̇b, V̇xb and V̇bb and
optionally to return β2 to be stored for later use in the multipliers adjustment
method.

At this point, it is worthwhile to discuss an implementation issue which arises
in the integration of the base equations. The RK4 integrator involves evaluating
our function† at intermediate times within each integration interval to estimate †I.e. ȧ(t), V̇x(t) and V̇xx(t).
slopes. This is true in general of all integration methods of order higher than one.
In principle, this means that in order to accurately integrate the base equations
one should evaluate û at these intermediate times.

However, unless one is able to evaluate û(t) analytically, this would be im-
practical. First, it should be noted that the obtaining by minimizing the Hamilto-
nian with numerical methods is one of the most computationally expensive tasks
of the algorithm. If we were to adopt this strategy with the RK4 integrator, we
would increase the number of NLP solutions by a factor of four, which will have
a strong impact on the overall computational time.

Secondly, this would introduce a discrepancy between the accuracy of the
computed a(t), Vx(t) and Vxx(t) and the accuracy of û(t) and β1(t), since the
latter would only be stored for the nodes of the integration steps. This will make it
hard to compare‡ the true reduction in cost (which is a product of û(t) andβ1(t)) ‡For example, when evaluating new

trajectories within the step-size adjust-
ment method (step 4) or when checking
the cost convergence in step 3.

and the predicted change in cost (which is represented by a(t)), with a negative
impact on our ability to control the convergence of the algorithm.
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One way to avoid this issue altogether would be to adopt a first-order inte-
gration routine, such as Euler’s method, and using an increased number of inte-
gration steps. In our experiments, this approach proved ineffective and was sub-
sequently discarded; this is likely attributable to the bad performance of Euler’s
method in the presence of discontinuities or rapidly changing integration vari-
ables.

Hence, in our algorithm, we always evaluate the base equations using û as
evaluated at the left node of each integration step, thus introducing a small error
when using the RK4 integrator. While in our experience this did not prevent
the algorithm from effectively solving optimal control problems, as demonstrated
by the toy example in § 6.7 and the applications in § 7, it is the author’s opinion
that the convergence of the algorithm might be greatly improved if a method to
overcome this issue was devised.

6.3 Taking derivatives

An important feature of the DDP algorithm is the integration of the base equa-
tions, which require the evaluation of the first and secondderivatives of the system
dynamics, Hamiltonian and constraints.

Similarly to theminimization of the Hamiltonian, some simple problemsmay
allow an analytical derivation of these derivatives, either by hand or by using a
computer algebra system (CAS) software†.†Some popular examples are Maple,

Mathematica or Matlab’s Symbolic Com-
putation Toolbox

Unless the problem is fully scalar‡, these derivatives are Jacobian (such as fx,

‡I.e. the system has only one state
variable and one control variable.

Hx) or Hessian matrices (such as Huu); the entries may be far too many and
their derivatives far too complex to use an analytical approach. In this case, two
derivation methods can be employed: numerical differentiation and automatic
differentiation.

Numerical differentiation is perhaps the best known approach of the two. At
its core, it consists in using a finite differences approximation. For example, first
and second derivatives of a function f(x) at some point x0 may be calculated using
central differences scheme:

f ′(x0) ≈
f(x0 + h) − f(x0 − h)

h
. (6.20)

f ′′(x0) ≈
f(x0 + h) − 2f(x0)f(x0 − h)

h2 . (6.21)

where h is a suitable (small) step size. More sophisticated techniques can be used
to improve on the accuracy of the solution, such as the adoption of higher-order
differences to obtain a better approximation (at the cost of more function evalu-
ations) or using Richardson extrapolation [6, Chapter 14].

Nonetheless, numerical differentiation is relatively computationally expensive
and inaccurate because of cancellation and round-off errors. As h gets smaller,
f(x0 + h) gets closer to f(x0 − h) and the difference between the two may have
very few significant digits, meaning that its floating-point representation is more
prone to numerical errors such has cancellation [26].

Automatic differentiation§ is an approach to obtain first and higher order§Also know as algorithmic differen-
tiation. derivatives which at its core is based on systematic application of the chain rule.

The main practical advantages of AD is that it is accurate to machine precision
and has a significantly lower computational cost with respect to numerical differ-
entiation [27].

Automatic differentiation is a very wide and ever-evolving field which com-
prises many variants and techniques which are beyond the scope of this thesis.
Readers are referred to [27, 66] for an extensive treatment.
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For this work, Automatic Differentiationwas implemented by using CasADi†, †https://web.casadi.org/
an open-sourceC++ software frameworkwithMATLABandPython interfaces [2].
In particular, CasADi was used to obtain the derivatives of all quantities that ap-
pear in the base equations.

Listing 6.4 illustrates how this is set up using CasADi commands and stored.
For conciseness, we only show how derivatives of the system dynamics f(x,u; t)
and the HamiltonianH(x,u,Vx; t) are defined. First, the dependent variables x,
u, Vx and t must be defined as symbolic variables using the MX symbolics‡ and ‡MX stands for matrix expression, as

these objects are intended for matrix and
vector algebra.

their dimension§ must be specified∥.

§nx and nu represent the number of
states and controlsn andm.

∥Users that are familiar with com-
puter algebra systems and symbolic com-
putation will find this syntax familiar.
This is due to the fact that CasADi’s in-
terface was specifically designed to emu-
late CAS syntax, hence the first part of its
name.

Then, a structure f is created to store CasADi functions to evaluate f (f.fun),
fx (f.fx) and fu (f.fu). CasADi functions are objects that are created using the
Function() constructor, where the first input is a tag for the function’s name, the
second input specifies the dependent variables (which must be CasADi symbolic
variables, such as MX symbolics). The third input is a CasADi symbolic expres-
sionwhich defines the function. These functions can then be used in Vx\_odefun
to numerically evaluate them for given values of their dependent variables.

The command fexpr = fexpr(x,u,t), which may look redundant, is used
to convert the user-supplied function handle for f into a CasADi symbolic ex-
pression. This is simply done by calling the function handle using the MX symbolic
variables as inputs.

This is needed because DDPtoolbox requires users to specify the system dy-
namics, running cost and terminal cost as function handles (a built-in MATLAB
type). This choice was made so that new potential users do not have to learn any
additional syntax in addition to pure MATLAB and to maintain a high level of
modularity, so that CasADi may be easily replaced with other tools if needed in
future developments.

In defining the derivatives of f, the symbolic expressions are generated start-
ing from the symbolic expression for f itself by using the jacobian command,
where the second input specifies the derivation variables. Note that these sym-
bolic expressions do not actually contain analytic expressions for these deriva-
tives; rather, they store the computational graphs that are needed to evaluate
derivatives by automatic differentiation.

Similarly to the manner in which f and the graphs for evaluating its deriva-
tives are created and store in a structure f, the Hamiltonian and its derivatives are
stored in a structure H. This time however the second-order derivatives are also
generated using the hessian, whose syntax is analogous to jacobian. A similar
procedure is repeated for the terminal cost, endpoint error and constraints, which
are stored in the structures F, psi, g and gb. The reason why the box constraints
are stored in a different structure gb with respect to the other general constraints
g is that NLP solvers generally treat these two differently, as is the case for the
IPOPT solver shown in § 6.4.

Listing 6.4: Setup of the system dynamics and Hamiltonian derivatives functions.
1 %% Set up Casadi Stuff
2 import casadi.*
3
4 x = MX.sym('x', nx);
5 Vx = MX.sym('Vx', nx);
6 u = MX.sym('u', nu);
7 t = MX.sym('t', 1);
8
9 % State equations
10 fexpr = fexpr(x,u,t);
11 f.fun = Function('f', {x, u, t}, {fexpr});
12 % Create the Jacobian expressions
13 f.fx = Function('fx', {x, u, t}, {jacobian(fexpr, x)});

https://web.casadi.org/


80 Implementation of the DDP algorithm

14 f.fu = Function('fu', {x, u, t}, {jacobian(fexpr, u)});
15
16 % Hamiltonian
17 Hexpr = L(x,u,t) + Vx.' * fexpr;
18 H.expr = Hexpr;
19 H.fun = Function('H', {x, u, Vx, t}, {Hexpr});
20 % Create the Jacobian expressions
21 H.Hx = Function('Hx', {x, u, Vx, t}, {jacobian(Hexpr, x)});
22 H.Hu = Function('Hu', {x, u, Vx, t}, {jacobian(Hexpr, u)});
23 % Create the Hessian expressions
24 Hexpr = hessian(Hexpr, [x; u]);
25 H.Hxx = Function('Hxx', {x, u, Vx, t}, {Hexpr(1:nx, 1:nx)});
26 H.Hux = Function('Hux', {x, u, Vx, t}, {Hexpr(nx+1:end, 1:nx)});
27 H.Huu = Function('Huu', {x, u, Vx, t}, {Hexpr(nx+1:end, nx+1:end)});

6.3.1 Limitations of CasADi
When building the computational graphs for derivatives for a certain function,
one must ensure that all operations used to define that function are supported by
the AD engine.

While CasADi supports most of MATLAB’s common operators, there is
one type that is frequently used in powertrain modeling that requires some
additional care, and that is interpolant objects. Interpolant objects (such as
griddedInterpolant) are frequently used to characterize the behavior of map-
based components. For example, in § 7, linear interpolants will be used to char-
acterize the battery’s open-circuit voltage voc as a function of its state of charge
σ.

Unfortunately, CasADi does not supportMATLAB’s interpolant object. How-
ever, it does provide its own interpolant class. Therefore, the current way to use
interpolant objects in DDPtoolbox is to define them using CasADi; for example,
the voc(σ) characteristic for § 7 was implemented as

batt.ocVolt = casadi.interpolant('ocVolt', 'linear', socData,
ocVoltData);

6.4 The Hamiltonian minimization

Another important step of the computational procedure is the minimization
of the Hamiltonian with respect to u along the nominal state trajectory that is
needed to obtain û.

û = argmin
g(x,u;t)⩽0

H(x,u,Vx; t). (6.22)

In some cases, it may be possible to perform this minimization analytically.
For more complex applications, this is generally not possible in practice. There-
fore, a suitable algorithm is necessary to solve this sub-problem.

This Hamiltonian minimization is naturally cast as a nonlinear optimization
problem and can be solved with a suitable non-linear programming (NLP) solver.
In the software developed for this work, thewidely popular IPOPT solver [94] was
used.

IPOPT uses the gradient and hessian of the objective function (in our case,
the Hamiltonian) and constraints to generate solutions. If these are not available,
it estimates them using a quasi-Newton method; however, it is greatly beneficial
to directly provide them to the solver. To this end, we can once again resort to
automatic differentiation.
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In particular, CasADi includes an interface to IPOPT† which allows to easily †Other popular NLP solvers can be
interfaced to CasADi, both commercial
and freely distributed.

use the same AD tools to efficiently exploit the solver’s full capabilities. The NLP
is represented by an object which defines the objective functions and constraints,
possibly depending on some parameters.

In Listing 6.5, the basic definition of an NLP problem using CasADi is illus-
trated. A problem structure prob defines the objective function, the optimization
variable and the parameters by which the objective function is parameterized.
For our Hessian minimization problem, in the unconstrained case, the objective
function would be the Hessian, the parameters would be the x, Vx and t and the
optimization variable is u.

Then, the problem structure is passed as an input to the nlpsol constructor,
specifying the solver to be used and, if needed, additional settings using a dedi-
cated structure.

Listing 6.5: NLP solver setup
1 % Objective function
2 prob.f = H.fun(x,u,Vx,t);
3 % Optimization variable
4 prob.x = u;
5 % Parameters
6 prob.p = vertcat(x, Vx, t);
7 % Constraints
8 prob.g = gexprs;
9 % Additional settings
10 opts = ⟨Define options structure⟩
11 % Create the NLP solver
12 hessMinSolver = nlpsol('solver', 'ipopt', prob, opts);

For constrained problems, the constraints expressions are added in an addi-
tional field g of the problem structure. Note that these do not include the box
constraints, which are passed as inputs when the solver is used.

The solver can be run as in Listing 6.6 by specifying an initial guess for û,
the value of the parameters (in our case, x(t), Vx(t) and t) and lower and up-
per bounds for u and the constraints g(x,u, t). Since in our DDP framework
the constraints are all defined as g(x,u, t) ⩽ 0, the lower and upper bounds for
these constraints are always−∞ and 0. The lower and upper bounds for u on the
other hand are simply our box constraints, whose numerical values were previ-
ously stored in the cell gb{3}.

Listing 6.6: NLP solver usage
1 sol = hessMinSolver('x0', u_guess, 'p', [x_nom(n); Vx(n); ts(n)], '

lbx', gb{3}(1), 'ubx', gb{3}(2), 'lbg', -inf, 'ubg', 0);
2 u_hat = sol.x;

An important limitation to keep in mind is that IPOPT, like most efficient
NLP solvers, is not a global solver. This means that if the objective function is
particularly challenging, it may converge to a local minimum and not the global
minimum.

Although it is impossible to guarantee the absolute optimality of the solution
with a local optimizer, there are some ways to reduce the chances of converging
to a local minimum. The first and most effective is to provide a good first guess
of the solution, although this may be challenging in practice because it requires
some understanding of the shape of the objective function.

Another effective method is resorting to multistart, that is running the solver
several times with different starting points and the selecting the best solution. For
example, one might start the algorithm using the lower and upper bound of the
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optimization variable and an intermediate value. A three-point multistart can be
selected in DDPtoolbox using a dedicated NLPmultiStart option.

6.5 Putting it all together

In the previous sections, we focused our attention to specific aspects of the al-
gorithm that the author deems particularly important and where some original
contributions of this thesis work were developed. In this section, a general outline
of the computer program and the parts that were not addressed yet is offered.

6.5.1 The forward integrator
The sys_fwd function in Listing 6.7 is used to integrate the state equations, which
is needed in several different steps of the algorithm:

• To generate the first nominal state trajectory given the nominal control tra-
jectory;

• To generate new trajectories in the step-size adjustment method;

• To generate new trajectories in the multipliers adjustment method.

In order to accommodate all these different usages, the function can be called
with different signatures†. In practice, name-value pair arguments are specified†Different input arguments.
after the mandatory positional arguments to alter the behavior of the function.
The positional arguments are the state dynamics f, the initial state x_0, the nom-
inal state trajectory x_nom and the û trajectory u_hat. The name-value pair ar-
guments that can be specified are defined by an arguments block‡, which is not‡See https://www.mathworks.

com/help/matlab/matlab_prog/
function-argument-validation-1.html
for more information on argument
validation in MATLAB.

shown in Listing 6.7 for conciseness.

Listing 6.7: The state dynamics integrator.
1 function [ts, x, u] = sys_fwd(f, x0, ts, x_nom, u_hat, nvp)
2
3 % Initial conditions
4 x(1, :) = x0;
5
6 % Integration routine
7 for n = 1:length(ts)
8 xx = x(n, :);
9 xx_nom = x_nom(n,:)';
10 uu_hat = u_hat(n,:)';
11
12 % Get new controls
13 u(n, :) = get_u;
14
15 % Advance the simulation
16 if n<length(ts)
17 % Timestep
18 h = ts(n+1) - ts(n);
19 % Integrate one step fwd
20 k_1 = f.fun( xx, u(n, :), ts(n) );
21 k_2 = f.fun( xx + k_1*h/3, u(n, :), ts(n) + h/3 );
22 k_3 = f.fun( xx - k_1*h/3 + k_2*h, u(n, :), ts(n) + h*2/3 );
23 k_4 = f.fun( xx + k_1*h - k_2*h + k_3*h, u(n, :), ts(n) + h )

;
24 x(n+1, :) = xx + (1/8)*( k_1 + 3*k_2 + 3*k_3+k_4 )*h;
25
26 end

https://www.mathworks.com/help/matlab/matlab_prog/function-argument-validation-1.html
https://www.mathworks.com/help/matlab/matlab_prog/function-argument-validation-1.html
https://www.mathworks.com/help/matlab/matlab_prog/function-argument-validation-1.html
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27 end
28
29 function u_new = get_u
30 ⟨...⟩
31 end
32
33 end

The function itself is fairly simple: it sets the initial state and uses an RK4
integration scheme while using the function get_u to generate the new control
to be adopted. Note that this function, shown in Listing 6.8, is nested to sys_fwd,
meaning that it shares its workspace†. †In other words, it get_u has access

to the variables passed to and those de-
fined in sys_fwd.Listing 6.8: Function to generate the new controls at a given time step.

1 function u_new = get_u
2 % Get new controls
3
4 if nvp.initialization
5 % State traj initialization: u_hat is u_nom
6 u_new = uu_hat';
7 elseif nvp.trick
8 % Use the computational trick
9 dx = ( xx - xx_nom );
10 Vx = reshape(nvp.Vx(n,:), nx, 1);
11 Vxx = reshape(nvp.Vxx(n,:), nx, nx);
12 if isempty(nvp.Vxb)
13 sol = nvp.hessMinSolver('x0', uu_hat, 'p', [xx; Vx + Vxx*dx;

ts(n)], 'lbx', nvp.gb{3}(1), 'ubx', nvp.gb{3}(2), ...
14 'lbg', -inf, 'ubg', 0);
15 else
16 Vxb = reshape(nvp.Vxb(n,:), nx, length(nvp.db));
17 sol = nvp.hessMinSolver('x0', uu_hat, 'p', [xx; Vx + Vxx*dx +

Vxb*nvp.db; ts(n)], 'lbx', nvp.gb{3}(1), 'ubx', nvp.gb
{3}(2), ...

18 'lbg', -inf, 'ubg', 0);
19 end
20 u_new = sol.x;
21 else
22 % Use beta1 and beta2
23 if isempty(nvp.beta2)
24 u_new = uu_hat' + ( reshape(nvp.beta1(n,:,:), nu, nx) * ( xx

- xx_nom ) )';
25 else
26 u_new = uu_hat' + ( reshape(nvp.beta1(n,:,:), nu, nx) * ( xx

- xx_nom ) )' + (reshape(nvp.beta2(n,:,:), nu, npsi) *
nvp.db)';

27 end
28 end
29
30 % Enforce constraints on u(t)
31 % General constraints
32 if ~isempty(nvp.g)
33 % Check constraints violation
34 constrValue = cellfun( @(c) full( c.fun(xx, u_new, ts(n)) ), nvp.

g );
35 activeConstraints = constrValue > 0;
36 % If the constraints were violated, set u to satisfy them
37 if any(activeConstraints)
38 [~, activeConstraints] = max(constrValue);
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39 u_new = fsolve(@(u) nvp.g{activeConstraints}.fun(xx, u, ts(n
)) , 0);

40 end
41 end
42 % Box constraints
43 if ~isempty(nvp.gb)
44 % Enforce box constraints
45 u_new = min(max(u_new, nvp.gb{3}(1)), nvp.gb{3}(2));
46 end
47
48 end

The function get_u can use different methods to evaluate the new controls.
First, if the flag initialization is set to true, the new control is simply copied
from u_hat, and then adjusted so that the constraints are not violated. This is used
during the algorithm’s initialization when generating the nominal state trajectory
with the nominal control trajectory.

If the computational trick is enabled (the flag compTrick is true), thenVx(t),
Vxx(t) and the NLP solver for the Hamiltonianminimizationmust be among the
inputs of sys_fwd so that the new controls u(t) can be determined by (5.71).
If Vxb(t) was also provided as an input, then (5.72) is used instead. These two
alternatives cover the usage of the computational trick while integrating the state
dynamics during the step-size and themultiplier adjustmentmethod respectively.

If the computational trick† is disabled, then û(t) andβ1(t)must be among the†See § 5.6.
inputs of sys_fwd so that the new controls can be computed with (5.42), and this
covers the case where sys_fwd is called within the step-size adjustment method.
If β2(t), then (5.41) is used instead, and this covers the case where sys_fwd is
called within the multipliers adjustment method.

In any case, constraints violation due to the new controls is always checked.
If this happens, then u(t) is determined by the condition ĝ(x,u; t) = 0.

6.5.2 The main function
Themain function controlling the flow of the optimization algorithm is the func-
tion diffDP, whose implementation is sketched in Listing 6.9. The inputs to the
function are:

• Expressions (function handles) for the state dynamics f, running cost L and
terminal cost F.

• Expressions for the inequality constraints g and the box constraints for the
controls‡.‡Lower and upper bounds foru.

• The initial state x0 and, optionally, the terminal state xf.

• A discretized time vector ts.

• Initial values of the nominal control trajectory u_nom and the nominalmul-
tipliers b.

• An options structure for defining the algorithm’s settings.

First, the options structure is parsed and unspecified settings are set to their
default values. The state dynamics, running cost, terminal cost and constraints
are then transformed into CasADi functions and their derivatives are generated
and ehe endpoint error and its derivatives are also generated, as described in § 6.3
and Listing 6.4. Furthermore, the NLP solver for the Hamiltonian minimization
is created as shown in Listing 6.5.
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The initialization phase ends after generating the nominal state trajectorywith
the state dynamics integrator sys_fwd.

Listing 6.9: Main function for the differential dynamic programming algorithm.

1 function [x_nom, u_nom, V0] = diffDP(f, L, F, g, u_bound, x0, xf, ts,
u_nom, b, options)

2
3 % Parse options
4 ⟨Parse options and set defaults⟩
5
6 % Set up CasADi
7 ⟨Listing 6.4⟩
8
9 % Nominal state traj
10 [ts, x_nom, u_nom] = sys_fwd(f, x0, ts, zeros(length(ts), nx), u_nom,

options, 'g', g, 'gb', gb);
11
12 % Main loop
13 for iter2 = 1:options.maxIter2
14 for iter1 = 1:options.maxIter1
15 % Integrate a, Vx, Vxx base equations
16 % Evaluate boundary conditions
17 a_f, Vx_f, Vxx_f = ⟨Boundary conditions (5.59), (5.60) and (5.64)⟩
18 yf = [a_f; Vx_f(:); Vxx_f(:)];
19
20 % Integrate backwards in time
21 % ys: a, Vx, Vxx
22 [ts, ys, u_hat, beta1, Z, A] = Vx_bwd(ts, yf, x_nom, u_nom,

hessMinSolver, f, H, g, gb, nx, nu, options);
23
24 a = ys(:,1);
25
26 % Time t_eff
27 N_eff = find(abs(a) < options.eta1, 1, 'first');
28
29 % Check inner layer convergence
30 if N_eff <= 1
31 % Inner layer converged
32 break
33 end
34
35 % Step-Size Adjustment
36 if options.compTrick
37 [x_nom, u_nom, halt] = stepSizeAdj(f, L, F, psi, ys, ts,

...
38 x_nom, u_nom, u_hat, b, N_eff, options, ...
39 'trick', true, 'g', g, 'gb', gb, ...
40 'hessMinSolver', hessMinSolver);
41 else
42 [x_nom, u_nom, halt] = stepSizeAdj(f, L, F, psi, ys, ts,

...
43 x_nom, u_nom, u_hat, b, N_eff, options, ...
44 'beta1', beta1, 'g', g, 'gb', gb);
45 end
46
47 if halt
48 % Failed to converge
49 break
50 end
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51
52 end
53
54 % Check convergence
55 if full( norm(psi.fun(x_nom(end,:), tf)) ) < options.eta2 ||

options.maxIter2 == 1
56 % The algorithm converged
57 break
58 end
59
60 % Integrate Vb, Vxb, Vbb base equations
61 % Evaluate boundary conditions
62 Vb_f, Vxb_f, Vbb_f = ⟨Boundary conditions (5.61) to (5.63)⟩
63 yf = [Vb_f(:); Vxb_f(:); Vbb_f(:)];
64
65 % Integrate backwards in time
66 % ys: Vb, Vxb, Vbb
67 [~, ys, beta2] = Vb_bwd(ts, yf, x_nom, u_nom, u_hat, beta1, A, Z,

f, nx, nu, npsi, options);
68
69 % Multipliers adjustment method
70 if options.compTrick
71 [x_nom, u_nom, b] = mltpAdj(f, L, F, psi, ys, ts, ...
72 x_nom, u_nom, u_hat, b, options, ...
73 'a', a, 'g', g, 'gb', gb, ...
74 'hessMinSolver', hessMinSolver, 'Vx', Vx, 'Vxx', Vxx);
75 else
76 [x_nom, u_nom, b] = mltpAdj(f, L, F, psi, ys, ts, ...
77 x_nom, u_nom, u_hat, b, options, ...
78 'a', a, 'g', g, 'gb', gb, 'beta1', beta1, 'beta2', beta2)

;
79 end
80
81 end
82
83 end

The main algorithm then runs with two nested loops. The inner loop obvi-
ously contains what we called the inner layer in § 6.1.1. The base equations for a,
Vx and Vxx are integrated backwards in time using the function Vx_bwd shown
in Listing 6.1. Convergence of the inner layer is examined by checking whether
the time interval Neff where the predicted change in cost |a(x,b; t0)| is smaller
than the tolerance η1 is the first time interval, which is equivalent to the check
in step 3 of the algorithm’s outline (§ 6.1.2).

If the algorithmhasn’t converged, the stepSizeAdj function is used to gener-
ate new control and state trajectories; if needed, the step-size adjustment method
is used, as described in § 6.5.3. The inner layer is repeated until convergence, at
which point the algorithm moves to the outer layer.

Convergence of the outer layer is checked by also checking whether the end-
point error is smaller than the specified tolerance η2. If this is verified, the the
algorithm has converged; if not, the base equations for Vb, Vxb and Vbb are inte-
grated backwards in time using the function Vb_bwd and the multipliers adjust-
ment method § 6.5.4 is used to generate new multipliers b as well as new control
and state trajectories.
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6.5.3 The step-size adjustment method
First, the parameter C used in check (5.38) and two flow control flags are initial-
ized. An outer loop is used to repeat the whole step-size adjustment method with
a less stringent C if needed. The inner loop is used to implement the method it-
self. N1 is initialized so that it will be equal to 1 at the first iteration; then, it is used
to split the nominal state and control trajectories into two vectors.

Note that stepSizeAdj can be called with different signatures depending on
whether the computational trick must be used or not to generate new control
trajectories. This in turn changes the way in which stepSizeAdj calls sys_fwd,
as explained in § 6.5.1. After using sys_fwd to integrate the state dynamics for
t1 to tf , the whole new state and control trajectories are created by concatenating
x(t) and u(t) for t < t1 and the newly generated x(t) and u(t) for t ⩾ t1.

Listing 6.10: Step size adjustment method.
1 function [x_nom, u_nom, halt] = stepSizeAdj(f, L, F, psi, ys, ts,

x_nom, u_nom, u_hat, b, N_eff, options, nvp)
2
3 % Acceptance criterion parameter
4 C = 0.5;
5 % Initialize flags
6 to_next_iter = false;
7 halt = false;
8
9 while true
10 N1 = 2 - N_eff;
11 while N1 < (N_eff-1)
12 % Adjust N1
13 N1 = ceil( (N_eff - N1) / 2 + N1 );
14
15 % (Re-)evaluate new nominal trajectories
16 ts_t0_t1 = ts( 1:N1-1 )'; % Time nodes from t0 to t1
17 ts_t1_tf = ts( N1:end )'; % Time nodes from t1 to tf
18
19 x_nom_t0_t1 = x_nom( 1:N1-1, : );
20 u_nom_t0_t1 = u_nom( 1:N1-1, : );
21 x_nom_t1_tf = x_nom( N1:end, : );
22 u_hat_t1_tf = u_hat( N1:end, : );
23
24 % Apply the new control trajectory from t1 to the end
25 if options.compTrick
26 % Obtain the new control trajectory with the

computational trick
27 Vx = ys( N1:end, 2:nx+1 );
28 Vxx = ys( N1:end, nx+2:end );
29 [ts_t1_tf, x_nom_new_t1_tf, u_nom_new_t1_tf]

= ...
30 sys_fwd(f, x_nom(N1,:), ts_t1_tf, x_nom_t1_tf,

u_hat_t1_tf, options, 'g', nvp.g, 'gb', nvp.gb, '
hessMinSolver', nvp.hessMinSolver, 'Vx', Vx, 'Vxx
', Vxx);

31
32 else
33 % Obtain the new control trajectory with beta1 * dx
34 beta1_t1_tf = nvp.beta1( N1:end, : );
35 [ts_t1_tf, x_nom_new_t1_tf, u_nom_new_t1_tf] = sys_fwd(f,

x_nom(N1,:), ts_t1_tf, x_nom_t1_tf, u_hat_t1_tf,
options, 'beta1', beta1_t1_tf, 'g', nvp.g, 'gb', nvp.
gb);
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36 end
37
38 x_nom_new = [x_nom_t0_t1; x_nom_new_t1_tf];
39 u_nom_new = [u_nom_t0_t1; u_nom_new_t1_tf];
40
41 % Actual improvement in cost
42 V_nom = totalCost(x_nom_t1_tf, u_nom( N1:end, : ), ts_t1_tf,

L, F, b, psi);
43 V = totalCost(x_nom_new_t1_tf, u_nom_new_t1_tf, ts_t1_tf, L,

F, b, psi);
44 DV1 = V_nom - V;
45
46 % Predicted improvement in cost
47 a1 = abs( ys(N1,1) );
48
49 % Check improvement
50 if DV1/a1 > C
51 % Good improvement in cost achieved. Move to the next

iter.
52 to_next_iter = true;
53 break
54 end
55 end
56
57 %% Flow control
58 if to_next_iter
59 % Good improvement in cost achieved. Move to the next iter.
60 x_nom = x_nom_new;
61 u_nom = u_nom_new;
62 return
63 end
64
65 % No satisfactory t1 found.
66 if C == 0
67 % No improvement in trajectory attainable.
68 warning('Unable to solve the free endpoint problem.')
69 halt = true;
70 return
71 else
72 % Retry the step-size adjustment method with less stringent

acceptance criterion
73 C = 0;
74 end
75 end
76
77 end

The totalCost method is then used to evaluate the actual improvement in
cost ∆V with (5.37), which can then be compared to the predicted change in cost
|a(x,b; t1)|. If it is close enough, in the sense that (5.38) is satisfied, then the flag
to_next_iter is set to true to break out of the step-size adjustmentmethod after
replacing the nominal trajectories with the new trajectories. If not, the process is
repeated after changingN1, unlessN1 has reachedNeff . In this case, the method
is repeated after changing C to zero, which relaxes the iteration acceptance cri-
terion (5.38). If C = 0 has already been tried, then the algorithm has failed to
converge. The flag halt is used to break out of the method and to issue a warning
to the user (not shown in the listing).
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6.5.4 The multipliers adjustment method

In the multipliers adjustment method described in step 7, § 6.1.2, the variation of
the Lagrangian multipliers δb is evaluated as

δb = −εV -1
bb(t0)V

T
b(t0), (6.23)

where ε = 1 is attempted first and then adjusted until a satisfactory improvement
in the endpoint error is obtained, if possible without producing large changes in
the cost.

This procedure is implemented by the function mltpAdj shown in Listing 6.11.
First, Vbb(t0) and Vb(t0) are retrieved from ys, which contains the time profiles
for Vb, Vxb and Vbb†. If the computational trick is used, Vxb(t) is also retrieved †As previously computed by

Vb_bwd.for later use. The nominal endpoint errorψ(x(tf); tf) is also computed and some
flow control flags are initialized.

Listing 6.11: Multipliers adjustment method.
1 function [x_nom, u_nom, b] = mltpAdj(f, L, F, psi, ys, ts, x_nom,

u_nom, u_hat, b, options, nvp)
2
3 % Retrieve Vb(t_0) and Vbb(t_0)
4 Vb0 = ys(1, 1:length(b));
5 Vbb0 = ys(1, end-length(b)^2+1:end);
6 VbbVb0 = Vbb0 \ Vb0;
7 % Retrieve Vxb
8 if options.compTrick
9 Vxb = ys(:, (npsi+1):(npsi+npsi*nx));
10 end
11 % Nominal endpoint error
12 psi_nom = psi.fun(x_nom(end,:), ts(end));
13
14 % Initialize flags
15 test2_enable = true;
16 success = false;
17
18 % Loop until satisfactory db is found
19 while true
20 % (Re-)initialize epsilon
21 epsilon = 2;
22
23 for n = 1:10
24 % Reduce db
25 epsilon = epsilon/2;
26 db = - epsilon * VbbVb0;
27
28 % New trial trajectories
29 if options.compTrick
30 % Obtain the new control trajectory with the

computational trick
31 [~, x_nom_new, u_nom_new] = ...
32 sys_fwd(f, x_nom(1,:), ts, x_nom, u_hat, options, 'db

', db, 'g', nvp.g, 'gb', nvp.gb, 'hessMinSolver',
nvp.hessMinSolver, 'Vx', nvp.Vx, 'Vxx', nvp.Vxx,
'Vxb', Vxb);

33 else
34 % Obtain the new control trajectory with beta1 and beta2
35 [~, x_nom_new, u_nom_new] = ...
36 sys_fwd(f, x_nom(1,:), ts, x_nom, u_hat, options, ...
37 'db', db, 'g', nvp.g, 'gb', nvp.gb, ...
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38 'beta1', nvp.beta1, 'beta2', nvp.beta2, 'db', db);
39 end
40
41 % Test 1/2
42 if full( norm( psi.fun(x_nom_new(end,:), ts(end) ) ) ) > norm

( psi_nom )
43 % Test 1 failed; reject db
44 continue
45 end
46
47 if test2_enable
48 % Test 2/2
49
50 % Actual improvement in cost
51 V_nom = totalCost(x_nom, u_nom, ts, L, F, b, psi);
52 V = totalCost(x_nom_new, u_nom_new, ts, L, F, b + db, psi

);
53 DV = V - V_nom;
54
55 % Predicted improvement in cost
56 DVtilde = nvp.a(1) - (epsilon - 0.5 * epsilon^2) * Vb0.'

* VbbVb0;
57
58 gamma1 = 0.8;
59 gamma2 = 1.2;
60 if DV/DVtilde > gamma1 && DV/DVtilde < gamma2
61 % Both tests passed; Accept db
62 success = true;
63 break
64 else
65 % Test 2 failed; reject db
66 continue
67 end
68 else
69 % Test 1 passed and test 2 disabled; accept db
70 success = true;
71 break
72 end
73 end
74
75 if test2_enable && ~success
76 % Try again with test 2 disabled
77 test2_enable = false;
78 continue
79 elseif success
80 x_nom = x_nom_new;
81 u_nom = u_nom_new;
82 b = b + db;
83 break
84 else
85 warning('Multipliers adjustment method failed.')
86 break
87 end
88 end
89
90 end

The rest of the function is composed by two loops. The outer loop runs at
most twice and is used to repeat the whole multipliers adjustment method with
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relaxed acceptance criteria, if needed. In the inner loop, ε is halved† to produce a †ε is initialized to 2 so that the first
iteration sets ε = 1.new δb. The state equations are integrated using either (5.41)

u = û+ β1δx+ β2δb

or (5.72)

u = û+ β1δx+ β2δb,

if the computational trick is enabled.
Two tests are then used to determinewhether to accept or reject the change δb

and the corresponding new trajectories. First, the endpoint error is checked, and
if there is no improvement ((6.14) is not satisfied) the iterate is rejected. Then, the
change in cost is also checked and if the actual change in cost is not close enough
to the predicted change in cost ((6.17) is not satisfied), the iterate is rejected. If
after ten of these iterations a value of δb that satisfies both tests is not found, the
whole procedure is repeated without checking the test on the cost, by setting the
flag test2_enable to false.

6.6 Modeling for DDP

In this section, we discuss some aspects of the algorithm that must be kept in
mind when defining the optimal control problem. Some of these are related to the
theoretical foundations of the algorithm, while some others are related to practical
aspects of its numerical implementation.

The first requirement is that the Hamiltonian of the problem must be well
defined for any value of the controls that lies within its box constraints; other-
wise, the NLP solver will fail. Suppose for example that we define a typical energy
management strategy design problemwhere we attempt tominimize the fuel con-
sumption of a parallel hybrid as the one presented in § 4, and that we define a
torque-split ratio as our control variable u. With this setup, there will certainly
be values of u for which the corresponding engine torque is higher that its limit
torque; physically speaking, fuel consumption is undefined for these values and
hence the Hamiltonian. Thus, the algorithm will certainly fail.

Thus, for this and similar problems, the best course of action is to redefine
whatevermodel is being used to evaluate fuel consumption as a function of torque
so that it allows extrapolation for any value of the torque. This does not have an
impact on the optimal solution as we would obviously set a constraint on g(u, ; t)
so that the engine torque never exceeds its limit.

A theoretical aspect of any second-order differential dynamic programming
algorithm to be considered is that it relies on the inversion of the term

(Huu + µĝuu), (6.24)

which must therefore be locally nonzero (for scalar controls) or nonsingular (for
non-scalar controls), when evaluated at (x, û,Vx; t). This may be the source of
some numerical issues; to illustrate this, let us focus on the case where no con-
straints are active. In this case, we must ensure invertibility of Huu(x, û,Vx; t).
Since ûminimizes the Hamiltonian, we are requiringHuu to be positive definite;
note that this does not mean that the Hamiltonian must be convex everywhere.
Rather, we simply require that the Hamiltonian H(x,u,Vx; t) is continuous‡ at ‡More rigorously, we required that

the Hamiltonian is twice continuously
differentiable.

its global minimum with respect to u.
While this is not a very restrictive requirement, there may still be some nu-

merical issues ifHuu is close to singular. In practice, the algorithm may struggle
if, for a certain nominal state trajectory, the Hamiltonian is almost linear at its
minimum, i.e. ifHuu(x, û,Vx; t) is close to zero.
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Hence, the differential dynamic programming developed for this work, which
is of second-order, is suitable for highly nonlinear problems but it may struggle
for problems where the Hamiltonian is almost linear. Note that, for these prob-
lems, there exist first-order variants of the differential dynamic programming al-
gorithm [33].

6.7 Testing the algorithm

In order to test the software implementation of the differential dynamic program-
ming algorithm, it was tested on a toy problem taken from [55]. A two-state sys-
tem characterized by the state dynamics

ẋ1 = x2 (6.25)
ẋ2 = u, (6.26)

must be driven from the initial state x0 = ( 0
1 ) at time t0 = 0 to the final state

xf = ( 0
−1 ) at time tf = 1, while minimizing the cost

V =
1
2

∫︂tf
t0

u2dt (6.27)

and subject to the state constraint

S(x; t) = x1 −
1
9
⩽ 0. (6.28)

Upon inspection, we see that S(x; t) is of second-order†, and it can therefore†I.e. its lowest-order time derivative
for which it is explicitly a function ofu is
of second order.

be transformed into a mixed state-control inequality constraint by replacing it
with the constraining hyperplane

d2S
dt2

+ λ1
dS
dt

+ λ2S = 0, (6.29)

which gives the constraint

g(x,u; t) = u+ λ1x2 + λ2(x1 −
1
9
) ⩽ 0. (6.30)

The problem was solved with our software implementation using the same
parameters reported in [55]: the cost and endpoint tolerance were set to η1 =
η2 = 0.002 and the steepness factors of the hyperplane were set to λ1 = 45 and
λ2 = 500. The nominal control was initialized to a constant value u = 5 and
the Lagrange multipliers were initially set to b =

(︁
−5
5
)︁
. An additional balancing

term cψ2(σ(tf)), with c equal to 20, was added to the terminal cost‡; additional‡As we mentioned in § 5.4.1, this
generally improves the convergence of
the algorithm with fixed-endpoint prob-
lems.

tests on this same problem proved this not to be crucial but helpful in slightly
reducing the number of iterations required for convergence.

As shown in Figures 6.2 and 6.3, the algorithm converges taking four minor
iterations followed by six major iterations, with no minor iterations in between.
Specifically, the algorithm uses the four minor iterations to rapidly reduce the
augmented cost§ by reducing the endpoint error. Then, the following major iter-§I.e. the sum of the total cost

∫︁
Ldt,

terminal cost F and endpoint error term
bψ.

ations update the Lagrange multipliers b to hit the terminal constraints up to the
required tolerance. Since these iterations do not cause large deviations in the state
trajectories, the algorithm does not need to use any additional minor iterations in
between as δx remains small enough that

u = û+ β1δx+ β2δb. (6.31)

satisfies the convergence criterion |a(x,b; t0)| < η1.
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Figure 6.2: State and control trajectories at each iteration.

0.0 0.1 0.2 0.3 0.4 1.0 2.0 3.0 4.0 5.0 6.0
Iteration

0

5

10

15

20

To
ta

l c
os

t

0.0 0.1 0.2 0.3 0.4 1.0 2.0 3.0 4.0 5.0 6.0
Iteration

0

50

100

150

200

250

A
ug

m
en

te
d 

co
st Minor iter

Major iter

0.0 0.1 0.2 0.3 0.4 1.0 2.0 3.0 4.0 5.0 6.0
Iteration

-1.5

-1

-0.5

0

x 1(t
f) -

 x
1f

0.0 0.1 0.2 0.3 0.4 1.0 2.0 3.0 4.0 5.0 6.0
Iteration

-3

-2

-1

0

x 2(t
f) -

 x
2f

Figure 6.3: Cost, augmented cost and endpoint error per iteration.
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The optimal solution that was thus obtained has a total cost of 4.007 with a
terminal state of x (tf) =

(︁
−0.0007
−0.9995

)︁
, and the optimal Lagrange multipliers were

found to be b = (−17.7
6.00 ).

These results match well with those reported byMårtensson [55], except from
the fact that one more major iteration was required. This is probably attributable
to the numerical errors resulting from the fact that our implementationmakes use
of automatic differentiation and uses anNLP solver to obtain û, whereasMårtens-
son provides analytic derivatives to the algorithm as well as an analytic expression
for û.

This toy example thus shows that the software implementation developed for
this thesis maintains a good performance despite the replacement of analytical
derivatives with automatic differentiation and of an analytical minimization of
the Hamiltonian (5.43) with an NLP solver. These two unique † features of the†To the best of the author’s knowl-

edge. software implementation developed for this work are very important as they en-
able the solution of problems involving complex models such as those arising in
energy management strategy design.



7
DDP application: series hybrid

Theories stand or fall, ultimately, upon numbers.
Richard Bellman [7]

In this chapter, we consider a series hybrid powertrain as depicted in Fig-
ure 7.1. We are going to tackle the classical issue of controlling the generator set in
order to minimize the fuel consumption as the vehicle completes a driving cycle,
while enforcing charge-sustaining operation.

An electric motor drives the vehicle’s primary axle, drawing power from the
battery, the generator set or both. Thegenerator set, composed of a thermal engine
which powers an electrical generator, can also charge the battery while powering
the motor. The main vehicle parameters are reported in Table 7.1.

Component Parameter Value

Vehicle Mass 1200 kg
First coast-down coefficient 76.11 N
Second coast-down coefficient 2.957 N/(ms)
Third coast-down coefficient 0.3664 N/(ms)2

Tyre radius 0.3 m
Gen-set Maximum power 55 kW
Motor Rated power 85 kW

Maximum torque 300 Nm
Battery Type LiFePO4

Nominal capacity 21.6 Ah
Nominal voltage 173.2 V
Nominal energy 3.74 kWh

Table 7.1: Main vehicle data.

eng mot

batt

fdgen

Figure 7.1: Series hybrid architecture.
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7.1 Powertrain model

7.1.1 State dynamics
Having defined a driving cycle, themotor torque and speed can be evaluated using
the same backward facing approach as we described in other parts of this thesis.

The motor torque and speed were evaluated as:

Tmot =
Fveh(vveh)rwh

τfd
, ωmot =

vveh

rwh
. (7.1)

And the motor electrical power was then evaluated using an efficiency map
ηmot(ωmot, Tmot){︄

Pmot =
1
ηmot

ωmotTmot, ifωmotTmot ⩾ 0,
Pmot = ηmotωmotTmot. ifωmotTmot < 0.

(7.2)

This motor power profile Pmot(t) can be treated as an exogenous input to our
optimization problem.

Our control variable is the electrical power generated by the gen-set. In prac-
tice, for improved flexibility of the software, a normalized gen-set power was de-
fined as

τgen =
Pgen

Pgen,max
. (7.3)

Theoretically, we could directly control both the speed and torque of the en-
gine; however, since they can be set independently of the driving conditions, there
is no point in controlling both in our optimal control problem.

We can identify the electrical power generated by the gen-set as our control
variable and set the engine speed and torque† tominimize fuel consumption. This†And consequently the e-machine

speed and torque. allows us to characterize the fuel consumption as a function of the gen-set elec-
trical power only.

Specifically, the engine’s fuel consumption map and the generator’s efficiency
map were used to identify the minimum fuel operating points for various values
of the generated electrical power and the resulting fuel consumption values used
to fit a quadratic model ṁf(τgen), as described in § 7.3‡. This function, which we‡This approach was inspired by [79].
will refer to as the gen-set characteristic, defines our running cost:

L(x,u, t) = ṁf(τgen) (7.4)

The system’s state is characterized by the battery’s state of charge σ and tem-
perature θb. The state of charge must be considered in order to formulate the
charge-sustaining constraint as the terminal state constraintσ(tf) = σ(t0) = σ0.

The battery temperature can be used to improve the accuracy of the equivalent
circuit model by considering battery-dependent open circuit voltage and equiva-
lent resistance characteristics. In this work, for the sake of simplicity, the equiva-
lent resistance Req(θb) was modeled as being purely temperature dependent and
the open circuit voltage voc(σ) as being dependent on the state of charge only.
However, the differential dynamic programming algorithm developed for this ap-
plication could handle the characteristics being dependent on both σ and θb with
no modification.

The SOC dynamics were determined by according to a typical equivalent cir-
cuit model:

σ̇ = −
ib

Cb
, (7.5)
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where the battery current ib is evaluated as

ib =
voc −

√︁
v2oc − 4ReqPb
2Req

, (7.6)

and the battery power Pb as

Pb = Pmot − τgenPgen,max. (7.7)

The battery thermal dynamics were characterized by a lumped thermal capac-
ity Cth,b. Aside from the heat generation due to the Joule losses, the only mode
of heat transfer considered was convective heat transfer with the surrounding en-
vironment with a constant heat transfer coefficient hconv and a constant environ-
ment temperature θenv.

θ̇b =
1

Cth,b

(︁
hconv (θb − θenv) + Reqi

2
b
)︁
, (7.8)

7.1.2 Constraints and initial conditions
The normalized gen-set power was obviously constrained to

0 ⩽ τgen ⩽ 1, (7.9)

and the battery current was constrained withinminimum andmaximum lim-
its

ib,min ⩽ ib ⩽ ib,max. (7.10)

Finally, the battery state of charge was constrained within an upper and lower
bound of σlb = 0.4 and σub = 0.8

σlb ⩽ σ ⩽ σub. (7.11)

In order to implement the differential dynamic programming algorithm, we
must formulate all constraints (except for the terminal state constraints) to be
either in the form of box constraints for the control variable or in the form of
inequality constraints g(x,u, t) ⩽ 0.

The constraints on τgen are therefore readily accommodated. The battery cur-
rent constraints must be reformulated as two mixed state-control variable† in- †Because ib is a function of σ and

τgen (as well as time).equality constraints:

ib − ib,max ⩽ 0, (7.12)
−ib + ib,min ⩽ 0. (7.13)

The state of charge constraints are two state variable inequality constraints:

S1(x; t) = σ− σub ⩽ 0, (7.14)
S2(x; t) = −σ+ σlb ⩽ 0, (7.15)

and they must be transformed into mixed state-control variable using the con-
straining hyperplane technique discussed in § 5.5, so that we can handle them
with the algorithm developed in § 6.

These constraints are of first order, in the sense that the first-order time deriva-
tive is the first that explicitly contains the control variables. In fact, the corre-
sponding constraining hyperplanes are:

dS1
dt

+ λ1(σ− σub) = 0, (7.16)

dS2
dt

+ λ2(−σ+ σlb) = 0, (7.17)
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and these allow us to define the transformed inequality constraints:

σ̇+ λ1(σ− σub) ⩽ 0, (7.18)
σ̇+ λ2(−σ+ σlb) ⩽ 0, (7.19)

where σ̇ is evaluated as in (7.5). The parameters λ1 and λ2 †, as discussed in § 5.5,†I.e. the steepness of the constrain-
ing hyperplanes. must be positive. Also, they should be large enough that they actually enforce the

constraint; but they should not be set to high or it may become too hard for the
algorithm to generate a new acceptable trajectory in the first iterations ‡. For our‡According to [57], it may even be

desirable to start with a moderate steep-
ness of the hyperplanes and increase
them near convergence

application, we used λ1 = λ2 = 100.
Finally, for all simulations, the initial state of charge σ0 was set to 0.6 and the

terminal state of charge σ(tf)was constrained to be equal to 0.6 as well. For those
simulations where the battery thermal dynamics were also modeled, the initial
battery temperature was set to be equal to the environment temperature θenv. No
terminal constraint was set on the battery temperature.

7.2 Numerical experiments

The differential dynamic programming algorithm was used to run several exper-
iments in order to test its strengths and weaknesses. In this section, we are going
to address many discussion points.

First, we will evaluate the algorithm with a scalar state, by neglecting the bat-
tery temperature and assuming a constant equivalent resistance. This will also
provide us with a starting point to discuss the algorithm’s performance and con-
vergence as we vary the initial guesses for the nominal control trajectory u and
the Lagrange multipliers b. We will then evaluate the algorithm with two states,
considering the battery’s thermal dynamics as presented in § 7.1.1. Finally, we will
highlight a potential challenge that may arise in enforcing the state constraints,
by testing the algorithm on a powertrain with a reduced battery size.

For all these experiments, we will compare results with the solution obtained
with two state-of-the-art methods:

• Dynamic programming, implemented using DynaProg.

• Direct collocation, implemented as described in Appendix §A.

7.2.1 Scalar state
Thepurpose of the first experiment is simply to test the optimality of the solution.
The series hybridmodel with scalar state, neglecting the battery’s thermal dynam-
ics, was implemented using the DDP algorithm. The running cost was set to the
ṁf(τgenPgen,max), in kg/s. The nominal control trajectory u was set to a constant
value τgen = 0.06. This of course is a very naive approach, and many smarter ini-
tialization strategies could be adopted by exploiting engineering understanding
of the control problem. The nominal Lagrange multiplier was set to -1 kg§.§Since σ is dimensionless, so is ψ.

Hence, b must have the same unit of
measurement of the running cost L.

Furthermore, a terminal cost cψ2(σ(tf)), with c equal to 1 kg, was set as a
balancing term. As we discussed in § 5.4.1, introducing such a balancing term to
the terminal costmay help improving the convergence of the fixed-endpoint algo-
rithm. In practice, this was found to be beneficial for the problem in this chapter.
The convergence parameters for the augmented cost η1 and for the endpoint error
η2 were set to 0.001 kg and 0.001.

With these settings, the algorithm converged in three iterations: twominor it-
erations iterations followed by onemajor iteration∥ were sufficient. As can be seen∥Recall from § 6.1.1 that we denote

minor iterations the iterations of the al-
gorithm’s inner layer, which improve the
trajectory for a fixed b, and we denote
major iterations those of the outer layer
which update b while keeping the cost
increase to a minimum.

in Figure 7.2, the algorithm is able to produce a new, improved control trajectory
with large variations with respect to the nominal one with the very first minor



7.2 Numerical experiments 99

Figure 7.2: State and control trajectories as the algorithm runs. Iteration 0.0 corresponds to the nominal trajectories,
iterations 0.1 and 0.2 correspond to two minor iterations and iteration 1.0 corresponds to a major iteration (an update
of the Lagrange multiplier).

iteration. A second iteration further reduces the augmented cost, but it induces a
slight overshoot of the terminal SOC constraints. Finally, a single major iteration
updates the Lagrange multiplier to -0.51 kg. The resulting fuel consumption was
575.5 g, with a terminal SOC of 0.5997.

Figure 7.3 shows the total cost, the augmented cost and endpoint error† per †I.e. the deviation of the terminal
state from its constraint.iteration.

The total cost for this problem is the total fuel consumption. The augmented
cost is the sum of the total fuel consumption, the terminal cost F(σ(tf))‡ and the ‡Which in this problem is only

composed by the balancing term
cψ2(σ(tf)).

endpoint error bψ(σ(tf)). As expected, the augmented cost is always reduced
between minor iterations. It can, on the other hand, increase as a result of an
update of the Lagrange multipliers, which is exactly what happens.

Looking at the total cost alone, we see that it grows during the first two minor
iterations as the algorithm tries to improve the endpoint error. This is a result of
the initial nominal trajectory producing a terminal state of charge lower than the
terminal constraint. Since iteration 0.2 produces a terminal SOC higher than 0.6,
it is no surprise that the subsequent Lagrangemultipliers update results in a slight
reduction in total cost.

Let us now compare the performance of the algorithm with the selected
benchmark methods, dynamic programming and trapezoidal collocation. For
dynamic programming, a uniform SOC grid with 801 elements ranging from 0.4
to 0.8 and a uniform τgen grid with 81 elements ranging from 0 to 1 were used. To
ensure a fair comparison, the cost of the dynamic programming and trapezoidal
collocation solutions were obtained by integrating the state dynamics with the
obtained control sequences using the same fourth-order Runge-Kutta integration
routine that is used by the differential dynamic programming algorithm.

The resulting fuel consumption and terminal SOC, reported in Table 7.2,
match well with the results of the differential dynamic programming algorithm.
As can be seen from Figure 7.4, the state and control trajectories are also very
similar, the differences between dynamic programming and the other two meth-



100 DDP application: series hybrid

Figure 7.3: Total cost, augmented cost and endpoint error per iteration.

mf,g σ(tf)

Differential dynamic programming 575.5 0.5997
Dynamic programming 575.7 0.6001
Trapezoidal collocation 575.7 0.6000

Table 7.2: Comparison of the DDP solution with the benchmark algorithms.

ods being attributable to the quantization required by the algorithm. This also
highlights a major advantage of the differential dynamic programming with re-
spect to DP in that, treating τgen as a continuous variable, it generates a smoother
trajectory.

7.2.2 Downsized battery pack
In this section, we will evaluate the algorithm’s performance with a reduced bat-
tery size with halved capacity, bringing its nominal capacity to 10.8 Ah and its
nominal energy to 1.87 kWh. The reason is that in this case the optimal SOC tra-
jectory hits the upper bound (more than once). Hence, it is a good test for the
algorithm’s performance in dealing with the state constraint.

The same settings for the initial Lagrange multiplier and convergence param-
eters as in § 7.2.1 were used. The nominal control u had to be changed in order to
ensure that it does not violate the state constraints, as this is a requirement of the
algorithm. Hence, a simple piece-wise constant function was defined as:

τgen(t) =

{︄
0.05 if t < 1545 s,
0.17 if t ⩾ 1545 s.

(7.20)

This trajectory was set based simply based on the (very inaccurate) idea that
the extra high phase would require about three times as much power as the pre-
vious part of the mission. Much better initialization strategies could be conceived
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Figure 7.4: Comparison between the optimal solution obtained with differential
dynamic programming, DynaProg and trapezoidal collocation.

Figure 7.5: State and control trajectories as the algorithm runs, with the reduced battery. For this problem, the optimal
SOC trajectory hits the upper bound several times.

with little effort. However, we deliberately avoided to do so in order to test the
robustness of the algorithm in the case that the initial guess for u is not good.

Compared to the previous case, the algorithm requiredmore iterations to con-
verge. In particular, the first major iteration required 5 minor iterations rather
than just two. This is expected as it is harder to adjust the control trajectory when
state constraints are involved. After this, two major iterations (with no minor it-
erations in between) were enough for the algorithm to converge, producing a fuel
consumption of 580.4 g and a final SOC of 0.5998.

Figure 7.6 shows the total cost, the augmented cost and endpoint error per
iteration. Similarly to the problem in § 7.2.1, the nominal SOC trajectory, gener-
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Figure 7.6: Total cost, augmented cost and endpoint error per iteration, with the
reduced battery.

ated by the first guess for the control trajectory, leads to a strong violation of the
terminal SOC. Consequently, the very first iterations are used by the algorithm to
reduce the associated cost, even if that produces an increase in fuel consumption.
This brings the nominal state trajectory to hit the upper SOC bound around at
about 1000 s.

Then, the algorithm reduces the cost as much as possible while avoiding to
violate the upper SOC bound, and this requires a few more minor iterations. Fi-
nally, two major iterations are needed to update the Lagrange multipliers so as to
satisfy the terminal state constraint with the required accuracy †.†That is, the parameter we

named η2 .

mf,g σ(tf)

Differential dynamic programming 580.4 0.5998
Dynamic programming 580.2 0.6002
Trapezoidal collocation 580.2 0.6000

Table 7.3: Comparison of the DDP solution with the benchmark algorithms with
the reduced battery.

Once again, the solution was compared with one obtained using DynaProg
and trapezoidal collocation (Figure 7.7)with the same algorithm settings as in § 7.2.1,
and the resulting fuel consumption and final SOC, reported in Table 7.3, were
found to be in good agreement.

Hence, this numerical experiment confirms that the differential dynamic pro-
gramming algorithm is capable of obtaining the optimal solution with high accu-
racy even when the optimal state trajectory hits some state constraints. This is an
important feature in the context of energy management strategy design as it of-
ten happens that the optimal SOC trajectory hits the battery’s lower and/or upper
SOC bounds, especially with small-sized battery packs.
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Figure 7.7: Comparison between the optimal solution obtained with differential
dynamic programming, DynaProg and trapezoidal collocation, with the reduced
battery.

Modeling issues

In a first attempt to solve the problem presented in § 7.2.2, the algorithm failed to
converge. An important feature of the algorithm is that the base equations for the
constrained algorithmpresented in § 6were developed under the assumption that
the nominal trajectories do not violate the constraints†. In practice, the algorithm †Although they can hit them.
proves to be tolerant to small violations.

Large violations on the other handmay cause the integration of the base equa-
tions to producemeaningless time profiles fora,Vx andVxx as well asVβ1 . When
this happens, the algorithm cannot improve the nominal trajectories. For this
reason, when generating new nominal trajectories if the new control trajectory
u = u + β1δx induces violation of a constraint g(x,u; t), it is replaced by the
control that satisfies the condition g(x,u; t) = 0. It is an important requirement
for the convergence of the algorithm that such a control exists.

In the problem presented in this chapter this means that, when generating
new trajectories, if the new control trajectory u = u + β1δx violates the upper
SOC threshold σub, it is replaced by the control that satisfies σ = σub. In our
formulation of the problem, this control may not always exist. In fact, in braking
phases, σ̇ is positive regardless of τgen because we assume that the vehicle per-
forms regenerative braking.

A potential solution to this issue would be to reformulate the control problem
so that we are also able to control the amount of braking torque to be absorbed
by the electric motor. This would introduce additional complexity to the problem
with no benefit on the optimal solution, as it is safe to assume that the optimal
control trajectories would ultimately involve doing as much regenerative braking
as allowed by the electric motor.

A workaround, which we used in our simulation, is to modify the state dy-
namics instead so that σ̇ simply vanishes when the state of charge is above σub.
The fact that this does not reflect physical behavior is not an issue as neither the
optimal trajectories nor any other nominal trajectory generated by the algorithm
is allowed to violate the SOC constraints.

This trick however requires some mathematical judgment. Because the base
equations rely on first and second order derivatives of the state equations, it must
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be at least twice differentiable. Therefore, modifying the SOC dynamics (7.5) to

σ̇ =

⎧⎨⎩−
ib

Cb
if σ ⩽ σub,

0 if σ > σub,
(7.21)

would cause all sorts of numerical issues as it is non-differentiable at σ = σub.
For our simulation, we adopted a sigmoid function, specifically the logistic

function:

Λ(σ) =
1

1+ e−102(σub−σ)
, (7.22)

and redefined the SOC dynamics as:

σ̇ = −
ib

Cb
Λ(σ). (7.23)

7.2.3 Temperature-dependent battery pack
In this section, we evaluate the performance with the full two-state model, the
battery temperature is considered as a second state variable whose dynamics are
described by (7.8). The reason for this numerical experiment is to test the ca-
pability of the differential dynamic programming algorithm to endure the curse
of dimensionality. Specifically, we are going to compare the simulation times of
the algorithm with that required by DynaProg to obtain a solution with the same
accuracy.

First, let’s observe the behavior of the differential dynamic programming al-
gorithm alone by running a simulation with the same settings as in § 7.2.1.

From Figures 7.8 and 7.9, we observe that the performance of the algorithm
in terms of number of iterations is basically the same as the scalar case. This is
likely due to the fact that the slow dynamics of the battery temperature do not
make the solution of the problem more challenging to a significant extent. The
fuel consumption was 586.1 g with a final SOC of 0.6000.

mf,g σ(tf)

Differential dynamic programming 586.1 0.6000
Dynamic programming 586.1 0.6002
Trapezoidal collocation 586.1 0.6000

Table 7.4: Comparison of the DDP solution with the benchmark algorithms with
modeled battery temperature dynamics.

Looking at optimality, the solutions obtained with DDP and the selected
benchmark methods were found to be in good agreement, as shown in Table 7.4
and Figure 7.10. For dynamic programming, a uniform SOC grid with 801 ele-
ments ranging from 0.4 to 0.8 and a uniform τgen grid with 81 elements ranging
from 0 to 1 were used ss in § 7.2.1; in addition, a uniform grid with 301 elements
ranging from -10 °C to 20 °C was used for the battery temperature. This dis-
cretization level proved necessary to obtain the optimal fuel consumption; tests
conducted with a coarser grid produced a significantly higher cost with respect
to differential dynamic programming.

We now turn our attention to simulation time (summarized in Table 7.5),
which is the focal point of this experiment. While the dynamic programming so-
lution required 1226 seconds, or 20 minutes and 26 seconds, of simulation time,
the differential dynamic programming algorithm converged in 214 seconds, or 3
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Figure 7.8: State and control trajectories as the algorithm runs, with modeled battery temperature dynamics.

Figure 7.9: Total cost, augmented cost and endpoint error per iteration, withmod-
eled battery temperature dynamics.
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Figure 7.10: Comparison between the optimal solution obtained with differ-
ential dynamic programming, DynaProg and trapezoidal collocation, for the
temperature-dependent battery pack.

minutes and 34 seconds, about five times less. This stands in stark contrast with
the two algorithm’s performance for the scalar case § 7.2.1, where simulation times
were 3 seconds for dynamic programming and 198 seconds, or 3 minutes and 18
seconds, for differential dynamic programming.

Therefore, the introduction of an additional state variable did not change
significantly the computational effort on the differential dynamic programming,
while it obviously increased the dynamic programming algorithm’s simulation
time according to the well-known curse of dimensionality.

Base Small battery Two states

Differential DP 3 min, 18 s 11 min, 47 s 3 min, 24 s
Dynamic programming 3 s 3 s 20 min, 26 s
Trapezoidal collocation 16 min, 29 s 27 min, 14 s 22 h, 26 min, 55 s

Table 7.5: Simulation times for all experiments and algorithms.

These results are particularly remarkable when considering that, while Dy-
naProg was specifically optimized for speed, the differential dynamic program-
ming algorithm developed for this thesis was designed as a demonstrator with no
particular effort towards code optimization.

It is reasonable to expect that adding evenmore state variables to the problem
wouldmake the differential dynamic programming algorithmevenmore superior
in terms of computational time with respect to dynamic programming.

However, while being less vulnerable to the curse of dimensionality, the dif-
ferential dynamic programming clearly struggles with the presence of active state
constraints: as expected, the increased number of iterations required for conver-
gence translated into a three two four times increase in computational time from
the base state experiment to the downsized battery experiment.

On a side note, the trapezoidal collocation do not seem very competitive for
the type of problem formulated in this Section: although its performance was
always satisfying in terms of accuracy and constraint satisfaction, they were sig-
nificantly slower than both the remaining algorithms.
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Figure 7.11: Engine operating points. Increasing values of gen-set power are
marked by brighter colors.

7.3 Creating the gen-set characteristic

This section illustrates how the gen-set characteristic ṁf(τgen) was built starting
from the engine’s fuel consumption map and the generator’s efficiency map.

First, a set of discrete values for the gen-set power Pgen was generated. Then,
for each of these points, the following minimization problem was set up:

minimize
ωeng ,Teng

ṁf(ωeng, Teng)

subject to ωeng,idle ⩽ ωeng ⩽ ωeng,max,
0 ⩽ Teng ⩽ Teng,max(ωeng),

Pgen = ηem

(︃
ωengτtc,

Teng

τtc

)︃
.

(7.24)

The problem was solved using an interior-point method implemented with
the fmincon function developed by MathWorks † and the corresponding engine †See [92] for a general outline of the

algorithm’s implementation or [17] for a
more rigorous treatment of the matter.

and e-machine operating points can be visualized in Figures 7.11 and 7.12.
Finally, these operating points were used to fit a quadratic model of the fuel

consumption as a function of the gen-set power, to be used as the running cost
for the EMS design presented in this section.

Listing 7.1: Generation of the gen-set characteristic.
1 % Number of discretized gen-set power values
2 numPoints = 40;
3 % Discretized gen-set power values
4 elPwr = linspace(0, eng.maxPwr, 40);
5 % Initial guesses for the engine speed
6 engSpd0 = linspace(eng.idleSpd, eng.maxSpd, 40);
7 % Lower and upper bounds for the engine speed and torque
8 lb = [eng.idleSpd; 0];
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Figure 7.12: Generator operating points. Increasing values of gen-set power are
marked by brighter colors.

9 ub = [eng.maxSpd; inf];
10 % Solver options
11 options = optimoptions("fmincon",...
12 "Algorithm","interior-point",...
13 "EnableFeasibilityMode",true,...
14 "SubproblemAlgorithm","cg");
15
16 % Run the solver
17 for n = 1:length(elPwr)
18 [optPoint(n,:), ~, flag(n)] = fmincon(@(x) eng.fuelMap(x(1), x(2)

), [engSpd0(n), 10], [], [], [], [], lb, ub, ...
19 @(x) elPwrCon(x, eng, em, elPwr(n)), options);
20 end
21
22 function [c,ceq] = elPwrCon(x, eng, em, elPwr)
23 % x(1): engSpd, x(2): engTrq
24 % Maximum torque (inequality) constraint
25 c = x(2) - eng.maxTrq(x(1));
26 % Power balance (equality) constraint
27 ceq = elPwr - em.effMap(x(1) .* em.tcSpdRatio, x(2) ./ em.

tcSpdRatio) .* x(1) .* x(2);
28 end
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8
Conclusion
8.1 Looking back

In this work, we discussed the implementation of two optimal control techniques
and their application to energy management strategy design for hybrid electric
vehicles:

• dynamic programming,

• differential dynamic programming.

Dynamic programming is a widely known technique with widespread appli-
cation to EMS design, because of its unmatched versatility in handling virtually
any conceivable optimal control problem regardless of the nature of the state dy-
namics, cost and constraints; although this comes at a computational cost that
may be unbearable as the problem complexity grows due to the infamous curse
of dimensionality.

The first contributions of this work, presented in § 3, are a discussion on prac-
tical implementation of dynamic programming algorithms and the development
of a dedicated software. Many aspects of the numerical implementation of the
technique were discussed as well as potential numerical issues and ways to avoid
them, providing some guidelines on how to go from theory to practice. An open-
source toolbox for dynamic programming was then presented, which combines
state-of-the-art techniques with new unique features to obtain a numerically ro-
bust, flexible, user-friendly and computationally efficient software.

Having dealt with these general algorithmic aspects, § 4 focuses on powertrain
modeling and its interaction with dynamic programming. Since these aspects
are specific in their nature to the goal and requirements of energy management
strategy design, a specific application was developed and a thorough investigation
was conducted. The discussion, supported by numerical experiments, contained
in this chapter offer some useful guidelines for researchers and engineers who
wish to utilize dynamic programming for EMS design.

The second part of this thesis is centered on differential dynamic program-
ming. While being far from recent, this technique has not been translated yet
into publicly available software capable of dealing with applications of real-life
interest, probably due to the inherent complexity of its numerical aspects.

In this dissertation, § 5 is devoted to summarizing the theoretical foundations
for the algorithm, based on the existing literature. Then, § 6 introduces another
major contribution of this work: that is, the development of a modern software
tool to implement differential dynamic programming for complex control prob-
lems. Both the standard aspects and the unique aspects of this algorithm, such
as the application of automatic differentiation and of an interior-point non-linear
program solver, were discussed.

Finally, the second part culminates in § 7, where the differential dynamic pro-
gramming software is effectively used to solve an EMSdesign problem for a series-
hybrid vehicle. Numerical experiments were conducted to explore the software’s
strengths and weaknesses. One remarkable result is that the software already runs
five times faster for a moderate model complexity, i.e. for a two-state, scalar con-
trol problem.

111
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8.2 Looking ahead

As is typical in academic research, the objectives that were originally set to guide
the research work of this thesis are far from being met. As is also typical, the
results of this work open up numerous investigation topics, where we originally
saw one.

8.2.1 Expanding DynaProg

The motivating factor for the development of DynaProg were to create a univer-
sal tool for dynamic programming that could solve any problem with arbitrary
accuracy.

While the toolbox does provide some sensible improvements, it is still rel-
atively narrow in scope with regard to the wide range of variations that can be
made to dynamic programming algorithms to exploit a specific problem’s struc-
ture. With this in mind, the toolbox was developed with the highest regard to
code readability and modularity. The author’s hope is that this effort, combined
with its open-source nature, will foster contributions from awide community that
incrementally expands DynaProg into a swiss army knife for dynamic program-
ming.

We must note however that even if such a tool became available many ques-
tions would still be unanswered about the interaction between the algorithm and
a particular simulation model. This is a particularly broad field even if we restrict
our attention to the topic of EMS design, due to the extremely wide variety of hy-
brid powertrains that can be conceived in terms of topology, components sizing
and technology as well as control objectives. Therefore, it is yet to be seen if to
what extent the considerations and experiments in § 4 generalize to other power-
trains and control objectives.

8.2.2 Differential dynamic programming

No matter how much effort is put into developing computationally efficient im-
plementations of a dynamic programming algorithm, the curse of dimensionality
will always make it virtually impossible to use complex, multi-dimensional pow-
ertrainmodels. Nonetheless, it is hard to give up on its strengths, which are funda-
mentally the guarantee of optimality and the ability to handle strongly nonlinear
problems.

The differential dynamic programming algorithm developed in this work was
developed with the ultimate goal of keeping these important features while over-
coming the curse of dimensionality, thus enabling the usage of high-dimensional
powertrain models in optimal EMS design. Differential dynamic programming
algorithms appears to be an excellent candidate due to their solid theoretical foun-
dation laid out in the literature (e.g. [58, 34, 32, 35, 60, 59, 57, 55]).

Nonetheless, their practical implementation for complex problems spurred
many issues that require thorough investigation. As a result, more work is needed
before a robust software that is capable of solving problems of arbitrary complex-
ity; it is the author’s opinion, however, that the encouraging results obtained in
the application in § 4 fully justifies further investigation.

The lines of research are numerous. First, there is the issue of setting the var-
ious algorithm parameters, such as the initial guess for the nominal control and
endpoint multipliers, the cost convergence parameter η1, the acceptance param-
eters used in the step-size adjustment and multipliers adjustment method (C, γ1,
γ2), and the steepness of the constraining hyperplanes when dealing with state
constraints. All these parameters may disrupt the algorithm’s convergence if not
properly set. However, since all of them also have at least some relationship with
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the physics of the problem, it is likely that good rules of thumb can be devel-
oped. For the same reason it is easy to see that, for specific applications, advanced
warm-starting strategies could be investigated to provide a better initial guess,
such as running the algorithm on a simplified and/or linearized model first and
then treating the full non-linear problem.

Second, there are other variants of the algorithm that were not thoroughly
tested in this work andwhichmay provemore robust or computationally efficient.
To name a few that are certainly worthy of investigation:

• In our implementation, we focused on continuous-time differential dy-
namic programming algorithms. There also exist discrete-time variants [95,
33], which are inherently designed to deal with difference equations rather
than differential equations. Since these are typically easier to treat numer-
ically, it is possible that transforming a continuous time problem into a
discrete time formulation may turn out to be more accurate than attempt-
ing to directly deal with the original continuous time problem.

• The algorithmpresented in this thesis does not handle discrete control vari-
ables. Hence, some method to adapt differential dynamic programming to
a switched system should be conceived to treat control problems where the
transmission’s gear number is set as a control variable.

• Jarmark’s convergence control parameter [38, 40, 39] is an alternative to
the step-size adjustment method that may be more efficient for problems
defined over long time intervals.

• There are alternative approaches to the constraining hyperplane technique
that directly deal with state constraints. In particular, Ruxton [77] claims
that amore efficient implementation can be obtainedwithmultiplier penalty
functions.
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A
Direct collocation
Broadly speaking, direct methods involve transforming the original optimal con-
trol problem into a non-linear programming problem, which is characterized by a
finite set of optimization variablesy; this transformation process is called the tran-
scription method. These are often categorized in shooting methods, collocation
and pseudo-spectral methods.

In this work, we developed a direct collocation algorithm as a benchmark to
compare with the accuracy and execution time of the EMS design application
presented in § 7.

A.1 Problem transcription

Consider a standard OCP in Bolza form as in § 2.1, where the cost functional was
defined as

J(x0,u) =
∫︂tf
t0

L(x,u; t) dt+ F(x(tf); tf). (A.1)

And with initial state x0 and, possibly, a terminal state xf. The fundamental fea-
ture of any direct method is the transcription of the original OCP into an NLP of
the form:

min
x
J(y) (A.2)

s.t. c(y) ⩽ 0 (A.3)
ceq(y) = 0, (A.4)

where y is a vector of decision variables, J(y) is the objective function, while c(y)
and ceq(y) define constraints. In doing so, direct collocation involves fully dis-
cretizing the state and control variables in time.

The control horizon is discretized intoN − 1 time intervals, thus definingN
knot points tk. The state and control variables are discretized at a finite number
of points in time called collocation points. For some collocation methods, such
as trapezoidal collocation, these collocation points coincide with the knot points;
for higher-order methods, there are typically more collocation points than knot
points.

Another important feature of direct collocation is that the state dynamics are
replaced with a set of collocation constraints in the transcribed NLP. One exam-
ple of these collocation constraints are the defect constraints ζk which must be
formulated to enforce continuity in the state. A defect is defined as the difference
between the value of the states as defined by the corresponding decision variables
and as evaluated by numerically integrating the state dynamics over the previous
interval, as illustrated in Figure A.1. Define χk as the value of the state obtained
by integrating over an interval starting from state xk at time tk, i.e.:

χk = xk +

∫︂tk+1

tk

f(x,u; t) dt. (A.5)

Defects constraint can then be formulated as a set of equality constraints:

ζk = xk+1 − χk = 0, k = 1, . . . ,N− 1. (A.6)

The exact way in which the defect constraints are formulated depends on the
method by which χk is evaluated, which is determined by the collocationmethod
employed.
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Figure A.1: Illustration of the direct collocation method, with trapezoidal collo-
cation.

If the OCP also involves terminal state constraints, then a similar constraint
can be formulated to enforce it:

xf − χN = 0. (A.7)

Finally, the initial state x0 is enforced by the equality constraint:

x1 − x0 = 0. (A.8)

For clarity, we reinstate that x1 is the NLP decision variable for the state at time
t0, while x0 is the initial state as defined by the OCP.

A.2 Trapezoidal collocation

For our work, we implemented a trapezoidal collocationmethod. Thismeans that
the state dynamics are rewritten in integral form and then approximated using the
trapezoidal rule:∫︂tf

t0

q(t) dt ≈ h
2

N−1∑︂
k=1

[q (tk) + q (tk+1)] . (A.9)

Hence, the defect constraints are formulated as in (A.6):

ζk = χk − xk+1 = 0, k = 1, . . . ,N− 1. (A.10)

with the values χk given by:

χk =

∫︂tk+1

tk

f(x,u; t) dt

≈ h

2

N−1∑︂
k=1

[f (xk,uk, tk) + f (xk+1,uk+1, tk+1)] . (A.11)

At this point, we should highlight that integration by trapezoidal rule is exact
when the integrand is linear; thus, trapezoidal collocation essentially approxi-
mates the state dynamics as being linear over each time interval. For this reason,
it is common to represent the control variables as piecewise linear and the state
variables as quadratic splines (since the state is obtained by integrating the state
dynamics in time) [11, 44].
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Thus, the control trajectory can be fully defined by setting the values of the
control at the interval endpoints (the knot points uk), as decision variables, as
shown in Figure A.1.

To sum up, the vector of decision variables is composed by:

• The state variables at the knot points.

• The control variables at the knot points.

If problem involves n state andm control variables, denoting xi as the i-th state
variable and uj the j-th control variable, the vector of NLP decision variables is
theN× (n+m)-dimensional vector

y = (x11, . . . , x
1
N, . . . , x

n+1
1 , . . . , xn+1

N , u1
1, . . . , u

1
N, . . . , u

m
1 , . . . , umN )T.

(A.12)

Finally, we must formulate an objective function for the NLP. One popular
approach is to transform theOCP from the general Bolza form, with the total cost
expressed as in (A.1), to Mayer form by introducing an additional state variable
xn+1, whose dynamics correspond to the running cost. Then, the NLP objective
function simply becomes the terminal value of this additional state, i.e. J(y) =
xn+1
N . However, some sources [11] caution against this for issues related to both

efficiency and robustness.
Instead, the objective function was evaluated by integrating the running cost

using trapezoidal quadrature:∫︂tf
t0

L(x,u; t) dt ≈

h

2

N−1∑︂
k=1

[L (xk,uk, tk) + L (xk+1,uk+1, tk+1)] . (A.13)

A.3 Other collocation methods

By selecting a higher-order integration method, other collocation methods can
be developed. One of the most common is Hermite-Simpson collocation. In this
method, the state dynamics are approximated using the Cavalieri-Simpson rule†: †Also known as Simpson’s 1/3 rule.

∫︂tf
t0

q(t) dt ≈ h
6

N−1∑︂
k=1

[︃
q(tk) + 4q

(︃
tk +

h

2

)︃
+ q (tk+1)

]︃
. (A.14)

Hence, the defect constraints are formulated as in (A.6) with the values χk
given by:

χk =

∫︂tk+1

tk

f(x,u; t) dt

≈ h
6

N−1∑︂
k=1

[︃
f(xk,uk, tk) + 4f

(︃
xm,k,um,k, tk +

h

2

)︃
+ f(xk+1,uk+1, tk+1)

]︃
.

(A.15)

Here, xm,k and um,k stand for the value of the state and control variables at time
tk +

h
2 .

Integration byCavalieri-Simpson’s rule is exactwhen the integrand is quadratic;
thus, Hermite-Simpson collocation effectively approximates the state dynamics
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Figure A.2: Illustration of the Hermite-Simpson collocation method.

with a quadratic polynomial over each time interval. The control variables are
then represented as quadratic splines and the state variables as cubic splines [11,
44].

In order to fully define the control trajectory, the collocation points include
the values at the interval midpoints um,k in addition to the values at the knot
points uk, as shown in Figure A.2. Subsequently, the values of xm,k can be ob-
tained by interpolation:

xm,k =
xk + xk+1

2
+
h

8
(f(xk,uk, tk) − f(xk+1,uk+1, tk+1)) . (A.16)

The vector of NLP decision variables is extended to theN× (n+m)+ (N−
1)×m-dimensional vector to include the additional control collocation points:

y = (x11, . . . , x
1
N, . . . , x

n+1
1 , . . . , xn+1

N , u1
1, . . . , u

1
N, . . . , u

m
1 , . . . , umN ,

u1
m,1 . . . , u

1
m,N, . . . , u

m
m,1, . . . , u

m
m,1)

T. (A.17)

Lastly, the objective function is evaluated using the Cavalieri-Simpson rule:∫︂tf
t0

L(x,u; t) dt ≈

h

6

N−1∑︂
k=1

[︃
L (xk,uk, tk) + 4L

(︃
xm,k,um,k, tk +

h

2

)︃
+ L (xk+1,uk+1, tk+1)

]︃
.

(A.18)

For the numerical experiments described in § 7, we used trapezoidal colloca-
tion as a benchmark to compare against the differential dynamic programming al-
gorithmdescribed in this thesis. Hermite-Simpson collocationwas also tested but
was discarded because the algorithm’s performance was slightly worse. This was
attributed to the fact that the optimal control trajectory for all these experiments
is actually best represented by a linear interpolant rather than quadratic splines;
Hence, Hermite-Simpson interpolation increases the size of the NLP problem
with no significant benefit in terms of speed of convergence.
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