
Summary 
 

Currently, DeepLearning (DL) is becoming ubiquitous in everyday life. In particular, Convolutional Neural 

Networks (CNNs) are already present in many applications related to computer vision ranging from medicine 

to autonomous driving, neural language processing, and finance. However, these algorithms employ very 

deep networks to achieve impressive performance, requiring a significant computational power, both during 

the training and inference time. A single inference of a DL model may require billions of multiply-and-

accumulated operations, making the DL extremely compute- and energy-hungry. 

 

The growing desire to adopt these algorithms in an increasing number of applications and the evolution of 

hardware devices is recently shifting the inference process from the cloud to the edge, i.e., on embedded 

systems with limited resources. In addition, this paradigm shift can offer the user lower latency and greater 

privacy. In-device CNN processing presents several benefits. 

 

Since the data does not have to be transmitted to a central processing unit, it remains local, ensuring better 

user privacy and more deterministic latency. In addition, the absence of transmission reduces power 

consumption and the need for a network infrastructure capable of handling large amounts of data. At the 

same time, however, edge computing demands addressing the gap between the computational and memory-

hungry CNNs requirements and limited hardware and energy-constrained embedded platforms. 

Consequently, the need for cost-effective hardware platforms and co-design optimization techniques 

capable of implementing energy-efficient DL execution arises. 

 

Achieving the objective of enabling minimal resource systems for CNNs algorithms relies on the ability to 

optimize and co-design accelerator architectures. This dissertation proposes an in-depth analysis and design 

development for the acceleration of CNN algorithms for edge computing. The analysis covers all critical 

aspects of acceleration, from algorithmic optimization to architectural exploration and hardware 

architecture development. As widely discussed, IoT, or edge computing, imposes stringent constraints on 

area, throughput, and energy efficiency. 

In order to optimize a hardware architecture on these three key metrics, the focus must be placed on a 

specific application. Identifying the specific application domain enables software-hardware co-design 

techniques to maximize performance. 

This thesis is mainly divided into two parts, each proposing a domain-specific solution, the first aimed at 

training and the second at inference. The first part concerns the optimization of the training and 

generalization phase in the context of continuous learning (CL). CL requires the ability to learn from a 

continuous stream of data that may also include new categories of objects. Extreme Learning Machine (ELM), 

an alternative to Backpropagation, is adapted and applied to CL to solve the challenges presented by the 

latter, such as latency, accuracy, and resources (memory, algorithmic complexity, etc.). This approach shows 

encouraging results, for instance, in the case of CaffeNet it out-performed the current state-of-the-art 

methodologies, reaching an accuracy of 47%.  

The second example introduces two implementations of the Serial-MAC-engine (SMAC-engine), a fully-digital 

hardware accelerator for inference of quantized CNNs suitable for integration in a heterogeneous System-



on-Chip (SoC). With scalable performance, the SMAC engine supports configurable precision for weights 

(8/6/4 bits) and activations (8/4 bits). Results in 65 nm technology demonstrate that the serial-MAC approach 

enables the accelerator to achieve a maximum throughput of 14.28 GMAC/s, consuming 0.58 pJ/MAC @ 1.0 

V when operating at a precision of 4 bits for weights and 8 bits for activations. The architecture is then further 

developed to take advantage of the sparsity of activations to improve performance, reaching peaks of 56.88 

GMAC/s for Pa=8 and Pw=4 and sparsity 80%. 

The structure of the thesis is as follows: 

• Chapter one introduces the context and the motivation for this work. 

• Chapter two introduces a crucial background part related to architectural exploration for developing 

Deep Learning enabled hardware accelerators. 

• Chapter three presents an alternative to backpropagation that can be used in the case of Continual 

Learning to create a methodology that allows a DL model to learn continuously. 

• Chapter four consists of 2 macro sections. The first describes developing and implementing a 

hardware architecture for CNN acceleration focused on the area, and power optimization called 

Serial Multiply and Accumulate engine (SMAC engine), while the second further develop this 

architecture leveraging activation sparsity. 

• Chapter five briefly introduces the challenges and new trends in the verification world. 

• Chapter six concludes the dissertation, summarizing the main achievements and contribution of our 

research. 


