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Report of AAPM Task Group 273 167 
 168 
The purpose of this report is to provide recommendations on best practices and standards for the 169 
development and performance assessment of computer-aided decision support systems at the time 170 
when machine learning techniques continue to evolve, and CAD applications expand to new 171 
stages of the patient care process. The various steps of development are covered, including (1) 172 
data collection, (2) establishing reference standards, (3) model development, (4) performance 173 
assessment, and (5) translation to clinical practice.  The goal of the report is to emphasize the 174 
proper training and validation methods for machine learning algorithms that may improve their 175 
generalizability and reliability and accelerate the adoption of CAD-AI systems for clinical 176 
decision support.   177 
 178 
 179 
Abstract 180 

Rapid advances in artificial intelligence (AI) and machine learning, and specifically in deep 181 
learning (DL) techniques, have enabled broad application of these methods in health care.  The 182 
promise of the DL approach has spurred further interest in computer-aided diagnosis (CAD) 183 
development and applications using both ‘traditional’ machine learning methods and newer DL-184 
based methods.  We use the term CAD-AI to refer to this expanded clinical decision support 185 
environment that uses traditional and DL-based AI methods. 186 

Numerous studies have been published to date on the development of machine learning tools 187 
for computer-aided, or AI-assisted, clinical tasks. However, most of these machine learning 188 
models are not ready for clinical deployment. It is of paramount importance to ensure that a 189 
clinical decision support tool undergoes proper training and rigorous validation of its 190 
generalizability and robustness before adoption for patient care in the clinic. 191 

To address these important issues, the American Association of Physicists in Medicine 192 
(AAPM) Computer-Aided Image Analysis Subcommittee (CADSC) is charged, in part, to 193 
develop recommendations on practices and standards for the development and performance 194 
assessment of computer-aided decision support systems.  The committee has previously 195 
published two opinion papers on the evaluation of CAD systems and issues associated with user 196 
training and quality assurance of these systems in the clinic.  With machine learning techniques 197 
continuing to evolve and CAD applications expanding to new stages of the patient care process, 198 
the current task group report considers the broader issues common to the development of most, if 199 
not all, CAD-AI applications and their translation from the bench to the clinic.  The goal is to 200 
bring attention to the proper training and validation of machine learning algorithms that may 201 
improve their generalizability and reliability and accelerate the adoption of CAD-AI systems for 202 
clinical decision support. 203 

 204 
 205 
1 Introduction 206 
 207 

We are witnessing extensive development and an explosion of applications based on deep 208 
learning (DL) or “artificial intelligence (AI)” technology across various fields in recent years. 209 
Many applications in robotics, transportation, surveillance, Internet, and popular games have 210 
achieved high degrees of success and raised unprecedented enthusiasm for AI.  Rapid advances in 211 
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machine learning, and specifically in DL techniques, have enabled broad application of these 212 
methods in health care.  In medical imaging, computer-aided diagnosis (CAD) using traditional 213 
machine learning techniques was introduced into the clinic over two decades ago; however, 214 
traditional approaches that use manually designed image features (i.e., mathematical descriptors) 215 
and classifiers with small numbers of parameters may yield limited performance for some 216 
complex tasks.  DL is a representation learning technique in which a multi-layer neural network 217 
with millions of interconnecting weights automatically learns relevant features and information 218 
from the input data and models the expected outcome guided by a large set of training samples.  219 
The increasing accessibility to low-cost computational power and data storage further enables the 220 
development of DL models.  The promise of the DL approach has spurred a new era of 221 
development of CAD-AI applications for clinical decision support in various stages of the patient 222 
care process; we use the term CAD-AI to refer to this expanded clinical decision support 223 
environment that uses traditional and DL-based AI methods (Figure 1). 224 

   225 
 226 

 227 

Figure 1.  Overview of computer-aided diagnosis applications 228 

 229 
Numerous studies have been published to date on the development of machine learning tools 230 

for computer-aided, or AI-assisted, clinical tasks.  In a recent review of publications related to 231 
machine learning-based detection and prognosis of COVID-19 using chest radiographs and CT 232 
scans, Roberts et al. [1] concluded that none of the models were of potential clinical use due to 233 
methodological flaws and/or underlying biases. In another review of the design, reporting 234 
standards, and claims of studies that compared the performance of the DL algorithms applied to 235 
medical images with that of expert clinicians, Nagendran et al. [2] concluded that only a few 236 
prospective DL studies and randomized trials had been performed and that the rest of the studies 237 
were at high risk for bias. In a systematic review on the diagnostic accuracy of DL algorithms, 238 
Aggarwal at al. [3] found high heterogeneity and extensive variation in methodology, 239 
terminology, and outcome measures among the studies, all of which could lead to an 240 
overestimation of the diagnostic accuracy of DL algorithms applied to medical images.  In a 241 
review of over 500 studies that evaluated the performance of AI algorithms for diagnostic 242 
analysis of medical images, Kim et al. [4] reported that nearly all were designed as proof-of-243 
concept technical feasibility studies and did not incorporate design features that are 244 
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recommended for robust validation of the real-world clinical performance of AI algorithms. 245 
These reviews reveal that the majority of machine learning models developed to date seem to be 246 
far from ready for clinical deployment despite the reported levels of performance.  247 

Regardless of the underlying machine learning methods used for development of CAD tools, 248 
it is of paramount importance to ensure that a clinical decision support tool has undergone proper 249 
training and rigorous validation of its generalizability and robustness before the adoption of such 250 
tools for patient care in the clinic.  To address these important issues, the American Association 251 
of Physicists in Medicine (AAPM) Computer-Aided Image Analysis Subcommittee (CADSC) is 252 
charged, in part, to develop recommendations on practices and standards for the development and 253 
performance assessment of computer-aided decision support systems.  The CADSC has 254 
previously published two papers to convey the opinions of CADSC members on proper practices 255 
for the training, evaluation, and quality assurance of CAD systems [5, 6].  With machine learning 256 
techniques continuing to evolve and CAD applications expanding to new stages of the patient 257 
care process (Figure 1), this task group report addresses the broad issues common to the 258 
development of most, if not all, CAD-AI applications and their translation from the bench to the 259 
clinic.  The various steps of development will be covered, including data collection, establishing 260 
reference standards, model development, performance assessment, and translation to clinical 261 
practice, as summarized in Figure 2.  The goal is to bring attention to proper training and 262 
validation methods for machine learning algorithms that may improve their generalizability and 263 
reliability and accelerate the adoption of CAD-AI systems for clinical decision support. 264 

 265 

 266 
 267 
Figure 2. Overview of development of computer-aided decision support systems 268 
 269 

 270 
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 271 
2 Data 272 
 273 

The most fundamental step for the development of a CAD-AI tool is to define the use case 274 
and the population to which the CAD-AI tool is to be applied. As a guiding principle, data 275 
collected for the training, validation, and testing of a CAD-AI tool should reflect the intended use 276 
case and population while at the same time allowing for the replication of results in a real-world 277 
clinical setting. It cannot be overemphasized that improper data collection practices may likely 278 
introduce bias and create a misleading perception of model performance, especially in 279 
subpopulations that may not be appropriately represented in the study dataset. In study reports, 280 
the data collection process must be described in detail to demonstrate scientific rigor and should 281 
include inclusion and exclusion criteria as well as the target patient demographics.  282 

This section covers the topics of data collection (including case sampling, public databases, 283 
ethics, and quality considerations), data augmentation, and data harmonization. The topic of 284 
labels that might accompany collected data will be covered in the Reference Standards section 285 
(section 3). 286 
 287 
2.1 Data Collection  288 

   289 
2.1.1 Data collection and case sampling 290 

System development with consecutively sampled cases from multiple sites over a defined 291 
period of image acquisition dates [7] is the best way to achieve replication of performance in a 292 
real-world clinical setting. In some machine learning applications for which the proportion of 293 
different case groups is highly imbalanced in the population, however, consecutive data 294 
collection is impractical, and the training dataset must be collected with methods such as 295 
stratified sampling to enrich some of the groups. For example, in the case of screening 296 
mammography, stratifying samples across the positive and negative groups is needed because the 297 
yield of malignancy is only 0.5%. Stratified sampling [8] splits the population into non-298 
overlapping groups (or strata) and then samples within each strata to achieve the desired balance 299 
among different strata; if applied accurately, stratified sampling can enhance the generalizability 300 
of a model relative to training without stratification. In practice, many development studies are 301 
performed using a convenience sample approach [9], where cases that are conveniently 302 
available to the developers are the ones collected for the study. Especially in new research areas, 303 
the availability of only a convenience sample should not prevent a study from going forward; 304 
however, claims about CAD-AI system performance in such studies should be made with utmost 305 
care to reflect the reality that the results are likely not generalizable. 306 

Several recent studies have indicated that systems developed and tested with data from one 307 
collection site failed to achieve similar test results when applied to data from a different site [10-308 
13]. For this reason, especially for validation studies, it is essential to have multi-site data 309 
collection [14, 15] and to assure that the data collection is diverse in terms of subject population, 310 
disease severity, vendor/imaging system, and image acquisition protocol. Development studies 311 
that use single-site data collection are essential for new advancements in a time-efficient 312 
manner, but strong limitations about the assessed performance should be acknowledged. 313 

   314 
2.1.2 Public databases 315 

In CAD-AI development, each research group typically uses its resources to collect its own 316 
database, which is likely to be smaller in number than desirable and lacking the real-world 317 
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diversity of patient demographics and image acquisition parameters that exist across institutions.  318 
Furthermore, this isolation of databases prohibits the direct comparison of the performance of 319 
systems reported in the literature [16, 17]. 320 

Publicly available image databases overcome these shortcomings by providing a free, 321 
accessible resource for the international medical imaging research community. The creation of a 322 
public database is not as simple as depositing one or more existing local databases on a web site 323 
or crowd-sourcing the uploading of images and associated information.  The nature of the public 324 
database should be prospectively determined in terms of the clinical task(s) it may be expected to 325 
address, the range of disease presentations to be represented by those cases, the associated 326 
metadata it will include, and the reference standard it will incorporate.  The need for a quality 327 
assurance (QA) process for data in a public database cannot be overemphasized [18, 19]: 328 
adherence to the case inclusion/exclusion criteria, proper de-identification of protected health 329 
information (PHI), image quality, and reference standard integrity must all be verified before the 330 
database can be released for public access. In addition, the FAIR (Findable, Accessible, 331 
Interoperable and Reusable) principles must be followed to the extent possible in designing 332 
public datasets to assist both human users and their computational agents in the discovery of, 333 
access to, and integration and analysis of the data [20]. 334 

Public databases are resources of growing importance for the advancement of machine 335 
learning algorithms in medical imaging and clinical decision support in general.  These databases 336 
play important roles in algorithm development, training/testing, validation, and performance 337 
assessment; in short, they expedite the ability of research groups to contribute to the field.  338 
Investigators who use these databases have an obligation to understand the limitations of the 339 
databases and to use them in a manner consistent with the capabilities they offer. 340 
 341 
2.1.3 Ethics considerations of data collection 342 

The rapid advancement of machine learning in medicine has prompted new questions about 343 
the legal framework and ethics of data collection. The legal framework varies by country. In 344 
the United States, the Health and Human Services (HHS) Privacy Rule standards [21] address the 345 
use and disclosure of individuals’ PHI, which includes information in a medical record that can 346 
be linked to a specific individual. For research, the Privacy Rule stipulates that covered entities 347 
are permitted to use and disclose PHI (1) with individual authorization or (2) without individual 348 
authorization under “limited circumstances” that must be approved by Institutional Review Board 349 
(IRB). In the European Union, the General Data Protection Regulation (GDPR) provides the 350 
framework for data protection and includes considerations for the use of healthcare data for a 351 
purpose different from the one for which it was originally collected (secondary use) with and 352 
without explicit patient consent. Many other countries have also established guidelines or 353 
regulations on ethics considerations for the use of human subject data [22]. For example, China 354 
released Personal Information Security Specification in 2018 to promote privacy rules established 355 
in their 2017 Cyber Security Law as a national standard [23, 24]. Brazil established the Brazilian 356 
General Data Protection Law (LGPD) in 2020; while it is broadly aligned with the EU GDPR, 357 
some notable differences exist [25]. Independent of legal considerations, several authors have 358 
recently argued for an ethical framework in which the secondary use of clinical data without 359 
explicit patient consent is ethically justifiable, as long as mechanisms are in place to ensure that 360 
ethical standards are strictly followed [26]. Additional issues related to ethics of data collection 361 
for machine learning systems in medical imaging include: (1) de-identification of PHI in medical 362 
images and other supporting data, and (2) impact of data collection on algorithm fairness [27]. 363 

 364 
 365 
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 366 
2.1.3.1 De-identification 367 

De-identification refers to removal or encoding of identifiers from patient health information 368 
collected for research purposes. In radiological imaging, many of these identifiers are present in 369 
the DICOM header contained within each image file when the image is generated for patient care 370 
purposes, and several toolkits offer a number of different strategies for de-identification of 371 
DICOM headers. For example, the Radiologic Society of North America’s Clinical Trials 372 
Processor is a tool that is recommended for de-identifying DICOM headers when optimal 373 
security is required, due to its high level of customization [28].  De-identification of DICOM 374 
headers, however, may be insufficient for some radiological datasets, because there may exist 375 
potential sources of PHI other than those within the DICOM header [29]:  actual pixels within the 376 
image (“burned-in” data) might contain PHI, especially in ultrasound images and radiographs; 377 
objects worn by a patient that contain personal information (such as a bracelet) may appear in 378 
medical images; and data in head-and-neck CT images may allow facial reconstruction that could 379 
identify the patient. For these reasons, it is advisable to visually inspect images and use additional 380 
tools for optimal security, especially if the images are to be publicly shared. 381 

 382 
2.1.3.2 Diversity and Inclusion 383 

A potentially significant, yet subtle, consequence of improper data collection might be an 384 
algorithm that performs poorly for certain subgroups or subpopulations with the targeted disease 385 
or condition as a result of under-representation of those subgroups in the training set [30, 31]. In 386 
radiology applications, it is important to be vigilant so that training/validation dataset selection 387 
incorporates safeguards to minimize underlying distortions for under-represented and/or 388 
vulnerable populations and so that already-existing health-care inequities are not perpetuated or 389 
exacerbated [27, 32-34]. 390 

 391 
2.1.4 Quality considerations 392 

Image quality may have a strong impact on the reported performance of CAD-AI systems. 393 
Fortunately, many imaging centers have an image QA program already in place, and imaging 394 
exams are typically repeated if the image quality is substandard. Nevertheless, it is still good 395 
practice to ensure that a QA program is being followed at image collection sites and to visually 396 
inspect key images to ensure image quality is acceptable before entering a case into a database 397 
for CAD-AI training, if feasible.  398 

An additional consideration is whether the images were acquired with equipment that is still 399 
technically relevant and in accordance with appropriate image acquisition protocols. This ensures 400 
that a CAD-AI system trained or tested with the dataset is capable of answering clinically 401 
relevant questions. With rapid advances in image acquisition hardware and software, a collected 402 
dataset can quickly become obsolete. To create an enduring image dataset, data collection and 403 
management should be considered a continuous process rather than a one-shot effort. 404 

Consideration of data curation is essential to the integrity of an image dataset. The dataset 405 
should be inspected (either visually or by automated analysis) to ensure that it contains only 406 
images from the relevant anatomic site and image modality. It is important to be aware of the 407 
differences in image acquisition parameters, imaging time points, selected series from CT scans, 408 
contrast enhancement status, and contrast administration timing. A more subtle point for data 409 
curation involves awareness of the potential bias that may be introduced if “positive” cases, for 410 
example, come from one site or scanner while all “negative” cases come from a different site or 411 
scanner, a situation that should be avoided. If developing a multi-institutional dataset, curation 412 
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should be performed at the institutional level, where local clinical information is more easily 413 
accessible and verifiable, before depositing to the dataset, if possible. 414 

 415 
2.2 Data Augmentation 416 

Data augmentation is a collection of task-dependent techniques used to create alterations of 417 
the training data or to create synthetic data to increase the training set size aiming to improve the 418 
generalization that may be achieved by a trained CAD-AI algorithm [35]. Data augmentation has 419 
become an essential part of the training process for CAD-AI algorithms due to the recent use of 420 
deep neural networks that have millions of parameters and thus require a large number of training 421 
iterations for adequate training.  To create variations of existing images contained within the 422 
training set, early successful deep learning applications for image classification used 423 
parameterized transformations that included affine transformations such as image rotation, 424 
flipping, scaling, and jittering [36]. Non-rigid transformations such as deformable 425 
transformations were later used for data augmentation. 426 

Data augmentation based on the recently developed technique of generative adversarial 427 
networks [37] has attracted strong interest. Generative adversarial neural networks have the 428 
ability to learn the underlying data distribution and to generate synthetic images mimicking the 429 
actual ones that may fill the gaps in feature distributions [38]. Other approaches to data 430 
augmentation include obtaining images from physical phantoms or generating synthetic data from 431 
physics modeling [39]. Physical and virtual phantoms have been used in medical imaging for 432 
development of new imaging techniques, improvement of existing imaging modalities, and the 433 
conduct of virtual clinical trials; images generated from these approaches represent a natural 434 
extension for data augmentation. 435 

Data augmentation techniques that create alterations of the training data should not modify 436 
the image appearance in a manner that makes the underlying biological or tissue properties 437 
implausible. In addition, it should be recognized that these techniques can only generate slight 438 
variations to the structural properties of existing samples in the training set; they cannot create 439 
new patterns or independent information that do not exist in the original training set. Although 440 
data augmentation may help the machine learning algorithm better interpolate among existing 441 
samples, it cannot fundamentally compensate for the inadequacies of a small clinical training set. 442 
The use of synthetic data (in silico and phantom) may prove useful for creating large training sets 443 
if the real-world variabilities of the clinical task, and the human subjects, and the imaging system 444 
can be realistically modeled.  It remains to be shown that these synthetic data can sufficiently 445 
simulate the physiological or biological properties of real patients required for developing 446 
decision support tools for many clinical tasks.  447 

  448 
2.3 Data Harmonization 449 

Data may include images obtained at different sites, acquired with different equipment and 450 
image-acquisition parameters, and reconstructed and/or post-processed using different 451 
algorithms. These differences may result in systematic variations across images. Data 452 
harmonization aims to reduce these variations retrospectively after acquisition while preserving 453 
the biological variability captured in the images [40]. Technically, DL-based methods are capable 454 
of handling variations in image appearance provided the training dataset includes example cases 455 
capturing all those variations and each in sufficient number to provide adequate learning; 456 
however, the demands of such inclusion on dataset collection and subsequent training could 457 
become prohibitively resource intensive. Moreover, deep learning methods can learn which site 458 
an image came from (for multi-institutional datasets) or which vendor’s equipment was used for 459 
image acquisition, so utmost care should be taken to minimize bias in the training data [11]. For 460 
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example, if all mammograms with breast cancer were acquired on a mammography unit from 461 
vendor A and all mammograms with benign lesions were acquired on a mammography unit from 462 
vendor B, a deep learning method is apt to learn to distinguish images from vendor A from those 463 
from vendor B rather than to distinguish the salient imaging features between breast cancers and 464 
benign lesions.  465 

In practice, data harmonization has become the key to enhancing accuracy and robustness of 466 
CAD-AI systems [36, 41]. Researchers should be aware of the heterogeneity of image appearance 467 
and quality (and record, for example, differences in image acquisition parameters) during the data 468 
collection stage and incorporate data harmonization methods, when appropriate, to aid models in 469 
accommodating data heterogeneity [42, 43]. Harmonization methods can be applied in the image 470 
domain or feature-space domain [44]. Image-domain harmonization methods include post-471 
processing of image data [45] and style transfer [46], and feature-domain harmonization methods 472 
include basic statistical normalization techniques [47] and advanced statistical techniques such as 473 
ComBat [48, 49]. The Quantitative Imaging Biomarkers Alliance (QIBA) and the Quantitative 474 
Imaging Network (QIN) have also devoted efforts to the harmonization of medical imaging data 475 
and tools [50, 51]. It is important to recognize that although data harmonization aims to reduce 476 
the systematic variations due to image acquisition, reconstruction, and post-processing or due to 477 
different protocols among data collection sites, it does not address the issue of systematic 478 
variations among patient sub-populations (see sections 2.1.3.2 and 4.2.2.3). 479 
 480 
2.4 Take Home Message on Data  481 

In summary, proper data collection methods are of critical importance to successful training, 482 
validation, and implementation of CAD-AI algorithms.  Improper collection and manipulation of 483 
data (such as improper data augmentation) can lead to an overestimation of performance or lack 484 
of generalizability.  485 
 486 

3 Reference Standards 487 
 488 

The development of machine learning-based decision support tools requires truth or labeling 489 
of the cases for training, validation, and independent testing. The resulting reference standard 490 
needed for the evaluation of an algorithm’s (or human’s) performance depends on the task at 491 
hand.  It is important to note that the notion of “truth” (or “ground truth” or “gold standard”) has 492 
been replaced by the concept of “reference standard,” as very few, if any, real-world tests yield 493 
the absoluteness implied by “truth” or “gold standard.” In many respects, the clinical utility of an 494 
algorithm greatly depends on the quality of the reference standard used in its training and 495 
evaluation. It is challenging but crucial for investigators to (1) select the most appropriate 496 
approach to obtain a task-specific reference standard, (2) gather complete and reliable data for 497 
that reference standard, and (3) assess any biases that may be introduced when training their 498 
algorithm with a reference standard that contains inherent variability.  499 

This section covers considerations for generation of reference standards including objective 500 
vs. subjective reference standards, annotation granularity, methods for acquiring annotations, 501 
definition of true positives. The use of the reference standard in training and model development 502 
(section 4) and in performance evaluation (section 5) of a CAD-AI algorithm are closely related. 503 

 504 
3.1 Objective vs. Subjective Reference Standards 505 

The most straightforward reference standard uses the collected image data itself, with one or 506 
more domain experts providing diagnostic assessments or annotations at the image or patient 507 
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level. Reference standards based on physicians’ opinion, however, are subjective, and 508 
several studies have shown that CAD-AI system performance may vary substantially when 509 
assessed against different reference standards provided by radiologists [52-57]. Subjective 510 
reference standards are considered more reliable if they are based on consensus of multiple 511 
experts; however, it is difficult to estimate the number of experts needed. Ideally more than two 512 
experts should participate in order to identify outliers. It can be expected that the preferred 513 
number of experts depends on the task for which the reference standards will be used, the 514 
difficulty of that task, and the expected variability of the generated reference standard. In 515 
practice, obtaining a reference standard from experts is a very resource-intensive task, and 516 
usually only limited expert readings are possible, especially for large datasets. 517 

Further reliability for reference standards may be achieved with information from other 518 
independent sources [58, 59], which also may be consensus based, such as radiologist’s review of 519 
images from another modality [60] or imaging follow-up for 2 years or longer [61]. 520 

Despite the prevalence of subjective approaches that use expert opinion, more objective 521 
reference standards are frequently desirable.  For example, for lesion detection and pathologic 522 
classification, more definitive diagnostic tests and pathologic assessment of biopsied or excised 523 
lesions [62], although imperfect, should be used. For clinical decision support, such as treatment 524 
response assessment or patient prognosis, a more objective reference standard is patient survival. 525 
While the date of patient death is definitive, procuring this information as a reference standard 526 
becomes complicated by the need to track patients over potentially extended periods of time, 527 
during which they might become lost to follow-up; patient death could also result from 528 
circumstances other than the disease being evaluated. Shorter-term reference standards such as 529 
time-to-progression also may be used as an alternative in many studies. 530 
 531 
3.2 Annotation Granularity 532 

The level of required annotation granularity, or detail, depends on the task. For example, a 533 
more object-specific annotation such as manual expert delineation may be needed for 534 
lesion/organ detection or segmentation. For diagnosis of systemic disease or patient prognosis, 535 
patient-level assessment or patient survival may be appropriate. Image-based reference standards 536 
of varying levels of granularity are the most commonly used ones for current medical imaging-537 
based machine learning tasks. 538 
 539 
3.2.1 Entire image 540 

The coarsest level of granularity is annotation of the entire image, through which a class 541 
label is assigned to each image. As an example, the DREAM Challenge [63] for digital 542 
mammography diagnosis only had available breast-level labeling regarding the presence of breast 543 
cancer; however, training with such global labels that do not locate the actual lesions is sub-544 
optimal in guiding deep networks to learn the relevant features of those lesions that are 545 
responsible for the patient-level diagnosis1. The top-scoring teams in the DREAM Challenge all 546 
used additional datasets with lesion location labeling to supplement the training of their systems. 547 
Another study showed that without specific lesion locations, the system could learn non-medical 548 
features that were included in the images (such as metal labels and markers), thus impeding the 549 
generalizability of the algorithm [11]. A more recent study [64] showed that the performance of 550 
an AI system for screening mammography on unseen cases varied from modest to outstanding 551 
depending on the dataset and reference standards used for evaluation. 552 

                                                            
1 Recent “weak learning” and “attention” mechanisms may provide solutions for this (see Section 4.2) 
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 553 
 554 
 555 
3.2.2 Region-based 556 

A finer level of granularity is annotation of specific lesions or organs through expert manual 557 
marking of a bounding box or a region center point. If the purpose is to detect cancers, for 558 
example, the CAD-AI system has to characterize the level of suspicion of a potential target 559 
structure and mark it as a cancer if it satisfies a certain threshold suspicion level. The scoring of 560 
system performance, then, requires not only the location of the lesion as reference standard but 561 
also the established malignancy status. 562 
 563 
3.2.3 Pixel-based 564 

An even finer level of granularity is pixel-based annotation in which the reference standard 565 
is an expert manual delineation, or outline, of the lesion or organ of interest and each image pixel 566 
can be labeled as either belonging to the region of interest or not. These detailed annotations are 567 
important for evaluating performance when the task is organ or lesion segmentation, and they can 568 
also be important for applications such as lesion characterization or treatment response 569 
assessment, in which the lesion extent and radiomic features are extracted from the segmented 570 
lesion. Pixel-based reference standards are more detailed than region-based ones but come at the 571 
cost of a more time-consuming annotation process and larger inter-reader variability [65].  572 
 573 
3.3 Methods for Acquiring Annotations 574 
 575 
3.3.1 Expert labels 576 

When clinical or pathologic information is not available, it is common (for certain CAD-AI 577 
tasks such as lesion detection or segmentation) to create a subjective reference standard from 578 
human domain experts, who label the images or mark individual pixels, depending on the level 579 
of annotation granularity required. Outlining the boundaries of lesions or organs has the 580 
disadvantage of requiring potentially extensive time and effort, especially for manual 581 
segmentations in 3D. The judgment of lesion boundaries or the presence of a lesion contains 582 
intra- and inter-observer variability, even for experienced radiologists [65, 66], so that multiple 583 
experts may be required to produce a reliable reference standard. 584 

 585 
3.3.2 Electronic health record 586 

For patient-level assessments, the electronic health records (EHR) of subjects can be parsed 587 
by humans or natural language processing algorithms for reference standards involving, for 588 
example, the presence or absence of disease. Reference standards obtained from EHR data may 589 
contain annotations made during clinical practice, such as bounding boxes or Response 590 
Evaluation Criteria in Solid Tumors (RECIST) measurements [67]. If performed manually, a 591 
reference standard obtained from the EHR is time consuming and may not be practical for 592 
collecting large datasets; if performed automatically, the labels may contain a lot of noise and be 593 
prone to error, especially for complicated cases [68]. Natural language processing for parsing 594 
EHR data is an area of active research.  It should be noted, however, that clinical radiology 595 
reports are not recommended as a reference standard for CAD-AI development, because “clinical 596 
reports often have nuanced conclusions and are generated for patient care and not for research 597 
purposes” [69]. 598 

 599 
3.3.3 Crowd sourcing 600 
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The key concept of crowd sourcing is to switch the time commitment and required effort for 601 
a given task from domain experts to many, potentially less-experienced, users. Crowd sourcing is 602 
a form of subjective consensus reference standard that has been applied to image annotation, 603 
image segmentation, and object delineation tasks [70]. It has been shown, in certain settings, that 604 
the quality of annotations from experts and those from novices becomes equivalent with an 605 
increased number of novices [71, 72]. Nevertheless, the use of crowd sourcing as a reference 606 
standard for machine-learning applications in medical imaging must be further investigated 607 
before it can be recommended for general use. 608 

 609 
3.3.4 Phantoms 610 

In medical imaging, phantoms are man-made objects with known structure and composition. 611 
Images acquired of these phantoms support a priori image annotations across a range of 612 
granularity levels. However, the number of physical phantoms usually is limited, and, therefore, 613 
only a few annotated images can be obtained from this method. Recently, digital phantoms that 614 
mimic properties of physical objects in silico have become available [73] and have been used in 615 
virtual clinical trials [73, 74] as well as for training ML models [39]. An advantage of using in 616 
silico models is that the lesion location and properties are known by design so that human 617 
annotation is not required; however, image data obtained from phantoms (physical or digital) 618 
likely do not reflect the actual biological or pathological characteristics that may be captured on 619 
patient images. Phantom images may be useful for data augmentation during training, for 620 
identifying and correcting biases regarding differences in imaging systems and protocols, and for 621 
test-retest evaluations. Whether an algorithm trained with phantoms is applicable to real-world 622 
images requires rigorous validation [39]. Similar caution must be applied to the use of synthetic 623 
images generated by digital methods such as full in silico modeling of the imaging chain or use of 624 
generative adversarial networks. 625 

 626 
3.3.5 Weak/noisy labels 627 

Weak or noisy labels can be defined as incomplete or imperfect reference standard 628 
annotations. Compared with a small dataset with “strong” or “clean” labels, a large dataset with 629 
“weak” or “noisy” labels used for algorithm training may achieve comparable performance [72]. 630 
The generalizability of the trained algorithm, however, will deteriorate as the proportion of noisy 631 
labels in the training set increases [75]. Others have demonstrated the potential of using weak or 632 
noisy labels [76] but additional research is needed. Strong labels specifically for the independent 633 
test set are essential to reliably assess the performance of the trained decision support tool. Under 634 
certain circumstances, the STAPLE algorithm (“Simultaneous Determination of a Reference 635 
Standard and Performance Level Estimation”) delivers not only the optimal reference standard 636 
estimation but also a quality ranking of the competing observers/algorithms [77].  637 

 638 
3.4 Definition of True Positives 639 

Reference standards are designed for use in evaluating the output of a CAD-AI system. The 640 
definition of a true positive relative to the reference standard is very important. Different 641 
methods for determining a true positive will result in different performance of the same CAD-AI 642 
system. Which method is appropriate or feasible depends on the task and the available reference 643 
standard. Using detection tasks as a specific example, a number of methods have been used to 644 
determine whether the lesion is correctly detected, including the distance between the centroids 645 
of the detected object and the reference, the overlap percentage between the two (which is further 646 
affected by the level of detail in marking the reference, e.g. bounding box vs. outline) [78], and 647 
whether the centroid of the detected object falls within the reference lesion region; detected 648 
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objects that are not determined to be true positives through the selected metric are counted as 649 
false positives. It has been shown that scoring is strongly affected by the detection criterion [79]. 650 
More detail on performance evaluation can be found in section 5.  651 

 652 
3.5 Take Home Message on Reference Standards 653 
The required type and granularity of the reference standard depends on the task at hand. An 654 
objective reference standard is preferred; however, when a subjective reference standard cannot 655 
be avoided, independent assessments of multiple domain experts should be obtained and their 656 
variabilities should be evaluated. 657 
 658 

4 Model Development 659 
 660 

In addition to the availability of properly collected data and labels, the selection of data 661 
sampling and machine learning strategies will affect the robustness of the developed model.  This 662 
section covers the topics of data sampling methods, levels of learning supervision, and new 663 
training strategies, including transfer learning, multi-task learning, domain adaptation, federated 664 
learning, and continuous-learning. A recent review on some of these technologies and their 665 
applications can be found in the literature [80]. 666 
 667 
4.1 Data Sampling Strategies 668 

Data sampling is important for efficient use of data and for reducing the risk of overfitting in 669 
model development. The most established resampling techniques for the training and testing of 670 
models will be discussed. The dataset ideally should be split into three non-overlapping 671 
partitions: training, validation, and test sets. One of the partitions should be used for training of 672 
the model. To guide the optimization (or tuning) of model parameters during training of a model, 673 
it is desirable to obtain a meaningful estimate of the performance of the model being trained on a 674 
partition of the dataset that is often referred to as a “validation set;” the use of the validation set is 675 
thus a part of the training process.  This is not to be confused with the use of the term 676 
“validation” as the process of evaluating the generalizability of a developed model on unseen 677 
data after training is completed and the model is “frozen,” which should be established by testing 678 
on a completely independent dataset from the ones used during the training or optimization of 679 
the model. To avoid overfitting the model, performance testing ideally should be conducted only 680 
once on any given test set; the performance on that test set should then not be used to inform 681 
model improvements or modifications for subsequent testing on the same test set [5, 14, 81]. Due 682 
to potential confusion surrounding the term “validation” for reporting the performance of a 683 
trained model, developers need to clearly define whether the test set used for the evaluation has 684 
been kept independent from the training process. There are several established resampling 685 
techniques for organizing the training and evaluation of a model, especially with limited datasets. 686 
It should be noted that such techniques are generally based on the assumption that the available 687 
data are representative of the underlying target population and similarly distributed within the 688 
training, validation, and test datasets. 689 

A holdout method is the most basic evaluation/training paradigm. In this approach, a model 690 
is trained and optimized by use of training and validation datasets, after which it is evaluated 691 
once with an independent test dataset that is sequestered during training. When the available 692 
datasets are small, a k-fold cross-validation method, which maximizes the use of the available 693 
data, can provide a more reliable evaluation of model performance than the holdout methods 694 
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under this condition [82, 83] if the test partition in each fold is held-out as an independent test set 695 
and is not used repeatedly for guiding model optimization. For such techniques, stratified 696 
sampling of cases (Section 2.1) can better accommodate imbalanced datasets than random 697 
sampling. Bootstrapping is another popular and well-established resampling method that can be 698 
used to construct sampling distributions for model training and evaluation purposes [84-86].  699 

Although the actual generalization performance of the final model should be evaluated only 700 
once by external testing with a previously unseen independent test set, in practice, it is 701 
psychologically difficult for researchers not to go back and improve their model if the observed 702 
test performance is poor. Such multiple testing and reuse of the same test data are likely to 703 
introduce overfitting problems regardless of the evaluation/learning paradigm [81, 87]. 704 
 705 
4.2 Machine Learning Strategies   706 

A machine learning paradigm refers to a strategy based on which a model is trained. There 707 
are numerous learning paradigms in CAD-AI, many of which overlap [88-90]. One approach for 708 
categorizing learning paradigms focuses on the level of interaction required by the user, such as 709 
supervised, semi-supervised or unsupervised learning. A different approach considers the 710 
learning paradigm from the perspective of model development, such as transfer learning, multi-711 
task learning and federated learning. 712 
 713 
4.2.1 Levels of learning supervision  714 

Supervised learning (with different levels of supervision) is the most common approach to 715 
learning, where a model is trained to map input data to output data based on examples of the 716 
input-output pairs. To reduce the cost and barriers related to data collection and annotation, 717 
however, several studies are actively exploring training algorithms that can leverage unlabeled or 718 
weakly labeled data during training (see also Section 3.3.5). Such paradigms may provide a more 719 
cost-effective and scalable approach to CAD-AI development.  720 

 721 
4.2.1.1 Supervised learning 722 

In supervised learning, a model is trained to map input data to output data based on explicit 723 
examples of the desired input-output pairs, as provided by the user. However, the collection of 724 
such annotations tends to be costly and time-consuming, and the annotation effort may need to be 725 
repeated as the imaging technology evolves and new datasets are introduced. Moreover, as noted 726 
in previous sections, annotations can be subjective, the annotation process may be prone to error, 727 
and, for some tasks, there is no single correct annotation.  728 

 729 
4.2.1.2 Semi-supervised learning 730 

Semi-supervised learning algorithms exploit a combination of labeled and unlabeled data. In 731 
this case, the model is given some guidance about the desired outcome, but the annotations do not 732 
need to be as detailed or extensive as those used with supervised learning.  For instance, feature 733 
extraction can be initialized through an unsupervised or self-supervised technique and then fine-734 
tuned to the final task using a small set of labeled data. Using some form of semi-supervised 735 
learning may reduce the costs of labeling relative to supervised learning.  736 

 737 
4.2.1.3 Self-supervised learning 738 
Self-supervised learning can exploit large unlabeled datasets for feature representation and has a 739 
regularizing effect on the learned features. Autoencoder models are a common approach to self-740 
supervised learning [37] and are used for feature extraction; however, there is no guarantee that 741 
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the features learned in a self-supervised fashion have diagnostic value. It should be noted that 742 
autoencoder models, such as U-Net, can also be used in a supervised mode for image 743 
segmentation tasks. Other popular approaches to self-supervised learning include contrastive 744 
learning [91-93] and pretext [91] or surrogate supervision [94]. In these techniques, when a large 745 
unlabeled dataset in the same domain as a small labeled dataset is available for a given task, the 746 
unlabeled data can be assigned artificial labels and then used to pre-train a deep learning model; 747 
transfer learning for the target task is then performed with the small labeled dataset. It has been 748 
shown that deep models pre-trained with self-supervised learning techniques can outperform the 749 
same models trained with random initialization [95] or transfer learning from an unrelated 750 
domain [94, 96]. These findings demonstrate the potential of large datasets to improve model 751 
development in medical imaging tasks even if a large portion of the cases is unlabeled. 752 

 753 
4.2.1.4 Unsupervised learning 754 

Unsupervised learning refers to a class of algorithms that can autonomously learn from data 755 
without reference to any labels or any instruction from the user. Common approaches to 756 
unsupervised learning are the clustering methods. Unsupervised learning has shown promise in 757 
medical imaging applications but depends on the adequacy of the resulting automatic clustering. 758 
In addition, unsupervised learning requires a much larger training set for the algorithm to achieve 759 
similar performance compared with training with reference standard [97], and data collection in 760 
medical imaging is costly.  761 

 It should be noted that CAD-AI algorithms can include both supervised and unsupervised 762 
elements.  763 
 764 
4.2.1.5 Multiple-instance learning 765 

The multiple-instance learning approach is an effective paradigm when labels are not 766 
available at the desired granularity [98]. The machine learning model receives a set of labeled 767 
“bags,” each containing many (unlabeled and some labeled) instances. In the simplest case of 768 
binary classification, a bag is labeled positive if it contains at least one positive instance. 769 
 770 
4.2.2 Transfer learning, multi-task learning, and domain adaptation 771 

The ability to discover by representation learning a wide range of object characteristics is a 772 
distinctive advantage of deep learning over traditional machine learning models that rely on 773 
hand-engineered features [99]. In deep convolutional neural networks (DCNNs), feature 774 
extraction is obtained through a series of cascaded convolutional layers, forming a hierarchy in 775 
which shallow layers extract generic features and deeper layers extract increasingly object-776 
specific features [100]. Large-scale datasets, however, are needed to learn high-quality features, 777 
thus making deep learning an effective, but data and computation hungry, paradigm. Such data 778 
requirements can be lessened by transferring or sharing features across different tasks and 779 
domains. 780 

 781 
4.2.2.1 Transfer learning 782 

Transfer learning in DCNNs is commonly implemented by training a network on one task 783 
and then “transferring” the parameters (or weights) from the trained model to initialize the 784 
network for a new task, rather than randomly initializing it (also known as “training from 785 
scratch”). Transfer learning was the early enabler for the use of deep networks in the medical 786 
imaging domain. Networks pre-trained on ImageNet, which comprises millions of non-medical 787 
images effectively labeled by crowd sourcing, are commonly used to initialize DCNNs for 788 
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medical image classification, showing improved classification performance and faster 789 
convergence compared with random initialization [98, 101-105]. Transfer learning, however, 790 
imposes limitations on the DCNN, since ImageNet is composed of low-resolution 2D RGB color 791 
images, whereas many medical imaging modalities are higher-resolution 3D, 4D, or multi-792 
parametric. One of the most common techniques for bridging the two domains involves a 2.5D 793 
approach [106], in which a 3D (or higher-dimensional) image around a voxel is subsampled into 794 
multiple 2D images, which are then fed into the input channels of a 2D DCNN [102] or an 795 
ensemble of 2D DCNNs [107]. 796 

For some tasks, such as segmentation, 3D convolutional filters may offer substantial 797 
advantages over 2D CNNs; in such cases, training from scratch or transfer learning from another 798 
medical imaging modality may be performed. Researchers have begun to explore medical 799 
imaging-based pre-training of DCNNs, and results indicate that an additional stage of pre-training 800 
with data from a similar domain can increase performance and robustness of a network [108, 801 
109].  The transfer of prior knowledge can occur between modalities (e.g., CT to MRI), between 802 
organs/pathologies (e.g., liver to kidney), between tasks (e.g. classification to segmentation), or 803 
some combination thereof [110].  804 
 805 
4.2.2.2 Multi-task learning 806 
 Multi-task learning is a special type of transfer learning in which a DCNN is trained to 807 
jointly learn interrelated tasks, as opposed to addressing each task sequentially [111]. This 808 
technique has demonstrated enhanced performance compared with single-task learning [110, 809 
112].  810 
 811 
4.2.2.3 Domain adaptation 812 

Most algorithm training methods assume that the test data is drawn from the same distribution 813 
as the training data; however, this assumption is often not fulfilled in practice due to data scarcity 814 
and data mismatch, and thus a trained model may fail to generalize to real-world clinical data 815 
[113, 114]. The most important sources of data shift (i.e., deviations between the distributions of 816 
the test set data and the training set data) in medical imaging are acquisition shift and population 817 
shift (Table 1) [11]. 818 

Data shift can be addressed, at least partially, through data harmonization and standardization, 819 
as discussed in Section 2.3.  Recently, researchers in the medical imaging space have begun to 820 
explore domain adaptation techniques to make deep learning models more tolerant of domain 821 
shift [115]. The most common approaches to domain adaptation are feature based and attempt to 822 
modify the feature distributions to align the target (i.e., test set) and source (i.e., training set) 823 
domains. Other approaches seek to learn domain-invariant representations [116] or use generative 824 
models to synthesize realistic samples in target domains where labeled data are scarce [117-120] 825 
[38]. 826 

 827 
Table 1. Type of data shift. 828 

Data Shift Definition 
Prevalence shift training and test datasets have different disease prevalence (class 

imbalance) 
Acquisition or 
domain shift 

different imaging equipment or imaging protocols are used between 
training and test datasets 

Population shift intrinsic characteristics (e.g., demographics or disease presentation) of 
the populations under study differ between training and test datasets 
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Annotation or label 
shift  

class definition changes between training and test datasets, e.g., due to 
inter-rater variability or lack of standardization in the class definitions 

 829 
4.2.3 Federated learning 830 

Federated learning is a distributed machine learning approach that enables collaborative 831 
training on decentralized datasets [121-124]. Each site trains the model locally with its own 832 
dataset and then only the trained model parameters are shared, thus producing a global model 833 
benefiting from access to a large corpus of data without requiring data sharing and without posing 834 
risks to patient privacy. There are, however, several open-ended questions with regard to 835 
federated learning that are relevant to medical imaging [125, 126].  In particular, there is no 836 
formalized training protocol yet to guarantee that the performance of a model trained with 837 
federated learning is comparable to that of a centralized trained model with access to all the data 838 
[127]. Also unknown is (1) the extent to which local model overfitting negatively impacts the 839 
global model, and (2) the tradeoff between access to more data through a federated process 840 
versus traditional learning with a fully controlled dataset.  841 

 842 
4.2.4 “Continuous learning” systems 843 

Continuous or “life-long” learning emulates the human ability to continuously learn and 844 
adapt as new data are presented [128, 129]. Theoretically, continuously learning AI systems can 845 
accelerate model optimization and continuously improve their performance by taking advantage 846 
of new data presented during clinical use. In practice, adaptive training of shallow and deep 847 
neural networks using incrementally available data generally results in rapid overriding of their 848 
weights, a phenomenon known as “interference” or “catastrophic forgetting” [130, 131]. It is not 849 
generally clear under what conditions and for what metrics adaptive AI produces a continuously 850 
improving (or at least stable) algorithm and avoids major pitfalls. Many questions related to post-851 
marketing management of adaptive AI devices remain open, such as frequency of adaptation 852 
(e.g., continuously or in regular intervals, batch mode), how to monitor performance changes 853 
after adaptation, and when and how to intervene if performance decline is suspected.   854 
 855 
4.3 Take Home Message on Model Development 856 

Training approaches, especially for deep learning algorithms, are continuously improving 857 
with the goal of achieving robust, effective, and privacy-preserving CAD-AI models. An 858 
independent test set representative of the intended use that was not employed to guide model 859 
optimization in any learning paradigm is of critical importance. Robust training methods, 860 
although important for all CAD-AI systems, are especially important for systems that may 861 
operate in clinical practice with minimal or no human supervision.  862 

 863 
 864 

5 Performance Assessment 865 
 866 
Proper performance assessment is important in various stages of CAD-AI model development. 867 
Performance assessment involves (1) factors such as intended use, performance metrics, 868 
statistical significance, sample size, and reproducibility and (2) purposes such as standalone or 869 
clinical reader performance assessment.  Rigorous performance assessment can provide a reliable 870 
estimate of model performance at a particular stage of development to guide further improvement 871 
or to inform the user of realistic performance that can be expected from the model. This section 872 
discusses methods and considerations for conducting performance assessments. 873 
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 874 
5.1 Performance Assessment Metrics 875 

In CAD-AI applications, the most widely accepted performance assessment methodologies 876 
include receiver operating characteristic (ROC) analysis [132], its various derivatives such as 877 
free-response ROC (FROC) analysis [133], and precision-recall analysis. In detection and 878 
classification tasks, the most common metrics include area under the ROC curve, sensitivity (or 879 
recall), specificity, balanced accuracy (mean of the sensitivity and specificity), Youden index, 880 
and the prevalence-dependent factors positive predictive value (or precision), negative predictive 881 
value, and F1 score [5, 134, 135]. Various other methodologies and metrics have been established 882 
for specific applications, such as the Dice coefficient, Jaccard index, and Hausdorff distance for 883 
image segmentation; mean squared error and coefficient of determination for regression; 884 
concordance index [136, 137] for evaluating prediction performance; the log-rank test [138] for 885 
comparing Kaplan-Meier survival curves in survival analysis; and categorical agreement of 886 
response classification by, for example, the RECIST guidelines [139, 140]. The use of multiple 887 
performance approaches is generally appropriate to provide a more complete assessment. 888 

It is crucial to include error estimates, such as standard deviations or 95% confidence 889 
intervals, when reporting results. Error estimates describe the uncertainty/variability of the 890 
reported values for the performance metrics and help provide insight into the sufficiency of the 891 
training sample size, the soundness of the training/testing approach, and generalizability. 892 
 893 
5.2 Statistical Significance 894 

Statistical significance is used to quantify the likelihood that an observed result is 895 
explainable due to chance alone [141]. Statistical power is a closely related topic that quantifies 896 
how likely a study is to distinguish an actual effect from one of chance. Whereas statistical 897 
significance of results is assessed after study completion, statistical power calculations are an 898 
important part of study design and performed beforehand to estimate the required sample size 899 
based on the expected size of the effect, variability in the response variable, and disease 900 
prevalence [142]. Failure to achieve a statistically significant result cannot be interpreted as a true 901 
lack of difference especially when the study is statistically underpowered. It is important to note 902 
that statistical significance does not necessarily imply that the result is clinically meaningful 903 
[143, 144] unless the study is specifically powered to address this issue. Moreover, when multiple 904 
statistical hypotheses are tested using the same dataset, the chance of observing a rare event 905 
increases, thereby increasing the likelihood of incorrectly concluding that a real effect has been 906 
observed when the observation, in fact, was due to chance alone; methods for adjusting for the 907 
effect of multiple hypothesis testing have been developed [145]. Statistical tests generally make a 908 
set of assumptions about the distribution of the data to which they are applied (e.g., normality or 909 
linearity), and it is important to verify these assumptions are met before using any specific 910 
statistical test. 911 

 912 
5.3 Intended Use 913 

The intended use for which a CAD-AI system is designed must match the clinical 914 
environment in which it is deployed. The intended use is determined by the patient population, 915 
the image acquisition device, the stage of diagnostic intervention, and the diagnostic category. 916 
First, the patient population represented by the data used to develop the algorithm should match 917 
the intended population. Second, a range of image acquisition devices are in clinical use, and 918 
CAD-AI must be developed and tested on data from multiple vendors. Third, the intended use 919 
depends on the patient care stage that requires the diagnostic intervention. Finally, the diagnostic 920 
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category of the data should match the clinical task, for example, screening, detection, staging, 921 
treatment assessment, or follow-up.  922 

CAD-AI systems for aiding in clinical decision making generally may be implemented 923 
according to four different paradigms: second read, concurrent read, triage, and rule-out. 924 
CAD-AI applications such as detection and diagnosis as well as staging, treatment response 925 
assessment, prognosis, or recurrence prediction (Figure 1) should be matched with the most 926 
appropriate paradigm. The selected performance assessment method should be reflective of the 927 
use paradigm (Table 2). Frequently, the setting may affect the operating point of the CAD-AI 928 
tool, e.g., the relative importance of sensitivity vs. specificity. In addition, CAD-AI systems 929 
designed for different intended uses may have different performance requirements; for example, 930 
CAD-AI systems designed for disease detection in a concurrent-read paradigm generally should 931 
have higher sensitivity and specificity than those used in a second-read paradigm due to 932 
potentially increased reader reliance on the computer output in the former setting. CAD-AI 933 
devices that operate at performance levels that rival those of human experts [146-148] could 934 
potentially be the basis for future autonomous AI devices that bypass human interpretation in 935 
selected cases or for selected tasks. An example of such applications is rule-out devices, a class 936 
of devices designed to identify and remove negative cases without clinician review. Although 937 
some authors have considered rule-out as a subset of the triage paradigm, the clinical 938 
implementation of each requires a unique set of strategies and performance assessment 939 
considerations due to different levels of risk associated with each approach.  940 

 941 
5.4 Standalone Performance Assessment 942 

The evaluation of a CAD-AI algorithm includes both benchmarking algorithm performance 943 
and assessing the added value to the end user provided by the algorithm in improving clinical 944 
decision making [5]. Standalone performance assessments are employed during development 945 
to allow for modifications to be quickly compared to previous models.  For benchmarking, 946 
overall performance is based on an independent dataset representative of the clinical population 947 
acquired using the expected range of image acquisition technologies and protocols for the 948 
intended use.   949 

 950 
Table 2. Different paradigms of CAD-AI systems. 951 
Paradigm Intended Use Evaluation approach 
Second read Improving decision making by 

providing a second opinion to 
the physician after initial 
interpretation 

Assessment of physician performance 
without and with the aid in a sequential 
reader study design; first interpret each 
case without, then with, CAD-AI system 
[5, 134, 149-151]; or independent or 
crossover study design similar to that of 
concurrent read. 

Concurrent 
read 

Improving decision making by 
showing system output to the 
physician at the same time as 
initial interpretation 

Assessment of physician performance 
without and with the aid in an 
independent or crossover reader study 
design; cases are interpreted in batches 
either with or without the aid after a 
sufficient washout time and in counter-
balanced manner to reduce the potential 
memorization effects [5, 134, 152] 
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Triage Improving workflow by 
prioritization: All cases are 
interpreted but order prioritized 
by CAD-AI system [153, 154] 

Assessment of process improvement by 
local clinical operations 

Rule-out Improving workflow by removal 
of normal or negative cases from 
workflow: The removed cases 
are not interpreted by physician. 

Comparison of performance with and 
without rule-out in clinical practice 
 [146-148] 

  952 
 953 
 954 

5.5 Clinical Reader Performance Assessment 955 
A clinical reader performance assessment is used to estimate the clinical impact of a CAD-956 

AI algorithm [153, 154].  A common approach for assessing clinical performance is through a 957 
controlled reader study (either retrospective or prospective), directly comparing the performance 958 
of a human reader without and with output from the CAD-AI system [155, 156].  A disadvantage 959 
of this approach is that the estimated performances are unlikely to match those in the true clinical 960 
setting because of differences in the cases, physicians, and reading process.  It is important to 961 
realize that both the population of patients undergoing the examination (cases) and the population 962 
of physicians interpreting the data (readers) are sources of substantial variability in clinical reader 963 
studies [157].  Specialized statistical and methodological tools are needed for these analyses 964 
[158]. Well-designed clinical reader studies can be used to gain Food and Drug Administration 965 
approval (or approval by a similar organization outside of the United States) for clinical use of a 966 
CAD-AI system and are often a precursor to direct assessment of diagnostic performance in 967 
clinical practice (Section 6.4.3). 968 
 969 
5.6 Sample Size 970 

Assessing performance dependency on the training sample size in medical imaging is 971 
important to achieve a viable clinical translation. As previously discussed (Section 4.1), small 972 
training sample sizes may lead to overfitting, or overtraining, of CAD-AI algorithms. In general, 973 
the performance of CAD-AI systems depends on the training sample size, disease prevalence, the 974 
number of features and their statistical distribution, the choice of the CAD-AI model, and the 975 
scoring metric [82, 85, 159, 160].  For the deep learning techniques, the training sample size is 976 
even more critically important since millions of parameters need to be determined. Even when 977 
deep learning models are trained with transfer learning (Section 4), the training sample size is 978 
still a major factor that affects performance and generalizability. The variability in the algorithm 979 
performance from repeated experiments at different sample sizes can be used to assess overfitting 980 
and generalization error [75, 108]. 981 

 982 
5.7 Reproducibility 983 

It is important to clearly specify the conditions under which the results of a CAD-AI system 984 
are reproducible. Recent studies have distinguished among different types of reproducibility 985 
[161-163]. Three types of reproducibility have been defined, the first two of which are relevant 986 
for model validation and successful clinical deployment of CAD-AI systems.   987 

Technical reproducibility refers to the ability to precisely replicate reported results (usually 988 
in a publication) based on a complete description of the method and release of the corresponding 989 
code and dataset.  990 
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Statistical reproducibility refers to a result being valid (within a specified standard deviation 991 
or confidence interval) when different variations of the training conditions are applied. Variations 992 
in training conditions will result, for example, from different random seeds, from different 993 
partitions of the training set, or from different strategies to divide the dataset into training and test 994 
subsets. Statistical reproducibility in model performance will also depend on the test set. If 995 
different test sets are sampled from the same population, the DCNN output will be different for 996 
the different test sets due to statistical variation of the test sets. If the test is repeated multiple 997 
times, and each time a different test set is randomly drawn from the population or by 998 
bootstrapping, the test performances can be considered samples from the same statistical 999 
distribution, from which the mean performance and standard deviation can be estimated. 1000 

Inferential reproducibility refers to the ability to reach qualitatively similar conclusions 1001 
from an independent replication of a study under conditions that match the conceptual description 1002 
of the original study. 1003 
 1004 
5.8 Take Home Message on Performance Evaluation 1005 

The most appropriate performance metric(s) will depend on the task and the reference 1006 
standard. Often multiple performance metrics are appropriate, and use of multiple metrics is 1007 
frequently desirable. Power calculations should be an integral part of study design, and 1008 
performance analysis should include error estimates, assessment of statistical significance, and 1009 
preferably assessment of reproducibility.  1010 
 1011 
 1012 
6 Translation to Clinic 1013 
 1014 
The ultimate goal of developing CAD-AI system is to assist physicians in the health care process.  1015 
For clinical acceptance of a CAD-AI tool, many practical factors must be considered, such as 1016 
generalizability to the clinical environment, efficiency of use in a clinical workflow, 1017 
explainability of the output, and assurance of performance consistency over time. This section 1018 
will discuss topics related to the translation of CAD-AI tools to the clinic, including human-1019 
machine interface, user training, acceptance testing, and prospective surveillance.    1020 
 1021 
6.1 Human-Machine Interface   1022 

One of the most important issues of introducing CAD-AI to clinical use is the presentation of 1023 
its output to the physician.  The human-machine interface is a critical component that can 1024 
impact the usefulness and the acceptability of a CAD-AI tool for clinical use. The interface 1025 
design will depend on the intended use (e.g., disease detection, triaging, treatment response 1026 
assessment); the amount, type, and complexity of information to be displayed (e.g. markers, 1027 
parametric maps, likelihood scores); the reader paradigm; and the level of interactivity (e.g., 1028 
when and how the physician can enable, disable, or query the CAD output).  Regardless of the 1029 
task, some common requirements may include user friendliness, workflow efficiency, and the 1030 
interpretability of the CAD-AI output or recommendations. 1031 

The black-box nature of current CAD-AI tools is one of the roadblocks to translation of 1032 
CAD-AI into clinical use. Providing uncertainty estimates of the output could allow a better 1033 
understanding of the black box model and improve the safety of deep learning systems [164-168]. 1034 
For physicians to have confidence in a recommendation by a CAD-AI tool, it is helpful for them 1035 
to understand the reasons behind the prediction or decision. The explanation has to be consistent 1036 
with medical knowledge or supported by clinical evidence. Explainable AI (XAI) is an 1037 
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emerging machine learning area [169] that seeks to design interpretable AI models or, more 1038 
commonly, provide post-hoc explanations for trained AI models; the most common approaches at 1039 
present include generating visual heatmaps, providing examples of similar lesions or cases, and 1040 
providing semantic textual explanations or cues [170].  A visual saliency map or a color heatmap 1041 
of the image [171], which captures the relative contribution to the DCNN output score from 1042 
various image locations, can be generated using a gradient-based, perturbation-based, or class 1043 
activation map-based (CAM) method [172-176]. The local interpretable model-agnostic 1044 
explanations method (LIME) [177] similarly identifies the extent to which regions or pixels 1045 
influence the particular prediction. The visualization provides some evidence of the correlation of 1046 
the deep features and the output score to the input data; however, visualization maps (which are 1047 
generally difficult for humans to interpret) are far from a complete explanation of why and how 1048 
the features are connected and weighted to identify the target lesion [169, 176]. Saliency map 1049 
techniques often cannot meet key requirements for utility and robustness, emphasizing the need 1050 
for additional validation before clinical use [176]. For clinical tasks more complicated than lesion 1051 
detection, the CAD-AI tool may need to provide explanations or references that correlate the 1052 
recommendation with the patient’s medical conditions or other clinical data. Much more research 1053 
and development are needed to determine physicians’ preferences regarding user interface design 1054 
for each type of application so that CAD-AI models can truly become intelligent decision support 1055 
tools.  1056 
 1057 
6.2 User Training  1058 

In translating technology to the clinic, an important step is to set expectations. Key to a user’s 1059 
proper use of a CAD-AI tool is an understanding of the intended use, including the purpose and 1060 
when and how it should be used in the radiology workflow [178]. For example, if a CAD-AI tool 1061 
is developed for lesion detection, the user should be informed about whether the tool is designed 1062 
and validated for use in a concurrent-read or second-read paradigm. CAD-AI tools designed for 1063 
different intended uses may have different performance requirements; for example, CAD-AI 1064 
systems designed for disease detection in a concurrent-read paradigm generally should have 1065 
higher sensitivity and specificity than those used in a second-read paradigm due to potentially 1066 
increased reader reliance on the computer output in the former setting. 1067 

A second key issue is to acquaint the user with both the capabilities and limitations of a 1068 
specific decision-support tool.  Users should have a comfortable level of trust in the CAD-AI 1069 
tool but should always be aware of the performance limitations of the tool. The performance of a 1070 
CAD-AI tool can be affected by patient demographics, imaging equipment, and image-1071 
acquisition protocols.  Even if a CAD-AI tool has been trained by the vendor with multi-1072 
institutional data and approved for clinical use, its performance in the local population may not 1073 
be the same as that specified by the vendor.  An initial user-training and adjustment phase is 1074 
recommended as an integral part of the deployment. During this phase, physicians should 1075 
evaluate the performance of the CAD-AI tool on their patient cases by comparing with clinical 1076 
outcomes to understand the characteristics of the cases for which the CAD-AI provides correct 1077 
and incorrect recommendations, but they should refrain from being influenced by the CAD-AI 1078 
output in their clinical decisions.  This adjustment phase will provide the user with a deeper 1079 
understanding of the CAD-AI performance in the local setting, and also impart to the user an 1080 
appropriate level of confidence in the recommendations generated by the decision-support 1081 
system, which may reduce unrealistic expectations and improper use of a CAD-AI tool. For 1082 
example, misusing a tool intended to be a second opinion as a concurrent reader may lead to 1083 
disappointing outcomes, user dissatisfaction, and, most importantly, potential harm to patients 1084 
[179]. The length of this training period may depend on the type of CAD-AI application, the level 1085 
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of risk, and the observed performance and consistency of the CAD-AI tool. The resulting insights 1086 
may also provide useful feedback for the CAD-AI vendor [6]. 1087 
 1088 
6.3 Acceptance Testing  1089 

CAD-AI software to be implemented for clinical use is considered a medical device; its 1090 
performance, therefore, must meet certain standards.  Acceptance testing is an important step 1091 
prior to clinical use of any CAD-AI tool [6, 178].  Manufacturers must provide instructions for 1092 
use with detailed guidance on system installation, acceptance testing, acceptance criteria at 1093 
installation and subsequent upgrades, and periodic QA.  The instructions for use must also 1094 
include a description of the expected performance levels of the CAD-AI system along with 1095 
tolerance limits and a graphic presentation of CAD-AI output layout and proper user interface 1096 
configuration. 1097 

A basic level of acceptance testing may use pre-collected data provided by the manufacturer 1098 
or phantoms for testing the operation and consistency of certain CAD-AI functions after 1099 
installation and compared with the expected outcomes.  Another level of acceptance testing 1100 
should include a set of clinically representative cases collected by the individual clinical site.   1101 
The deviation of the resulting performance level from the performance level claimed by the 1102 
CAD-AI manufacturer must be within specified tolerance limits.  For clinical sites that may not 1103 
have a large set of cases readily available for acceptance testing, the clinical performance 1104 
assessment may be conducted during the user training phase, which may be less quantitative but 1105 
has the advantage of being most consistent with the clinical operations at that site. 1106 
 1107 
6.4 Prospective Surveillance  1108 
 1109 
6.4.1 Periodic quality assurance 1110 

The goal of periodic QA is twofold: to establish a schedule of routine QA and to assure the 1111 
consistency of clinical performance over time.  Routine QA should be implemented (preferably 1112 
by medical physicists in conjunction with routine QA testing of related medical imaging systems) 1113 
to assess how variations in the imaging or data collection chain may affect the performance of the 1114 
CAD-AI system [6, 178]. QA should also be performed whenever a CAD-AI software update 1115 
occurs, which should always be announced by the software development company. The use of 1116 
phantoms for this testing is recommended if the CAD-AI system is designed to be applicable to 1117 
specific phantoms and its performance has been shown to be sensitive to the quality of images 1118 
acquired from these phantoms.  To evaluate performance consistency in routine clinical cases, 1119 
clinical sites and CAD-AI manufacturers should develop tools to track performance levels of 1120 
certain indices and monitor deviations (e.g., a tool to track the number of markers per image for 1121 
detection tasks [6]). 1122 

The tolerance limits and corrective actions for any observed deviations should be established 1123 
based on the CAD-AI application. The risk associated with any deviation will vary significantly 1124 
for different diseases and tasks performed by the CAD-AI system. For example, if the system is 1125 
an autonomous CAD-AI detection or decision tool for triaging or rule-out, immediate corrective 1126 
actions are recommended, while tools designed only to provide second opinion or supplementary 1127 
information may be less urgent.  Regardless of the risk level, awareness of these deviations by the 1128 
physicians is critical as they may need to adjust their level of trust on the CAD-AI 1129 
recommendation when performing clinical tasks.   1130 

 1131 
6.4.2 Performance monitoring for “continuous learning” systems  1132 
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For continuous learning CAD-AI systems implemented in the clinic, an additional risk results 1133 
from learning from non-stationary data that may lead to catastrophic forgetting and degraded 1134 
performance unbeknownst to the physicians in their daily use of the system [129]; furthermore, 1135 
system performance may be frequently changing, which impacts its safety profile.  The 1136 
manufacturer or the in-house development team must have well-defined QA procedures to 1137 
validate the quality of data, including collateral information (e.g., clinical outcomes), and assess 1138 
model performance after each update.  Before continuous learning CAD-AI systems can be 1139 
translated into the clinic, extensive work is required to develop practical and reliable QA methods 1140 
that enable performance monitoring to ensure safe use. 1141 
 1142 
6.4.3 Prospective evaluation of CAD-AI  1143 

Large-scale prospective performance assessment of CAD-AI systems will evaluate the impact 1144 
of CAD-AI on workflow efficiency, physician performance, cost-effectiveness, and patient 1145 
outcomes in the clinical setting. Prospective evaluation of CAD-AI typically falls into two 1146 
categories: randomized controlled trials (RCTs) and observational studies.  1147 

RCTs are designed to control for sources of bias through randomization, blinding, and 1148 
allocation concealment. RCTs are logistically difficult to organize and generally require a large 1149 
patient population. A common design is the sequential study, in which the physician interprets 1150 
each case first without the assistance of CAD-AI and then, after formally recording his or her 1151 
findings, interprets the case again while reviewing the CAD-AI recommendation [180-186].  This 1152 
sequential design, however, cannot be applied with concurrent-read or triage paradigms, as 1153 
discussed in Section 5.3 (Table 2).  1154 

Well-designed observational studies can be highly informative and much easier to conduct 1155 
than RCTs [187]. The most common design is the historical-control study, in which the 1156 
performance of groups of radiologists over different periods of time is compared; the patient 1157 
cohorts and radiologists involved may not be identical for the two time periods. Observational 1158 
studies are commonly used when a new predictive or diagnostic CAD-AI system has been 1159 
available in clinical practice for some time after regulatory approval [188-191]; however, care 1160 
must be taken to account for differences such as the characteristics of the patient population and 1161 
physicians’ experience between the two time periods, since such differences may bias the 1162 
observed outcomes. Relevant statistical procedures such as stratification and multivariate 1163 
regression modeling can be used to account for confounding factors. 1164 

The reporting of a clinical trial evaluating a CAD-AI system in the literature should allow 1165 
readers to identify potential sources of bias and, ideally, reproduce the results. Factors that may 1166 
bias or impact the results include the study population, data acquisition, characteristics of the 1167 
CAD-AI device, human-AI interaction, user training, study end-point, reference standard, and 1168 
statistical methods, all of which should be clearly identified and reported. Additionally, the 1169 
SPIRIT-AI [192] and CONSORT-AI [193] extensions provide general guidelines when drafting 1170 
clinical trial protocols or reports that target or include CAD-AI systems of any kind. It should be 1171 
noted that the CONSORT-AI statement does not yet cover advanced learning paradigms such as 1172 
continuously evolving or adaptive systems, the performance of which may change over time, and 1173 
underscore the importance of a robust post-deployment surveillance plan. 1174 
 1175 
6.5 Take Home Message on Translation to Clinic 1176 

Translation of a CAD-AI system to the clinic requires an efficient user interface, acceptance 1177 
testing to validate smooth integration into the workflow and expected performance, adequate user 1178 
training to ensure proper use and sufficient understanding of CAD-AI performance in the local 1179 
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clinical environment, and robust post-deployment QA procedures to monitor the consistency of 1180 
performance over time. More advanced validation will involve prospective clinical assessments 1181 
of the impact of CAD-AI on clinical outcomes using well-designed clinical trial protocols. 1182 
 1183 
 1184 
7 Discussion 1185 

The development of generalizable, robust, and reliable CAD-AI decision support systems is 1186 
of critical importance for both laboratory proof-of-concept applications and for real-world 1187 
applications in clinical practice. 1188 

To address these important issues, the American Association of Physicists in Medicine 1189 
(AAPM) assigned a task to the Computer-Aided Image Analysis Subcommittee (CADSC), in 1190 
part, to develop recommendations on “best practices” for the development, performance 1191 
assessment, and clinical translation of CAD-AI systems, which are discussed in this task group 1192 
report. Although we focus on CAD-AI systems for medical imaging, the principles of the 1193 
processes discussed herein are general and applicable to a broad range of AI applications in the 1194 
medical field.  1195 

A summary of the recommendations (“take home messages”), for best practices for (1) data 1196 
collection, (2) establishing reference standards, (3) model development, (4) performance 1197 
assessment, and (5) the translation to clinical practice is presented in Table 3.  1198 

 1199 
Table 3. Summary of recommendations on the best practices and standards for the development 1200 
and performance assessment of computer-aided decision support systems.  1201 
Section Take Home Message
Data In summary, proper data collection methods are of critical 

importance to successful training, validation, and implementation of 
CAD-AI algorithms.  Improper collection and manipulation of data 
(such as improper data augmentation) can lead to an overestimation 
of performance or lack of generalizability. 

Reference Standards The required type and granularity of the reference standard depends 
on the task at hand. An objective reference standard is preferred; 
however, when a subjective reference standard cannot be avoided, 
independent assessments of multiple domain experts should be 
obtained and their variabilities should be evaluated. 

Model Development Training approaches, especially for deep learning algorithms, are 
continuously improving with the goal of achieving robust, effective, 
and privacy-preserving CAD-AI models. An independent test set 
representative of the intended use that was not employed to guide 
model optimization in any learning paradigm is of critical 
importance. Robust training methods, although important for all 
CAD-AI systems, are especially important for systems that may 
operate in clinical practice with minimal or no human supervision. 

Performance Assessment The most appropriate performance metric(s) will depend on the task 
and the reference standard. Often multiple performance metrics are 
appropriate and use of multiple metrics is frequently desirable. 
Power calculations should be an integral part of study design, and 
performance analysis should include error estimates, assessment of 
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statistical significance, and preferably assessment of reproducibility. 
Translation to Clinic Translation of a CAD-AI system to the clinic requires an efficient 

user interface, acceptance testing to validate smooth integration into 
the workflow and expected performance, adequate user training to 
ensure proper use and sufficient understanding of CAD-AI 
performance in the local clinical environment, and robust post-
deployment QA procedures to monitor the consistency of 
performance over time. More advanced validation will involve 
prospective clinical assessments of the impact of CAD-AI on 
clinical outcomes using well-designed clinical trial protocols. 

 1202 
 1203 
 1204 

Conclusions 1205 

The rigor and reproducibility of CAD-AI systems will provide the foundation for the success 1206 
of such systems when translated into clinical practice.  As a community, we are obligated to 1207 
ensure that the scientific integrity of systems we develop in the laboratory can endure the 1208 
variabilities and the required reliability in clinical practice to benefit patient care.  The topics 1209 
discussed in this report are all essential elements of CAD-AI systems that, when diligently 1210 
considered during system development and validation, should provide the greatest opportunity 1211 
for successful clinical translation. 1212 
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