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Abstract: The increasing average age emphasizes the importance of gait analysis in elderly 

populations. Inertial Measurement Units (IMUs) represent a suitable wearable technology 

for the characterization of gait by estimating spatio-temporal parameters (STPs). However, 

the location of inertial sensors on the human body and the associated algorithms for the 

estimation of gait STPs play a fundamental role and are still open challenges. Accordingly, 

the aim of this work was to compare three IMUs set-ups (trunk, shanks, and ankles) and 

correspondent algorithms to a gold standard optoelectronic system for the estimation of gait 

STPs in a healthy elderly population. In total, 14 healthy elderly subjects walked barefoot 

at three different speeds. Gait parameters were assessed for each IMUs set-up and compared 

to those estimated with the gold standard. A statistical analysis based on Pearson correlation, 

Root Mean Square Error and Bland Altman plots was conducted to evaluate the accuracy 

of IMUs. Even though all tested set-ups produced accurate results, the IMU on the trunk 

performed better in terms of correlation (R ≥ 0.8), RMSE (0.01-0.06 s for temporal 

parameters, 0.03-0.04 for the limp index) and level of agreement (-0.01 s ≤ mean error ≤ 

0.01 s, -0.02 s ≤ standard deviation error ≤ 0.02 s), also allowing simpler preparation of 

subjects and minor encumbrance during gait. From the promising results, a similar 

experiment might be conducted in pathological populations in the attempt to verify the 

accuracy of IMUs set-ups and algorithms also in non-physiological patterns. 

Keywords: gait; healthy elderly population; inertial sensors; spatio-temporal parameters; 

accuracy  
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1. Introduction 

Gait analysis consists of quantitatively assessing the human locomotion [1]. The 

detection of gait events (GEs) allows identifying different cycles and phases inside each 

walking trial. In normal gait, the heel-strike (HS) indicates the starting point of a gait cycle, 

and it marks the beginning of the stance phase. The toe-off (TO) marks the beginning of the 

swing phase [2]. After the identification of the time instants corresponding to GEs, gait 

spatio-temporal parameters (STPs) can be calculated [3]. The accuracy of gait analysis is 

strongly affected by the measuring instrumentations. During past decades, several tools have 

been proposed for gait analysis [4]. 

Literature endorses optoelectronic systems as the gold standard for the gait analysis. By 

means of infrared cameras capturing reflective markers positioned on the human body, 

motion is detected. These systems contribute to high accuracy and precision in measuring 

gait parameters [5]. Despite the optimal performance, optoelectronic technologies present 

some critical disadvantages, as the restriction to laboratory settings, the expensive cost, and 

the required expert operation. Wearable and markerless motion capture devices try to 

overcome these limitations.  

Wearable sensor technologies have shown advantages in measuring human body motion 

in several applications [6–9]. Inertial sensors based on accelerometers, gyroscopes, and 

magnetometers [10–12] and foot insoles composed of pressure sensors [13] are examples of 

wearable devices. In addition to the reduced cost, the good reliability, and the limited 

invasiveness, these sensors allow the monitoring of human gait outside the laboratory setting 

and for long time and distances. Despite the great advantages of using inertial sensors for gait 

analysis, some open issues still exist. Indeed, Inertial Measurement Units (IMUs) require to 

define a suitable and reliable set-up, possibly with a limited number of units [14]. Moreover, 
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a robust algorithm needs to be implemented for the GEs identification or the compensation 

of drift errors due to the double integration process when considering position.  

Several previous studies focused on the implementation of IMUs set-ups and algorithms 

for the evaluation of STPs. The main differences among proposals refer to the number of 

sensors, sensor positioning (trunk, shank, and foot level) [15, 16], measured signals 

(accelerations and angular velocities) [17, 18], and signal processing methods (peak 

identification, zero crossing, filtered waveform, and mathematical assumptions) [19–23]. The 

developed algorithms have been strongly validated with experimental analyses.  

More recent studies dealt with the comparison of different IMUs set-ups and algorithms 

to identify the most accurate and reliable one [23–25]. Mansour and colleagues [23] 

compared trunk-IMU and shank-IMU methodologies for STPs detection with respect to the 

force treadmill method. Results highlighted a greater accuracy of algorithms based on the 

trunk or shank accelerometers instead of shank gyroscopes [23]. Patterson and colleagues 

[24] evaluated the suitability of three IMUs locations, adding the alternative of a foot-IMU 

method. GEs detection from IMUs was compared to a standard force platform. Due to the 

higher level of correlation, results suggested that foot location might be considered the most 

appropriate methodology for calculating step time in clinical applications [24]. In 2018, 

Pacini Panebianco and colleagues [25] considered IMUs algorithms in a systematic review. 

Seventeen algorithms were classified based on sensor position, target signal, and 

computational approach. Shank- and foot-IMUs algorithms revealed higher accuracy and 

repeatability in GEs detection and stance time evaluation. However, contrary to a previous 

study [23], angular velocity-based algorithms showed significantly higher repeatability than 

acceleration-based ones, for HS and TO detection. The computational approach showed a 

strong dependency on sensor positioning [25]. However, previous works comparing different 

methodologies focused on the gait analysis performed by healthy young subjects and 

estimated a limited number of STPs [23–25]. Generally, healthy elderly subjects implement 
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a compensatory strategy to prevent possible unbalance and loss of control. As a consequence, 

STPs are expected to be altered in elderly populations with respect to healthy young subjects. 

Considering that the global median age is increasing, as well as devices/services and studies 

focusing on active aging, a complete quantitative analysis of gait in elderly populations 

becomes fundamental, especially to choose the best IMU configuration in terms of accuracy. 

Furthermore, an elderly population of healthy individuals may constitute a valid “control” 

group, age-matched with respect to patients showing altered locomotion patterns [26]. To the 

best of the authors’ knowledge, no previous studies have estimated a large number of STPs 

by investigating and comparing the suitability of IMU set-ups and algorithms on healthy 

elderly populations. 

The aim of the current study was the comparison of three different IMU set-ups, and 

correspondent algorithms, to a gold standard optoelectronic system (Gold Std), for the 

objective evaluation of gait spatio-temporal parameters in a healthy elderly population (> 65 

years), walking at three different self-selected speeds (slow, normal, fast). The accuracy of 

IMUs set-ups and algorithms with respect to the Gold Std was assessed in terms of 

correlation, root mean square error (RMSE), and level of agreement. These analyses allowed 

the identification of the most appropriate IMUs set-up and algorithm. 

2. Materials and Methods 

2.1. Participants 

Sixteen healthy elderly subjects (8 males and 8 females) participated in the experiment 

after giving their written informed consent. Four inclusion criteria were considered: (i) age 

over 65 years old, (ii) no declared neurological disorders, (iii) no musculoskeletal diseases in 

the last five years, and (iv) no prostheses. 

Population characteristics were:  
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• Age: 68.3 ± 4.4 years, range 65-79 years; 

• Height: 1.6 ± 0.1 m, range 1.48-1.90 m;  

• Weight: 68.7 ± 13.4 kg, range 53-109 kg; 

• BMI: 25.1 ± 3.0 kg/m2, range 21-31 kg/m2. 

The study was approved by the Local Institutional Review Board. All procedures were 

conformed to the Helsinki Declaration.  

2.2. Instruments 

Two different motion capture systems were considered: an inertial system based on 

IMUs that considered 3 different set-ups, and an optoelectronic system based on 6 infrared 

cameras and 9 passive reflective markers, adopted as Gold Std.  

2.2.1. Inertial system 

Five MTx IMUs (Xsens, The Netherlands) were used for the test. Each of them contained 

a tri-axial accelerometer (±5 G), a tri-axial gyroscope (±1200 dps), and a tri-axial 

magnetometer (±75 µT). Noise density, as declared by the manufacturer, is 0.002 m/s2/√Hz 

and 0.05 deg/s/√Hz for accelerometer and gyroscope, respectively. IMUs were fixed on the 

trunk, shanks, and ankles of participants (Figure 1), according to previous literature studies. 

In particular, the trunk-IMU was placed at T12-L1 level [16, 27], the shank-IMU on the 

proximal anterior part of the tibia [28, 29] and fixed with Xsens elastic bands. The ankle-

IMU was held fixed in correspondence of the free Achilles tendon (above the insertion of the 

Achilles tendon into the calcaneum) using a tightly wrapped 3MTM CobanTM Self-Adherent 

Wrap. The position is slightly above the calcaneum, as it was instead in [30, 31]. 

IMUs on the trunk (TRN), right ankle (ANK_R), and left ankle (ANK_L) were oriented 

with the x-axis (xTRN, xANK_R, and xANK_L) pointing downward, the y-axis (yTRN, yANK_R, and 

yANK_L) directed toward the participant’s right side and the z-axis (zTRN, zANK_R, and zANK_L) 
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pointing in the direction opposite to gait. IMUs on right (SHA_R) and left (SHA_L) shanks 

were oriented with the x-axis (xSHA_R, xSHA_L) pointing downward, the y-axis (ySHA_R, ySHA_L) 

directed toward the participant’s left side, and the z-axis (zSHA_R, zSHA_L) pointing in the 

direction of gait (Figure 1). During the initial standing posture, IMUs were fixed to human 

body segments with their axes aligned, as much as possible, to the anatomical axes. 

IMUs were connected in a chain through cables. In addition, the trunk-IMU was also 

connected to the Xbus Master, the control unit sending synchronous, sampled, and digital 

data to the PC via Bluetooth. Data were acquired through the Xsens proprietary software MT 

Manager with a sampling frequency of 50 Hz. 

2.2.2.  Optoelectronic system 

The optoelectronic system was composed of two V120:Trio tracking bars (OptiTrack, 

USA) and 9 passive reflective markers with a diameter of 14 mm. Each bar was self-

contained, pre-calibrated, and equipped with three infrared light cameras. Six markers were 

fixed on the feet of participants with adhesive tape (Figure 1): on the right (TOR) and left 

(TOL) toes, on the right (MAR) and left (MAL) lateral malleoli, and on the right (HER) and 

left (HEL) heels. Other 3 markers (A, B, and C) were placed on the floor, in order to define 

a Global Coordinate System (GCS) [32]. GCS originates in B and the X-axis was defined as 

the walking direction (Figure 2).  

Each bar was connected to a separate PC. Data were acquired with the OptiTrack 

proprietary software Motive at a sampling frequency of 120 Hz. 

**** Figure 1 near here **** 

**** Figure 2 near here **** 

2.3. Protocol 
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The experimental test was conducted indoor. First, a linear walking path of 6 meters was 

marked on the floor. Then, the two OptiTrack bars were positioned at the sides of this path, 

one in front of the other, at 6.5 m of distance. A capture volume of 2.5 m × 3.5 m was obtained 

(Figure 2), providing that cameras could capture approximately 3 gait cycles. A static 

recording was performed with OptiTrack bars, to obtain the coordinates of markers A, B, and 

C on the floor (Figure 2). Afterwards, the three markers were removed. 

Subsequently, participants were asked to walk barefoot on the marked path, at 3 different 

self-selected speeds: slow, normal, and fast. For each speed, subjects performed 26 back-and-

forth transiting in front of the cameras, in order to have at least 30 valid gait cycles. The order 

of the 3 speed-conditions was randomized for every subject. Data were acquired, at the same 

time, with the two motion capture systems. To synchronize the systems, subjects were asked 

to hit the floor with their right heel at the beginning of the acquisition, in order to identify an 

external common event. 

2.4. Signal processing and data analysis 

Signals from the two motion capture systems were synchronized in time through the 

right-foot hit event: the maximum peak of the ANK_R-IMU x-acceleration was shifted to 

overlap the minimum value of the HER marker vertical coordinate. Then, gait events were 

detected and spatio-temporal parameters were evaluated from data of both motion capture 

systems. Statistical analysis was performed to compare data from different set-ups and 

algorithms. Customized Matlab® routines were developed to implement all the signal 

processing steps and data analysis. 

2.4.1. Gait events detection 

The assessment of spatio-temporal parameters was based on the identification of two 

events: the impact of the heel on the floor (HS: heel strike), and the detachment of the toe 
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from the floor (TO: toe off). The sequence of these gait events allows segmenting gait cycles 

(GC) and detecting the GC sub-phases (stance and swing) [2]. The detection of HS and TO, 

in both marker trajectories and IMU signals, was performed considering previous literature 

works [33][32][34][35][21][30][36]. These methods were chosen because of their several 

positive aspects: the suitability on both healthy and pathological subjects, the easiness of 

implementation, and the reduced number of analyzed signals. Differently from 

[33][32][34][35][21][30][36], raw (unfiltered) IMU data were used for gait events 

identification. In addition, only peak timing was considered and not their amplitude. 

Therefore, no IMU calibration during the data acquisition, neither IMU tilt correction in the 

post processing were applied since a perfect alignment with respect to the anatomical axes is 

not necessary [37]. 

1. Optoelectronic system algorithm. HS was defined as the first-time sample of the 

plateau in the heel-marker X-trajectory (Figure 3). TO was defined as the first sample 

after the plateau in the toe-marker x-trajectory [32, 33]. An additional check was 

performed verifying that HS and TO, identified through the horizontal coordinates 

(X-trajectory), matched the minimum peaks of the vertical coordinates (Y-trajectory) 

of markers on heels and toes. The double-check was implemented to strengthen the 

identification of gait events, which might be more challenging in elderly subjects. 

Considering that the markers on the left/right malleolus were visible only from the 

corresponding bar of the same side (lateral view), this was used to distinguish between 

left and right strides during gait.  

2. Inertial system trunk-IMU algorithm. GEs were identified from the raw signal of the 

trunk IMU z-acceleration (a_zTRN) (Figure 4A). In detail, the maximum peaks of this 

signal were identified as HS events, as suggested in [34]. Moreover, minimum peaks 

of the same signal were identified as TO events, as proposed by [35]. Afterwards, 
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based on [32][36], the distinction of right and left GEs was performed through the 

trunk-IMU angular velocity around the vertical axis (_xTRN), by evaluating the 

alternance of positive and negative values corresponding to HS instants. 

3. Inertial system shank-IMU algorithm. This algorithm was applied to the identification 

of gait events from the y-angular velocities of the two shank-IMUs (_ySHA) [21]. 

HS events were identified as the peaks following the upward concaves, while TO 

events were identified as the peaks preceding the upward concaves (Figure 4B-C), as 

proposed by [21]. 

4. Inertial system ankle-IMU algorithm. The last algorithm was applied to identify gait 

events from y-angular velocities of the two ankle-IMUs (_yANK), as suggested by 

[36]. HS and TO events were detected as peaks following and preceding the upward 

concaves, respectively (Figure 4D-E). 

**** Figure 3 near here **** 

**** Figure 4 near here **** 

2.4.2. Spatio-temporal parameters 

From the detected gait events, 9 gait STPs and the average gait speed were calculated 

(Table 1). Except for average speed and limp index, all the other parameters were assessed 

separately for the right and left sides. Gait STPs were calculated for each gait cycle of each 

participant. For each gait speed, the STPs were then averaged across subjects. 

**** Table 1 near here **** 

2.4.3. Statistical analysis 
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Shapiro-Wilk test was implemented to verify the normal distribution of data (p > 0.05). 

To have ecological testing, slow, normal, and fast speeds were self-selected by each 

participant, and not paced by a metronome. For this reason, the values of gait speeds were 

estimated for each trial of each participant. In addition, for each subject, the intra-subject 

variation of speed was calculated as it follows: 

% 𝑠𝑝𝑒𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑘 =  𝑚𝑒𝑎𝑛 |
(𝑣𝑖 − 𝑣̅)

𝑣̅
|

𝑘
× 100 

where k=1:3 represents the walking-speed conditions of the subject (low, normal, fast), 

i=1:26 represents the walking trials of the subject (for a specific walking-speed condition k), 

𝑣̅  represents the average speed among the walking trials (for a specific walking-speed 

condition k). 

The mean value resulted lower than 12% across the population, at each specific walking 

speed. Moreover, statistical differences among speeds were assessed with one-way ANOVA 

and post-hoc Tukey test (independent variable: group of elderly subjects; dependent 

variables: slow, normal and fast speeds). The level of significance was fixed at α=0.05. For 

each spatio-temporal parameter, mean and standard deviation values were calculated across 

the population, separately for each speed condition. In addition, the standard error was 

estimated to allow a direct comparison with the values obtained from studies considering a 

different sample size. Left and right sides were considered separately to assess the gait 

symmetry in all subjects. Subsequently, a two-way MANOVA (α=0.05) and a post-hoc 

Tukey test were used to test the effect of the speed of the measurement system and of their 

interaction on STPs.  

The accuracy of IMU algorithms was assessed by evaluating the level of correlation, the 

RMSE and the level of agreement with respect to the gold standard. The level of correlation 
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was calculated through the Pearson correlation coefficient. Consistently with the literature, 

the positive correlation was considered strong with a coefficient of correlation R ≥ 0.7 [38]. 

The RMSE was estimated for all spatio-temporal parameters. The level of agreement was 

obtained with a Bland-Altman style analysis for all STPs. The Bland-Altman plot represents 

the mean of measures (x-axis) with respect to their differences (y-axis). The error was 

calculated as the difference between the mean value estimated with the optoelectronic Gold 

Std and the mean value estimated with each IMUs algorithm. The sign of the error value 

allowed to identify an over-estimation (negative sign) or an under-estimation (positive sign) 

of each IMU algorithms. Mean and standard deviation values of errors were evaluated for all 

parameters. Limits of Agreement (LoA) were included to depict the range of variability of 

the IMUs values that could be expected in comparison with the gold standard. 

3. Results 

When analyzing the recorded signals, two male participants had to be excluded, since 

less than 30 valid gait cycles were acquired. Therefore, the subsequent analysis was 

performed on 14 subjects (6 males and 8 females). 

Slow (0.74 ± 0.14 m/s), normal (0.92 ± 0.16 m/s) and fast (1.23 ± 0.22 m/s) self-selected 

speeds were significantly different (one-way ANOVA, p < 0.001). The post-hoc Tukey test 

revealed significant difference among all the speeds (p < 0.001 in the comparison of slow-

fast and normal-fast; p = 0.03 in the comparison slow-normal). Table 2 reports the mean and 

standard deviation of STPs, as derived from Gold Std, trunk-IMU (TR), shank-IMUs (SH), 

and ankle-IMUs (AN) systems. Table 3 reports the results of the two-way MANOVA to test 

the effect of speed (p ≤ 0.001 for all STPs, except for limp index), the effect of the used 

measurement system (p ≤ 0.001 for swing time), and the effect of speed-system interaction 

(p > 0.05 for all STPs). The Tukey post-hoc test revealed significant differences among all 

speeds. Considering the IMU systems, the ankle-IMU produced significant differences for 
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right and left stance time and swing time (p < 0.001), in all speed conditions, while the trunk-

IMU revealed significant differences for left and right swing time only at fast speed. Figure 

5 shows STP mean and standard error at each walking speed and it sums up the obtained 

statistically significant differences.  

Table 4 shows the Pearson correlation coefficient (R) between the gold standard and 

each of the three IMUs set-ups (trunk: 0.81 ≤ R ≤ 0.99, shank: 0.53 ≤ R ≤ 0.99, ankle: 0.87 

≤ R ≤ 0.99) for temporal parameters, averaged between right and left sides. In addition, Figure 

6 depicts the graphical representation of the correlation. Table 5 shows the RMSE values for 

all STPs and all walking speeds. To further compare the accuracy of the different 

measurement systems against the gold standard, Figure 7 reports Bland-Altman plots, for 

each STP and walking speed. 

**** Table 2 near here **** 

**** Table 3 near here **** 

**** Figure 5 near here **** 

**** Table 4 near here **** 

**** Figure 6 near here **** 

**** Table 5 near here **** 

**** Figure 7 near here **** 

4. Discussion 

The aim of the present work was the comparison of gait spatio-temporal parameters 

obtained by three different IMUs configurations and a gold-standard optoelectronic system. 

STPs were evaluated in a healthy elderly population walking at three different self-selected 

speeds (slow, normal, and fast). The accuracy of the three IMUs configurations was assessed 

based on: the level of correlation, the RMSE and the Bland Altman plots. Due to the 
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significant difference among speeds (p-value ≤ 0.001), the following analyses were 

conducted separating the gait trials in the three walking-speed conditions. 

Mean and standard deviation values of STPs (Table 2 and Figure 5) are consistent with 

those reported by previous studies [34, 39], typical of a physiological gait. In particular, the 

limp index, which quantifies gait symmetry, shows a value close to 1 for every investigated 

subject (Table 2 and Figure 5), as it is expected in a healthy population. 

The dependence of STPs from speed is well documented in literature [14, 40, 41]. In this 

work, all STPs except for the limp index demonstrate a significant influence of gait speed 

(Table 3 and Figure 5). Moreover, always in accordance with the literature [42], the limp 

index is not affected by gait speed in this population of healthy elderly subjects. Due to these 

previous considerations about the limp index and the confirmed symmetry, STPs of right and 

left sides were averaged. Considering the dependence of STPs from the adopted measurement 

system, only swing time demonstrate a significant influence (Table 3). The ankle-IMU 

revealed differences in stance time and swing time with respect to the Gold Std, at all speed 

conditions (Figure 5). Hence, the ankle-IMU can be considered the less appropriate 

configuration in detecting gait sub-phases. The absence of a significant interaction between 

speed and system (Table 3) highlights the validity of the results independently from the 

adopted measurement system. 

Overall, strong correlations between IMU estimations with respect to Gold Std are found 

almost in every configuration (Figure 6 and Table 4). More specifically, trunk- and ankle-

IMUs show Pearson correlation coefficients in the range 0.81-0.99. The shank-IMUs also 

show strong correlations (>0.7), except for the swing time at normal speed (0.53) and the 

stance time at fast speed (0.69).  

Among spatio-temporal parameter, Stride time and Step time show the highest Pearson 

correlation coefficients with respect to Gold Std.  
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Considering the walking-speeds, the highest correlation with the Gold Std was found at 

slow speed. Indeed, the walking speed influences the waveform of acceleration and angular 

velocity. At slow speed, signals show clearer peaks in correspondence of the gait events.  

The presented results are consistent with those reported in a previous work [24] for slow 

and normal speeds, in which only the step time parameter was considered.  

The estimation of RMSE comparing IMU systems and the gold standard demonstrates 

the accuracy of all the applied algorithms. As Table 5 shows, all algorithms produced small 

RMSE values (0.01-0.07 s for temporal parameters, 0.02-0.04 for the limp index). The 

evaluation of gait spatio-temporal parameters tends to be more accurate for faster walking 

speeds in accordance with [23]. In Bland Altman plots (Figure 7), errors were estimated as 

differences between Gold Std and IMUs values. The sign of differences indicates an 

underestimation (+) or an overestimation (-) of values. Overall, the trunk-IMU provides the 

best accuracy (both in terms of 95% LoA and bias), except for the stride time at slow speed. 

On the contrary, the shank IMUs shows the worst performance (both in terms of 95% LoA 

and bias). The ankles-IMUs algorithm shows the largest bias (mean error) in most parameters 

and speed conditions. However, all three IMU locations provided an accurate (low mean 

error) and repeatable (low standard deviation error) estimation of spatio-temporal parameters, 

when comparing the obtained results with [24] and [25]. 

Overall, the three IMU set-ups showed a good accuracy, although slight differences 

could be observed among their measurements. The position of the sensors has an impact on 

the recorded linear acceleration and angular velocity. Since all the algorithms are based on 

these signals for gait events detection, the results might be influenced by positioning. Indeed, 

even if sensors are placed in correspondence of the same anatomical landmark for every 

subject, the axes orientation of IMU sensors can be affected by the anatomical characteristics 

of each tested subject. Nevertheless, as already mentioned in the description of the 

algorithms, the gait event recognition is based on the peak timing, and not on their amplitude. 
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This should mitigate the influence of the sensors positioning on the final results. However, 

peaks might be less pronounced and thus less easy to detect. Consequently, detection errors 

might be larger. In the present study, shank-IMU positioning, and its y-axis orientation are 

related to the flat plane of the tibia, which might differ among subjects, potentially 

influencing the results. Moreover, heel-strike and toe-off gait patterns are intrinsically 

subject-dependent and this could be reflected in an easier or more difficult GE recognition. 

Similarly, the choice of positioning the ankle-IMU on the Achilles tendon might influence 

the final results. The alternative choice of positioning the ankle-IMU over the bony 

prominence of the first cuneiform might reveal a higher level of stability and repeatability 

[43]. However, the free Achilles tendon was chosen as sensor positioning because it is easier 

and less invasive. To obviate the possibility of sensor movement, tightly wrapped bands were 

used to prevent relative movement between foot and sensor, although less. For all the above 

considerations, the identification of GEs may have a time shift due to the adopted IMU 

configuration. In the case of a systematic error, some STPs (i.e., stride and step time) are not 

affected. Regarding STPs (i.e., swing and stance time) that are affected by a systematic error, 

it should be mentioned that clinical applications often focus their interest on estimating the 

variation of STPs between different gait sessions. Such variations can still be detected if the 

same IMU configuration is used. 

Some study limitations can be highlighted. The experimental population size was small. 

In addition, gait trials were performed in a laboratory setting, due to the necessity of using 

the optoelectronic system as gold standard. This resulted in a constrained gait path (non-

ecological), which can be overcome by using plantar sensors as gold standard, to allow 

measuring in different settings, conditions, and longer time periods. 

5. Conclusions 



17 

 

All the tested IMU set-ups demonstrated good performance for gait analysis in healthy 

elderly. Despite all the IMU configurations produced a good level of accuracy, the trunk-

IMU system seems to outperform the ankle-IMU and shank-IMU. In addition, the use of a 

single inertial measurement unit might be beneficial in terms of ease of use, simplicity of 

signal processing, and cost. This may be of help for the monitoring of daily activities and 

tele-rehabilitation through wearable technology. In addition, the faster preparation of patients 

represents a key aspect, especially for clinical gait analysis.  
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