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Abstract: The fourth industrial (I4.0) revolution encourages automatic online 

monitoring of all products to achieve zero-defect and high-quality production. In 

this scenario, collaborative robots, in which humans and robots share the same 

workspace, are a suitable solution that integrates the precision of a robot with the 

ability and flexibility of a human. To improve human-robot collaboration, human 

changeable choices or even non-significant mistakes should be allowed or corrected 

during work. This paper proposes a robust online optimization of the assembly 

sequence through Robust Adversarial Reinforcement Learning (RARL), where an 

artificial agent is deliberately trying to boycott the assembly completion. To 

demonstrate the applicability of robust human-robot collaborative assembly using 

adversarial RL, an environment composed of Markov Decision Process (MDP) like 

grid world is developed and a multi-agent RL approach is integrated. The results of 

the framework are promising: the robot observation on human activities has been 

successfully achieved thanks to a penalty-reward system adopted and the alternation 

of human to robot actions for the wrong terminal state is the one pursued by human, 

but due to robot blockage wrong actions, the right terminal state is followed by 

human, which is the same as the robot target. 

Keywords: Smart Manufacturing, Machine Learning, Human Robot Collaboration,  

Industrial Assembly 

1. Introduction 

I4.0 is promoting companies trying to find new solutions to achieve high-quality 

products by integrating new enabling technologies into the sector. Integration of 

collaborative robots and machine learning (ML) into the assembly workspaces can 

improve and optimize assembly products and processes and reduce human errors 

during production. During assembly processes, human operators tend to do wrong 
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actions and human-robot reliability is important during collaboration with machines 

[1] [2]. However, machine learning tools can serve as a brain tool for the machines, 

especially for cobots to monitor human actions. Cobots are designed to interact with 

humans directly and physically inside a shared workspace [3]. According to some 

publications, human errors generate around 50% - 90% of quality problems in 

assembly manufacturing processes [4][5]. For this reason, the authors of [6] 

proposed an algorithm to assess individual memory structures and evaluation 

methods of human errors in different assembly tasks. Another research proposed by 

[7] is a method of analyzing human errors caused by quality defects on automobile 

engine assembly lines. A proposed method integrates cognitive reliability and error 

analysis methods and fault tree analyses. Machine learning method to detect human 

error and recovery in assembly is presented by the integration of supervision 

architecture at different levels of abstractions, functions, actions, and execution 

monitoring [8]. Above mentioned studies lack online autonomous monitoring of 

human actions during assembly processes. Thus, this paper presents a robust 

human-robot collaboration approach based on reinforcement learning (RL) that 

monitors human errors during collaborative job execution.   

The paper is organized as follows: first human robot cooperative assembly 

formal definition through RL is presented Section 2, RL based assembly framework 

is described and explained in Section 3, the results of the RL based framework for 

cooperative assembly is discussed in Section 4 and conclusion is described in 

Section 5. 

2. Human robot cooperative assembly definition through RL 

 

Multi agent reinforcement learning (MARL) is an extension of single agent RL 

where multiple agents learn to maximize their individual cumulative rewards by 

collaborative interaction. Learning in single agent reinforcement learning is based 

on the Markov Decision Process (MDP), which is described by a 5-tuple 

(𝑆, 𝐴, 𝑃, 𝑟, 𝛾, 𝑠0) where, S is a finite set of states of the environment, composed of 

agent’s all possible sensing information about the environment; A is a finite set of 

actions, including the agent’s all possible actions; P is the state transition matrix 

𝑃𝑆𝑆′
𝑎 = 𝑃[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎], R is the reward function 𝑅𝑆

𝑎 = 𝐸[𝑅𝑡+1|𝑆𝑡 =

𝑠, 𝐴𝑡 = 𝑎];  γ is the discount factor 𝛾 ∈ [0,1] for the future rewards and 𝑠0 is the 

initial state distribution.  

Our proposed MARL system for optimal collaborative assembly can be 

expressed as a stochastic Markov game [9], where cobot (supervisor) agent engages 

to learn the optimal assembly sequence and we consider human (adversary) as a 

second agent who is involved to learn optimal path and have a tendency to do an 

error in the system. Thus MDP in this paper can be reformulated as a tuple: 

(𝑆, 𝐴ℎ, 𝐴𝑟 , 𝑃, 𝑟, 𝛾, 𝑠0) where Ah actions of the human and 𝐴𝑟 robot actions that can 

be performed. 𝑃: 𝑆 × 𝐴ℎ × 𝐴𝑟 × 𝑆 → 𝑅 is the transition reward and 𝑟: 𝑆 × 𝐴ℎ ×
𝐴𝑟 → 𝑅 is the reward of both agents. If cobot is performing strategy 𝜇  and human 
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is performing wrong strategy 𝑣, the reward function is  𝑟𝜇,𝑣 =

𝐸𝑎1~𝜇(𝑠),𝑎2~𝑣(.|𝑠)[𝑟(𝑠, 𝑎1, 𝑎2)]. In this case robot is maximizing the γ discounted 

reward while human is minimizing it.  

A multi-agents cooperative assembly framework has been developed in the next 

section to demonstrate the robustness of the proposed human-robot cooperative 

assembly through MARL.  

3. Reinforcement learning based Human robot cooperative 

assembly framework 

The assembly task planning is a longtime field of study that has a first practical 

and successful solution in the AND/OR graph proposed by de Mello and Sanderson 

[10]. To produce the optimal assembly sequence, the authors of [11] proposed a 

simple simulated annealing method. To find the optimal assembly sequence, several 

capability factors were examined. The authors of [12] used a genetic algorithm (GA) 

to produce optimal assembly sequences by combining factory information with the 

evaluation of assembly sequence plans. The performance of the GA method was 

enhanced further by the authors [13]. The latest implementations of task planning 

algorithms, in human-robot, machine-to-machine collaborative/cooperative 

assembly applications can be found in the following researches [14][15]. Another 

key point of the human-robot cooperative/collaborative assembly applications is 

task assignment where authors [16] propose dynamic task classification and 

assignment approach for human and robot assembly in the collaborative work-cell.  

The algorithms discussed above operate in a deterministic assembly work cell in 

which the robot or even a human follows the planned job sequence. A degree of 

uncertainty exists in manual assembly because an operator may follow the wrong 

or alternative job sequence, either because he knows it is equal to the one intended, 

or because of a minor fault, which frequently has minimal implications on the 

completion time.  

To reduce human faults during cooperative assembly, this research proposes a 

framework that monitors multiple agents’ actions to reach optimal paths using RL 

during cooperative assembly jobs. 

Interactions between human, robot and environment take place as represented in 

Figure 1 in which four main parts are distinguished: the environment, the agents, 

the reinforcement learning algorithm and the trained neural networks. 

The environment is constituted by the workspace where assembling operations 

are performed. For the reason that assembly sequences might vary depending on the 

job, performance, workload on the agents, and other factors, all potential 

combinations are examined, and each intermediate step in the process represents a 

different state. Only certain transitions are admissible from one state because they 

are sequenced according to assembly logic and the MDP structure provided in (2.3). 
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The agents also must develop the knowledge about the admissible actions for 

each state and then find the best assembling sequence to accomplish the task, for 

this reason they are trained following a specific reinforcement learning algorithm 

which is explained in detail in (2.4). 

Agents trained independently can act according to different policies: in this case 

study, we used adversarial MARL directly compared to single agent approach. 

Since focus is on robot’s behavior, this agent was trained to perform the best policy 

while human attempts to pursue a random objective, thus the robot must correct 

human's error during practice. 

 

 
Figure 1. Reinforcement learning based framework for cooperative assembly 

3.1 Adversarial RL for cooperative assembly 

In the adversarial environment assembly process, at every timestamp 𝑡 both 

agents (robot and human) observe the state 𝑠𝑡 and take actions 𝑎𝑡
𝑟~𝜇(𝑠𝑡) and 

𝑎𝑡
ℎ~𝑣(𝑠𝑡). The state transitions 𝑠𝑡+1 = 𝑃(𝑠𝑡 , 𝑎𝑡

𝑟 , 𝑎𝑡
ℎ) and a reward 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡

𝑟 , 𝑎𝑡
ℎ) 

is obtained from the environment. In the human robot assembly process robot gets 

a reward 𝑟𝑡
𝑟 = 𝑟𝑡  while a human is adversary receives a reward 𝑟𝑡

ℎ = 𝑟𝑡 . Thus, each 

step of the assembly MDP can be represented as (𝑠𝑡 , 𝑎𝑡
𝑟 , 𝑎𝑡

ℎ , 𝑟𝑡
𝑟 , 𝑟𝑡

ℎ, 𝑠𝑡+1). In the 

assembly robot protagonist is attempting to optimize the following reward function,  

𝑅1 = 𝐸𝑠0~𝑝,𝑎1~𝜇(𝑠),𝑎2~𝑣(𝑠) [∑ 𝑟1(𝑠, 𝑎1, 𝑎2)

𝑇−1

𝑡=0

] 
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because policies 𝜇  and 𝑣 are learnable elements,  𝑅1 ≡ 𝑅1(𝜇, 𝑣). Likewise, the 

human seeks to do ‘wrong’ actions and maximize its own negative reward: 𝑅2 ≡

𝑅2(𝜇, 𝑣) = −𝑅1(𝜇, 𝑣). In our example, the assembly path is optimized first using a 

robot agent, and then with the involvement of a second human agent. In this case, 

the human operator's objective is to pursue a terminal condition which is not 

necessary the same of the robot, for this reason if it would be any mismatch between 

the agents’ assembly sequences, the robot would correct the human driving him 

performing the right action. 

3.2 Environment (MDP and GridWorld) 
 

The physical environment is the workspace where the assembly is executed but to 

train the agents also a virtual one is needed. As the same as the real world with 

constrains and feasible actions, the agents can perform only one operation at time 

and can only move to certain states: they are allowed to advance to the next state, 

to regress to a previous step or to wait without doing nothing. This kind of behavior 

has been simulated by means of a grid world which has the same structure of the 

MDP schema represented in Figure 2. In the MDP chart arrows indicate the 

admissible transitions, blue labels indicate whether that action should be done by 

the human (ah) or the robot (ar), yellow highlighted states are terminals and red-

colored path is the one that must be learnt by agents thanks to RL algorithm. 

 

Figure 2. Human robot collaborative assembly MDP structure and grid world frame during training 
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Matlab software was used to create the grid world, which shows the sequence of 

potential assembly steps. Black cells indicate constraints that force agents to follow 

only approved trajectories by limiting their movement. The same designation was 

used to indicate states in MDP and grid world, and the terminals' background is 

distinguished with a light blue tone. Agents in the grid are represented by circles, 

with red indicating the robot and green indicating the human; each path covered is 

marked with the color of the corresponding agent. 

The training was performed as a multiple simulation sequence during which the 

PPO agent’s neural networks of actor and critic were updated in weights and biases. 

An observation is taken at each time step by taking a photograph of the current 

simulation. Four channels are supplied as input to the agents for a single 

observation: The first channel is for obstacles, which defines the grid world's 

structure; the second is the "self-channel", which defines the agent's path; the third 

is the "other-agent-channel", which describes the path covered by the other agent; 

and the fourth is for terminal states. Agents explored the grid world looking for 

terminal states according to environment's constraints. Rewards were assigned 

differently basing on the cells reached and regarding to the agents, Table 1 shows 

the rewards in detail for each agent. 

 
Table 1 Rewards and penalties for each agent 

Action Robot Reward Human Reward 

Illegal action (obstacles, out of grid world) -10 -10 

Idle -10 -10 

Move to already explored cell +0.5 -0.5 

Admissible action -1 -1 

Collision with another agent +1 -1 

Terminal state 10 (row 3, col 4) +1 +5 

Terminal state 11 (row 5, col 4) +1 +1 

Terminal state 17 (row 9, col 5) +1 +1 

Terminal state 20 (row 15, col 5) +5 +1 

 

The penalty to each admissible action was assigned to get the target faster, to 

make the robot forces the human to follow the desired path each collision between 

them was taken into account to return respectively a penalty for the human and a 

reward to the robot, rewards for terminal states were assigned differently to the 

agents to drive them through different paths and perform the adversarial RL. Since 

in this case study the adversarial MARL approach was used with focus on robot’s 

behavior, to its final reward value a 10% of human’s reward value was subtracted. 

The reason of doing this for the robot but not for human lies in the fact that 

assembling task is not the same of standing up to the adversary in a game for which 

a classical adversarial approach is needed for both agents: in assembly tasks human 

and robot have to reach a common goal but in real case it can happen that human 

makes mistakes respect the predetermined sequence; in those cases, for a robust 
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design, the robot should adjust the next actions according to the best strategy. 

Adversarial behavior is realized thanks to the human that “unconsciously” (with his 

actions which differs from the one of the robots) reduces the robot's reward. This 

behavior pushes the robot to hamper human’s actions when they are wrong. If both 

agents were totally adversarial the assembly wouldn’t be possible. 

In single agent approach rewards assignment doesn’t change except for the 

penalty inflicted to robot in relation to human’s reward which is obviously absent.  

 

3.3. Actor-critic agents’ network. 
 

Proximal Policy optimization (PPO) agent is an online, model free, policy 

gradient reinforcement learning method [10][11]. This algorithm alternates 

sampling data from interaction with the environment and optimizing surrogate 

objective function: PPO agent estimates the probability to take each action in a 

specific state and acts with respect to probability distribution; the current policy is 

implemented for a determined number of epochs and then both actor and critic are 

updated using a minibatch. Using PPO agents either the observations or the actions 

can be both discrete and continuous. 

Policy and value function are estimated thanks to two function approximators: actor 

𝜇(𝑆) and critic 𝑉(𝑆). The actor takes the observations S and returns the probabilities 

of taking each action in that state. The critic, from observations S returns 

expectation of discounted long-term reward. At the end of the training the optimal 

policy is stored in the actor. 

 

Policy gradient methods estimate the weights of the policy using the gradient ascent 

algorithm. According with Schulman et al. (2017) the loss policy for PPO agent is: 

 

𝐿𝑡
𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(𝜃) = 𝐸̂𝑡[𝐿𝑡

𝐶𝐿𝐼𝑃(𝜃) − 𝑐1𝐿𝑡
𝑉𝐹(𝜃) + 𝑐2𝑆[𝜋𝜃](𝑠𝑡) ]      

 

where 𝑐1, 𝑐2 are coefficients, 𝐿𝑡
𝐶𝐿𝐼𝑃(𝜃) is the clipped policy gradient objective 

(“surrogate”), 𝑆 is the entropy bonus to promote the exploration of the agent and 

𝐿𝑡
𝑉𝐹(𝜃) is the squared-error loss (𝑉𝜃(𝑠𝑡) −  𝑉𝑡

𝑡𝑎𝑟𝑔
)

2
 .  

The training algorithm, after initialization of both actor 𝜇(𝑆) and critic 𝑉(𝑆) with 

random parameter values 𝜃𝜇, 𝜃𝑉 respectively, is in this way executed: 

1. N experiences are generated by following the current policy: 

𝑆𝑡𝑠, 𝐴𝑡𝑠 , 𝑅𝑡𝑠, 𝑆𝑡𝑠+1, 𝐴𝑡𝑠+1, 𝑅𝑡𝑠+1, … 𝑆𝑡𝑠+𝑁 , 𝐴𝑡𝑠+𝑁 , 𝑅𝑡𝑠+𝑁  where S are the 

states, A are the actions and R the Rewards; N corresponds to a terminal 

state or at maximum to the Experience Horizon value. 

2. For each episode step compute the return and advantage function. 

3. Learn from mini-batches of experience over K epochs: 

a. Sample random mini-batch data set from the current set of 

experience; 

b. Update the critic parameters by minimizing the loss Lcritic across 

all sampled mini-batch data; 
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c. Update the actor parameters by minimizing the loss Lactor across 

all sampled mini-batch data and additional entropy loss is added 

to this term, which encourages policy exploration. 

Steps are repeated until the training episode reaches a terminal state. 

 

4. Results and discussions 

 
In this example the grid world environment was used to visualize the training 

results. The grid world was structured to look like the MDP graph for a better 

interpretation. Since they have the same structure, one could expect to have a 

terminal condition for each training episode corresponding to each terminal state 

but in this way, in multi-agent scenario, no convergence was achieved. For this 

reason, during multi-agent training only the desired end condition was set as 

terminal among all the possibilities.  

The robot surveillance on human activities has been successfully achieved 

thanks to the penalty-reward system adopted and a step-by-step alternation of 

human to robot actions. Terminal state 10 is the one pursued by the human during 

the very first training episodes; on the contrary, robot’s target is terminal state 20. 

Opposite direction between these terminal states have been exploited to cause 

agents collision and allow them to understand how to react on these occurrences to 

maximize their own rewards.  

Assuming that the robot's aim is right because it leads to a correctly assembled 

item, and since the robot's actions are free of decision-making autonomy compared 

to humans’, the robot blocks human's incorrect movements.  Because the single 

episode does not terminate if agents are not in the planned final position or the single 

episode reaches the maximum number of steps, even if the human reaches a wrong 

terminal state without being blocked by the robot, the human's return value is 

heavily affected due to the numerous collisions between agents.  

Figure 3 depicts the agents' learning progress: red marks and lines denote robot 

behavior, whereas green marks and lines denote human behavior. The early 

episodes are required for each agent to explore, as seen in the graph; nevertheless, 

rewards are low in value since they do numerous illegal actions that result in high 

penalties. Agents begin to understand the path after a first phase of random actions, 

and a second phase of training is visible in the plot by the first "horizontal" trend: 

agents begin to recognize the goodness of terminal states that are regularly achieved, 

but human and robot objectives are still different. Collisions appear to be considered 

in the latter stages of training, just before the convergence asymptote: there are 

remarkable spikes in rewards values that alternate between the agents. Given all the 

above-mentioned rewards and penalties, maximizing the reward value for each 

agent causes the human to change its objective and not deviate from the robot's 

optimal path in order to avoid more penalties. Training came to an end when the 

agents reached the terminal designated condition in the shortest time possible.  
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Figure 3.  Training process diagram: dots represent single episode reward for each agent, lines represent 

corresponding average reward computed on a set of 50 episodes.  

5. Conclusions 

Flexibility and adaptability in tasks execution are unrivalled characteristic proper of 

human nature, anyway this property can bring the human to execute actions in 

different way respect the scheduled order. In collaborative work-cells is then 

necessary to perform robust programming to allow the robot to manage every 

situation to avoid production slowdowns and stops. In this case study was 

demonstrated that robot can successfully force human to follow the assembling 

sequence thanks to the proper implementation of MARL.  

The use of a grid world environment to simulate agents' state transitions is the 

approach's limit; in fact, respect the real scenario in which one agent's activity 

changes the state of both, in this example agents have their own states, so they can't 

be in the same state at the same time.  

This work may be improved further modifying the training environment and 

applying the created algorithm to a real-world assembly process, as well as testing 

it with human errors. 
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