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Abstract—The increasing need for small and low-power Deep
Neural Networks (DNNs) for edge computing applications in-
volves the investigation of new architectures that allow good
performance on low-resources/mobile devices. To this aim, many
different structures have been proposed in the literature, mainly
targeting the reduction in the costs introduced by the Multiply
and Accumulate (MAC) primitive. In this work, a DNN layer
based on the novel Sum and Max (SAM) paradigm is proposed. It
does not require either the use of multiplications or the insertion
of complex non-linear operations. Furthermore, it is especially
prone to aggressive pruning, thus needing a very low number of
parameters to work. The layer is tested on a simple classification
task and its cost is compared with a classic DNN layer with
equivalent accuracy based on the MAC primitive, in order to
assess the reduction of resources that the use of this new structure
could introduce.

I. INTRODUCTION

Nowadays, the processing of information directly at the
edge of an acquisition system has become increasingly impor-
tant in the field of Internet of Things (IoT). This means that
the study of low power algorithms and architecture for signal
processing has become fundamental, as it could unlock on
edge/mobile devices many operations that, as of today, can be
performed mainly on resource hungry and expensive servers.

In particular, the implementation of low-power and low-
resources Deep Neural Networks (DNNs) for edge computing
has more than ever become essential, because of the great
flexibility and computational capability of these structures [1]–
[3]. Examples of DNNs applied to edge computing can be
found in the fields of Computer Vision [4], Natural Language
Processing [5], Augmented Reality [6] and also Compressed
Sensing for biomedical signals [7]–[9].

The search for small and portable DNN structures has been
adressed in many different ways. From the technological point
of view, many structures based on the novel Phase Change
Memory (PCM) have been proposed [10]–[12], working in
an analog domain. Instead, with regard to Von-Neumann
digital architecturess, many optimization techniques have been
proposed, such as parameters quantization and pruning [13],
[14]. Also, special architectures have been proposed. Two
examples are binary neural networks [15], [16], that use 2’s
complement operations instead of multiplications, and XNOR-
net (and more recently, XOR-net) [17], [18], an extreme
quantized version of classic DNNs that uses XNOR gates
instead of the expensive multiply operations and employs
only 1-bit boolean values. Finally, Logarithmic Neural Net-
works (LogNet) [19]–[21] approach deserves a mention. It

employs data decoded in the logarithmic domain, allowing
the substitution of multiplications with the much more simple
sum operations. The drawback of these type of networks is
identified in the accumulate operation, that in the logarithmic
domain becomes a non-linear operation that require the use
of Look-Up Tables (LUT) or a maximum operation combined
with bit-shift operations. Also, the accumulation of negative
values easily becomes extremely imprecise.

In this work, we propose a novel DNN architecture for
classification tasks that completely avoid the use of multiply
operations, while also avoiding any complex non-linear oper-
ation, ideal for low-power implementations on cheap devices.

The paper is structured as follows. Section II contains a
complete description of the structure of a low-power DNN
layer based on a novel map-reduce paradigm. Section III
describes the case study used to assess the performance of the
new DNN layer along with the final performance and cost in
terms of memory footprint and number of operations. Finally
the conclusion is drawn.

II. NON-CONVENTIONAL LAYER DESCRIPTION

Classic DNNs rely inference on a massive use of Multiply
and Accumulate (MAC) operations that, despite being typi-
cally heavily optimized, make a large use of multiplications,
greatly expensive both in terms of speed and power consump-
tion. Aim of this work is to propose a new DNN structure
capable of completely avoid multiply operations.

For this reason, a new layer structure is proposed. In order to
understand the new structure, we start from the MAC structure,
that is a typical map-reduce operation. It is common of dense
layers – excluding bias values and the non-linearity introduced
by the activation function – and can be represented as

o = xW (1)

where x ∈ Rn is the input row vector of the layer, W ∈ Rn×m

is the matrix of the parameters and o ∈ Rm is the output row
vector. This can be rewritten more explicitly as

oj = xW ·,j =
n∑

i=1

xiW i,j for j = 1, 2, ..,m (2)

where oj is the j-th scalar element of o, W ·,j is the j-th
column of matrix W , xi is the i-th scalar element of vector
x and W i,j is the scalar element of matrix W at row i and
column j.
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Now, we can rethink the whole MAC paradigm as fol-
lows. Let us imagine that among the input values, which
are weighted by parameters W , only a few are prevalent for
influencing the output, while the others have an almost negli-
gible contribution. This concept can be roughly implemented
by substituting the accumulate operation with the maximum
operation, i.e., we search for the maximum scalar among all
the weighted inputs. At this point, the parameters W are
actually used to increase or decrease the probability that an
input is chosen to be the maximum value, i.e., they add value to
an input that must be selected and remove value from inputs
that must not be chosen (or vice-versa while selecting the
minimum, as seen later). In this sense, the parameters W can
be either multiplied or added to the inputs, and the best choice
is to use additions as they are faster and more energy efficient.
So, by replacing multiplications with additions and summation
with maximum, (2) is rethought as

oj = max
i

(xi +W i,j) for i ≤ n, j = 1, 2, ..,m (3)

where maxi(·) selects the maximum scalar value among the
elements of its argument vector. We name this new map-reduce
paradigm Sum and Max (SAM) and we build our new type of
layer over this.

The first thing that we can notice from this new structure
is that, contrary to MAC structures and excluding uncommon
degenerate cases, only the highest positive values xi +W i,j

are promoted to the output, while anything else is completely
ignored. This lead to a potential instability, with output values
that are always high and positive with low-variance, eventually
killing the information brought by data. A possible solution is
the insertion of an inhibitory term in (3), such as

oj = max
i

(xi +W+
i,j)−max

i
(xi +W−

i,j)

for i ≤ n, j = 1, 2, ..,m (4)

where W+
i,j and W−

i,j are the values at row i and column j
of the potentiation and inhibitory matrices, respectively. Now,
even if (4) can effectively work as a valid DNN layer, we ob-
serve that both its terms are influenced by the highest positive
values xi, while negatives values are typically ignored. Then,
a further modification of (4) results in

oj = max
i

(xi +W+
i,j) + min

i
(xi +W−

i,j)

for i ≤ n, j = 1, 2, ..,m (5)

where mini(·) selects the minimum scalar value among the
elements of its argument vector. Now, the second term of (5)
promotes negative and high (in module) values of xi +W−

i,j .
Because of this, this term works actually as an inhibitory term.

Remarkably, the activation function is not required in SAM-
based layers as the maxi(·) and mini(·) functions already
introduce a non-linearity.

In Fig. 1 we highlight the structures of the DNN neurons
based on MAC and on SAM structures, which correspond
to the operations for the generation of a single scalar value

×W1,j ×W3,j
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Σ

+W
+
1,j
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+W
+
3,j

+W
+
2,j

+W
−
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Fig. 1. Comparison of a MAC-based neuron and a SAM-based neuron (a)
and their disposition inside a dense layer (b). Note that in the SAM-based
neuron parameters are added and not multiplied, while bias and activation
function are not needed, as opposed to MAC-based neurons.

oj . Also, it is shown how the neurons are disposed inside a
dense layer to generate the whole output o, i.e., the graphical
representation of (2) and (5).

The resulting layer uses additions instead of multiplications
for the application of the parameters to the inputs. Also, it
needs only subtractions to perform the comparisons between
values needed by maxi(·) and mini(·) function.

As we want to train this structure with supervised Stochastic
Gradient Descent (SGD) based training, it also needs a gradi-
ent. The gradient for maxi(·) and mini(·) operations is quite
simple: it is set to 1 (linear) for input xi that is selected by
maxi(·) (mini(·)) function, 0 for all the others.

III. PERFORMANCE AND COST

We want to assess the performance of a layer built with (5)
by using a simple working toy-case. To do so, we prepare a
simple classification task with 10 classes and 2 different DNN
structures, one based on classic MAC operation, the other one
based on the new SAM paradigm. The two DNNs are built and
trained so that they have the same final performance in terms
of accuracy. After training, pruning – that is the removal of the
least influent parameters from the layer – is used to compress
the two structures and finally the cost in terms of memory
footprint and computational operations is assessed.

A. Classification task
In order to study the performance of SAM-based layers in

DNNs, a simple classification problem is prepared as a case
study. Starting from a covariance matrix X of size n × n, a
signal x with n samples can be generated with a zero-mean
multivariate gaussian random process. Matrix X is generated
starting from a value r ∈ (−1, 1) as

Xi,j = r|i−j| (6)

where Xi,j is the element corresponding to row i and column
j of matrix X . Different values of r corresponds to a different
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Fig. 2. Structures of configuration A, that has a MAC-based hidden layer
with 307 outputs, and configuration B, that has a SAM-based hidden layer
with 1024 outputs.

distribution of the resulting signal x, such that if r < 0 the
frequency band of the resulting signal is high-pass, while if
r > 0 it is low-pass, and the higher is |r|, the more localized
is the signal, meaning the frequency band is less wide [22].
This means that r = 0 corresponds to flat band white noise,
while values near -1 and 1 correspond to high frequency and
low frequency and thin band signals, respectively.

Given a signal x generated from an unknown covariance
matrix X , the classification task consists in retrieving the
correct value r associated with it. In particular, we generate
the data set starting from 10 different values of r equally
distributed in the interval [−0.9, 0.9], so the DNN must choose
the correct value of r among 10 different possibilities.

B. DNN configuration
Our test structure consists in a DNN with n = 512 inputs,

one hidden layer and one output dense layer with 10 outputs
and a softmax activation function. The hidden layer can be
either a MAC-based dense layer (configuration A) or a SAM-
based layer (configuration B). The number of outputs of the
hidden layer is selected in order to have a similar classification
performance for configurations A and B, so that it is possible
to make a fair comparison between the two structures. To do
so, different DNN with different sizes for the hidden layer are
trained and compared and a good compromise between hidden
layer size and performance of the two configurations is found.
With this, configuration A is set with 0.6n ' 307 outputs (that
is, 157,286 weights plus 307 bias values) and configuration B
is set with 2n = 1024 outputs (that is, 1,048,576 parameters).
A summary of the structure of the two configurations can be
seen in Fig. 2. Even tough configuration B initially has a far
greater number of parameters, their number can be largely
reduced at post-training optimization time.

C. Training and performance
During training, pairs of signals x and labels associated to

one of the 10 values of r are fed to the DNN. Training is
performed for both configurations A and B with Adam opti-
mizer [23] through 1000 epochs. As described in Section III-A,
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Fig. 3. Accuracy trend during training of configuration A (containing MAC-
based hidden layer) and B (containing SAM-based hidden layer). The dataset
is generated randomly on-the-fly, so no validation curve is required.

the dataset is generated randomly on-the-fly using 10 different
covariance matrices generated from as many values r, so that
validation data is not required during training. Configuration
A uses a batch size of 64 with a learning rate of 0.001 and
performs 1000 steps per epoch. Configuration B uses a batch
size of 256 with a learning rate of 0.008 and performs 250
steps per epoch. So, both configurations feed 64,000 randomly
generated signal-label pairs to the DNN each epoch, with a
total of 64 · 106 different instances fed thorough the whole
training procedure.

The final accuracy – defined as the number of correct
classifications over the total number of inferred input vectors
– is the same for both configurations A and B, as they have
been structured to have the same performance, and about
equal to 0.95. This result is enough to show that (5) may
be effectively used to substitute a dense MAC-based layer.
Nonetheless, configuration B needs more epochs to converge
to the final result, even if the training hyper-parameters (such
as number of epochs and learning rate) have been selected
to maximize the training speed. This is due to the way the
gradients of maxi(·) and mini(·) are built, which allows the
gradient of each output to propagate to only one input for
each signal fed to the SAM structure. Thus, for each signal
only one parameter per output is actually updated, slowing the
whole process. Training accuracy trend – that coincide with
validation accuracy in this case, as signals are synthetically
generated – can be seen in Fig. 3.

D. Optimization by pruning and cost

After training, the 2 configurations are tested against a
fixed dataset of 105 random generated signals. In particular,
the confusion matrix of configuration B is shown in Fig. 4,
highlighting what are the values of r that the DNN predicts
against the actual target values.

We also apply pruning to the hidden layer [24], i.e., the
removal of interconnections to the DNN layer. Removing an
interconnection fundamentally means completely ignoring a
parameter during the inference of the DNN. While for MAC-
based layers this is mathematically obtained by setting the
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Fig. 4. Confusion matrix of configuration B (with SAM-based hidden layer)
with a test set of 105 random signals. As the data set is equally distributed
through the 10 classes, values are normalized over 1000 instances for each
class.

parameter to 0, for SAM-based layers it is necessary to set the
parameter to −∞ or∞ for maxi(·) and mini(·), respectively.
Ignoring a parameter means reducing the memory footprint of
the DNN and the number of operations that it is necessary to
perform.

For the sake of simplicity, a naive approach is used for
configuration A: all the parameters whose absolute value is
below a given threshold are set to zero. Many thresholds are
tested and the resulting accuracy is tested for each of them.
Of course, the greater the threshold, the lower the accuracy,
as less parameters are employed.

Configuration B does not follow the same procedure. During
SAM operations, maxi(·) (or mini(·)) selects only one value
xi+W+

i,j (or xi+W−i,j) for each j = 1, 2, ..,m. The parameter
W+

i,j (or W−i,j) associated with the value selected is then
considered activated and is the only value for a given whole
input vector x that actually influences output oj . So, we count
how many times each parameter is activated and we call this
quantity activation rate. An activation rate threshold is set and
all the connections that are below this value are removed, i.e.,
the parameters that are less activated are ignored. Different
activation rate thresholds are set and for each of them the
classification performance is evaluated.

Actually, the analyses show that for most of the parameters
in configuration B the activation rate is completely null, so
this structure is naturally prone to aggressive pruning. Because
of this, even if during training configuration B requires more
parameters compared to configuration A, during inference it
actually uses a far lower number.

In Fig. 5 we see the classification performance of config-
urations A and B versus the number of parameters that are
kept in the hidden layer. Without pruning, both configurations
have an accuracy of 0.95. The MAC-based hidden layer uses
about 157000 parameters, while the SAM-based layer employs
only about 10000, after removing the useless (null activation)
parameters. If, instead, we apply pruning and we lose 0.05
in accuracy performance, with configuration A we have about
80000 parameters, while with configuration B we have only
about 5500 parameters.

Even if we are focusing on the hidden layer, it is important
to notice that the number of parameters in the output layer
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Fig. 5. Accuracy vs number of parameters that are kept after pruning
in the hidden layer, both for configuration A (containing the MAC-based
hidden layer) and B (containing SAM-based hidden layer). The numbers of
parameters with accuracy 0.95 and accuracy 0.90 for the two configurations
are highlighted.

TABLE I
MEMORY FOOTPRINT AND COMPUTATIONAL COST OF THE HIDDEN LAYER

OF CONFIGURATIONS A AND B

Configuration Parameters Multiplications Additions

A (MAC-based) 80.0 · 103 80 · 103 80 · 103
B (SAM-based) 5.5 · 103 0 11 · 103

for configuration A is lower than configuration B, having
3080 parameters against 10250, respectively. Nonetheless,
configuration B remains a far cheaper implementation.

Finally, we evaluate the cost in terms of number of ad-
ditions and multiplications of the hidden layer of the two
configurations. We define NA as the number of parameters
kept in the hidden layer of configuration A, NB as the same
for configuration B. In MAC-based configuration A layer, we
perform a number of multiplications mulA = NA and a number
of additions addA = NA for each inference step. In SAM-
based configuration B hidden layer instead we need mulB = 0
and addB = 2NB, as maxi(·) and mini(·) operations are
performed through successive comparisons (i.e., subtractions
with sign check of the result). The memory footprint and
the cost in terms of multiplications and additions is shown
in Tab. I, where the big advantage in terms of hardware
resources of the SAM-based layer over the MAC-based layer
is highlighted.

IV. CONCLUSION

We have presented a multiplier-free DNN layer based on
a SAM paradigm, opposed to the classic MAC structure.
The performance of this layer has been tested on a simple
classification task, and its functioning has been proven, even
though a further research on the training process could im-
prove the results. Finally, this new layer has been shown to be
prone to aggressive pruning, thus actually needing only a few
parameters and because of this being very cheap in terms of
memory footprint and number of operations.
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