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Abstract
The current study aimed to propose a Deep Learning (DL) based framework to retrieve in real-time the position and the
rotation of an object in need of maintenance from live video frames only. For testing the positioning performances, we
focused on intervention on a generic Fused Deposition Modeling (FDM) 3D printer maintenance. Lastly, to demonstrate a
possible Augmented Reality (AR) application that can be built on top of this, we discussed a specific case study using a Prusa
i3 MKS FDM printer. This method was developed using a You Only Look Once (YOLOv3) network for object detection
to locate the position of the FDM 3D printer and a subsequent Rotation Convolutional Neural Network (RotationCNN),
trained on a dataset of artificial images, to predict the rotations’ parameters for attaching the 3D model. To train YOLOv3
we used an augmented dataset of 1653 real images, while to train the RotationCNN we utilized a dataset of 99.220 synthetic
images, showing the FDM 3D Printer with different orientations, and fine-tuned it using 235 real images tagged manually.
The YOLOv3 network obtained an AP (Average Precision) of 100% with Intersection Over Unit parameter of 0.5, while the
RotationCNN showed a mean Geodesic Distance of 0.250 (σ = 0.210) and a mean accuracy to detect the correct rotation r
of 0.619 (σ = 0.130), considering as acceptable the range [r − 10, r + 10]. We then evaluate the CAD system performances
with 10 non-expert users: the average speed improved from 9.61 (σ = 1.53) to 5.30 (σ = 1.30) and the average number of
actions to complete the task from 12.60 (σ = 2.15) to 11.00 (σ = 0.89). This work is a further step through the adoption of DL
and AR in the assistance domain. In future works, we will overcome the limitations of this approach and develop a complete
mobile CAD system that could be extended to any object that presents a 3D counterpart model.

Keywords Deep learning · Neural network · Augmented reality · CAD assistance

1 Introduction

In recent decades, technology has helped several procedures
to improve massively; in particular, significant progress has
been achieved with Deep Learning (DL) [1] paradigms.
DL, i.e., the area of Machine Learning dealing with neural
networks, has acquired a fundamental role in various envi-
ronments, and many different remarkable applications have
been implemented, from the medical domain [2–4] to natu-
ral language processing [5] and even gaming [6]. In parallel,
the same enhancement was brought in byAugmented Reality
(AR) in awide range of fields such tourism [7], education [8],
surgery [9], and manufacturing [10]. In particular, one of the
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many possible tasks which could be improved by DL and AR
is the maintenance area, which refers to all actions that aim
to restore any functionality of a product in its life cycle. The
actions that can be performed to restore product functionality
can be technical, administrative, and managerial [11].

Studies onDL andARused independently inmaintenance
showed promising results to improve human performance
in performing technical maintenance tasks, improving the
administration of maintenance operations, and supporting
maintenance managerial decision-making. This is specially
important because modern production machines are becom-
ing increasingly complex, often integrating advanced com-
ponents that require a high level of expertise in the skills
necessary for their maintenance. In order to allow techni-
cians to work on equipment they are not familiar with, it has
been assessed in the literature [14] that DL and AR systems
allow faster problem diagnosis, which in turn may lead to
faster repair tasks. In fact, the augmentation is particularly
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helpful for immediately identifying the involved compo-
nents and for providing the professional with extra details
regarding diagrams or process to be followed. Additionally,
more repairing activities can be accomplished by a variety
of experts with varying levels of skill while maintaining the
same standard of quality, which reduces the requirement for
a single expert person who must travel from place to place
to perform maintenance. Unfortunately, because to the diffi-
cult trade-off between using 3D data and the speed required
for real-time elaboration, the joint use of DL and AR in this
industry is still undervalued.

In this study, we moved the first step in this context, as
we aim to demonstrate how to apply DL to retrieve the
position and the rotation data of themachine in need of main-
tenance from live video frames only. With those data, it will
be possible to implement an AR system to give guidance
to non-expert users during a specific maintenance operation.
To test our framework, we chose to use FDM 3D printers.
This choice was due to two main reasons: firstly, they are
ubiquitous and relatively cheap printers, primarily used by
non-expert users that our system could facilitate; secondly,
as in our research group we work with additive manufactur-
ing, this software could help newmembers when facing such
problems.

The presented framework leverages two different Convo-
lutional Neural Networks (CNN) to determine the position
and rotation data of the machine to be maintained. The two
netswork on frames froma live video stream, like the one that
may be obtained using any standard smartphone. The first
neural network, a YOLOv3 [12] architecture, is applied to
obtain the object localization inside the image. Object detec-
tion has become particularly efficient thanks to CNN, which
made it possible to analyze images using a sliding window
method. The first family of CNN-based algorithms to achieve
noteworthy results in this discipline were Region-CNN [31].
Unfortunately, they were not real-time appropriate, and this
limitation was overcome by the introduction of YOLO, since
it is both quick and precise. Because of this, we choose to use
YOLO without making any changes to the original method.
Once the object has been found, the rest of the image is
cropped, and the resulting ROI (Region Of Interest) is then
passed to a second CNN, called RotationCNN, trained on a
synthetic dataset generated with Blender [13] to predict the
rotation of the printer on the three cartesian axes.

We tested YOLOv3 with AP (Average Precision) value,
a metric that defines the quality of an object detector, and
the RotationCNN with values of Geodesic Distance, a pos-
itive amount corresponding to the length of the geodesic
arc connecting the two rotations expressed in quaternions.
With the information of position ad scale retrieved from the
YOLOv3’s output and the ones of rotations predicted by
the RotationCNN, an AR application can be implemented to

project the 3Dmodel directly onto its real-world counterpart.
In Sect. 5, we propose an example of such an application.

As a case study, we chose a specific FDM 3D Printer, the
Prusa i3 MKS model. We implemented a particular mainte-
nance activity, such as the replacement of filament, which is
divided into several steps explained in detail further on. We
selected this procedure as it is one of the most frequently
handled. Nevertheless, this method works with any proce-
dure and any FDM 3D Printer (or generic object as well) of
which the 3D model is available. We then asked five non-
expert users to perform the procedure with the help of the
CAD system and five more without the CAD system but
instead using the official Prusa i3 MKS’s instruction man-
ual to demonstrate the validity of our system. The basic idea
idea is that evaluating the ability of the user is also an indi-
rect metric of the positioning method in a real situation, as it
shows how the positioning network is behaving. Of course,
if the position is not retrieved correctly, the performance of
the users would not improve by using the assistance tool.

The code to generate the synthetic dataset given a 3D
model is available here: github.com/leonardotanzi/3d-render.

2 Related works

As stated in [14], the use of AR in maintenance ranges from
dis/assembly to repair, diagnosis, and training. Repair opera-
tions are defined as actions aimed at restoring the functional
properties of a device [15]. Diagnosis refers to maintenance
activities that aim to assess the current state of the prod-
uct and analyze the causality of deterioration and functional
degradation [16]. Training refers to processes that aim to
transfer maintenance skills to technicians [17]. Regarding
dis/assembly, which is the areawhere our application resides,
as early as 1997, Azuma [18] stated that overlaying a 3D ani-
mated drawing could facilitate assembly processes compared
to traditional usermanuals. In [19], the authors demonstrate a
straightforwardARapproach that overlays virtual arrows and
text on top of the real environment. In [20], the authors used
the Hand Held Display (HHD) to performmaintenance tasks
on consumer devices by showing the task description at the
bottom of the display and providing a few buttons to navigate
through the procedure. In [17] the authors showed an effort in
providing different levels of instructions. They proposed two
levels of guidance: a strong one that supports the user through
each step, and a soft one that offers more high-level infor-
mation and is designed for more experienced users. In [21],
the authors incorporated into the AR procedure the ability
to provide real-time feedback on the operation. Through the
position and orientation of the components, they were able to
show warning messages to correct the assembly procedure.
Finally, a slightly different approach was proposed in [22],
where the authors developed an AR application to simulate
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the assembly procedure during the initial component design
phase. They also estimated the forces involved in assembly
by considering the stiffness, shapes, and contact surfaces of
both the real component and the virtual prototype.

In all these applications, when AR is applied to a specific
situation, the goal is fusing 3D objects with real-time images
taken by the camera. The challenge was how to correctly
align the virtual objects with their real-world equivalent.
Estimating the 6D position of an object from an image is
a central problem in Computer Vision (CV). It affects many
domains such as robotics, autonomous driving, medicine,
industrial inspection, and virtual/augmented reality appli-
cations, widely used in the entertainment and medical care
industries [23–25]. The problem consists of determining the
3D rotation and translation of an object whose shape is
known with respect to the camera, using observable details
from the reference image. However, solving this problem
is not trivial. Due to self-occlusions or symmetries, objects
cannot be clearly and unambiguously identifiable, assum-
ing an ambiguous position. In addition, image conditions
are not always optimal in terms of illumination and occlu-
sions between depicted objects [26]. In these situations,
it is often necessary to add an earlier semantic segmen-
tation or object detection step to identify the area of the
image that contains the object, before estimating its position.
Although researchers have studied this problem for many
years, it has experienced something of a renaissance with the
advent of DL. Older pose estimation methods were based on
geometric approaches, trying to establish correspondences
between 3Dmodels and corresponding 2D images of objects
using manually annotated local features. With untextured
or geometrically complex objects, it is not easy to select
local features. In these cases, although matching is time-
consuming, it can fail and provide a result that is not always
accurate [27]. In opposition to these methods, researchers
have introduced other strategies, relying on representations
of 2D objects fromdifferent viewpoints, and comparing them
with the original image to determine location and orientation.
These methods are very susceptible to variations in illumina-
tion and occlusions even though they can handle untextured
objects and require many comparisons to achieve a certain
level of accuracy, increasing the runtime [25].With the spread
of DL, researchers have introduced new strategies to achieve
this goal, improving the traditional methods, and making
them more efficient and performant. The basic idea of sys-
tems involving CNN is to learn a mapping function between
the image, and the 6D position of the object, from images that
have three-dimensional position annotations. These methods
can achieve very high levels of accuracy but need a lot of data
to accurately train the network to work well in real-world
cases. One particular approach based on DL relies on a syn-
thetic dataset to train a CNN to predict the object’s rotation,
such as in [28, 29]. After the literature review, the approach

proposed in these twopapers seemed themost suitable for our
system, due to its flexibility and extendibility to new objects
or procedures.

Nevertheless, the first relies on Faster-CNN for object
detection, an algorithm that is 8 times slower than YOLO,
as demonstrated in the original YOLO paper, and can’t be
thus used for a real-time application. The second utilized for
training both synthetic data and ∼22K images real images
from PASCAL 3D+, which made the algorithm once again
dependent on real data, which are costly to collect.

In our work, we proposed an approach that overcomes
these two obstacles by implementing a real-time detection
and an overlay phase dependent on a very small amount of
real-images for fine-tuning. The main contribution of this
paper is in presenting a novel approach that combines two
different neural networks to predict the rotation and position
of a generic machine in real-world space, leveraging only
RGB data from a live video stream. The predicted data can
then be used for AR applications like, for example, those
that support nonskilled people with maintenance operations,
such as the one presented in Sect. 5.

3 Methods

The general method of our framework is detailed in Fig. 1.
The original RGB image is firstly passed to an object detec-
tion algorithm, in our case YOLOv3, which returns the ROI
(Region Of Interest) related to the object detected. From this
bounding box, we can obtain the values of scale and position
of the 3Dmodel. The cropped area is then passed to the Rota-
tionCNN, which returns the rotations values along the X, Y,
and Z axes. This information is combined to overlay the 3D
model on the 2D stream. All these steps will be discussed
broadly in the following sub-sections.

3.1 Object detection

The first step of our approach aimed to locate the 3D Printer
object in the video stream. The reason is two folds:

1. Allow the RotationCNN to concentrate solely on the
printer without getting confused by the noisy back-
ground;

2. Retrieve the positions and scale values from the bounding
box vertexes’ coordinates. In particular, the center of the
bounding box is used as an anchor point to attach the
3D model, and the scaling is computed comparing with
a specific ratio of the width of the bounding box and the
width of the 3D model.

As the application aimed to be real-time, we chose to use
YOLO (You Only Look Once) algorithm [30], in particular,
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Fig. 1 Full pipeline of the proposed approach. The frame is passed to an
object detection algorithm which returns the cropped area related to the
detected 3D printer and the position and scale information. Its output is
passed to a CNN, which predicts the rotation values, according to the

coordinates system shown in the figure. This information is then com-
bined to correctly overlay the 3D model to the 2D stream with specific
instructions and highlighted components. However, for clarity, in this
example is shown the whole 3D model instead of a specific highlighted
part

YOLOv3 [12], which, compared to the latest object detection
framework such as Faster-RCNN [31], is less precise in some
aspects, for example, it struggles with small objects within
the image, but an order of magnitude faster. Prior detection
systems repurpose classifiers or localizers to perform detec-
tion. They apply the model to an image at multiple locations
and scales, with high scoring regions of the image consid-
ered as detections. YOLO uses a totally different approach
with just a single neural network that divides the image into
regions and predicts bounding boxes (weighted by the pre-
dicted probabilities) and probabilities for each region.

3.2 Rotation CNN

For the RotationCNN, which takes as input the area around
the bounding box returned by YOLOv3, we used a ResNet50
[32] with three different branches for X, Y, and Z axes
rotation. We choose ResNet50 after comparing it with two
state-of-the-art model, InceptionV3 [33] and ViT-B16 [34],
in terms of accuracy, geodesic distance and the number of
iterations per seconds. Each branch has the same structure,
which contains: aDense layerwith 4096 neurons and aReLU
(Rectified Linear Unit) activation function, a Batch Nor-
malization layer [35], a Dropout layer [36] with a random
parameter of 0.5, and a Dense output layer, with several neu-
rons equal in number to the specific axis’ range of rotations
and a Softmax activation function. We solved the X, Y and Z
axes rotation value estimation as a classification problem.We

subdivided the set of possible rotation values along an axis
according to the possible configurations of rotations that the
3D printer can possibly assume during this specific proce-
dure. We considered 40 classes for X-axis rotation (from −
10° to 30°), 60 for Y -axis rotation (from − 30° to 30°), and
120 for Z-axis rotation (from − 60° to 60°). Therefore, the
neuron with the highest probability according to the Softmax
activation function will fire and produce the corresponding
rotation value as output. The architecture of the model is
shown in Fig. 2.

3.3 Datasets

Three datasets have been used in this work. For training
YOLOv3, we collected and tagged with bounding boxes 545
images showing the FDM 3D printers in different positions
and rotations, of which 20%were kept away for testing. Each
image was then resized to 461 × 461 pixels, and augmenta-
tion was applied with random horizontal flip, random zoom
crop (0 to 45%), and random rotation (− 15° to 15°), result-
ing in a total of 1653 images. To train the RotationCNN, we
artificially build a synthetic dataset through Blender to make
the rotation estimation easier by using as inputs 17 3D mod-
els of different FDM printers, and 36.500 real backgrounds
taken from SUN Database [37]. According to meaningful
rotation values of the FDM 3D printers, we considered the
following ranges in degrees for the three rotation axes: [−
10°, 30°] for X-axis, [− 30°, 30°] for Y -axis, and [− 15°,
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Fig. 2 Architecture of the RotationCNN. The network takes as input
the RGB images, which are passed through the first layers of ResNet50.
The last layer was substituted with three branches composed of a Dense

layer, a Batch Normalization layer, a Dropout layer, and a final Dense
layer with n neurons, where n is the range of the rotation along the
specific axis

15°] for Z-axis. We generated a render for each combination
of X and Z rotation values and 1/3 of Y rotation values and
randomly changed lighting conditions and the scene’s back-
ground. With this process, we obtained a synthetic dataset of
94.220 images for training and 5000 for testing. Finally, we
also created a dataset of 235 real-images of FDM 3D print-
ers tagged with values of rotations, to fine-tune the network
with 150 images and test the overall performances with the
remaining 85 images.

3.4 Training, metrics, and framework

YOLOv3 was trained for 500 epochs with the first 49 lay-
ers frozen and a batch size of 32 and 100 additional epochs
with all layers un-frozen and a batch size of 16. The metric
used to evaluate the object detection is the Average Precision
(AP) criterium defined in the PASCALVOC 2012 [38] com-
petition. First, the neural net detection results were sorted
by decreasing confidence and were assigned to ground-truth
objects. We had a match when the IoU (Intersection over
Union) was more significant than a certain threshold. The
IoU is defined as:

I oU = AOverlap

AUnion

where AOverlap is the area of overlap between the predicted
bounding box and the ground truth, and AUnion is the area
of union between the predicted bounding box and the ground

truth. This metric is normalized in the interval [0, 1], with
0 meaning no overlap and 1 meaning a perfect overlay. In
the PASCAL VOC criterium, the IoU threshold was set to
0.5. In this work, as we were looking for a higher precision
to overlap the 3D model, we also presented the values of
AP using 0.6 and 0.7 thresholds. Using this approach, we
calculated the precision/recall curve. Then, we computed a
version of themeasured precision/recall curve with precision
monotonically decreasing and calculated the AP as the area
under this curve by numerical integration.

The RotationCNN was trained with the synthetic dataset
for 20 epochswith abatch size of 32 andAdamoptimizerwith
a learning rate of 0.0001 and fine-tuned with real images for
100 epochswith the samebatch size butAdamoptimizerwith
a learning rate of 0.000001 and with all the layers except the
three final branches frozen. The difference between the pre-
dicted and the actual rotations was computed by converting
the values of the rotations in quaternions and then calculating
the geodesic distance between two quaternion coordinates q1
and q2. To get a distance between two unit quaternions, you
have to rotate both of them such that one of them becomes
the identity element. To do this for our pair q1 and q2, we
simply multiplied q1 by q2’s inverse from the left

Q = (inverse(q2) ∗ q1)
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and normalize the obtained quaternionQ through L2 normal-
ization:

geoDist = L2(Q) = √
Q · Q

The metric is a positive amount corresponding to the
length of the geodesic arc connecting q1 to q2.We choose the
geodesic distance as is the most commonmetric used in liter-
ature to evaluate the difference between two angles. Finally,
to evaluate the performance of the different networks, we
used the number of iterations per seconds, defined as:

i t/s = n

sec

where n is the number of iterations, and sec is the time unit.
In this case, one iteration consists of predicting the rotation’s
angles given an input image.As the frame ratemetric depends
on different aspects, such as the complexity of the mesh, the
rendering engine used, the hardware specifics, the particular
implementation of the pipeline, etc., these factors can deter-
mine a strong fluctuation of the metric, for this reason we
preferred to opt for ametric independent of these parameters.
We empirically noticed that our frame rate was acceptable if
we kept the it/s greater than 5; this evaluation is not indicative
but sufficient for us to obtain a real-time validation.We used
Keras [39], an open-source neural-network library written in
Python, running on top of TensorFlow and, on Windows 10
Pro with NVIDIA Quadro P4200.

4 Results

4.1 Object detection

After the training phase,YOLOobtained a test loss of 11.353.
We then computed the AP with IoU thresholds of 0.5, 0.6
and 0.7, shown in light blue as the area under the curve of the
precision/recall curve in Fig. 3a–c, respectively. These values
of AP were 100% with 0.5 as IoU threshold, 95.68% with
0.6 as IoU threshold, and 83.27% with 0.7 as IoU threshold.

4.2 RotationCNN

The results of the comparison between different networks are
showed in Table 1.

In addition, in Table 2 are showed the extensive results
for the most performing network, ResNet50, chosen as the
best compromise between accuracy, geodesic distance and
number of iterations per seconds.

We first tested the network with 5000 synthetic images
generated with Blender. The accuracies for X, Y, and Z , were
computed as the number of correct predictions over the total
number of samples, using different acceptable ranges: exact

prediction, with an error in the range [− 5, + 5] and with an
error in the range [− 10,+ 10], were 0.852 (σ = 0.147), 0.999
(σ = 0.001) and 1 (σ = 0) respectively.We also computed the
geodesic distance, which resulted in an average of 0.0038 (σ
= 0.005).

We then test this same network with 85 real images tagged
manually. The accuracies were 0.007 (σ = 0.005), 0.113 (σ
= 0.038) and 0.231 (σ = 0.052) and the geodesic distance
0.454 (σ = 0.217).

We finally fine-tuned the network with 150 images and
tested with the same 85 images as before, resulting in an
accuracy of 0.188 (σ = 0.044), 0.443 (σ = 0.077), and 0.619
(σ = 0.130) respectively and a geodesic distance of 0.250 (σ
= 0.210).

5 Case study

To validate our method, we chose a specific FDM 3D Printer,
the Prusa i3MKSmodel, and implemented a specificmainte-
nance action, such as the replacement of filament, as it is one
of the most frequent to be handled. Nevertheless, this system
works for any procedure and any FDM3DPrinter (or generic
object as well) of which the 3D model is available.

5.1 Procedure

After the extraction of the bounding box and the rotations
value, the 3D model is attached at the center of the bounding
box with the predicted rotations. The tool is then used to
guide the user in the filament substitution. The phases, also
underlined in Fig. 4, are:

(1) Press the button and search in the menu screen “Un-
load the filament”

(2) Press the button and specify the material to unload
(3) Press the button and wait until the acoustic signal
(4) Press the button to eject the filament
(5) Pull the filament upwards
(6) Replace the coil
(7) Insert the new filament into the extruder’s filament

hole
(8) Search in the menu screen for “Load the filament”
(9) Press the button and check if the extruded filament

has the correct color
(10) If Yes, clean the extruder, if No, repeat step 9

5.2 Evaluation

Finally, we asked five non-expert users to perform the proce-
dure with the help of the CAD System and five more without
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Fig. 3 Precision/recall curve with IoU thresholds of 0.5 (a), 0.6 (b) and 0.7 (c). The AP is shown in light blue as the area under the curve

Table 1 Values of mean
accuracies together geodesic
distance

Architecture Accuracies Accuracies [− 5,
+ 5]

Accuracies [−
10, + 10]

Geodesic
distance

it/s

ResNet50 0.188 (σ =
0.044)

0.443 (σ =
0.077)

0.619 (σ = 0.130) 0.250 (σ =
0.210)

7

InceptionV3 0.158 (σ =
0.043)

0.343 (σ =
0.098)

0.531 (σ = 0.160) 0.299 (σ =
0.206)

6

ViT-B16 0.180 (σ =
0.049)

0.402 (σ =
0.080)

0.601 (σ = 0.123) 0.255 (σ =
0.203)

2

All values are shown with related standard deviation. The accuracies were computed as the number of correct
predictions over the total number of samples, using different acceptable ranges: exact prediction, with an error
in the range [− 5, + 5] and in the range [− 10, + 10], while the geodesic distance is computed as the positive
amount corresponding to the length of the geodesic arc connecting the two rotation’s angles. It/s are iterations
per second, where one iteration is considered as a forward pass in the full pipeline
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Table 2 Values of accuracies for each axes together with mean accuracy and geodesic distance

Accuracies Accuracies [− 5, +
5]

Accuracies [− 10, +
10]

Geodesic distance # of
images

Axes X Y Z X Y Z X Y Z

Synthetic dataset 0.644 0.961 0.950 0.998 0.999 0.998 1 1 1 0.0038 (σ = 0.005) 5000

0.852 (σ = 0.147) 0.999 (σ = 0.001) 1 (σ = 0)

Real dataset 0.000 0.012 0.007 0.060 0.151 0.125 0.164 0.290 0.239 0.454 (σ = 0.217) 85

0.007 (σ = 0.005) 0.113 (σ = 0.038) 0.231 (σ = 0.052)

Real dataset (after fine
tuning)

0.130 0.237 0.196 0.334 0.502 0.491 0.435 0.713 0.707 0.250 (σ = 0.210) 85

0.188 (σ = 0.044) 0.443 (σ = 0.077) 0.619 (σ = 0.130)

All values are shown with related standard deviation for tests performed with a synthetic dataset, a real dataset, and the same real dataset after
fine-tuning the network. The accuracies for X , Y, and Z , were computed as the number of correct predictions over the total number of samples,
using different acceptable ranges: exact prediction, with an error in the range [− 5, + 5] and in the range [− 10, + 10], while the geodesic distance
is computed as the positive amount corresponding to the length of the geodesic arc connecting the two rotation’s angles

Fig. 4 In the specific operation of filament replacement four compo-
nents of the Prusa i3 MKS are involved: the Screen and the Button for
steps 1, 2, 3, 4, and 8, the Filament for steps 5 and 7, the Coil for step 6
and the Extruder for steps 9 and 10. These components are highlighted
during the corresponding step

theCADsystembut using the official Prusa i3MKS’s instruc-
tions manual. This method of validation is more accurate,
because if we asked the same ten people to perform the oper-
ation with and without the CAD help the second time they
would be facilitated by the fact that they have already done
the operation once. Our system applies instead to users who
have never performed the operation. The video stream with
the overlay model and the textual information was provided
on the PC screen, and the user has simply to press a generic
button when he/she finished a step. Figure 5 shows the ten
different augmented steps, while Fig. 6 shows the process of
a single step. The image is first passed to the object detector
(1), which extracts the ROI (2). This information is used to

overlay the 3D model (3) on the video stream and finally the
RotationCNN is used to retrieve the actual values of rota-
tions. The model is rotated accordingly, and text instructions
are also added (4). The specific component involved in the
current precision was highlighted in orange, while the other
components were kept in grey. The text instructions were the
same as defined above. To evaluate the quality of the inter-
vention, we chose two parameters suggested by an expert in
3D printing in our research group: the time spent and the
number of actions to perform the whole operation. An action
is defined as a single step performed. With these two metrics
we could evaluate both the speed and the precision (i.e., how
many times a step had to be repeated). An expert user per-
forms the whole procedure in the ten actions defined above
with an average time of approximately 2 min. The five users
performing the operations consulting the instructions man-
ual obtained a mean speed of 9.61 (σ = 1.53), and the mean
number of actions was 12.60 (σ = 2.15), while the five users
helped by the CAD system obtained a mean speed of 5.30
(σ = 1.30) and the mean number of action was 11.00 (σ =
0.89). Results are resumed in Table 3.

6 Discussion

In this work, we proposed a framework to assist non
expert users in maintenance procedures of FDM 3D printers,
through an AR overlay of the printer’s 3D model based on
DL algorithms. After a literature review, we chose to imple-
ment a two steps approach. The first phase involved an object
detection algorithm, specifically YOLOv3, to locate the area
related to the generic FDM3D printer and obtain the value of
the 3D model position and scale. This network was trained
using 1653 augmented images together with their bounding
boxes. In the second phase, we passed the output of YOLOv3
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Fig. 5 The ten steps of the filament substitution procedure. In each step, the specific component involved in the current precision was highlighted
in orange, while the other components were kept in grey. The text instructions were the same defined above
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Fig. 6 The process of retrieving the position and rotation information in all the steps. Here is shown the one related to the first step, composed by
the sequence of YOLO’s object detection and rotation prediction with the RotationCNN

Table 3 Values of speed (in minutes) and a number of actions performed by the ten non-expert users with the help of the user manual or with the
help of our CAD system

Users User manual CAD system

1 2 3 4 5 Mean 6 7 8 9 10 Mean

Speed (minutes) 9.08 10.11 7.41 9.33 12.12 9.61 (σ = 1.53) 7.21 4.32 5.23 3.56 6.20 5.30 (σ = 1.30)

Number of actions 11 14 12 10 16 12.60 (σ = 2.15) 12 10 11 10 12 11.00 (σ = 0.89)

In the bold values are showed the means and standard deviations for each distribution

to aRotationCNN,which predicted the rotations values along
the three axes, X, Y, and Z . This second network was trained
with 94.220 synthetic images produced with Blender and
fine-tuned with 150 real images tagged manually. The per-
formances of these two networks are discussed in Table 2
and Sect. 4. Results YOLOv3 detected 100% of the FDM
3D printer with an IoU threshold of 0.5, the official thresh-
old used in the PASCAL VOC challenge, and obtained good
results even ifwe increased the value of IoU.Themost critical
network was the RotationCNN, as the prediction of rota-
tions is far more complex than the object detection task.
We tested three different network, ResNet50, InceptionV3
and ViT-B16, after selecting ResNet50 as the most perform-
ing one. In fact, ResNet50 achieved similar accuracies and
geodesic distances as ViT-B16 while performing three times
as many operations per second. We used two metrics: the
accuracy, considering different acceptable ranges: exact pre-
diction, with an error in the range [− 5, + 5] and in the
range [− 10, + 10], and the geodesic distance. Testing with
5000 synthetic images, we obtained values of accuracies
close to 1 and a very low geodesic distance of 0.0038 (σ =
0.005), showing that the network actually learned; the main
question was if he was able to generalize the results with
authentic images. Without fine-tuning, the performances of
the network were very poor, with accuracies close to 0 and a
geodesic distance of 0.454 (σ = 0.217). After fine-tuning the
network with 150 real images tagged manually, we obtained

the following results: the three values of accuracy were 0.188
(σ= 0.044), 0.443 (σ= 0.077), and 0.619 (σ= 0.130) respec-
tively and the geodesic distancewas 0.250 (σ= 0.210). These
results are good enough to implement our methodology.

To test our system, we also presented a case study with
a specific FDM 3D printer, the Prusa i3 MKS. We asked
five non-expert users to perform the procedure with the
help of the CAD System and five more without the CAD
system but using the official Prusa i3 MKS’s instructions
manual and evaluate the performances with speed and num-
ber of operations to complete the whole procedure. The
mean improvement given by using our tool was 4 min and
31 s in speed and 1.6 in number of operations. The concept
of evaluating AR-assisted maintenance was inspired by the
realization that measuring user competence also serves as
an indirect indicator for measuring the performance of the
positioning method in actual use. Naturally, employing the
support tool would not increase the users’ performance if the
position is not correctly obtained, as shown in Table 3.

7 Conclusions and future works

In this paper, we demonstrate how to apply DL to retrieve
the position and the rotation data of the machine in need of
maintenance from live video frames only. With those data, it
will be possible to implement an AR system to give guidance
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to non-expert users during a specific maintenance operation.
of an FDM 3D printer. We also presented a simple AR appli-
cation leveraging our system, to support unskilled people in
printer maintenance.

Even if we showed our system’s performance, there are
still several limits to overcome. First of all, the Rotation-
CNN performances are acceptable, but it still struggles in
detecting the precise value of the rotation. Secondly, we pro-
vided the users with a GUI directly on the PC screen: we
think the performances could vastly improve with a mobile
application. Thirdly, the operation itself was quite simple to
perform. Thus the practical improvement of the use of our
tool may seem low.

In future works, we plan to compare the performances
of our methodology to other similar, implementing a more
complex application for mobile smartphones. Focusing on
different models of FDM 3D printers, the improvement will
include more complex maintenance operations.
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