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The High-Order Shifted Boundary Method and its Analysis

Nabil M. Atallaha, Claudio Canutob, Guglielmo Scovazzia,∗

aDepartment of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, USA
bDipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

The Shifted Boundary Method (SBM) is an approximate domain method for boundary value problems, in the broader
class of unfitted/embedded/immersed methods, that has proven efficient in handling partial differential equation prob-
lems with complex geometries. The key feature of the SBM is a shift in the location where boundary conditions
are applied - from the true to a surrogate boundary - and an appropriate modification (again, a shift) of the value
of the boundary conditions, in order to reduce the consistency error. This paper presents the high-order version of
the method, its mathematical analysis, and numerical experiments. The proposed method retains optimal accuracy
for any order of the finite element interpolation spaces despite the surrogate boundary is piecewise linear. As such,
the proposed approach bypasses the problematic issue of meshing complex geometries with high-order body-fitted
boundary representations, without the need of complex data structures for the integration on cut cells.

Keywords: Shifted Boundary Method; high-order method; Immersed Boundary Method; small cut-cell problem;
approximate domain boundaries; unfitted finite element methods.

1. Introduction and overview

The Shifted Boundary Method (SBM) is an approximate domain method for boundary value problems, in the
broader class of unfitted/embedded/immersed methods (see, e.g., [9, 14–16, 25, 30, 34, 36, 48, 50, 51, 56]).

In the SBM, the location where boundary conditions are applied is shifted from the true boundary to an approx-
imate (surrogate) boundary, and, at the same time, the value of boundary conditions is modified (shifted) by means
of Taylor expansions, in order to avoid a reduction of the convergence rates of the overall formulation. In fact, if
the boundary conditions associated to the true domain are not appropriately modified on the surrogate domain, only
first-order convergence is to be expected. The appropriate (modified) boundary conditions are then applied weakly,
using a Nitsche strategy. This process yields a method which is simple, robust, accurate and efficient.

The SBM was proposed for the Poisson and Stokes flow problems in [42] and was generalized in [43] to the
advection-diffusion and Navier-Stokes equations and in [60] to hyperbolic conservation laws. The benefits of its
application in conjunction with reduced order modeling of geometric parameterizations was analyzed in [37–39].
Further rigorous mathematical analysis was pursued in [2–5] for the Poisson, Stokes and linear elasticity equations.

The purpose of this paper is to introduce a high-order version of the SBM, including a sound mathematical anal-
ysis. We develop a stability, consistency and convergence analysis for the Poisson and Stokes flow problems with
unfitted Dirichlet boundary conditions along with complete L2-estimates via a duality argument.

One important aspect of the proposed high-order SBM is that it retains optimal rates of convergence even though
the surrogate (approximate) boundary is represented by piecewise-linear boundary representations. The Taylor ex-
pansions used to correct the solution at the surrogate boundary are effective in maintaining optimal accuracy. The net
result is a method that completely bypasses the need for high-order body-fitting of the computational grids, that is
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using high-order polynomials in the representation of element geometry at the boundary. This feature could represent
a change in paradigm for high-order methods.

One surprising aspect of the proposed approach is that the geometric representations of boundaries may not even
need to be watertight on a fine scale, as long as their resolution is finer than the resolution of the grids utilized in
simulations.

From a purely mathematical perspective, the SBM bears some similarities with the boundary approximation
method proposed by Bramble, Dupont, and Thomèe [13]. The authors of original SBM work [42] were unaware
of this earlier development, which however has also important differences with respect to the SBM. As acknowledged
in a later contribution by Bramble and King [12], the method of Bramble, Dupont, and Thomèe [13] was found of
impractical implementation, particularly for domains with corners that are ubiquitous in engineering design. On the
other hand, the work of Bramble and King [12] requires the assumption that the distance between the surrogate and
the true boundary decays as the square of the mesh size, an equally impractical requirement in complex geometry
simulations, because it collapses to nearly body-fitting the computational grid to the geometries. In this regard, the
SBM does not follow these works and retains the ability to perform efficiently and robustly in geometrically complex
engineering simulations [5, 42, 43].

The SBM bears also some intersection with the high-order generalization of the work of Bramble and King pre-
sented by Cockburn, Solano and co-authors in [24–26, 48]. However, in those works, the extension of the boundary
conditions from the approximate to the true boundary is done by means of the fundamental theorem of calculus rather
than Taylor expansions and the strategies to select the paths of integration/extrapolation are different than for the SBM.

Prior to the work of Solano and collaborators, a variety of new embedded/immersed geometry approaches [28,
31, 32, 50] have been proposed to further speed up design and analysis in complex geometry. These approaches
started from the realization that the generation of CAD geometrical representations can still be a costly phase in the
overall design and analysis process, especially if the geometry is obtained from the pixels/voxels that are the result
of two/three-dimensional image reconstruction techniques. Although these methods have borrowed some ideas from
extended/enriched/unfitted methods for fracture mechanics [44], they have been designed for a completely different
purpose, and for this reason we do not even attempt an account of the developments of the latter, which are peripheral
to the discussion here.

Similarly, high-order cutFEM methods have been proposed and analyzed in a number of theoretical papers [7, 19,
40, 41, 47, 49, 52]. High-order extensions of the work in [12, 13] were presented in a series of articles [11, 16, 17, 21–
23].

Iso-Geometric Analysis (IGA) [8, 27] was proposed as an alternative paradigm, in which NURBS or T-Spline
functions are used to build discrete approximation spaces directly on the CAD representation, somewhat avoiding the
costly operation of generating body-fitted grids. However, when the level of complexity of geometric shapes is large,
Immerso-Geometric Methods [57] (i.e., immersed methods based on IGA approximation spaces) seem the preferred
choice in the IGA community.

More recently, the Method of Universal Meshes was proposed in a series of papers, which also included some
extensions to high-order finite element spaces [53–55]. These developments are peripheral to the discussion presented
here, since the Method of Universal Meshes is aimed at moving boundary/evolving interface problems and collapses
to a body-fitted mesh generation strategy in the case of fixed boundaries.

The SBM falls in the broad category of embedded/immersed methods and addresses some of the long standing
problems that have somewhat limited the broader application of such techniques in the engineering practice. Specif-
ically, common embedded strategies for the enforcement of boundary conditions revolve around 1) the use of exact
cut-cell geometry representations to construct the solution space and 2) the Nitsche’s method [45] for consistent weak
boundary enforcement [31]. For body-fitted approaches, employing Nitsche’s method does not adversely affect the
conditioning of the system matrix. However, in the case of embedded finite elements, due to the arbitrariness of the
size of the cut elements, naïve approaches suffer from numerical instabilities and poor matrix conditioning problems.
A number of approaches have addressed this issue in recent years [18, 20, 58, 59], but the geometric construction of
the partial elements cut by the embedded boundary typically remains a complex and computationally intensive pro-
cess. Similarly, the construction of appropriately accurate quadrature formulas to integrate the variational equations
on cut cell is challenging, and typically relies on the use of sub-triangulations (an approach that somewhat defeats the
purpose of immersed methods) or the development of complex quadrature formulas directly in physical space (since
there it is not possible to define the parent domain of a cut element of general shape).
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The general tradeoff of the SBM is that integration and data management of cut cells is completely avoided, at
the expense of variational formulations that include additional terms with respect to the corresponding cutFEMs,
Immersogeometric (Immersed IGA) and Finite Cell Methods. We believe that this tradeoff could be advantageous
when considering very complex geometries, including the case of non watertight descriptions.

This article is organized as follows: Section 2 introduces the surrogate domain and describes in particular how
the exact boundary condition is mapped to the surrogate boundary. The high-order SBM is presented in Section 3 for
the Poisson equation, and in Section 4 for the Stokes equations. The coercivity and inf-sup properties of the SBM
variational forms are established in Section 5, whereas the continuity properties are established in Section 6. The key
Section 7 analyzes the behavior of the Taylor remainder on the surrogate boundary. The consistency and convergence
properties of our method are discussed in Section 8 based on Strang’s Second Lemma, whereas an enhanced error
estimate in the L2-norm is obtained in Section 9 via an Aubin-Nitsche argument. Finally, representative numerical
tests are given in Sect. 10.

2. The shifted boundary conditions

2.1. Notation

Let Ω be a connected open set in Rn(n = 2 or 3), with boundary Γ = ∂Ω of class Cm+1 for some m ≥ 1. Let
n denote the outward-oriented unit normal vector to Γ. Throughout the paper, we will denote by L2(Ω) the space of
square integrable functions on Ω and by L2

0(Ω) the space of square integrable functions with zero mean on Ω (i.e.,
q ∈ L2

0(Ω) implies
∫

Ω
q = 0). We will use the Sobolev spaces Hm(Ω) = Wm,2(Ω) of index of regularity m ≥ 0 and

index of summability 2, equipped with the (scaled) norm

‖v‖Hm(Ω) =

‖ v ‖2L2(Ω) +

m∑
k=1

‖ l(Ω)k Dkv ‖2L2(Ω)

1/2

, (1)

where Dk is the kth-order spatial derivative operator and l(A) = measn(A)1/n is a characteristic length of the domain
A (n = 2, 3 indicates the number of spatial dimensions). Note that H0(Ω) = L2(Ω). As usual, we use a simplified
notation for norms and semi-norms, i.e., we set ‖ v ‖m,Ω = ‖ v ‖Hm(Ω) and | v |k,Ω = ‖ Dkv ‖0,Ω = ‖ Dkv ‖L2(Ω). Similarly,
we will indicate with (v,w)m,Ω the Hm(Ω)-inner product and by (v,w)0,Ω the L2(Ω)-inner product. We will also use the
notation (v,w)0,Γ for the L2(Γ)-inner product over the boundary Γ of Ω. Furthermore, for two positive scalars A and
B, A . B indicates that there exists a positive constant c, independent of the relevant parameters of the discretization,
such that A ≤ c B.

2.2. The true domain, the surrogate domain and maps

In view of the application of the finite element method, we consider a closed domain D such that clos(Ω) ⊆ D and
we introduce a family Th of admissible and shape-regular triangulations of D . Then, we restrict each triangulation by
selecting those elements that are contained in clos(Ω), i.e., we form

T̃h := {T ∈ Th : T ⊂ clos(Ω)} .

This identifies the surrogate domain

Ω̃h := int

 ⋃
T∈T̃h

T

 ⊆ Ω ,

with surrogate boundary Γ̃h := ∂Ω̃h and outward-oriented unit normal vector ñ to Γ̃h. Obviously, T̃h is an admissible
and shape-regular triangulation of Ω̃h (see Figure 1a). As usual, we indicate by hT (hi

T , resp.) the circumscribed
diameter (inscribed diameter, resp.) of an element T ∈ T̃h and by h (hi, resp.) the piecewise constant function in Ω̃h

such that h|T = hT (hi
|T = hi

T , resp.) for all T ∈ T̃h. We introduce the following mesh parameters

hΓ := max
T∈T̃h:T∩Γ̃h,∅

hT , (2a)
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Γ̃h

Ω̃h

Ω

Γ

Ω \ Ω̃h

Ω̃h ⊂ Ω

(a) The true domain Ω, the surrogate domain Ω̃h ⊂ Ω

and their boundaries Γ̃h and Γ.

Γ̃h Γ

d
n

τ

(b) The distance vector d, the true normal n and the
true tangent τ.

Figure 1: The surrogate domain, its boundary, and the distance vector d.

hΩ := max
T∈T̃h

hT , (2b)

hτ,T := (hT hi
T )1/2 , (2c)

h⊥,E :=
measnd (T )

measnd−1(Ẽ)
, ∀Ẽ ∈ Γ̃h, T ∩ Ẽ , ∅, T ∈ T̃h . (2d)

We assume there exist constants Cr, ξ1, ξ2 ∈ R
+ such that (1/

√
Cr) h ≤ hτ ≤ h and ξ1 h ≤ h⊥ ≤ ξ2 h. With a slight

abuse of notation, we will assume h, hτ and h⊥ are interchangeable.
We now select a mapping

Mh : Γ̃h → Γ , (3a)
x̃ 7→ x , (3b)

which associates to any point x̃ ∈ Γ̃h on the surrogate boundary a point x = Mh(x̃) on the physical boundary Γ.
Whenever uniquely defined, the closest-point projection of x̃ upon Γ is a natural choice for x, as shown e.g. in
Figure 1b, but more sophisticated choices may be locally preferable and we refer to [2] for more details. The mapping
(3) can be characterized through a distance vector function dMh defined by

dMh (x̃) := x − x̃ = [Mh − I](x̃) . (4)

For the sake of simplicity, we will actually set d = dMh , so that we will write x = x̃ + d(x̃). It will be useful to write
d = ‖d‖ν, where ν is a unit vector defined on Γ̃h.

In the present work, we assume at least C2-smoothness of the boundary, in which case Mh is defined with the
closest point projection, which implies ν = n. In the case of non smooth boundaries, the mathematical analysis that
follows is not applicable and optimal convergence rates cannot be achieved, but other choices for ν are possible and
the analysis will proceed similarly to what is reported in [2]. Note also that, in principle, other strategies are possible
to define the map Mh and, correspondingly, the distance vector d. Among them, for example, is a level set description
of the true boundary, in which d is defined by means of a distance function.

Remark 1. From the definition of closest-point point projection, it follows that ‖d(x̃)‖ . hT for any x̃ ∈ T ∩ Γ̃h,
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whence
‖h−1d‖L∞(Γ̃h) . 1 . (5)

2.3. General strategy
In the SBM approach, the governing equations are discretized in Ω̃h rather than in Ω, with the challenge of

accurately imposing on Γ̃h boundary conditions. To this end, we resort to the idea introduced in [42] but instead,
perform an mth-order Taylor expansion of the concerned variable at the surrogate boundary in order to shift the
boundary condition from Γ to Γ̃h.

Let us assume that u is sufficiently smooth in the strip between Γ̃h and Γ so as to admit a mth-order Taylor
expansion pointwise, and let us denote by D i

d the ith-order directional derivative in the direction of d, defined as

D i
du =

∑
α∈Nn,|α|=i

i!
α!

∂iu
∂xα

dα. Then, we can write

u(x) = u(x̃ + d(x̃)) = u(x̃) +

m∑
i=1

D i
d u(x̃)
i!

+ (Rm(u, d))(x̃) , (6)

where the remainder Rm(u, d) satisfies |Rm(u, d)| = o(‖d‖m) as ‖d‖ → 0. Assume now that a Dirichlet condition of the
type u(x) = g(x) needs to be imposed on the true boundary Γ. Using the map Mh, one can extend g from Γ to Γ̃h as
ḡ(x̃) = g(Mh(x̃)). Then, the Taylor expansion can be used to enforce the Dirichlet condition on Γ̃h rather than Γ, as

S m
h u − ḡ + Rm

h u = 0 , (7)

where we have introduced the boundary operator

S m
h u := u +

m∑
i=1

D i
d u

i!
(8)

and Rm
h u is a short-hand notation for the Taylor expansion remainder Rm(u, d). Neglecting the remainder Rm

h u, we
obtain the final expression of the shifted boundary condition

S m
h u = ḡ , on Γ̃h , (9)

which will be weakly enforced on the discretization uh of u that we are going to introduce. Similarly, for a vector field
u, we deduce that its trace ḡ shifted on Γ̃h satisfies

Sm
h u + Rm

h u = ḡ , (10)

where Sm
h u := u +

m∑
i=1

D i
d u
i!

on Γ̃h and Rm
h u is the Taylor expansion remainder of u on Γ̃h. Again, neglecting the the

remainder Rm
h u, we obtain the shifted vector boundary condition

Sm
h u = ḡ , on Γ̃h . (11)

In what follows, whenever it does not cause confusion, the bar symbol will be removed from the extended quantities,
and we would write g and g in place of ḡ and ḡ, respectively. Before proceeding with the analysis of the Poisson and
Stokes problems using the Shifted Boundary Method, we make the following

Assumption 1. The Neumann boundary is body-fitted, that is ΓN ⊂ Γ̃h.

According to this assumption, the surrogate boundary where shifted Dirichlet conditions are enforced is Γ̃D,h :=
Γ̃h \ ΓN .

Remark 2. Assumption 1 is made for the mathematical proofs of stability and convergence, but is not a restrictive as-
sumption in numerical computations. We refer the interested reader to [5], where Neumann boundaries are “shifted”
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using a mixed variational formulation. In particular, shifting the Neumann conditions without resorting to a mixed
formulation causes a reduction by one order in the convergence rates, while the mixed formulation maintains opti-
mality of the error. See [5] for more details in the case of piecewise linear interpolation spaces. Similar results are
expected for higher-order polynomials. We will soon report on the numerical analysis of the high-order SBM with
Neumann boundary conditions in a separate publication.

3. The High-Order Shifted Boundary Method for the Poisson Equation

In order to present the essential ingredients of high-order SBM, we start from the simplest case of the Poisson
equation. We aim at numerically solving the Dirichlet boundary value problem

−∆u = f in Ω ,

u = g on Γ ,
(12)

where the data satisfy f ∈ Hm−1(Ω) and g ∈ Hm+1/2(Γ) for some m ≥ 1.
Introducing the finite dimensional subspace of H1(Ω̃h) made of continuous, piecewise polynomial functions on

the triangulation T̃h,
Vh = Vh(Ω̃h; T̃h) := {v ∈ H1(Ω̃h) : v|T ∈ Pm(T ), ∀T ∈ T̃h} , (13)

we discretize Problem (12) in Ω̃h rather than Ω and enforce (9) on Γ̃h through Nitsche’s penalization method [46]. Our
weak form then reads:

Find uh ∈ Vh such that ∀vh ∈ Vh

(∇uh,∇vh)0,Ω̃h
− (∂ñuh, vh)0,Γ̃h

− (S m
h uh, ∂ñvh)0,Γ̃h

+ γ (h−1S m
h uh, S 1

hvh)0,Γ̃h

= ( f , vh)0,Ω̃h
− (g, ∂ñvh)0,Γ̃h

+ γ (h−1g, S 1
hvh)0,Γ̃h

,
(14)

where the Nitsche parameter γ > 0 will be chosen large enough to guarantee the well-posedness of the problem.

Remark 3. The SBM formulation for linear finite elements (m = 1) has been thoroughly investigated in [2]. For
m > 1 note that the term S 1

hvh appears in the Nitsche’s penalty term. We could have replaced it with S m
h vh, but our

specific choice is helpful in deriving an enhanced L2 error estimate using the Aubin-Nitsche duality argument (see
Sect. 9).

In view of the subsequent analysis, it is convenient to introduce the bilinear form

ah(u, v) := (∇u,∇v)0,Ω̃h
− (∂ñu, v)0,Γ̃h

− (S m
h u, ∂ñv)0,Γ̃h

+ γ (h−1S m
h u, S 1

hv)0,Γ̃h
(15)

and the linear form
`h(v) := ( f , v)0,Ω̃h

− (g, ∂ñv)0,Γ̃h
+ γ (h−1g, S 1

hv)0,Γ̃h
, (16)

so that the proposed SBM discretization can be written in compact form as follows:

Find uh ∈ Vh such that ah(uh, vh) = `h(vh) ∀vh ∈ Vh . (17)

Conditions on the well-posedness of this problem will be discussed in Sects. 5 and 6.

4. The High-Order Shifted Boundary Method for the Stokes Equations

The strong form of the Stokes flow equations with non-homogeneous Dirichlet and Neumann boundary conditions
read

−∇ · (2µ ε(u) − pI) = f in Ω , (18a)
∇ · u = 0 in Ω , (18b)

u = uD on ΓD , (18c)
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(2µ ε(u) − pI) · n = tN on ΓN , (18d)

where ε(u) = 1/2(∇u + ∇uT ) is the velocity strain tensor (i.e., the symmetric gradient of the velocity), µ > 0 is
the dynamic viscosity, p is the pressure, f ∈ (Hm−1(Ω))n is a body force, uD ∈ (Hm+1/2(ΓD))n is the value of the
velocity on the Dirichlet boundary ΓD , ∅ and tN ∈ (Hm−1/2(ΓN))n is the vector-valued normal stress on the Neumann
boundary ΓN (where ∂Ω = Γ = ΓD ∪ ΓN with ΓD∩ΓN = ∅). The Stokes flow represents a prototype for the application
of the SBM to systems of differential equations in mixed form.

We introduce next the discrete spaces Vh(Ω̃h) and Qh(Ω̃h), for the velocity and the pressure, respectively. We
assume that a stable and convergent base formulation for the Stokes flow exist for these spaces in the case of body-
fitted grids. In what follows, for easiness of implementation we will consider the equal-order piecewise polynomial
spaces

Vh = Vh(Ω̃h; T̃h) := {v ∈ H1(Ω̃h)n : v|T ∈ Pm(T )n, ∀T ∈ T̃h} , (19a)

Qh = Qh(Ω̃h; T̃h) := {q ∈ H1(Ω̃h) : q|T ∈ Pm(T ), ∀T ∈ T̃h} , (19b)

for some m ≥ 1, which will be coupled with the stabilized formulation of Hughes et al. [35]. Alternative choices are
possible, such as, for example, using inf-sup stable Taylor-Hood elements with pressures of degree m−1 when m ≥ 2,
or using discontinuous Galerkin spaces.

In the case of pure Dirichlet conditions, that is ΓN = ∅, the space Qh(Ω̃h) needs to be modified as

Qh(Ω̃h) =

{
qh ∈ Qh(Ω̃h) |

∫
Ω̃h

qh = 0
}
. (20)

It is also convenient to introduce the product space Wh(Ω̃h) = Vh(Ω̃h) × Qh(Ω̃h).

Discretizing Problem (18) in Ω̃h, enforcing (11) on Γ̃D,h with ḡ = ūD, applying (18d) on ΓN (see Assumption 1) and
adopting an anti-symmetric form of the velocity strain and pressure gradient terms, we deduce the following SBM
weak form of (18):

Find [uh, ph] ∈Wh such that, ∀[wh, qh] ∈Wh

(2µ ε(uh), ε(wh))0,Ω̃h
− (ph,∇ · wh)0,Ω̃h

+ (∇ · uh, qh)0,Ω̃h
− (2µ ε(uh) − phI,wh ⊗ ñ)0,Γ̃D,h

− (Sm
h uh ⊗ ñ, 2µ ε(wh) + qhI)0,Γ̃D,h

+ γ (2µ h−1
⊥ Sm

h uh,S1
hwh)0,Γ̃D,h

+ δ
∑

T∈T̃h

(
h2
τ (2µ)−1(−∇ · (2µ ε(uh)) + ∇ph),∇qh

)
0,T

= ( f ,wh)0,Ω̃h
+ (tN ,wh)0,ΓN,h

− (ūD ⊗ ñ, 2µ ε(wh) + qhI)0,Γ̃D,h
+ γ (2µ h−1

⊥ ūD,S1
hwh)0,Γ̃D,h

+ δ
∑

T∈T̃h

(
h2
τ (2µ)−1 f ,∇qh

)
0,T

, (21)

where again γ > 0 is the Nitsche penalization parameter, whereas the parameter δ > 0 scales a pressure stabilization
term required by equal-order velocity/pressure pairs [35].

Remark 4. As for the Poisson case, note that the term S 1
hvh appears in the Nitsche penalty term. We could have

replaced it with S m
h vh, but our specific choice is helpful in deriving a L2 error estimate using the Aubin-Nitsche duality

argument.

In view of the subsequent analysis, it is convenient to introduce the bilinear form

Bh([u, p]; [w, q]) := ah(u,w) + bh(p,w) − bh(q,u) − b̄h(u, q) + ch(p, q) , (22a)

with

ah(u,w) := (2µ ε(u), ε(w))0,Ω̃h
− (2µ ε(u),w ⊗ ñ)0,Γ̃D,h

− (Sm
h u ⊗ ñ, 2µ ε(w))0,Γ̃D,h

+ γ (2µ h−1 Sm
h u,S1

hw)0,Γ̃D,h
, (22b)
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bh(p,w) := −(p,∇ · w)0,Ω̃h
+ (p,w · ñ)0,Γ̃D,h

, (22c)

b̄h(u, q) :=
m∑

i=1

D i
d u
i!

, qñ


0,Γ̃D,h

+ δ
∑

T∈T̃h

(
h2 (2µ)−1 ∇ · (2µ ε(u)),∇q

)
0,T

, (22d)

ch(ph, qh) := δ (h2 (2µ)−1 ∇p,∇q)0,Ω̃h
, (22e)

and the linear form

Lh([w, q]) := l f (w) + lg(q) , (22f)

with

l f (w) := ( f ,w)0,Ω̃h
− (ūD ⊗ ñ, 2µ ε(w))0,Γ̃D,h

+ γ (2µ h−1 ūD,S1
hw)0,Γ̃D,h

+ (tN ,w)0,ΓN,h , (22g)

lg(q) := −(ūD · ñ, q)0,Γ̃D,h
+ δ (h2 (2µ)−1 f ,∇q)0,Ω̃h

. (22h)

So, the variational statement (21) can be succinctly expressed as:

Find [uh, ph] ∈Wh such that, ∀[wh, qh] ∈Wh,

Bh([uh, ph]; [wh, qh]) = Lh([wh, qh]) . (23)

The study of well-posedness for this problem will be the object of the two following sections.

5. Coercivity and inf-sup properties of the bilinear forms

In this section, we give sufficient conditions that guarantee the uniform coercivity of the forms ah for both the
Poisson and the Stokes problem, and the fulfillment of a uniform inf-sup condition for the form Bh in the Stokes
problem.

5.1. Poisson Problem

We start by making the following assumption on the distance between the surrogate and physical boundaries, in
which the constant CI is defined in Property 3 while the constant Cinv is defined in Property 4 in the Appendix.

Assumption 2. The distance function d satisfies the condition

‖h−1d‖L∞(Γ̃h) +

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
≤

β

CI
, (24)

for some β ∈ (0, 1).

Remark 5. Assumption 2 was already used in [2] for the first-order polynomial interpolation space. In previous
works [3–5], the authors used instead the assumption ‖d h−1‖ ≤ cdhζ , for an arbitrary small ζ > 0 and a fixed cd, which
implies Assumption 2, and for this reason is less general. Note, however, that this alternative approach does not de-
pend on m. In fact, as m→ ∞, the left hand side of (24) converges to ecdhζ −1. Then, for h ≤ (ln(1 + β/CI)/cd)1/ζ , (24)
is satisfied for any order m.

Remark 6. Assumption 2 provides a simple mathematical condition that guarantees both the solvability of the varia-
tional equations (17) and (23), respectively, and the control of the remainder in the Taylor expansion of the boundary
terms. Assumption 2 is a sufficient, but by no means necessary condition for the well-posedness of the SBM, and, in
fact, it is not applied in the numerical tests, in which the grids are refined by simply splitting every element edge into
two sub-edges. Below, we detail a procedure to generate grids that satisfy Assumption 2:
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1. Select 0 < β < 1.

2. Compute β/CI with CI defined as in Property 3 in the Appendix.

3. Loop over the surrogate edges and compute ‖d h−1‖ at the quadrature points.

4. If ‖d h−1‖ > β/CI , slightly shift the location of the nodes closer to the true boundary.

Similar strategies can be followed in the case of the Stokes flow equations (see, later on, Assumption 3).

Theorem 1 (Coercivity, Poisson). There exist real numbers 0 < β̂(Cinv) < 1 and η̂(Cinv) > 0 depending on the constant
Cinv, such that if Assumption 2 holds for β = β̂(Cinv) and the Nitsche penalization parameter satisfies γ = 2 CI η with
η = η̂(Cinv), then the bilinear form ah defined in (15) satisfies

ah(uh, uh) ≥ α ‖uh‖
2
a , ∀uh ∈ Vh , (25a)

for some α = α̂(CI , Cinv) > 0, where

‖u‖2a := ‖∇u‖20,Ω̃h
+ ‖h−1/2S 1

hu‖20,Γ̃h
. (25b)

Proof. One has

ah(vh, vh) = ‖∇vh‖
2
0,Ω̃h
− 2(S 1

hvh, ∂ñvh)0,Γ̃h
+ (∂dvh, ∂ñvh)0,Γ̃h

−

m∑
i=2

(
D i

d vh

i!
, ∂ñvh)0,Γ̃h

+ γ ‖h−1/2S 1
hvh‖

2
0,Γ̃h

+ γ

m∑
i=2

(h−1 D i
d vh

i!
, S 1

hvh)0,Γ̃h

= ‖∇vh‖
2
0,Ω̃h
− 2(h−1/2S 1

hvh, h1/2∂ñvh)0,Γ̃h
+ (h−1‖d‖h1/2 ∂νvh, h1/2 ∂ñvh)0,Γ̃h

−

m∑
i=2

(h−1/2 D i
d vh

i!
, h1/2∂ñvh)0,Γ̃h

+ γ ‖h−1/2S 1
hvh‖

2
0,Γ̃h

+ γ

m∑
i=2

(h−1/2 D i
d vh

i!
, h−1/2S 1

hvh)0,Γ̃h

(26)

From Property 3 and (116), we get

ah(vh, vh) ≥ ‖∇vh‖
2
0,Ω̃h
− 2C1/2

I ‖h
−1/2S 1

hvh‖0,Γ̃h
‖∇vh‖0,Ω̃h

−CI ‖∇vh‖
2
0,Ω̃h

‖h−1d‖L∞(Γ̃h) + C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!


+ γ ‖h−1/2S 1

hvh‖
2
0,Γ̃h
− γC1/2

I C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
‖h−1/2S 1

hvh‖0,Γ̃h
‖∇vh‖0,Ω̃h

,

(27)

Note that here we abused slightly the notation, since Cinv refers to the largest of the inverse inequality constants
associated with the derivatives in the term D i

duh in (26). Similarly, we refer to CI to the largest trace inequality
constant, namely the one associated with ∇uh. Whence, by Young’s inequality,

ah(vh, vh) ≥

1 −CI

ε1 + ‖h−1d‖L∞(Γ̃h) + C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!


 ‖∇vh‖

2
0,Ω̃h

− 2−1γ ε2 C1/2
I C1/2

inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
‖∇vh‖

2
0,Ω̃h

+

γ − ε−1
1 − 2−1ε−1

2 γC1/2
I C1/2

inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖h−1/2S 1
hvh‖

2
0,Γ̃h

.

(28)
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Choosing ε1 = 2−1C−1
I , ε2 = C−1/2

I and setting γ = 2 CI η where η > 0 is a constant independent of the mesh size,

ah(vh, vh)η ≥ 2−1‖∇vh‖
2
0,Ω̃h

−CI

‖h−1d‖L∞(Γ̃h) + (1 + η) C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖∇vh‖
2
0,Ω̃h

+ 2 CI

η − 1 − 2−1ηCI C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖h−1/2S 1
hvh‖

2
0,Γ̃h

.

(29)

From Assumption 2, we obtain

ah(vh, vh) ≥
(
2−1 − β

(
1 + (1 + η) C1/2

inv

))
‖∇vh‖

2
0,Ω̃h

+ 2 CI

(
η − 1 − 2−1ηC1/2

inv β
)
‖h−1/2S 1

hvh‖
2
0,Γ̃h

. (30)

We need to find β so that 30 is positive, namely

β = β̂(Cinv) < min
(
2−1(1 + (1 + η) C1/2

inv )−1 , 2 (η − 1) η−1C−1/2
inv

)
. (31)

An optimal upper bound for β is attained by setting

η = η̂(Cinv) = 8−1C−1/2
inv (−4 + C1/2

inv + (65 Cinv + 56 C1/2
inv + 16)1/2) > 1 , (32)

so that the quantities on the right hand side of (31) are equal. Thus, the result is attained with α being the smallest
coefficient in (30), namely

α = α̂(CI , Cinv) = min
(
2−1 − β

(
1 + (1 + η) C1/2

inv

)
, 2 CI

(
η − 1 − 2−1ηC1/2

inv β
))
. (33)

Remark 7. Since Cinv increases with m, then η→ 8−1(1 + 651/2) ≈ 1.133 as m→ ∞.

Proposition 1. The quantity ‖uh‖a defined in (25b) is a norm on Vh(Ω̃h), equivalent to the norm ‖uh‖1,Ω̃h
(although

not uniformly with respect to the mesh size).

Proof. The proof is the same as that of Theorem 7 in [4]. (See also Remark 9.)

5.2. Stokes Problem

For the Stokes problem, we need a slightly stronger assumption on the distance between the surrogate and physical
boundaries; hereafter, CI and Cinv are defined as above, whereas C̄K is the constant in Korn’s inequality (117) in the
Appendix.

Assumption 3. The distance function d satisfies the condition

‖h−1d‖L∞(Γ̃h) +

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
≤

β

21/2 λ
, (34)

where, for some χ ∈ (0, 1), λ = (1 − χ2)−1/2CI C̄1/2
K and β = χmin

(
1,C1/2

I (1 − χ2)−1/2
)
.

To prove coercivity, we need an intermediate technical result.

Lemma 1. Let Assumption 3 hold. Then, ∀uh ∈ Vh,

l(Ω̃h)−2‖uh‖
2
0,Ω̃h

+
(
1 − χ2

)
‖∇uh‖

2
0,Ω̃h
≤ 2 C̄K‖h−1/2S1

huh‖
2
0,Γ̃D,h

+ C̄K‖ε(uh)‖20,Ω̃h
. (35)
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Proof. Korn’s inequality (117) on the velocity uh yields

l(Ω̃h)−2‖uh‖
2
0,Ω̃h

+ ‖∇uh‖
2
0,Ω̃h
≤ C̄K

(
l(Ω̃h)−1‖uh‖

2
0,Γ̃D,h

+ ‖ε(uh)‖20,Ω̃h

)
. (36)

Using the triangle inequality, Assumption 3 and Property 3 give

l(Ω̃h)−1/2‖uh‖0,Γ̃D,h
≤ l(Ω̃h)−1/2h1/2

Γ
‖h−1/2uh‖0,Γ̃D,h

≤ ‖h−1/2S1
huh‖0,Γ̃D,h

+ ‖h−1/2∇uh d‖0,Γ̃D,h

≤ ‖h−1/2S1
huh‖0,Γ̃D,h

+ C1/2
I ‖h

−1d‖L∞(Γ̃h)‖∇uh‖0,Ω̃h

≤ ‖h−1/2S1
huh‖0,Γ̃D,h

+ 2−1/2β λ−1C1/2
I ‖∇uh‖0,Ω̃h

. (37)

Thus,

l(Ω̃h)−1‖uh‖
2
0,Γ̃D,h

≤ 2
(
‖h−1/2S1

huh‖
2
0,Γ̃D,h

+ 2−1β2λ−2CI‖∇uh‖
2
0,Ω̃h

)
. (38)

Substituting (38) into (36) yields

l(Ω̃h)−2‖uh‖
2
0,Ω̃h

+
(
1 − β2λ−2C̄KCI

)
‖∇uh‖

2
0,Ω̃h
≤ 2 C̄K‖h−1/2S1

huh‖
2
0,Γ̃D,h

+ C̄K‖ε(uh)‖20,Ω̃h
. (39)

Replacing β and λ with their definitions completes the proof.

The remainder of this section will be devoted to establishing an inf-sup condition for the form Bh defined in (22a).

Theorem 2 (LBB inf-sup condition, Stokes). There exist real numbers 0 < χ̂(Cinv , CI) < 1 and η̂(Cinv , CI) > 0
depending on the constants Cinv and CI , such that if Assumption 3 holds for some χ < χ̂(Cinv , CI), the Nitsche
penalization parameter satisfies γ = 2 CI η with η = η̂(Cinv , CI) and the pressure stabilization δ = 3−1C−1

inv, then there
exists a constant αLBB > 0, independent of the mesh size, such that for any pair [uh, ph] ∈ Wh one can find a pair
[wh, qh] ∈Wh satisfying

Bh([uh, ph]; [wh, qh]) ≥ αLBB‖[uh, ph]‖B‖[wh, qh]‖B , (40)

where

‖[uh, ph]‖2B := ‖uh‖
2
a + ‖(2µ)−1/2 ph‖

2
0,Ω̃h

+ ‖(2µ)−1/2h∇ph‖
2
0,Ω̃h

. (41)

and
‖u‖2a := l(Ω̃h)−2‖(2 µ)1/2uh‖

2
0,Ω̃h

+ ‖(2 µ)1/2∇uh‖
2
0,Ω̃h

+ ‖(2 µ)1/2h−1/2S1
huh‖

2
0,Γ̃D,h

. (42)

Proof. Choosing first [wh, qh] = [uh, ph] in (22a), one has

Bh([uh, ph]; [uh, ph]) = ‖(2 µ)1/2ε(uh)‖20,Ω̃h
− 2 (2µ ε(uh)ñ,S1

huh)0,Γ̃D,h
+ (2µ ε(uh)ñ, ∂duh)0,Γ̃D,h

−

m∑
i=2

(2µ ε(uh)ñ,
D i

duh

i!
)0,Γ̃D,h

+ γ

m∑
i=2

(2µ h−1 D i
duh

i!
,S1

huh)0,Γ̃D,h

+ γ ‖(2 µ)1/2h−1/2S1
huh‖

2
0,Γ̃D,h

−

m∑
i=1

(
D i

duh

i!
, ph ñ)0,Γ̃D,h

+ δ
∑

T∈T̃h

(
h2(2 µ)−1∇ · (2µ ε(uh)),∇ph

)
0,T

+ δ ‖h (2 µ)−1/2∇ph‖
2
0;Ω̃h

. (43)

Applying Property 3 and Corollary 1 of the Appendix, we obtain

Bh([uh, ph]; [uh, ph]) ≥ ‖(2 µ)1/2ε(uh)‖20,Ω̃h
− 2 C1/2

I ‖(2 µ)1/2h−1/2S1
huh‖0,Γ̃D,h

‖(2µ h)1/2ε(uh)‖0,Ω̃h
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−CI ‖(2 µ)1/2ε(uh)‖0,Ω̃h
‖(2 µ)1/2∇uh‖0,Ω̃h

‖h−1d‖L∞(Γ̃h) + C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!


− γC1/2

I C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
‖(2 µ)1/2h−1/2S1

huh‖0,Γ̃h
‖(2 µ)1/2∇uh‖0,Ω̃h

+ γ ‖(2 µ)1/2h−1/2S1
huh‖

2
0,Γ̃D,h

+ δ ‖h (2 µ)−1/2∇ph‖
2
0;Ω̃h

+ δ ‖h (2 µ)−1/2∇ph‖0;Ω̃h
‖h (2 µ)1/2∇ · ε(uh)‖0;Ω̃h

−

‖h−1d‖L∞(Γ̃h) + C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖(2µ)−1/2 ph‖0,Ω̃h
‖(2 µ)1/2∇uh‖0,Ω̃h

. (44)

Note that here we abused slightly the notation, since Cinv refers to the largest of the inverse inequality constants
associated with the derivatives in the term D i

duh in (26). Similarly, we refer to CI to the largest trace inequality
constant, namely the one associated with ∇uh. Whence, by Young’s inequality,

Bh([uh, ph]; [uh, ph]) ≥
(
1 −CI ε1 − 2−1ε−1

4 δCinv

)
‖(2 µ)1/2ε(uh)‖20,Ω̃h

− 2−1CI ε2

‖h−1d‖L∞(Γ̃h) + C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖(2 µ)1/2ε(uh)‖20,Ω̃h

− 2−1CI ε
−1
2

‖h−1d‖L∞(Γ̃h) + C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖(2 µ)1/2∇uh‖
2
0,Ω̃h

− 2−1CI C1/2
inv γ ε3

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
‖(2 µ)1/2∇uh‖

2
0,Ω̃h

+

γ − ε−1
1 − 2−1γ ε−1

3 C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖(2 µ)1/2h−1/2S1
huh‖

2
0,Γ̃D,h

+ δ
(
1 − 2−1ε4

)
‖h (2 µ)−1/2∇ph‖

2
0;Ω̃h

− 2−1ε5 CI

‖h−1d‖L∞(Γ̃h) + C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖(2µ)−1/2 ph‖
2
0,Ω̃h

− 2−1ε−1
5 CI

‖h−1d‖L∞(Γ̃h) + C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖(2 µ)1/2∇uh‖
2
0,Ω̃h

. (45)

Choosing ε1 = 2−1C−1
I , ε2 = λC−1

I , ε3 = 2−1λ−1, ε4 = 2 · 3−1, ε5 = ε2, δ = 3−1C−1
inv and γ = 2 CI η, yields

Bh([uh, ph]; [uh, ph]) ≥ 2−2‖(2 µ)1/2ε(uh)‖20,Ω̃h

− 2−1λ

‖h−1d‖L∞(Γ̃h) + C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖(2 µ)1/2ε(uh)‖20,Ω̃h

−C2
I λ
−1

‖h−1d‖L∞(Γ̃h) +
(
1 + 2−1η

)
C1/2

inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖(2 µ)1/2∇uh‖
2
0,Ω̃h

+ 2 CI

η − 1 − λ ηC1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖(2 µ)1/2h−1/2S1
huh‖

2
0,Γ̃D,h

+ 2 · 3−1δ ‖h (2 µ)−1/2∇ph‖
2
0;Ω̃h
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− 2−1CI

‖h−1d‖L∞(Γ̃h) + C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!

 ‖(2µ)−1/2 ph‖
2
0,Ω̃h

. (46)

From Assumption 3,

Bh([uh, ph]; [uh, ph]) ≥ 2−3/2
(
2−1/2 − β (1 + C1/2

inv )
)
‖(2 µ)1/2ε(uh)‖20,Ω̃h

− 2−1/2λ−2C2
I β

(
1 +

(
1 + 2−1η

)
C1/2

inv

)
‖(2 µ)1/2∇uh‖

2
0,Ω̃h

+ 2 CI

(
η − 1 − 2−1/2β ηC1/2

inv

)
‖(2 µ)1/2h−1/2S1

huh‖
2
0,Γ̃D,h

+ 2 · 3−1δ ‖h (2 µ)−1/2∇ph‖
2
0;Ω̃h
− 2−3/2λ−1CI (1 + C1/2

inv ) β ‖(2µ)−1/2 ph‖
2
0,Ω̃h

. (47)

Making sure β < 2−1/2(1 + C1/2
inv )−1, applying Lemma 1 to the first term on the right-hand side, and recalling the

definition of λ, we obtain

Bh([uh, ph]; [uh, ph]) ≥ 2−3/2C̄−1
K

(
1 − χ2

) (
2−1/2 − β(3 (1 + C1/2

inv ) + ηC1/2
inv )

)
‖(2 µ)1/2∇uh‖

2
0,Ω̃h

+ 2−3/2C̄−1
K

(
1 − χ2

) (
2−1/2 − β (1 + C1/2

inv )
)

l(Ω̃h)−2‖(2 µ)1/2uh‖
2
0,Ω̃h

+ 2 CI

(
η − 1 − 2−1/2β ηC1/2

inv − 2−3/2C−1
I (2−1/2 − β (1 + C1/2

inv ))
)
‖(2 µ)1/2h−1/2S1

huh‖
2
0,Γ̃D,h

+ 2 · 3−1δ ‖h (2 µ)−1/2∇ph‖
2
0;Ω̃h
− 2−3/2C̄−1/2

K (1 − χ2)1/2(1 + C1/2
inv ) ‖(2µ)−1/2 ph‖

2
0,Ω̃h

. (48)

We need to find β so that 48 is positive, namely

β < min
(
2−1/2

(
3 (1 + C1/2

inv ) + ηC1/2
inv

)−1
, 21/2

(
η − 1 − 2−2C−1

I

) (
ηC1/2

inv − 2−1C−1
I (1 + C1/2

inv )
)−1

)
. (49)

From the definition of β one can satisfy (49) by picking

χ < min
(
2−1/2

(
3 (1 + C1/2

inv ) + ηC1/2
inv

)−1
, 21/2

(
η − 1 − 2−2C−1

I

) (
ηC1/2

inv − 2−1C−1
I (1 + C1/2

inv )
)−1

)
. (50)

An optimal upper bound for χ is attained by setting

η = −2−1
(
3 C−1/2

inv + 3 · 2−1 − 4−1C−1
I

)
+

(
4−1(3 C−1/2

inv + 3 · 2−1 − 4−1C−1
I )2 + (1 + C−1/2

inv )(3 + 2−1C−1
I )

)1/2
, (51)

so that the quantities on the right hand side of (50) are equal. Thus, with α being the smallest positive coefficient
in (48),

Bh([uh, ph]; [uh, ph]) ≥ α ‖uh‖
2
a + α ‖h (2 µ)−1/2∇ph‖

2
0;Ω̃h
− 2−3/2C̄−1/2

K (1 − χ2)1/2(1 + C1/2
inv ) β ‖(2µ)−1/2 ph‖

2
0,Ω̃h

(52)

with ‖uh‖a as defined in (42). At this point, we follow the same steps detailed in Theorem 3 in [3]. In particular, there
exists a constant CLBB > 0 independent of the meshsize, and an element vph ∈ (H1

0,Γ̃D,h
(Ω̃h))n satisfying−(ph,∇·vph )Ω̃h

≥

CLBB ‖ph‖0;Ω̃h
‖vph‖1,Ω̃h

with l(Ω̃h)−1‖(2µ)1/2 vph‖1;Ω̃h
= ‖(2µ)−1/2 ph‖0;Ω̃h

. Let vph
h be the H1-continuous finite element

interpolant of vph defined by the Scott-Zhang operator; then l(Ω̃h)−1‖(2µ)1/2 vph‖1;Ω̃h
≤ CS ZC ‖(2µ)−1/2 ph‖0;Ω̃h

. Taking
[w, q] = [vph

h , 0] in (22a) and using the fact that the trace of vph and vph
h on Γ̃D,h is zero, we have

Bh([uh, ph]; [vph
h , 0]) = a(uh, v

ph
h ) + b(ph, v

ph
h )

= (2µ ε(uh), ε(vph
h ))0,Ω̃h

− (∇ · (vph
h − vph ), ph)0,Ω̃h

− (∇ · vph , ph)0,Ω̃h

− (Sm
h uh ⊗ ñ, 2µ ε(vph

h ))0,Γ̃D,h
+ γ (2µ h−1Sm

h uh,∇vph
h d)0,Γ̃D,h

. (53)
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The first three terms can be bounded similarly to Theorem 3 in [3]:

(ε(vph
h ), 2µ ε(uh))0,Ω̃h

≥ − 2−1ε−1
6 ‖

√
2µ∇uh‖

2
0;Ω̃h
− 2−1CS ZC ε6‖ph/

√
2µ‖20;Ω̃h

, (54a)

−(∇ · (vph
h − vph ), ph)0,Ω̃h

≥ − 2−1ε−1
7 ‖(2 µ)−1/2h∇ph‖

2
0;Ω̃h
− 2−1ε7 CS ZC C2

int‖(2 µ)−1/2 ph‖
2
0;Ω̃h

, (54b)

−(∇ · vph , ph)0,Ω̃h
≥ CLBB‖(2 µ)−1/2 ph‖

2
0,Ω̃h

. (54c)

Using Assumption 3, Corollary 1 and Property 3 in the Appendix, we can bound the last two terms in (53):

−(Sm
h uh ⊗ ñ, 2µ ε(vph

h ))0,Γ̃D,h
≥ − 2−1ε−1

8 ‖(2 µ)1/2h−1/2S1
huh‖

2
0;Γ̃D,h

− 2−1ε−1
9 CI C1/2

inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
‖(2 µ)1/2∇uh‖

2
0;Ω̃h

− 2−1CI ε8‖(2 µ)1/2ε(vph
h )‖20;Ω̃h

− 2−1ε9 CI C1/2
inv

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
‖(2 µ)1/2ε(vph

h )‖20;Ω̃h

≥ − 2−1ε−1
8 ‖(2 µ)1/2h−1/2S1

huh‖
2
0;Γ̃D,h

− 2−3/2ε−1
9 λ−1CI βC1/2

inv ‖(2 µ)1/2∇uh‖
2
0;Ω̃h

− 2−1CS ZC CI

(
ε8 + 2−1/2ε9 λ

−1C1/2
inv β

)
‖(2 µ)−1/2 ph‖

2
0;Ω̃h

, (54d)

γ (2µ h−1Sm
h uh,∇vph

h d)0,Γ̃D,h
≥ − 2−3/2γ λ−1ε−1

10 β ‖(2 µ)1/2h−1/2S1
huh‖

2
0;Γ̃D,h

− 2−2γ λ−2ε−1
11 CI C1/2

inv β
2‖(2 µ)1/2∇uh‖

2
0;Ω̃h

− γ 2−1CIλ
−1β

(
2−1/2ε10 + 2−1λ−1βC1/2

inv ε11

)
‖(2 µ)1/2∇vph

h ‖
2
0;Ω̃h

≥ − 2−3/2γ λ−1ε−1
10 β ‖(2 µ)1/2h−1/2S1

huh‖
2
0;Γ̃D,h

− 2−2γ λ−2ε−1
11 CI C1/2

inv β
2 ‖(2 µ)1/2∇uh‖

2
0;Ω̃h

− γ 2−1CS ZC CI λ
−1 β

(
2−1/2ε10 + 2−1 λ−1βC1/2

inv ε11

)
‖(2 µ)−1/2 ph‖

2
0;Ω̃h

. (54e)

We can combine all the results obtained so far by choosing the test functions as [wh, qh] = [ζuh + vph
h , ζph] and taking

ε6 = 6−1C−1
S ZCCLBB, ε7 = C−2

int ε6, ε8 = C−1
I ε6, ε9 = 21/2β−1C−1/2

inv λ ε8, ε10 = γ−1C1/2
inv ε9 and ε11 = 21/2β−1λC−1/2

inv ε10; gives

Bh([uh, ph]; [ζuh + vph
h , ζph]) ≥ ζ α ‖(2 µ)1/2∇uh‖

2
0;Ω̃h

− 3 C−1
LBBCS ZC

(
1 + 2−1Cinv C2

I β
2λ−2 + 2−2Cinv γ

2λ−4C2
I β

4
)
‖(2 µ)1/2∇uh‖

2
0;Ω̃h

+
(
ζ α − 3 C−1

LBBCS ZC C2
int

)
‖(2 µ)−1/2h∇ph‖

2
0;Ω̃h

+ ζ α ‖(2 µ)1/2h−1/2 S1
huh‖

2
0;Γ̃D,h

− 3 C−1
LBBCS ZC CI

(
1 + 2−1λ−2γ2β2

)
‖(2 µ)1/2h−1/2 S1

huh‖
2
0;Γ̃D,h

+
(
2−1CLBB − ζ 2−3/2C̄−1/2

K (1 − χ2)1/2(1 + C1/2
inv ) β

)
‖(2 µ)−1/2 ph‖

2
0;Ω̃h

+ ζ α l(Ω̃h)−2‖(2 µ)1/2uh‖
2
0,Ω̃h

. (55)

Picking ζ > 3α−1C−1
LBBCS ZC ρ with

ρ = max
(
1 + 2−1Cinv C2

I β
2λ−2 + 2−2Cinv γ

2λ−4C2
I β

4,C2
int,CI

(
1 + 2−1λ−2γ2β2

))
(56)

and selecting χ small enough such that (1 − χ2)1/2β < 21/2CLBB ζ
−1C̄1/2

K (1 + C1/2
inv )−1, we can conclude the proof by

taking the LBB constant equal to

αLBB := min
(
ζCb − 3ρC−1

LBBCS ZC , 2−1CLBB − ζ 2−3/2C̄−1/2
K (1 − χ2)1/2(1 + C1/2

inv ) β
)
. (57)

Remark 8. Since Cinv and CI increase with m, then η→ 4−1(−3 + 571/2) ≈ 1.138 as m→ ∞.
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6. Continuity of the bilinear forms

In this section, we prove the continuity of the bilinear forms introduced in Sects. 3 and 4, with respect to the norms
of suitable infinite-dimensional spaces of functions defined in Ω̃h.

6.1. Poisson Problem

In view of the convergence analysis, we consider ah as defined on a product space V(Ω̃h; T̃h) × V(Ω̃h; T̃h), where
V(Ω̃h; T̃h) is an infinite-dimensional subspace of H1(Ω̃h), depending upon the triangulation T̃h and containing Vh,
made of functions for which the traces on Γ̃h of any partial derivative of order ≤ m is well-defined and controlled in
L2(Γ̃h).

To define V(Ω̃h; T̃h), let us introduce a ‘reference’ element T̂ for all our triangulations; as usual, we assume that T̂
has unitary diameter. Let Ê ⊂ ∂T̂ any edge/face of T̂ . Given a function v ∈ Hm(T̂ ), denote hereafter by ∂̂iv any partial
derivative of v of order i ≤ m. Then, the trace theorem (see e.g. [29]) guarantees that for 0 ≤ i ≤ m − 1 the restriction
(∂̂iv)|Ê belongs to L2(Ê); more precisely, there exists a constant Ĉ > 0 such that ‖∂̂iv‖2

0,Ê
≤ Ĉ ‖v‖2

m,T̂
for all v ∈ Hm(T̂ ),

0 ≤ i ≤ m − 1. On the other hand, the norm on the right-hand side is equivalent to the norm (‖v‖2
0,T̂

+ |v|2
m,T̂

)1/2; hence,

after possibly changing the value of Ĉ it holds

‖∂̂iv‖2
0,Ê
≤ Ĉ

(
‖v‖2

0,T̂
+ |v|2

m,T̂

)
, ∀v ∈ Hm(T̂ ), 0 ≤ i ≤ m − 1 .

Replacing v by any component of the gradient ∇̂w of a function w ∈ Hm+1(T̂ ) yields

‖∂̂iw‖2
0,Ê
≤ Ĉ

(
‖∇̂w‖2

0,T̂
+ |w|2

m+1,T̂

)
, ∀w ∈ Hm+1(T̂ ), 1 ≤ i ≤ m .

Next, consider an element T ∈ T̃h with edge/face E: a mapping and scaling argument yields after a simple
computation the existence of a constant C̄I > 0 independent of h such that

h2i−1
T ‖∂iw‖20,E ≤ C̄I

(
‖∇w‖20,T + h2m

T |w|
2
m+1,T

)
, ∀w ∈ Hm+1(T ), 1 ≤ i ≤ m , (58)

where ∂iw denotes here any partial derivative of w of order i.
Based on this estimate, we are led to give the following definition of the space V(Ω̃h; T̃h), which involves the strip

of elements in T̃h with at least one edge/face on Γ̃h, i.e., the subset

Ω̃b
h :=

⋃
{T ∈ T̃ b

h } , (59)

where T̃ b
h := {T ∈ T̃h : meas (∂T ∩ Γ̃h) > 0}.

Definition 1. Let us set

V(Ω̃h; T̃h) = V(Ω̃h; T̃h,m) := {w ∈ H1(Ω̃h) : w|T ∈ Hm+1(T ), ∀T ∈ T̃ b
h } , (60)

equipped with the norm
‖w‖2

V(Ω̃h;T̃h)
:= ‖w‖2a + |hm w|2

m+1,T̃ b
h
. (61)

Note that Vh ⊂ V(Ω̃h; T̃h) and ‖vh‖V(Ω̃h;T̃h) = ‖vh‖a for all vh ∈ Vh, thanks to the property |vh|m+1,T = 0 for all
T ∈ T̃h. Note as well that Hm+1(Ω̃h) ⊂ V(Ω̃h; T̃h).

Property 1. There exists a constant CD > 0 independent of h such that

‖hi−1/2 D i
d w‖0;Γ̃D,h

≤ CD ‖w‖V(Ω̃h;T̃h) , ∀w ∈ V(Ω̃h; T̃h) , 1 ≤ i ≤ m . (62)

Proof. Writing d = ‖d‖ν, it holds D i
d w = ‖d‖iD i

ν w, whence by (58) and (61), recalling (5),

‖hi−1/2D i
d w‖0;Γ̃D,h

≤ ‖h−1d‖L∞(Γ̃h)‖h
i−1/2D i

ν w‖0;Γ̃D,h
≤ CD ‖w‖V(Ω̃h;T̃h) . (63)
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Remark 9. The norm ‖w‖V(Ω̃h;T̃h) uniformly controls from above the standard norm ‖w‖1,Ω̃h
. Indeed, the latter is

equivalent to the norm
(
‖∇w‖2

0,Ω̃h
+ ‖w‖2

0,Γ̃h

)1/2
and one has by Property 1 with i = 1

‖w‖0,Γ̃h
. ‖h−1/2w‖0,Γ̃h

≤ ‖h−1/2S 1
hw‖0,Γ̃h

+ ‖h−1/2 Dd w‖0,Γ̃h
. ‖w‖V(Ω̃h;T̃h) . (64)

Theorem 3 (Continuity, Poisson). The bilinear form ah introduced in (15) is defined in V(Ω̃h; T̃h) × V(Ω̃h; T̃h) and
uniformly continuous therein; precisely, there exists A > 0 independent of h such that

| ah(w, v) | ≤ A ‖w‖V(Ω̃h;T̃h) ‖v‖V(Ω̃h;T̃h) , ∀w, v ∈ V(Ω̃h; T̃h) . (65)

Proof. The proof exploits Property 1, with arguments similar to those detailed in the proof of the following Theorem 4.

6.2. Stokes problem

We now turn to discuss the continuity of the form Bh. To this end, we define the following spaces.

Definition 2. Let V(Ω̃h; T̃h) = V(Ω̃h; T̃h,m) be defined in (60). Then, let us set

V(Ω̃h; T̃h) = V(Ω̃h; T̃h,m) := (V(Ω̃h; T̃h,m) ∩ H2(Ω̃h; T̃h))n , (66)

(where H2(Ω̃h; T̃h) := {v ∈ H1(Ω̃h) : v|T ∈ H2(T ) ∀T ∈ T̃h}) and

Q(Ω̃h) =

H1(Ω̃h) if ΓN , ∅

H1(Ω̃h) ∩ L2
0(Ω̃h) otherwise

(67)

Furthermore, let us define W(Ω̃h; T̃h) = V(Ω̃h; T̃h) × Q(Ω̃h), equipped with the norm

‖ [v, q]‖2W(Ω̃h;T̃h)
:= ‖ [v, q] ‖2B + 2µ |hm v|2

m+1,T̃ b
h

+ 2µ |h v|2
2,Ω̃h,T̃h

. (68)

Note that Wh ⊂W(Ω̃h; T̃h) and that there exists C > 0 independent of h such that ‖[vh, qh]‖W(Ω̃h;T̃h) ≤ C ‖ [vh, qh] ‖B
for all [vh, qh] ∈ Wh. Finally, recalling Remark 9, the norm ‖v‖V(Ω̃h;T̃h) uniformly controls from above the standard
norm ‖v‖1,Ω̃h

.
The following property is the counterpart of Property 1.

Property 2. There exists a constant CD > 0 independent of h such that

‖(2µ)1/2hi−1/2 D i
d w‖0;Γ̃D,h

≤ CD ‖w‖V(Ω̃h;T̃h) , ∀w ∈ V(Ω̃h; T̃h) , 1 ≤ i ≤ m . (69)

Theorem 4 (Continuity, Stokes). The bilinear form Bh introduced in (22a) is defined in W(Ω̃h; T̃h)×Wh(Ω̃h; T̃h) and
uniformly continuous therein; precisely, there exists CB > 0 independent of h such that

|Bh([u, p], [wh, qh]) | ≤ CB ‖ [u, p] ‖W(Ω̃h;T̃h) ‖ [wh, qh] ‖B , (70)

∀[u, p] ∈W(Ω̃h; T̃h) and ∀[wh, qh] ∈Wh(Ω̃h; T̃h) .

Proof. For convenience, we add and subtract the terms ((∇wh)d, 2 µ ε(u)ñ)Γ̃D,h
and ((∇wh)d, p ñ)Γ̃D,h

to the bilinear
form Bh([u, p]; [wh, qh]) and obtain:

Bh([u, p]; [wh, qh]) = (2 µ ε(u), ε(wh))0,Ω̃h
− (p,∇ · wh)0,Ω̃h

+ (∇ · u, qh)0,Ω̃h
− (2 µ ε(u)ñ,S1

hwh)0,Γ̃D,h
+ (p ñ,S1

hwh)0,Γ̃D,h

+ ((∇wh)d, 2 µ ε(u)ñ)0,Γ̃D,h
− ((∇wh)d, p ñ)0,Γ̃D,h

− (Sm
h u ⊗ ñ, 2 µ ε(wh) + qhI)0,Γ̃D,h
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+ γ (2 µ h−1
⊥ Sm

h u,S1
hwh)0,Γ̃D,h

+ δ
∑

T∈T̃h

(
h2
τ(2 µ)−1(−∇ · (2 µ ε(u)) + ∇p),∇qh

)
0,T

≤ ‖(2 µ)1/2ε(u)‖0;Ω̃h
‖(2 µ)1/2ε(wh)‖0;Ω̃h

+ ‖(2 µ)−1/2 p‖0;Ω̃h
‖(2 µ)1/2∇ · wh‖0;Ω̃h

+ ‖(2 µ)1/2∇ · u‖0;Ω̃h
‖(2 µ)−1/2qh‖0;Ω̃h

+ ‖(2 µ h)1/2ε(u)‖0;Γ̃D,h
‖(2 µ)1/2h−1/2S1

hwh‖0;Γ̃D,h

+ ‖(2 µ)−1/2h1/2 p‖0;Γ̃D,h
‖(2 µ)1/2h−1/2S1

hwh‖0;Γ̃D,h

+ ‖h−1d‖L∞(Γ̃h)‖(2 µ)1/2h1/2ε(u)‖0;Γ̃D,h
‖(2 µ)1/2h1/2∇wh‖0;Γ̃D,h

+ ‖h−1d‖L∞(Γ̃h)‖(2 µ)−1/2h1/2 p‖0;Γ̃D,h
‖(2 µ)1/2h1/2∇wh‖0;Γ̃D,h

+ ‖(2 µ)1/2h−1/2S1
hu‖0;Γ̃D,h

‖(2 µ)1/2h1/2ε(wh)‖0;Γ̃D,h
+ ‖(2 µ)1/2h−1/2S1

hu‖0;Γ̃D,h
‖(2 µ)−1/2h1/2qh‖0;Γ̃D,h

+

 m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
‖(2µ)1/2hi−1/2D i

du‖0;Γ̃D,h

 ‖(2 µ)1/2h1/2ε(wh)‖0;Γ̃D,h

+

 m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
‖(2µ)1/2hi−1/2D i

du‖0;Γ̃D,h

 ‖(2 µ)−1/2h1/2qh‖0;Γ̃D,h

+ γ‖(2 µ)1/2h−1/2S1
hu‖0;Γ̃D,h

‖(2 µ)1/2h−1/2S1
hwh‖0;Γ̃D,h

+ γ

 m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
‖(2µ)1/2hi−1/2D i

du‖0;Γ̃D,h

 ‖(2 µ)1/2h−1/2S1
hwh‖0;Γ̃D,h

+ δ ‖(2 µ)−1/2h∇p‖0;Ω̃h
‖(2 µ)−1/2h∇qh‖0;Ω̃h

+ δ ‖(2 µ)1/2h∇ · ε(u)‖0;Ω̃h;T̃ h‖(2 µ)−1/2h∇qh‖0;Ω̃h
. (71)

Using Properties 3 and 4 in the Appendix and Property 2 above, along with the fact that ‖∇ · ε(u)‖0;Ω̃h;T̃ h .
‖∇ε(u)‖0;Ω̃h;T̃ h ≤ ‖∆u‖0;Ω̃h;T̃ h and ‖∇ · u‖0;Ω̃h

. ‖∇u‖0;Ω̃h
, after some tedious algebra we obtain the desired result.

7. Analysis of the Taylor remainder

This section is devoted to the analysis of the behavior of the Taylor remainder Rm
h u = ḡ − S m

h u in the expansion
of u on Γ̃h, introduced in (7). In particular, we are interested in estimating a weighted L2-norm of Rm

h u along Γ̃h in
terms of the mesh parameter hΓ. We detail our analysis for the two-dimensional situation, since the extension to three
dimensions poses no difficulties.

Let Ẽ ⊂ Γ̃h be an edge of a triangle T = TẼ ∈ T̃ b
h such that Mh(Ẽ) ⊂ ΓD. Since x = Mh(x̃) is the closest-

point projection upon Γ for all x̃ ∈ Ẽ, the vector d(x̃) is aligned with the unit outward normal vector n(x) to Γ. Let
x̃a, x̃b be the endpoints of Ẽ, and hE := ‖x̃b − x̃a‖ its length. Introducing the unit vector z̃ := h−1

Ẽ
(x̃b − x̃a), let us

parametrize the points in Ẽ by x̃(τ) = x̃a + τ z̃ with 0 ≤ τ ≤ hẼ . Correspondingly, points in Mh(Ẽ) are parametrized
by x(τ) = Mh(x̃(τ)); let us set n(τ) := n(x(τ)). Furthermore, let us introduce the 2D parametrization

x(τ, σ) = Φ(τ, σ) := x̃(τ) + σn(τ) , 0 ≤ τ ≤ hẼ , 0 ≤ σ ≤ d(τ) := ‖d(x̃(τ))‖ , (72)

as shown in Figure 2. Note that Φ takes values in Ω̄, and satisfies Φ(τ, d(τ)) = x(τ) for 0 ≤ τ ≤ hẼ . In order to
compute the remainder Rm

h u at the point x̃(τ) for some fixed τ, let us introduce the mapping φ(σ) := u(Φ(τ, σ)). Then,
assuming u smooth enough (or applying a density argument), one has the Taylor representation

ḡ(x̃(τ)) = φ(d(τ)) = φ(0) +
dφ
dσ

(0)d(τ) + ... +

∫ d(τ)

0

dm+1φ

dσm+1 (s)
(d(τ) − s)m

m!
ds ,

with

φ(0) = u(x̃(τ)) ,
dφ
dσ

(0) = ∇u(x̃(τ)) · n(τ) ,
dm+1φ

dσm+1 (s) = Dm+1
n(τ) u(x(τ, σ)) .
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Ẽ
hẼ

x̃a x̃bx̃(τ)

Γ

x(τ)

x(τ, σ)d(
x̃(
τ)

)

Figure 2: Representation of a portion of the boundary Γ, a surrogate edge Ẽ and their respective parametrization.

It follows that

(Rm
h u)(x̃(τ)) =

∫ d(τ)

0
Dm+1

n(τ) u(x(τ, s))
(d(τ) − s)m

m!
ds . (73)

Using Hölder’s inequality for 1
p + 1

q = 1 with 2 ≤ p ≤ ∞, we easily get

|(Rm
h u)(x̃(τ))| ≤

1
m!(1 + mq)1/q (d(τ))m+1/q

(∫ d(τ)

0
‖Dm+1u(x(τ, s))‖p ds

)1/p

.

Squaring and integrating over Ẽ, and using once more Hölder’s inequality, we get, with dẼ := maxτ∈[0,hẼ ] d(τ),

‖Rm
h u‖20,Ẽ ≤ cp d2(m+1−1/p)

Ẽ
h1−2/p

Ẽ

(∫ hẼ

0

∫ d(τ)

0
‖Dm+1u(x(τ, s))‖p ds dτ

)2/p

. (74)

Now, define the region RẼ := {(τ, σ) : 0 ≤ τ ≤ hẼ , 0 ≤ σ ≤ d(τ)} and set AẼ := Φ(RẼ) ⊂ Ω̄. We proceed in
two different ways, depending on the fulfillment of the following non-orthogonality condition: there exists a constant
% > 0 independent of h such that

|(ñ · ν)(x̃)| ≥ % , ∀x̃ ∈ T ∩ Γ̃h , ∀T ∈ T̃h , (75)

where ñ is the unit normal vector to the surrogate boundary Γ̃h, and ν is the unit vector aligned with the distance d.

Remark 10. Assumption 2 or 3 for the Poisson or Stokes problems, respectively, imply (75). In fact, if an edge E ⊂ T
on the surrogate boundary is orthogonal to the true boundary, there will be points on that edge with a distance from the
true boundary larger than or equal to the length |E| of the edge; since |E| ≥ c hT for some constant c ∈ (0, 1) depending
on the regularity of the mesh, for these points one has ‖h−1

T d‖ ≥ c, which contradicts Assumption 2 (Assumption 3,
resp.) if β (χ, resp.) is chosen small enough.

If the condition (75) is satisfied, then one can prove (see e.g., [2, Lemma 1] or [48, Lemma 3.4])) that there exists
a constant b > 0 independent of Ẽ such that for hẼ small enough the Jacobian matrix JΦ of the mapping (72) satisfies

|det JΦ(τ, σ)| ≥ b , ∀(τ, σ) ∈ RẼ .

This allows us to apply a change of variable in the previous integral. Precisely, if u ∈ Hm+1(AẼ) one has∫ hẼ

0

∫ d(τ)

0
‖Dm+1u(x(τ, s))‖2 ds dτ ≤

1
b

∫
AẼ

‖Dm+1u(x(τ, s))‖2 dx .

Thus, from (74) (with p = 2) and (5), we derive the existence of a constant c̄2 > 0 independent of Ẽ such that

‖h−1/2
Ẽ

Rm
h u‖20,Ẽ ≤ c̄2h2m

Ẽ |u|
2
m+1,AẼ

. (76)
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Let ΩS be a neighborhood of Γ in Ω̄ satisfying ⋃
Ẽ⊂Γ̃h

AẼ ⊆ ΩS . (77)

Note that the sets AẼ may overlap only a number of times bounded independently of the meshsize. Hence, if u ∈
Hm+1(ΩS ), we obtain

‖h−1/2Rm
h u‖20,Γ̃h

≤ c̄2 h2m
Γ

∑
Ẽ⊂Γ̃h

|u|2m+1,AẼ
≤ C2 h2m

Γ |u|
2
m+1,ΩS

.

Suppose now that condition (75) is not satisfied. In this case, we may assume the stronger smoothness condition
u ∈ Cm+1(A Ẽ); going back to inequality (74) with p = ∞, we can replace (76) by the following bound

‖h−1/2
Ẽ

Rm
h u‖20,Ẽ ≤ c̄∞h2(m+1)

Ẽ
|u|2

Cm+1(A Ẽ )
(78)

and proceed as above.
Summarizing, we have obtained the following result.

Proposition 2. Let ΩS satisfy (77). i) If condition (75) holds, and the exact solution satisfies u ∈ Hm+1(ΩS ), there
exists a constant C2 > 0 independent of hΓ such that

‖h−1/2Rm
h u‖0,Γ̃h

≤ C2 hm
Γ |u|m+1,ΩS . (79)

ii) If condition (75) does not hold, but the exact solution satisfies u ∈ Cm+1(ΩS ), there exists a constant C̄∞ > 0
independent of hΓ such that

‖h−1/2Rm
h u‖0,Γ̃h

≤ C̄∞ hm+1/2
Γ

|u|Cm+1(ΩS ) . (80)

Remark 11. From Proposition 2 one can immediately obtain analogous estimates for the remainder of the Taylor
expansion of the solution u of the Stokes problem.

8. Consistency and convergence in the energy norm

The results given in this section extend in a rather straightforward manner those for the low-order case m = 1,
available in [2, 4]; for this reason, we just highlight the main steps. The analysis hinges upon Strang’s Second
Lemma: the approximation error is bounded using classical results in finite elements, whereas the consistency error is
controlled by the estimate on the Taylor remainder given in the previous section.

8.1. Poisson problem

Strang’s Lemma reads
‖u − uh‖V(Ω̃h;T̃h) ≤

(
1 + α−1A

)
Ea,h(u) + α−1Ec,h(u) , (81)

where the approximation error and the consistency error are defined by

Ea,h(u) := inf
vh∈Vh
‖u − vh‖V(Ω̃h;T̃h) , Ec,h(u) := sup

vh∈Vh

ah(u, vh) − `h(vh)
‖vh‖V(Ω̃h;T̃h)

. (82)

They can be estimated as indicated in the following propositions, whose proofs are omitted since they are similar to
those for the analogous results given below for the Stokes problem.

Proposition 3. Let u ∈ Hm+1(Ω). There exists a constant Ca > 0 independent of u and the meshsize such that

Ea,h(u) ≤ Cahm
Ω |u|m+1,Ω̃h

. (83)

We estimate the consistency error Ec,h(u) using Proposition 2 and the identity ah(u, vh)− `h(vh) = (Rm
h u, ∂ñvh)0,Γ̃h

+

γ (h−1Rm
h u, S 1

hvh)0,Γ̃h
.
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Proposition 4. Let u ∈ Hm+1(Ω). If condition (75) holds true, there exists a constant Cc > 0 independent of u and the
meshsize such that

Ec,h(u) ≤ Cc hm
Γ |u|m+1,ΩS . (84)

If condition (75) does not hold but u ∈ Cm+1(ΩS ), there exists a constant Cc > 0 independent of u and the meshsize
such that

Ec,h(u) ≤ Cc hm+1/2
Γ

|u|Cm+1(ΩS ) . (85)

Based on the latter result, we formulate the following regularity requirement on the exact solution u.

Assumption 4. Let u ∈ Hm+1(Ω). In addition, either i) condition (75) holds true, or ii) condition (75) does not hold
but u ∈ Cm+1(ΩS ).

Consequently, it is convenient to define the seminorm

|u|m+1,? =

|u|m+1,Ω in case i) ,
|u|m+1,Ω̃h

+ h1/2
Γ
|u|Cm+1(ΩS ) in case ii) .

(86)

Then, we obtain an estimate of the discretization error u− uh in the ‘energy’ norm by substituting (83) and (84) in
(81), together with the inequality hΓ ≤ hΩ.

Theorem 5. Under Assumption 4 and the hypotheses made in Theorem 1, there exists a constant C > 0 independent
of u and the meshsize such that

‖u − uh‖V(Ω̃h;T̃h) ≤ C hm
Ω |u|m+1,? . (87)

8.2. Stokes problem

Strang Lemma now reads

‖[u, p] − [uh, ph]‖W(Ω̃h;T̃h) ≤
(
1 + α−1

LBB‖B‖W(Ω̃h;T̃h)×Wh(Ω̃h;T̃h)

)
EB,a,h([u, p]) + α−1

LBBEB,c,h([u, p]) (88a)

with
EB,a,h([u, p]) := inf

[wh,qh]∈Wh(Ω̃h;T̃h)
‖[u, p] − [wh, qh]‖W(Ω̃h;T̃h) , (88b)

EB,c,h([u, p]) := sup
[wh,qh]∈Wh(Ω̃h;T̃h)

|Lh([wh, qh]) −Bh([u, p]; [wh, qh])|
‖[wh, qh]‖W(Ω̃h;T̃h)

. (88c)

We are going to estimate both errors in terms of the meshsize hΩ introduced in (2).

Proposition 5. Let u ∈ (Hm+1(Ω))n and p ∈ Hm(Ω). There exists a constant CAPP > 0 independent of [u, p] and the
mesh size such that

EB,a,h([u, p]) ≤ CAPP hm
Ω

(
µ1/2|u|m+1;Ω̃h

+ µ−1/2|p|m;Ω̃h

)
. (89)

Proof. Since Hr(Ω) ⊂ C0(Ω̄) with continuous injection for r ≥ 2, we can set wh = Im
h u where Im

h u is the globally
continuous, m-th order piecewise polynomial interpolant at the nodes of T̃h. Also, we set qh = Im

h p if m ≥ 2, or
qh = IS Z

h p for m = 1 (where IS Z
h is the piecewise linear Scott-Zhang interpolant on the same grid), corrected by an

additive constant to satisfy the zero-average condition in the pure Dirichlet case. We can now estimate the interpolation
error ‖[eI

u, e
I
p]‖W(Ω̃h;T̃h) where eI

u := u−wh and eI
p := p− qh. Classical approximation results for these operators yield

‖(2 µ)1/2∇eI
u‖0;Ω̃h

+ l(Ω̃h)−1‖(2 µ)1/2eI
u‖0;Ω̃h

≤ C1 µ
1/2hm

Ω |u|m+1;Ω̃h
(90a)

and

‖(2 µ)−1/2eI
p‖0;Ω̃h

+ ‖(2 µ)−1/2h∇eI
p‖0;Ω̃h

≤ C2 µ
−1/2hm

Ω |p|m;Ω̃h
. (90b)
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On the other hand,

‖(2 µ)1/2h−1/2S1
heI

u‖0;Γ̃D,h
≤ ‖(2 µ)1/2h−1/2eI

u‖0;Γ̃D,h
+ ‖(2 µ)1/2h−1/2(∇eI

u)d‖0;Γ̃D,h
. (91)

Using (58) and (5) to bound the norms on the right-hand side, we obtain

‖(2 µ)1/2h−1/2S1
heI

u‖0;Γ̃D,h
≤ c µ1/2

(
‖h−1eI

u‖0;T̃ b
h

+ |eI
u|1;2;Ω̃b

h
+ |h eI

u|2;T̃ b
h

)
≤ C3 µ

1/2hm
Ω|u|m+1;Ω̃b

h
. (92)

We conclude by observing that the remaining norms in (68) can be bounded in a similar way.

Proposition 6. Let u ∈ (Hm+1(Ω))n. If condition (75) holds true, there exists a constant Cc > 0 independent of u and
the meshsize such that

EB,c,h([u, p]) ≤ Cc µ
1/2hm

Γ |u|m+1;ΩS . (93)

If condition (75) does not hold but u ∈ (Cm+1(ΩS ))n, there exists a constant Cc > 0 independent of u and the meshsize
such that

EB,c,h([u, p]) ≤ Cc µ
1/2hm+1/2

Γ
|u|(Cm+1(ΩS ))n . (94)

Proof. By integration by parts and application of Property 3 in the Appendix, one gets for all [wh, qh] ∈Wh

Lh([wh, qh]) −Bh([u, p]; [wh, qh]) =((Sm
h u − ūD) ⊗ ñ, 2 µ ε(wh) + qhI)0,Γ̃D,h

+ γ (2 µ h−1
⊥

(
Sm

h u − ūD

)
,S1

hwh)0,Γ̃D,h

= (Rm
h u ⊗ ñ, 2 µ ε(wh) + qhI)0,Γ̃D,h

+ γ (2 µ h−1
⊥ Rm

h u,S1
hwh)0,Γ̃D,h

. ‖(2 µ)1/2h−1/2Rm
h u‖0;Γ̃D,h

(
‖(2 µ)1/2∇wh‖0;Ω̃b

h
+ ‖(2 µ)−1/2qh‖0;Ω̃b

h

+‖(2 µ)1/2h−1/2S1
hwh‖0;Γ̃D,h

)
, (95)

whence EB,c,h([u, p]) ≤ Cc,1‖µ
1/2h−1/2Rm

h u‖0;Γ̃D,h
. We conclude using the analogous version of Proposition 2 for vector

fields (see Remark 11).

Combining the two previous properties, we arrive at the following convergence result in the ‘energy’ norm, which
stands as a counterpart of Theorem 5 for the Stokes problem.

Theorem 6. Let each component of u satisfy Assumption 4, and let p ∈ Hm(Ω). Under the conditions of validity of
Theorem 2, there exists a constant C > 0 independent of u and the meshsize such that

‖[u, p] − [uh, ph]‖W(Ω̃h;T̃h) ≤ C hm
Ω

(
µ1/2|u|m+1,? + µ−1/2|p|m;Ω̃h

)
. (96)

9. Enhanced error estimates in the L2 norm

In this section, we provide an estimate of the L2-norm of the discretization error u − uh (for the Poisson problem),
or u − uh (for the Stokes problem), by adapting to the present setting the classical Aubin-Nitsche duality argument.

9.1. Poisson problem

We begin by strenghtening Assumption 4.

Assumption 5. Let u ∈ Hm+1(Ω). In addition, let condition (75) hold true and let u ∈ Wm+1,∞(ΩS ).

Consequently, we can easily improve the result in Proposition 2, by adapting its proof to the new assumption.

Proposition 7. Under Assumption 5, there exists a constant C∞ > 0 independent of hΓ such that

‖h−1/2Rm
h u‖0,Γ̃h

≤ C∞ hm+1/2
Γ

|u|Wm+1,∞(ΩS ) . (97)

The desired error estimate is as follows.
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Theorem 7 (Enhanced L2-error estimate for uh). Under Assumption 5 and the conditions of validity of Theorem 5,
there exists a constant C > 0 independent of u and the meshsize such that

‖u − uh‖0,Ω̃h
≤ C hm+1/2

Ω

(
|u|m+1;Ω̃h

+ h1/2
Ω
|u|Wm+1,∞(ΩS )

)
. (98)

We omit the proof of this result, as it is a simplified version of the proof of the following Theorem 8.

9.2. Stokes problem

Firstly, observe that if each component of u satisfies Assumption 5, then from (97) we immediately get

‖h−1/2Rm
h u‖0,Γ̃h

≤ C∞ hm+1/2
Γ

|u|(Wm+1,∞(ΩS ))n . (99)

This bound will be used in the proof of the following error estimate.

Theorem 8 (Enhanced L2-error estimate for the velocity uh). Let each component of u satisfies Assumption 5, and
let p ∈ Hm(Ω) and ΓN = ∅. Under the conditions of validity of Theorem 2, the numerical velocity uh produced by the
SBM satisfies the following error estimate:

‖u − uh‖0,Ω̃h
≤ C l(Ω̃h)1/2hm+1/2

Ω

(
|u|m+1;Ω̃h

+ h1/2
Ω
|u|(Wm+1,∞(ΩS ))n + |p|m;Ω̃h

)
, (100)

where C is a positive constant independent of the mesh size and the solution.

Proof. Given z ∈ L2(Ω̃h)n, let z̄ ∈ L2(Ω)n be its extension by 0 outside Ω̃h, and let [ψ, λ] be the solution of the
following homogeneous Dirichlet problem in Ω:

−∇ · (2 µ ε(ψ) + λI) = µ z̄ in Ω , (101a)
−∇ · ψ = 0 in Ω , (101b)

ψ = 0 on Γ . (101c)

The stated assumptions in addition to the fact that z̄ ∈ L2(Ω)n imply the regularity result [ψ, λ] ∈ (H2(Ω))n × H1(Ω),
with the following bound

‖µ1/2ψ‖2,Ω̃h
+ ‖µ−1/2λ‖1,Ω̃h

≤ ‖µ1/2ψ‖2,Ω + ‖µ−1/2λ‖1,Ω ≤ Q‖µ1/2 z̄‖0,Ω = Q‖µ1/2 z‖0,Ω̃h
, (102)

where Q > 0 is a non-dimensional constant independent of z̄ and the mesh size.
The same arguments that led to (7) show that ψ satisfies on Γ̃h

S1
hψ + R1

hψ = 0 . (103)

Thus, for any [w, q] ∈W(Ω̃h; T̃h) we have

µ (z,w)0,Ω̃h
= −(∇ · (2 µ ε(ψ) + λI),w)0,Ω̃h

− (∇ · ψ, q)0,Ω̃h

= (2 µ ε(ψ), ε(w))0,Ω̃h
+ (λ,∇ · w)0,Ω̃h

− (∇ · ψ, q)0,Ω̃h
− (2 µ ε(ψ) + λI,w ⊗ ñ)0,Γ̃h

= (2 µ ε(ψ), ε(w))0,Ω̃h
+ (λ,∇ · w)0,Ω̃h

− (∇ · ψ, q)0,Ω̃h
− (2 µ ε(ψ) + λI,Sm

h w ⊗ ñ)0,Γ̃h

+

m∑
i=1

(2 µ ε(ψ) + λI,
D i

d w
i!
⊗ ñ)0,Γ̃h

. (104)

Adding residual terms that vanish by definition when applied to the exact solution, we have

µ(z,w)0,Ω̃h
= (2 µ ε(ψ), ε(w))0,Ω̃h

+ (λ,∇ · w)0,Ω̃h
− (∇ · ψ, q)0,Ω̃h

− (2 µ ε(ψ) + λI,Sm
h w ⊗ ñ)0,Γ̃h

+

m∑
i=1

(2 µ ε(ψ) + λI,
D i

d w
i!
⊗ ñ)0,Γ̃h

− ((S1
hψ + R1

hψ) ⊗ ñ, 2 µ ε(w) − qI)0,Γ̃h
+ γ(2 µ h−1

⊥ (S1
hψ + R1

hψ),Sm
h w)0,Γ̃h
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= Bh([w, q]; [ψ, λ]) − δ
∑

T∈T̃h

(
h2(2µ)−1 (∇q − ∇ · (2 µ ε(w))) ,∇λ

)
0,T

+

m∑
i=1

(2 µ ε(ψ) + λI,
D i

d w
i!
⊗ ñ)0,Γ̃h

− ((∇ψ d) ⊗ ñ, 2 µ ε(w) − qI)0,Γ̃h
− (R1

hψ ⊗ ñ, 2 µ ε(w) − qI)0,Γ̃h
+ γ (2 µ h−1

⊥ R1
hψ,S

m
h w)0,Γ̃h

. (105)

Picking w = z = eu := u − uh, q = ep := p − ph, then Bh([w, q]; [ψ, λ]) = Bh([u, p]; [ψ, λ]) −Lh([ψ, λ]). Thus, we
can write the following identity, in which [ψI , λI] := [I1

hψ, I
S Z
h λ]:

µ‖eu‖
2
0,Ω̃h

= B([eu, ep]; [ψ − ψI , λ − λI]) + Estab([eu, ep]; [0, λ]) + Esym([eu, ep]; [ψ, λ])

+ Erem([eu, ep]; [ψ, λ]) + Eort([u, p]; [ψI , λI]) , (106a)

with

Estab([eu, ep]; [0, λ]) := −δ
∑

T∈T̃h

(
h2(2µ)−1

(
∇ep − ∇ · (2 µ ε(eu))

)
,∇λ

)
0,T

, (106b)

Esym([eu, ep]; [ψ, λ]) :=
m∑

i=1

(2 µ ε(ψ)ñ + λñ,
D i

d eu

i!
)0,Γ̃h
− ((∇ψ d) ⊗ ñ, 2 µ ε(eu) − epI)0,Γ̃h

, (106c)

Erem([eu, ep]; [ψ, λ]) := −(R1
hψ ⊗ ñ, 2 µ ε(eu) − epI)0,Γ̃h

+ γ 〈2 µ h−1
⊥ R1

hψ,S
m
h eu〉0,Γ̃h

, (106d)

Eort([u, p]; [ψI , λI]) := (Rm
h u ⊗ ñ, 2 µ ε(ψI) + λI I)0,Γ̃h

− γ (2 µ h−1Rm
h u,S1

hψI)0,Γ̃h
. (106e)

We proceed to bound the error terms on the right-hand side of (106a). Recalling Theorem 4 and the analogue of
Proposition 5 with m = 1 for [ψ, λ], we have

|B([eu, ep]; [ψ − ψI , λ − λI])| ≤ CB‖[eu, ep]‖W(Ω̃h;T̃h)‖[ψ − ψI , λ − λI]‖W(Ω̃h;T̃h)

≤ CB CAPP hΩ̃h

(
µ1/2|ψ|2,Ω̃h

+ µ−1/2|λ|1,Ω̃h

)
‖[eu, ep]‖W(Ω̃h;T̃h)

. hΩ̃h
µ1/2‖[eu, ep]‖W(Ω̃h;T̃h)‖eu‖0,Ω̃h

. (107a)

From the definition of the norm W(Ω̃h; T̃h), writing eu = (u − Im
h u) + (Im

h u − uh), we get

|Estab([eu, ep]; [0, λ])| ≤ δ ‖(2 µ)−1/2h∇λ‖0,Ω̃h

(
‖(2 µ)−1/2h∇ep‖0,Ω̃h

+ ‖(2 µ)1/2h∇ · ε(eu)‖0,Ω̃h

)
.

(
µ1/2 hΩ‖[eu, ep]‖W(Ω̃h;T̃h) + µ1/2hm+1

Ω |u|m+1;Ω̃h

)
‖eu‖0,Ω̃h

. (107b)

Recalling the trace inequality ‖∇w‖0,Γ̃h
≤ c(‖w‖1,Ω + |∇w|1,Ω), the bound

∑m
i=1 ‖h

i−1/2D ieu‖0,Γ̃h
≤ CD‖eu‖V(Ω̃h;T̃h) from

Property 2, and the definition (68), we obtain, after using (5),

|Esym([eu, ep]; [ψ, λ])| ≤
m∑

i=1

‖h−1d‖i
L∞(Γ̃h)

i!
‖(2 µ)1/2hi−1/2D ieu‖0,Γ̃h

(
‖(2 µ)1/2h1/2ε(ψ)‖0,Γ̃h

+ ‖(2 µ)−1/2h1/2λ‖0,Γ̃h

)
+ ‖h−1d‖L∞(Γ̃h)‖(2 µ)1/2h1/2∇ψ‖0,Γ̃h

(
‖(2 µ)1/2h1/2ε(eu)‖0,Γ̃h

+ ‖(2 µ)−1/2h1/2ep‖0,Γ̃h

)
. h1/2

Ω
‖[eu, ep]‖W(Ω̃h;T̃h) l(Ω̃h)−3/2µ1/2‖ψ‖2,Ω̃h

+ h1/2
Ω
‖[eu, ep]‖W(Ω̃h;T̃h)l(Ω̃h)−1/2µ−1/2‖λ‖1,Ω̃h

. h1/2
Ω

l(Ω̃h)1/2µ1/2‖[eu, ep]‖W(Ω̃h;T̃h)‖eu‖0,Ω̃h
. (107c)

On the other hand, applying Proposition 2 with m = 1 to each component of ψ ∈ (H2(Ω))n, we have

|Erem([eu, ep]; [ψ, λ])| ≤
(
‖(2 µ)1/2h1/2ε(eu)‖0,Γ̃h

+ ‖(2 µ)−1/2h1/2ep‖0,Γ̃h

)
‖(2 µ)1/2h−1/2R1

hψ‖0,Γ̃h

+ γ‖(2 µ)1/2h−1/2S1
heu‖0,Γ̃h

‖(2 µ)1/2h−1/2R1
hψ‖0,Γ̃h
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+ γ

m∑
i=2

‖h−1d‖i
L∞(Γ̃h)

i!
‖(2 µ)1/2hi−1/2D ieu‖0,Γ̃h

‖(2 µ)1/2h−1/2R1
hψ‖0,Γ̃h

. µ1/2‖[eu, ep]‖W(Ω̃h;T̃h)‖h
−1/2R1

hψ‖0,Γ̃h
. hΩ µ

1/2‖[eu, ep]‖W(Ω̃h;T̃h)‖eu‖0,Ω̃h
. (107d)

At last, using once more the error estimates for the Scott-Zhang interpolant together with the identity (103) and the
bound (99) of the remainder, we get

|Eort([u, p]; [ψI , λI])| = |〈Rm
h u ⊗ ñ, 2 µ ε(ψ − ψI) + (λ − λI)I − 2 µ ε(ψ) − λI〉0,Γ̃h

+ γ 〈2 µ h−1Rm
h u,S1

h(ψ − ψI) − S1
hψ〉0,Γ̃h

|

≤ ‖(2 µ)1/2h−1/2Rm
h u‖0,Γ̃h

(
‖(2 µ)1/2h1/2ε(ψ − ψI)‖0,Γ̃h

+ ‖(2 µ)1/2h1/2ε(ψ)‖0,Γ̃h

)
+ ‖(2 µ)1/2h−1/2Rm

h u‖0,Γ̃h

(
‖(2 µ)−1/2h1/2(λ − λI)‖0,Γ̃h

+ ‖(2 µ)−1/2h1/2λ‖0,Γ̃h

)
+ γ‖(2 µ)1/2h−1/2Rm

h u‖0,Γ̃h

(
‖(2 µ)1/2h−1/2S1

h(ψ − ψI)‖0,Γ̃h
+ ‖(2 µ)1/2h−1/2R1

hψ‖0,Γ̃h

)
. hm+1

Ω l(Ω̃h)1/2µ ‖eu‖0,Ω̃h
|u|(Wm+1,∞(ΩS ))n . (107e)

Thus, combining (107a), (107b), (107c), (107d), and (107e) in (106a) and applying Theorem 6 yields the desired
result.

Remark 12. The previous bound is clearly sub-optimal due to the terms in Esym([eu, ep]; [ψ, λ]). However, it is not
clear at the moment if the above estimate is sharp, since in computations we always observe optimal, second-order
convergence rates.

10. Two-dimensional numerical tests

In this section, we perform convergence tests for the proposed high-order SBM approach for the Poisson and
Stokes flow equations. All calculations were performed using the FEniCS software project [1].

Remark 13. In all mesh refinement studies in this section, we do not apply Assumptions 2 or 3 to the definition of the
distance d (for the Poisson and Stokes operators, respectively). Specifically the grids are refined by simply splitting
every edge into two sub-edges at each stage of the mesh refinement procedure. While instrumental for the proofs
of stability and convergence, Assumptions 2 or 3 may be too restrictive in practical engineering applications, and
we prefer to forfeit them in the numerical tests, to show the overall robustness of the proposed methods under more
general conditions.

10.1. Poisson problem
In this first test, we considered Poisson’s equation defined on a circular domain Ω of radius r = 0.3 centered at

[0.5, 0.5] as shown in Figure 3a. The exact solution is

u(x, y) = sin(15πx) sin(15πy) , (108)

from which, using the method of manufactured solutions, the corresponding forcing f in (12) is deduced. Figure 3b
depicts the surrogate domain on a coarse grid along with its surrogate boundary. Given κ ∈ {0.3, 1, 10}, we consider
the Nitsche penalty parameter γ = 2 κCI η with η chosen as in equation 32, CI chosen as in Property 3 and Cinv is the
maximum eigenvalue of the problem:

Find [λh, uh], uh ∈ Pm(T ), such that, ∀vh ∈ Pm(T ),

(∇(∇uh),∇(∇vh))0,T − λh/h2
T (∇uh,∇vh)0,T = 0 . (109)

This approach is adopted from [33] and the results are given in Table 1 for a right isosceles triangular element (with
vertices located at (0, 0), (1, 0) and (0, 1)) and with m = 2, 3, 4, 5 and 6. In Figures 3c and 3d, we plot L2-norm and
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(a) The domain Ω (dark grey).
(b) Ω̃h (grey), Γ (blue) and Γ̃h (red).
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(d) Convergence rate of |u − uh|1,Ω̃h
.

Figure 3: Poisson problem: The true domain Ω (top left), surrogate domain Ω̃h (top right) and the ‖u − uh‖0,Ω̃h
and |u − uh |1,Ω̃h

convergence rates
using first, second, third, fourth, fifth and sixth order polynomials(bottom). The ◦, × and • markers refer to κ = 0.3, 1, and 10, respectively.

H1 semi-norm error rates for the SBM using first, second, third, fourth, fifth and sixth order polynomials respectively.
The L2-norm and H1-semi-norm errors converge optimally under all polynomial orders regardless of the choice of κ.
In particular, the L2-norm converges faster than the predicted theoretical rate of m + 1/2.

mth-order polynomial Cinv

2 36.00
3 155.05
4 397.50
5 848.10
6 1591.60a

Table 1: Values of the constant Cinv for right isosceles triangles. a Calculated by extrapolating a cubic polynomial calibrated with the Cinv values
of m = 2, 3, 4 and 5
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(a) The domain Ω (dark grey). (b) Ω̃h (grey), Γ (blue) and Γ̃h (red).
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ing first, second, third, fourth, fifth and
sixth order polynomials.
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(e) Convergence rate of ‖p − ph‖0,Ω̃h
.

Figure 4: Stokes problem: The true domain Ω (top left), surrogate domain Ω̃h (top right) and the ‖u − uh‖0,Ω̃h
, |u − uh |1,Ω̃h

and ‖p − ph‖0,Ω̃h
convergence rates using first, second, third, fourth, fifth and sixth order polynomials (bottom).The ◦, × and • markers refer to κ = 0.3, 1, and 10,
respectively.

10.2. Stokes flow problem

In this test, we consider Stokes flow equations on a unit square domain with circular hole of radius r = 0.2 centered
at [0.5, 0.5] denoted by Ω as shown in Figure 4a. We adopt the exact solution in [6] given as

p(x, y) = cos(10πx) cos(10πy) − 1 ,
ux(x, y) = 10π sin(10πx) sin(10πy) ,
uy(x, y) = 10π cos(10πx) cos(10πy) .

(110)

with a fluid viscosity µ set equal to 1. Figure 4b depicts the surrogate domain on a coarse grid along with its
surrogate boundary. Dirichlet conditions are enforced with the SBM on the circular hole while body-fitted Dirichlet
conditions are weakly enforced on the top and bottom boundaries and traction conditions are applied at the left and
right boundaries. Given κ ∈ {0.3, 1, 10}, we consider the Nitsche penalty parameter γ = 2 κCI η and the pressure
stabilization parameter δ = 0.6C−1

inv with η chosen as in equation 51, CI chosen similarly to Section 10.1 and Cinv is
given in Table 1.

The convergence tests were conducted using first, second, third, fourth, fifth and sixth order polynomials. The
L2-norm and H1-seminorm of the velocity errors are reported in Figures 4c and 4d respectively, while in Figure 4e
we plot the L2-norm pressure errors. Both L2-norm and H1-seminorm errors converge optimally under all polynomial
orders. In particular, the L2-norm errors on the velocity exceed the theoretical estimate of m+1/2 derived in Section 9.
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11. Summary

We have presented the high-order version of the SBM, in the case of the Poisson and Stokes operators. We
provided a complete mathematical analysis of stability and convergence in the natural norm of the SBM, as well as
L2-error estimates. We have confirmed with a number of numerical experiments the results of the numerical analysis.
Similarly to the low-order version of the SBM, we observed that, despite a suboptimal L2-error estimate, the L2 norm
of the error converges optimally in the numerical tests.
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Appendix: some useful inequalities

We recall some useful scaled trace inequalities and inverse inequalities in shape-regular triangulations.

Property 3. There exists a constant CI > 0 independent of the meshsize such that for any T ∈ T̃h and any edge/face
E ⊂ ∂T it holds

‖h1/2
T w‖20,E ≤ CI ‖w‖20,T , ∀w ∈ Pk(T ) , 1 ≤ k ≤ m . (111)

This immediately gives
‖h1/2∂ivh‖

2
0,Γ̃h
≤ CI ‖∂

ivh‖
2
0,Ω̃h

, ∀vh ∈ Vh , 0 ≤ i ≤ m , (112)

where ∂ivh denotes any partial derivative of order i of vh. From [61], we estimate

CI =

{
(k + 1 − i) (k + n − i) n−1 for simplices in n dimensions
(k + 1 − i)2 for quadrilaterals and hexahedra. (113)

Property 4. There exists a constant Cinv > 0 independent of the meshsize such that for any T ∈ T̃h it holds

|w|2i,T ≤ Cinv h2(1−i)
T ‖∇w‖20,T , ∀w ∈ Pm(T ) , 1 ≤ i ≤ m, (114)

where |w|i,T denotes the Sobolev semi-norm of w in T .

Corollary 1. For any T ∈ T̃h and any edge/face E ⊂ ∂T it holds

‖h−1/2
T D i

d w‖0,E ≤ C1/2
I C1/2

inv ‖h
−1
T d‖iL∞(E)‖∇w‖0,T , ∀w ∈ Pm(T ) , 1 ≤ i ≤ m . (115)

This immediately gives

‖h−1/2D i
d vh‖0,Γ̃h

≤ C1/2
I C1/2

inv ‖h
−1d‖iL∞(Γ̃h)‖∇vh‖0,Ω̃h

, ∀vh ∈ Vh , 1 ≤ i ≤ m . (116)

Proof. Writing d = ‖d‖ ν, one has D i
d w = ‖d‖iD i

ν w with |D i
ν w| ≤ ‖Diw‖. From Properties 3 and 4,

‖h−1/2
T D i

d w‖0,E ≤ ‖d‖iL∞(E)‖h
−1/2
T Diw‖0,E ≤ C1/2

I h−1
T ‖d‖

i
L∞(E)‖D

iw‖0,T ≤ C1/2
I C1/2

inv ‖h
−1
T d‖iL∞(E)‖∇w‖0,T ,

which concludes the proof.

Finally, we recall the following inequality of the Korn type for H1-vector fields, which can be found in [10].

Theorem 9 (Korn’s inequality). Let Ω̃h be a domain in Rn with n ≥ 2, and let Γ̃h ⊆ ∂Ω̃h have positive (n − 1)-
dimensional measure. Then, there exists a constant C̄K > 0 such that for all u ∈ (H1(Ω̃h))n it holds

‖u‖2H1(Ω̃h) ≤ C̄K

(
l(Ω̃h)−1‖u‖20,Γ̃h

+ ‖ε(u)‖20,Ω̃h

)
. (117)
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