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Abstract

Dynamic norms have recently emerged as a powerful method to encourage individuals to adopt an innovation by highlighting a
growing trend in its uptake. However, there have been no concrete attempts to understand how this individual-level mechanism might
shape the collective population behavior. Here, we develop a framework to examine this by encapsulating dynamic norms within a
game-theoretic mathematical model for innovation diffusion. Specifically, we extend a network coordination game by incorporating
a probabilistic mechanism where an individual adopts the action with growing popularity, instead of the standard best-response
update rule; the probability of such an event captures the population’s “sensitivity” to dynamic norms. Theoretical analysis reveals
that sensitivity to dynamic norms is key to facilitating social diffusion. Small increases in sensitivity reduces the advantage of the
innovation over status quo or the number of initial innovators required to unlock diffusion, while a sufficiently large sensitivity alone
guarantees diffusion.

Keywords: innovation diffusion, dynamic norms, coordination games, network dynamics

Significance Statement:

Encouraging people to adopt important and helpful innovations, such as preventive vaccinations and sustainable practices, can
be a difficult task. These innovations prevent potential future problems, but are lacking in two important aspects associated with
innovation adoption: they offer a limited perceived advantage over the status quo, and few people are willing to be innovators by
being the first to adopt. Dynamic norms refer to the sensitivity of people to behaviors that are not yet mainstream but growing
in popularity. We use mathematical modeling to show that dynamic norms, an individual-level mechanism, can facilitate the
population-level adoption of such innovations. These findings may help design strategies for promoting innovation diffusion by
increasing the effects of dynamic norms.

Introduction
Innovation diffusion is indispensable in a modern society. It allows
new ideas, behaviors, technologies, conventions, and practices to
spread through a population, eventually replacing a status quo.
Innovation diffusion has enabled the adoption of hybrid seed corn
by farmers for improved crop yield (1), usage of new medicines by
medical professionals (2), and the evolution of social norms and
conventions (3–6).

Two notable factors that have been identified as key to allow-
ing successful innovation diffusion are relative advantage and
the presence of innovators (7). The relative advantage of the in-
novation over the status quo, such as hybrid seed corn offering
improved crop yield over traditional corn, provides each individ-
ual with an incentive to select the innovation (7). Mathemati-
cal models of innovation diffusion have identified that diffusion
is always guaranteed when the relative advantage is sufficiently
large (3,8,9). The literature has also explored the importance of
actors who promote the innovation, often referred to as innova-

tors (7), opinion leaders (10,11), or committed minority (5), de-
pending on the context. In particular, the number of innovators
and their visibility within the population can often play an es-
sential role in the adoption of the innovation, with some studies
identifying a lower bound on the number of innovators that can
guarantee that diffusion will occur (5,12–14).

These findings reflect the considerable challenges for the dif-
fusion of many innovations, which are lacking in these two fac-
tors. For instance, the benefits for preventive innovations such as
vaccination and family planning lie in stopping an undesirable
event from occurring. Such innovations often struggle to become
adopted as the relative advantage is not readily and immediately
apparent (2,15). Morally motivated innovators, such as individuals
who adopt meat-free diets to reduce environmental impact, can
be ostracized from society and struggle to effectively promote the
benefits of the innovation (16–18). In the battle against the climate
crisis, the world now needs massive social change, including the
widespread adoption of new sustainable technologies and prac-
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tices (19–22). Hence, we require now, more than ever, an under-
standing for facilitating diffusion of such innovations lacking in
these two notable factors (23).

Dynamic norms may be one mechanism to facilitate behav-
ior change—recent research has suggested that people are sen-
sitive to observing or learning about the growth in popularity over
time of a particular behavior, even if the behavior is currently in
the minority, and be influenced to adopt it (24). Existing studies
consider environmentally responsible behaviors around reducing
meat consumption (24–27), usage of disposable coffee cups (28),
and water usage (24,29), and other minority behaviors such as
women’s participation in STEM degrees and careers (30), or reduc-
ing electronic screen time before sleep (31). Online experiments
have shown that exposure to dynamic norm information can in-
crease a person’s intention and attitude to adopt the minority be-
havior, in comparison to being exposed to static norm informa-
tion or no information (24,29–31), while field intervention studies
have found dynamic norm information can increase the number
of individuals adopting the behavior that is increasing in popu-
larity in various contexts (24,26,28,29). Several studies have also
highlighted how the context and target audience can determine
whether dynamic norms have a statistically significant effect in
influencing behavior (24,26,29–31) or no significant effect (25–27).

While empirical approaches allow to examine the effects of dy-
namic norms at the individual level, including the contexts in
which they are most powerful and the magnitude and signifi-
cance of such effects, these approaches are limited in unveiling
the downstream population-level consequences, i.e. how individ-
ual sensitivity to dynamic norms may collectively result in so-
cial change via the widespread adoption of the innovation. Math-
ematical modeling (perhaps informed and supported by empiri-
cal methods) has emerged as a powerful tool to explore the link
between individual mechanisms and collective change (5,6,14,32).
Indeed, a study on social convention formation and change has
empirically identified the presence of an effect of dynamic norms
at the individual level, and model simulations have suggested its
presence helped to shape social diffusion patterns (14). However, a
theoretical modeling framework for innovation diffusion that en-
capsulates dynamic norms and rigorous analysis is still missing.

In this paper, we fill in this gap from a theoretical perspec-
tive, toward gaining insights into the crucial role of dynamic
norms in facilitating innovation diffusion. We pursue such a goal
through the development and analysis of a network model for
innovation diffusion (3,8,9). In this game-theoretic model, each
agent in a time-varying network can select between two ac-
tions, representing the status quo and the innovation. Agents re-
vise their actions at discrete-time instants according to a best-
response updating (33), selecting the action adopted by the ma-
jority of their neighbors on a time-varying network, with an
adjustment made to account for relative advantage. To opera-
tionalize dynamic norms within the model (24,26,28,29,31), we
expand the model by further proposing that at each time in-
stant, an agent has a probability of replacing their best-response
choice by selecting the action that is trending, i.e. the action
whose adopters have increased in number since the last time
instant.

Through a rigorous analysis of the proposed model, corrobo-
rated by numerical studies, we identify when innovation diffu-
sion will occur and when the status quo will be maintained. This
allows us to elucidate the downstream, population-level conse-
quences of dynamic norms. Specifically, we can summarize our
main findings with the observation that dynamic norms can lower
both the relative advantage and the number of innovators neces-

Fig. 1. One iteration of the model with n = 8 individuals; nodes in red
(cyan) adopt the innovation (status quo). In panel (A), individuals that
are following the coordination game (pink area) establish k = 3
interactions, while individuals in the yellow area follow dynamic norms.
In panel (B), we illustrate the action update process with α = 0.5 and z(t)
> z(t − 1).

sary for unlocking innovation diffusion. Importantly, we identify
that when the individuals’ sensitivity to dynamic norms crosses
a threshold value, even innovations without a clear advantage or
that are disadvantageous will spread, irrespective of the number
of innovators. Numerical simulations suggest this threshold be-
havior is a characteristic feature of the model, revealing that dy-
namic norms should indeed be pursued as a tool for achieving
social change.

Modeling framework
A classical game-theoretic model will be the basis of our mod-
eling framework for innovation diffusion over a network, with
full details presented in the “Materials and methods” section. We
consider a population of n ∈ N individuals, denoted by the set
V = {1, . . . , n}, that interact on a time-varying network. At each
discrete time step t ∈ N, each individual i ∈ V can choose among
two possible actions: the status quo (xi(t) = 0) and the innova-
tion (xi(t) = 1). The action state vector x(t) = [x1(t), ..., xn(t)] ∈ {0, 1}n

gathers the actions of all individuals at time t. We let 1 and 0 be
the n-dimensional vector of all 1s and all 0s, respectively.

To model innovation diffusion, we assume that initially all in-
dividuals are selecting the status quo, i.e. x(0) = 0, and we let ζ >

0 be the fraction of innovators in the population, who are the indi-
viduals acting as innovators and opinion leaders (7). Then, at time
t = 1, a constant fraction ζ > 0 of individuals adopt the innovation,
xi(1) = 1, while the rest of the population continues to adopt the
status quo, xj(1) = 0. From t = 2, every individual can revise their
action, and diffusion is said to occur if x(t) = 1 for some t ≥ 2.

Coordination game
A popular paradigm used in game-theoretic diffusion models is
that of network coordination games (3,4,8,34,35). In the simplest
implementation, we suppose that at each time step t, each individ-
ual i ∈ V initiates k interactions among the members of the popu-
lation, selected uniformly at random and independently of other
selections, generating a time-varying network of social interac-
tions (see Fig. 1). The selected individuals form the neighbor set of
individual i at time t, denoted by Ni(t). Then, individual i engages
in a symmetric two-player pure coordination games with each of
their k interactions. The overall payoff that individual i would re-
ceive for selecting action 0 and 1 at time t, when the action state
of the system is x(t) is equal to

π
(0)
i (x(t)) :=

∑
j∈Ni (t)

(1 − xj (t)) (1)
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and

π
(1)
i (x(t)) :=

∑
j∈Ni (t)

(1 + α)xj (t), (2)

respectively, where the parameter α > −1 represents the relative
advantage (if positive) or disadvantage (if negative) of the innova-
tion with respect to the status quo and captures possible differ-
ences in the intrinsic value of the two actions. For simplicity and
consistency with the literature, we refer to α as the relative ad-
vantage even though α may be negative. From a game-theoretic
perspective, the relative advantage captures risk dominance (4)
(see Supplementary Material). In this setting, relative advantage
also captures Pareto efficiency (4). Hence, innovations with α > 0
can be interpreted as being beneficial for the population, while
innovations with α < 0 are inefficient.

Individuals revise their actions to maximize their overall pay-
offs according to best-response dynamics, which is a standard
protocol adopted in evolutionary game theory (33) with support
from social psychology empirical studies (35). Specifically individ-
ual i revises their action to

xi(t + 1) =
{

1 if π
(1)
i (x(t)) > π

(0)
i (x(t)) ,

0 if π
(1)
i (x(t)) ≤ π

(0)
i (x(t)) ,

(3)

where we have assumed that an individual i prefers the status quo
if the two payoffs are equal, consistent with the social psychology
and empirical literature on inertia and status-quo bias, which pro-
vides evidence that people are more likely to be consistent with
their previous choices, at least in the absence of an advantage for
changing (14,36).

For the sake of simplicity, we present the simplest incarna-
tion of a coordination game on (time-varying) networks. In a more
general formulation, detailed in the Supplementary Material and
used for numerical simulations, further real-world features are
incorporated, namely the presence of a backbone network that
constrains the possible interactions between agents, and hetero-
geneity across the population in terms of the number of interac-
tions and the relative advantage.

Our analysis finds that the innovation will diffuse to the entire
population irrespective of the fraction of innovators in the popu-
lation ζ if the relative advantage is greater than k − 2, or if there
are enough innovators and the relative advantage is not too neg-
ative (the formal result is presented in the sequel, after technical
definitions are introduced). This result closely parallels the find-
ings from other diffusion models employing coordination games
on networks (8,9).

Dynamic norms
We operationalize dynamic norms through the following mech-
anism. An individual i under the influence of dynamic norms
will choose to adopt that action whose number of adopters has
increased in the previous time-step. Formally, we introduce the
quantity z(t) := 1

n

∑
i∈V xi(t), which is the fraction of the popula-

tion adopting the innovation at time t ∈ N. Thus, dynamic norms
will lead individual i to revise their action according to

xi(t + 1) =

⎧⎪⎨
⎪⎩

1 if z(t) > z(t − 1) ,
0 if z(t) < z(t − 1) ,
xi(t) if z(t) = z(t − 1) .

(4)

Eq. (4) captures individual i adopting the action that has in-
creased in popularity over the previous time-step (is trending up-
ward), even if it is the current minority action in the population.
If the fraction of adopters of both actions is unchanged, then

Fig. 2. Examples of (A) innovation diffusion and (B) status quo
maintenance, with the random times highlighted in Eqs. (6,7).

no dynamic norm is present and the individual does not change
their action, consistent with the presence of inertia in social sys-
tems (14,36). Our model and findings can be straightforwardly ex-
tended to scenarios in which a trend is perceived only if a mini-
mum number of individuals have changed action (see the Supple-
mentary Material).

Unveiling the role of dynamic norms
Our interest is to understand whether dynamic norms can unlock
innovation diffusion. To investigate this, we suppose that individ-
uals can make a decision on which action to adopt either through
the classical coordination mechanism or through dynamic norms.
Formally, we propose that at each time-step t ∈ N, each individual
i ∈ V is influenced by dynamic norms with probability γ ∈ [0, 1],
independent of other individuals and past occurrences. The pa-
rameter γ captures the sensitivity of the population to dynamic
norms. Hence, the action of individual i is revised as

xi(t + 1) =
{

Eq. (3) with probability 1 − γ ,

Eq. (4) with probability γ .
(5)

An example of this revision protocol in illustrated in Fig. 1.
A direct analysis of Eq. (5) (reported in the Supplementary Ma-

terial) establishes that the action state will converge in finite time
to a consensus state, in which either the entire population will
adopt the innovation (x = 1) or the diffusion fails and the status
quo is maintained (x = 0). The key question of our study can thus
be formulated: what characteristics of the population will ensure that
diffusion is always achieved?

Our diffusion model has four key parameters: the number of
social contacts k, relative advantage α, sensitivity γ , and fraction
of innovators in the population ζ . The key question can thus be
answered by determining whether a population with given (k, α,
γ , ζ ) will approach x = 1 in finite time. Since x(t) is a stochastic
process, we will characterize its behavior using the notion of high
probability, which occurs when an event is verified with probabil-
ity converging (at least polynomially) to 1 as n grows large. To this
aim, let us define for any positive constant ε > 0, the random times

Tn,ε := inf{t ∈ N+ : z(t) ≥ (1 − ε)n} , (6)

Sn,ε := inf{t ∈ N+ : z(t) ≤ εn} , (7)

which can be expressed as functions of the population size n and
of the constant ε. In other words, Tn, ε and Sn, ε are the times at
which the fraction of adopters of the innovation become greater
than 1 − ε and less than ε, respectively, as illustrated in Fig. 2. Us-
ing these random times, we can formalize our research question
through the following two definitions.

Definition 1 (Innovation diffusion)

A quadruple (k, α, γ , ζ ) is said to guarantee innovation diffusion if
the family of events En, ε := Tn, ε < Sn, ε holds with high probability,
for any positive constant 0 < ε < min {ζ , 1 − ζ }.
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Definition 2 (Status quo maintenance)

A quadruple (k, α, γ , ζ ) is said to maintain the status quo if the
family of events E′

n,ε := Tn,ε > Sn,ε holds with high probability, for
any positive constant 0 < ε < min {ζ , 1 − ζ }.

Briefly, innovation diffusion is guaranteed if the system con-
verges arbitrarily close to the innovation consensus state x = 1
(with proximity ε) in finite time. In contrast, the status quo is
maintained whenever the system converges arbitrarily close to
the status-quo consensus state, x = 0.

Results
Before presenting our main findings, we need to derive a closed-
form expression for the action update rule of individual i ∈ V. If i
is influenced by dynamic norms at time t, then their next action
is fully determined by Eq. (4). Otherwise, the probability that they
update their state to xi(t + 1) = 1 depends on the state of other in-
dividuals through Eq. (3). Using these equations, we can derive an
expression for the probability that a generic individual will adopt
the innovation as a function that depends only on the individual’s
current action xi(t), and on the current and previous fraction of
adopters, z(t) and z(t − 1), respectively. The proof of this and of all
the other results in this paper can be found in the Supplementary
Material.

Proposition 1

Let us define

�k,α (z) :=
k∑

�=�k/(2+α)	+1

(
k
�

)
z�(1 − z)k−� . (8)

Then, Eq. (5) reduces to

P[xi(t + 1) = 1] =

⎧⎪⎨
⎪⎩

γ + (1 − γ )�k,α (z(t)) if z(t) > z(t − 1)
or z(t) = z(t − 1), xi(t) = 1,

(1 − γ )�k,α (z(t)) otherwise.

(9)

For the purposes of offering a concise presentation of the re-
sults, we will focus on scenarios in which individuals establish
multiple interactions, k ≥ 2. When k = 1, the mechanism reduces
to a simpler unbiased voter model (37) discussed in the Supple-
mentary Material for completeness.

Advantage is key in the absence of dynamic
norms
First and as anticipated below Eq. (3), we consider the scenario in
which individuals are not sensitive to dynamic norms i.e. γ = 0.
In this scenario, individuals make decisions solely on the basis of
a coordination game, and we obtain the following.

Theorem 2

Let us assume that γ = 0 and k ≥ 2. Then,

(1) If α > k − 2, innovation diffusion occurs for any ζ > 0.
(2) If −1 + 1

k−1 < α ≤ k − 2, innovation diffusion occurs if ζ >

ζ ∗
k,α

, while the status quo is maintained if ζ < ζ ∗
k,α

, where ζ ∗
k,α

is the unique solution of �k, α(z) = z in (0,1).
(3) If α ≤ −1 + 1

k−1 , status quo is maintained for any ζ ≥ 0.

Our findings in Theorem 2 are consistent with the diffusion
literature (3,5,8,9,13,14). If the innovation is significantly better
than the status quo (α > k − 2), then diffusion occurs irrespec-
tive of the fraction of innovators, ζ . For instance, in a scenario in

Fig. 3. Numerical computation of the fraction of innovators in the
population ζ ∗

k,α
needed to unlock diffusion, when dynamic norms are

absent (γ = 0), for different values of k and α.

which people makes decisions on the basis of k = 5 social con-
tacts —consistent with studies on preventive innovations (2), we
require α > 3, meaning the innovation must be four times bet-
ter than the status quo to diffuse. When the relative advantage
is not significantly better, i.e. α ∈ ( − 1 + (k − 1)−1, k − 2], then
diffusion can be driven by a sufficiently large fraction of inno-
vators in the population, ζ > ζ ∗

k,α
, as illustrated in Fig. 3. Notice

that for innovations with a mild or negligible advantage (α ≤ 1),
the required ζ ∗

k,α
can increase rapidly to exceed what would be

considered reasonable numbers of innovators in real-world situ-
ations (7). Of course, we have not accounted for other key ingredi-
ents of innovation diffusion, such as network structure effects (8),
heterogeneity across the population (38,39), opinion leaders and
committed minority (5,14), and social learning processes (3,40).
Nonetheless, while these other ingredients may lower the relative
advantage needed, it is still typical that a large advantage α > 0
is required, as also suggested by the simulations reported in the
Supplementary Material. Thus, for certain important innovations,
including preventive innovations, that may have small relative ad-
vantage, the innovation may still struggle to spread even with the
inclusion of the additional ingredients mentioned above (15).

Dynamic norms can unlock diffusion
We now show how dynamic norms can facilitate innovation dif-
fusion. With a sufficiently high sensitivity γ , innovation diffusion
will occur in parameter regimes for α and ζ that would normally
see the status quo maintained.

Theorem 3

Let us suppose that k ≥ 2. Then:

(1) If α > k − 2, innovation diffusion occurs for any ζ > 0.
(2) If −1 + 1

k−1 < α ≤ k − 2 and
(a) γ < γ ∗

k,α
, innovation diffusion occurs for ζ > ζ ∗

k,α,γ
, while

status quo is maintained for ζ < ζ ∗
k,α,γ

;
(b) γ > γ ∗

k,α
, innovation diffusion occurs for any ζ > 0.

(3) If α ≤ −1 + 1
k−1 and

(a) γ < γ ∗
k,α

, status quo is maintained for any ζ ≥ 0;
(b) γ > γ ∗

k,α
, innovation diffusion occurs for any ζ > 0,

for the threshold values

γ ∗
k,α := inf{γ ∈ [0, 1] : fγ (z) > 0, ∀z ∈ (0, 1)} , (10)

ζ ∗
k,α,γ := inf{ζ ∈ [0, 1] : fγ (z) > 0, ∀z ∈ (ζ , 1)} , (11)

where fγ (z) := (1 − γ )�k, α(z) − z + γ .
Next, we examine some important aspects of our theoretical

results, and discuss their real-world implications for innovation
diffusion. We also illustrate how even small sensitivity γ , below
the threshold value γ ∗

k,α
, can still facilitate innovation diffusion.
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Fig. 4. In (A) and (B), we show simulated trajectories of the diffusion process with n = 100, 000 individuals, α = −0.2, ζ = 0.05, and (A) k = 3 and (B) k =
5. Shaded areas are the envelopes of 100 independent simulations. In (C) and (D), we illustrate all the possible outcomes for (C) k = 3 and (D) k = 5,
respectively, for different combinations of α and γ . In the cyan region, innovation diffusion is always guaranteed irrespective of the fraction of
innovators in the population ζ ; in the red region, innovation diffusion occurs only if ζ is sufficiently large, otherwise status quo is maintained; in the
violet region, status quo is always maintained. The black curve is the threshold γ ∗

k,α
.

Weak and lackluster innovations
A key consequence of Theorem 3 is that, for any k and α, there
exists a threshold γ ∗

k,α
such that the innovation will successfully

diffuse for any fraction of initial innovators, ζ , if the sensitiv-
ity γ > γ ∗

k,α
. This has notable consequences for innovations with

small relative advantage or even for inefficient innovations that
are not beneficial to the population (α < 0), such as some manage-
rial fads and fashions (41). Ensuring the population is sufficiently
sensitive to dynamic norms offers a pathway to innovation diffu-
sion for weak and lackluster innovations.

We illustrate this through some examples presented in Fig. 4.
Trajectories of the diffusion process in Fig. 4A and B for an inno-
vation with negative advantage (α = −0.2) and different numbers
of social contacts reveal that innovation diffusion is achieved if
the sensitivity to dynamic norms is sufficiently high (cyan curves).
The case of k = 5 is interesting as we now explain. After Theo-
rem 2, we discussed that with k = 5 and no dynamic norms, a
significant relative advantage would be necessary to unlock in-
novation diffusion. Fig. 4B illustrates that dynamic norms can in-
stead enable innovation diffusion for k = 5, even in the presence
of a (mild) relative disadvantage. We also note that, if we change
the number of social contacts, the sensitivity to dynamic norms
needed to unlock innovation diffusion may be affected. For in-
stance, while γ = 0.12 is sufficient to unlock diffusion when k = 3
(cyan curve in Fig. 4A) as γ ∗

3,−0.2 = 1/9, it yields status quo mainte-
nance for k = 5 (red curve in Fig. 4B). However, a threshold value
always exists such that innovation diffusion is guaranteed if γ is
greater than the threshold (in our example, we numerically esti-
mate γ ∗

5,−0.2 ≈ 0.1652). A better understanding of such a thresh-
old behavior can be grasped by observing Fig. 4C and D, in which
we depict the trade-off between the relative advantage α and the
sensitivity γ needed to unlock innovation diffusion for k = 3 (com-
puted analytically in the Supplementary Material) and k = 5 (com-
puted numerically).

Reducing the number of required innovators
A key factor in driving diffusion, besides the size of the relative ad-
vantage, α, is the fraction of innovators in the population, ζ . Hav-
ing established that dynamic norms can help weak and lackluster
innovations overcome having a small or negative α, and success-
fully diffuse, we now show that dynamic norms can also reduce
the fraction of innovators in the population ζ necessary for dif-
fusion. From Eq. (11) and the expression of fγ (z) in Theorem 3, we
can easily conclude the following corollary.

Fig. 5. Analytical (k = 3) and numerical (k > 3) computation of the
threshold ζ ∗

k,α,γ
as a function of γ for (A) α = 0 and (B) α = 0.2.

Corollary 4

The threshold ζ ∗
k,α,γ

in Eq. (11) is monotonically decreasing with γ .
Corollary 4 suggests that dynamic norms can help facilitate

innovation diffusion even when it is not sufficient to drive dif-
fusion on its own (i.e. γ is below the threshold γ ∗

k,α
). In fact, in-

creasing γ reduces the fraction of innovators in the population,
ζ ∗

k,α,γ
, needed to guarantee innovation diffusion. Fig. 5 elucidates

this important role of dynamic norms by reporting the value of
the threshold ζ ∗

k,α,γ
for increasing values of sensitivity to dynamic

norms γ < γ ∗
k,α

, in the presence of no or small relative advantage.
This conclusion has particular relevance for innovations in the

context of social conventions. The benefits of a convention, such
as how we greet one another, are primarily tied to whether oth-
ers also adopt it (coordination), and hence α = 0 is expected. The
spontaneous emergence of new social conventions and the re-
placement of status quo conventions with a new alternative are
often studied by assuming the presence of a committed minor-
ity or initial set of seeding innovators (5,14). Making the popula-
tion sensitive to dynamic norms can thus help facilitate a smaller,
committed minority to still affect social convention change.

Robustness of the threshold behavior
Our theoretical analysis exhibited a threshold behavior with re-
spect to the sensitivity to the dynamic norms parameter γ . If peo-
ple are sufficiently sensitive, then diffusion of an innovation can
be unlocked, even in the absence of a positive relative advantage
or many initial supporters. We performed Monte Carlo numeri-
cal simulations to investigate the robustness of such a threshold
behavior with respect to the addition of features in the mathe-
matical model. Specifically, we introduced a backbone network
structure that constrains who individuals can interact with, het-
erogeneity in the number of contacts established by each individ-
ual, and hetrogeneity in the relative advantage across the pop-
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ulation. The details of our numerical analysis are presented in
the Supplementary Material. The results reported therein suggest
that the threshold behavior is a universal feature of the mathe-
matical model, confirming the key role that dynamic norms can
play in facilitating innovation diffusion. Interestingly, the critical
value of sensitivity γ ∗ at which the phase transition occurs seems
to be affected by the network structure and by the heterogeneity
in the distribution of relative advantages across the population,
paving the way for several avenues of future research.

Discussion
We have used mathematical modeling to operationalize dynamic
norms, viz. an individual’s sensitivity to growing trends, within
the context of innovation diffusion. Our theoretical analysis of the
model identified a threshold behavior with respect to the sensitiv-
ity. Above the sensitivity threshold, innovation diffusion occurred
independently of the number of innovators in the population and
social contacts. Below the threshold, sensitivity lowered the rel-
ative advantage and number of innovators necessary to unlock
diffusion. Numerical simulations suggest this threshold behavior
is a characteristic feature of the model, as it is robust to changes
in network structure and population heterogeneity in the relative
advantage and social contacts.

To date, empirical methods such as experiments and field in-
terventions have established that, dependent on a variety of fac-
tors, dynamic norms can have a significant effect or limited to
no effect—this is consistent with the broader literature on social
norm interventions (42,43). Ongoing efforts aim to characterize
the effect of interventions involving exposure to dynamic norm
information for different innovations (technology or sustainable
practice), contexts (online or face-to-face, and target population
characteristics), and the content and framing of the message (27).
Our work can thus be viewed as complementary to these em-
pirical approaches. The latter can help establish the amount of
individual-level sensitivity of dynamic norms for the scenario and
context of interest, while our model can help explore their down-
stream population-level consequences and inform policymakers
and practitioners of the level of intervention necessary to facili-
tate diffusion.

Since we have demonstrated that dynamic norms can facili-
tate diffusion, scientists and practitioners may find particular rel-
evance and interest in considering dynamic norm effects in the
context of preventive and sustainable innovations (15,19), new so-
cial conventions (3,14), and fads and fashions (41,44). A new social
convention can emerge if the committed minority promoting it
reaches a critical mass (5,14), with literature reporting values up
to 40% of the total population. This is a significant proportion of
the population and may not be reached in many scenarios. More-
over, committed minority can often feel outcast and ostracized,
including proponents of sustainable practices such as reducing
meat consumption or improving recycling and reusing (16–18). Re-
lying on a critical mass of committed minority for such innova-
tions may thus yield limited results, whereas developing strate-
gies centered around enhancing people’s awareness of changing
trends may be more effective.

A key challenge that inhibits the diffusion of beneficial pre-
ventive innovations (7), such as family planning and contracep-
tives, wearing seat-belts, and immunization is that the relative ad-
vantage could be small, since there are often no immediate and
clear benefits for adopting the innovation. Our findings suggest
that public authorities may consider exploiting dynamic norms,
e.g. through specially crafted advertisement and messaging cam-

paigns, to overcome the inherent challenges associated with pre-
ventive innovation diffusion. On the other hand, our findings also
suggest that a population’s sensitivity to dynamic norms may also
favor the widespread adoption of disadvantageous or inefficient
innovations, under some circumstances. Industry organizations
have been observed to quickly adopt a given managerial fad or
fashion, and then equally quickly adopt the next given fad or fash-
ion to replace it, even if such fads and fashions are inefficient or
counter-productive (41). Our analysis reveals that a sequence of
successful innovation diffusion outcomes can occur with a high
sensitivity to dynamic norms as might be the case if such organi-
zations aim to present an image of being “innovators and industry
leaders,” or are exposed to “bandwagon pressures” (41).

Despite its generality, there are limitations of the model that
we discuss in the following and which suggest further directions
of research. First, our framework is build upon the assumption
that individuals who revise their action according to a coordina-
tion mechanisms follow a myopic best-response. Such a mech-
anism, however, does not allow to separate the two important
game-theoretic concepts of risk dominance and Pareto efficiency
of an action (4). Therefore, the proposed formalism cannot be di-
rectly employed to analyze situations in which the risk-dominant
action and the Pareto efficient one are different; the former is
preferred by the individual, while the latter is beneficial for the
population. Such a scenario may describe several important real-
world social problems, such as in weakest-link games and coordi-
nation failures, where it has been empirically observed that risk
dominance can shape dynamics, leading toward Pareto-inferior
actions (45–47). Policymakers may wish to promote an innova-
tion that is Pareto efficient but not risk dominant, as may be the
case for certain sustainability practices or innovations (48). One
could explore further theoretical tools to incorporate different
revision protocols within our mathematical framework such as
those based on imitation (49), where risk dominance and Pareto
efficiency can be decoupled by adjusting the payoff function for
the coordination game to a more general formulation, and possi-
ble tensions between them can be investigated.

Moreover, we have assumed that all the individuals have the
same relative advantage α. In this scenario, there is a perfect align-
ment between an individual’s payoff and the aggregate population
payoff. Intuitively, such an action is simultaneously preferred by
each individual and beneficial for the entire population if α > 0. In
the last section, we showed that the threshold behavior with re-
spect to the sensitivity to dynamic norms γ is robust with respect
to the presence of heterogeneous αi. However, such a scenario im-
plies that individuals may disagree on the action they prefer to
adopt. While providing an univocal definition of what is benefi-
cial for the population in such a scenario is nontrivial, a possible
option within the modeling framework is to define the action that
benefits the population as the one that maximizes the aggregate
payoffs. However, this would only hold under the assumption that
the society can redistribute the payoff ex-post to compensate for
those individuals whose payoff has instead decreased.

Dynamic norms as examined through empirical studies and
implemented in our model are a form of descriptive norm, i.e. an
individual determines what is the normative behavior based on
information about the actions of others (24). Our model assumes
that individuals have access to complete, ongoing, and unbiased
information regarding the trend, which reflects many real-life sce-
narios in which the number of innovation adopters or emerging
trends are publicly available. However, in other cases, individu-
als may instead have a perceived dynamic norm based on par-
tial information. As with other descriptive norms, such an esti-
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mation process can introduce bias and distortion, whereby the
perceived norms may differ from the true norm. For instance, in-
dividuals may underestimate or overestimate trends if informa-
tion is obtained only from their social circle, especially in popu-
lations where social interactions are highly fragmented or clus-
tered. Moreover, the presence of heterogeneity in an individual’s
visibility and ability to influence others may lead to further bi-
ases, whereby changes in the behavior of a few opinion leaders or
highly visible minorities may be perceived as larger trends, and
thus such individuals may have a strong role in shaping the dif-
fusion process. Studies on the social-psychological mechanisms
that govern how an individual perceives dynamic norms and in-
corporating such findings into the modeling framework are de-
sirable. This knowledge can aid in designing intervention policies
that reduce potential biases that could limit the efficiency of lever-
aging dynamic norms for innovation diffusion.

Several further research directions emerge from our theoretical
results. First, our preliminary numerical simulations revealed that
the threshold behavior is robust, but can be shaped by the back-
bone network structure and population heterogeneity. Further de-
tailed study is desirable to identify for instance, the network struc-
tures that may accelerate or stop innovation diffusion (8,9,13,50).
Previous work in (14) provided empirical evidence of dynamic
norms in the diffusion of new social conventions and used nu-
merical simulations to study an agent-based model parametrized
from the data (14). It is desirable to continue such efforts to in-
tegrate empirical and modeling methods for the various innova-
tions and contexts discussed above and for studying the potential
interplay between dynamic norms and other factors that could be
present in human decision making such as personal preferences
and beliefs (4). Last, dynamic norms offer a new dimension in
developing strategies for promoting innovation diffusion: besides
identifying the size of the critical mass needed (4,5,14) and the op-
timal location in the network to place innovators (51), we may also
consider optimizing the timing of the introduction of innovators
and exposing people to information on dynamic norms (27) as a
key method to generate a trend, make people sensitive to it, and,
ultimately, unlock innovation diffusion and social change.

Materials and methods
Action and innovation
The term “action,” which is taken from the game-theoretic liter-
ature, may represent a wide range of possible binary and mutu-
ally exclusive choices, depending on the particular scenario un-
der consideration. In the diffusion of new hybrid seed corn (52)
the status quo may represent regular seed corn, while the inno-
vation represents hybrid seed corn with improved crop yield. In
the context of social conventions such as greetings, the status
quo may represent handshaking, while the innovation captures
elbow-bumping that has recently appeared due to the COVID-19
pandemic. In relation to behaviors, the status quo and innovation
may represent not fastening and fastening seat belts while in a
car, respectively (15).

The term “innovation” does not necessarily imply that action 1
is better than action 0. Indeed, the relative advantage α may be
negative, which would suggest that action 1 could provide a lower
payoff than action 0. Nor does the term imply that the action 1
is “objectively” new. Rather, and consistent with the definition by
Rogers (7), the term “innovation” simply refers to the fact that ac-
tion 1 is perceived as newly introduced to the population currently
adopting the status quo action 0.

Coordination games
Coordination games on networks have been widely used to study
innovation diffusion (3,4,8,9,34). We briefly review how Eq. (3) is
derived. At each time step t, individual i ∈ V initiates k interactions
among their neighbors, and engages in a symmetric 2-player pure
coordination game with each one of them (34). In the coordination
game, a player i that interacts with a player j will receive a payoff
characterized by the payoff matrix:

xi = 1 xi = 0

xj = 1
xj = 0

[
1 + α 0

0 1

]
. (12)

By summing up the payoffs from all k games, we can write the
payoff for individual i playing action s ∈ {0, 1} given action state
x(t) to be

π (s, x(t)) =
∑

j∈Ni (t)

[s 1 − s]

[
1 + α 0

0 1

] [
xj (t)

1 − xj (t)

]
, (13)

which is then easily seen to decompose into Eqs. (1) and (2).
We remark that if only the coordination mechanism is present,

i.e. if the sensitivity γ = 0, our proposed model reduces to a
(possibly biased) k-majority dynamics on a complete network.
See (53,54) for more details.

Time-varying network
The coordination game mechanism induces a directed time-
varying (multi-)graph G(t) = (V, E (t)), where (i, j) ∈ E (t) ⇐⇒ j ∈
Ni(t). Since each interaction is sampled independently of other
interactions in V, for any individual i, the same individual can
appear multiple times in Ni(t) and, consequently, multiple occur-
rences of the link (i, j) ∈ E (t) could be present. A realization of such
a process is illustrated in Fig. 1. Note that the graph formation pro-
cess is similar to the one of directed discrete-time activity-driven
networks (55,56).

The parameter k reflects the number of social interactions es-
tablished by each individual, whenever they are revising their ac-
tion through the coordination mechanism in Eq. (3) at time t. We
limit each individual to k interactions, to capture the fact that in-
dividuals generally make use of only a limited amount of informa-
tion during their decision-making processes (2,7). The value of k
can depend on the particular diffusion scenario being considered;
different innovations may be more or less observable by others in
the populapation. For instance, in the context of rioting (57), we
would expect an individual to identify a large number of contacts
who are rioting (innovation) and who are not (status quo). On the
other hand, in the context of family planning (2), an individual
would only have knowledge of the family planning status for a
limited number of individuals, e.g. very close friends and family.
Thus, the value of k in the former example would be larger than
in the latter.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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