
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Virtual Service Embedding with Time-Varying Load and Provable Guarantees / Einziger, Gil; Scalosub, Gabriel;
Chiasserini, Carla Fabiana; Malandrino, Francesco. - In: IEEE TRANSACTIONS ON CLOUD COMPUTING. - ISSN
2168-7161. - STAMPA. - 11:3(2023), pp. 2693-2710. [10.1109/TCC.2022.3224399]

Original

Virtual Service Embedding with Time-Varying Load and Provable Guarantees

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCC.2022.3224399

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973191 since: 2022-11-18T11:35:43Z

IEEE

1

Virtual Service Embedding with
Time-Varying Load and Provable Guarantees

Gil Einziger, Member, IEEE, Gabriel Scalosub, Senior Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE,
Francesco Malandrino, Senior Member, IEEE

Abstract—Deploying services efficiently while satisfying their
quality requirements is a major challenge in network slicing.
Effective solutions place instances of the services’ virtual network
functions (VNFs) at different locations of the cellular infrastruc-
ture and manage such instances by scaling them as needed. In
this work, we address the above problem and the very relevant
aspect of sub-slice reuse among different services. Further,
unlike prior art, we account for the services’ finite lifetime
and time-varying traffic load. We identify two major sources
of inefficiency in service management: (i) the overspending of
computing resources due to traffic of multiple services with dif-
ferent latency requirements being processed by the same virtual
machine (VM), and (ii) the poor packing of traffic processing
requests in the same VM, leading to opening more VMs than
necessary. To cope with the above issues, we devise an algorithm,
called REShare, that can dynamically adapt to the system’s
operational conditions and find an optimal trade-off between the
aforementioned opposite requirements. We prove that REShare
has low algorithmic complexity and is asymptotic 2-competitive
under a non-decreasing load. Numerical results, leveraging real-
world scenarios, show that our solution outperforms alternatives,
swiftly adapting to time-varying conditions and reducing service
cost by over 25%.

I. INTRODUCTION

Network slicing leads to a revolutionary transformation of
mobile services, with technologies like software-defined net-
working (SDN) and network function virtualization (NFV) en-
abling flexible, fully virtualized environments. In this context,
the automated management of the services that the network
supports and of the underlying resources they consume is
a major challenge. As requests for service deployment can
arrive and leave at a very fast pace, it is important that
deployment decisions are swift and able to dynamically adapt
to the evolution of the network load. Additionally, each such
deployment has to fulfill the services’ target key performance
indicators (KPIs) and efficiently allocate the very diverse,
geographically distributed, and differently owned resources.

Such requirements imply that when a service request from
a third-party vertical (e.g., automotive industry or a content
provider) reaches the system, the following steps should be
automatically performed: (i) to identify the network segment
(e.g., edge, aggregation, cloud) where to deploy the service,
based on the service target latency and the infrastructure cost,
(ii) to check whether part (or all) of the virtual network
functions (VNFs) composing the service can re-use already de-
ployed VNFs (i.e., (sub-)slices), (iii) if so, to scale the amount

G. Einziger and G Scalosub are with the Ben Gurion University of
the Negev, Israel. C. F. Chiasserini is with Politecnico di Torino, Italy.
F. Malandrino and C. F. Chiasserini are with CNR-IEIIT and CNIT, Italy.

of resources allocated for the VNFs composing such (sub-)
slices, so as to fulfill the target KPIs of all involved services,
and (iv) to instantiate the VNFs that have to be deployed ex
novo, and allocate a suitable amount of resources (e.g., CPU,
memory, routers) for their processing and interconnection.

Such a process, also referred to as service orchestration or
service embedding, entails multiple, inter-dependent decisions
including VNF placement and virtual machine (VM) provi-
sioning. In making such decisions, the orchestrator needs to
avoid two main sources of inefficiency. The first is due to
placing VNFs with different delay constraints on the same
VM: in such a case, the most stringent delay constraint is
effectively maintained also for the least demanding VNF,
which implies that some of the processing allocated to handle
the other VNF(s) is not minimal. Such additional capacity can
be seen as derived from latency dissimilarity of co-located
VNFs and it is removed when all those placed in a VM have
exactly the same delay constraint. The second inefficiency is
due to assigning (“packing”) VNFs in the VMs in a sub-
optimal manner, that is, using more than the minimal number
of VMs required.

Several works have addressed these aspects, including [1]–
[7], by casting them into MILPs and proposing effective
heuristics. Most of the existing studies, however, operate
offline, i.e., assume that the set of service requests to deploy
is known in advance and make the best (e.g., cost-effective)
decisions for their instantiation. Importantly, our work is able
to capture the effect of time-varying traffic conditions, i.e.,
with service instances exhibiting finite lifetime and time-
varying traffic load and the flexible relationship between the
computational resources assigned to a VNF and the resulting
service times.

Further, unlike prior art [3], [4], [6], [7], our work ac-
counts for the fact that next-generation networks are made of
segments (e.g., cloud and edge) with different computational
capability, latency, and cost: in this scenario, it is important
that each service is supported by the segment with the most
appropriate cost-performance trade-off. Furthermore, unlike
state-of-the-art works like [8], [9], our system model and
algorithms can account for the dynamic nature of the load
networks have to serve. Such aspects are especially critical,
as they influence a solution’s ability to cope with daily and
weekly traffic patterns and the network topology.

In this paper, we make the following main contributions:

• we first develop a model that captures the main aspects
of the NFV ecosystem and accounts for a time varying

TABLE I
TABLE OF NOTATION

Symbol Description
S, V set of services and VNFs (resp.)
Vsr set of VNFs of request r for service s

ar , τr arrival and duration (resp.) time of service instance request r
λr load of service instance request r
Dsr request r delay constraint
G graph of layered topology of datacenters (nodes)
` layer of a node (distance from leaf)
b VM running in a node

µ̄, µ maximum and actual (resp.) computing capability of a VM
θv computing complexity of VNF v
lr leaf node where request r arrives

Λ(b) overall load on VM b
d` forwarding latency from a leaf to a node in layer `
Mr,v minimum processing latency of running (r, v) alone in a VM
Dvr fair delay allocation of job (r, v)

κ`f fixed cost of a VM at level `
κ`p proportional cost of a VM at level `
σ sequence of requests

system load, as well as for the fact that there are different
segments composing the network;

• we formulate the problem of service embedding taking
the end-to-end latency as the main service KPI, and de-
velop an algorithm, named REShare, which addresses all
issues listed above – network segment identification, VNF
placement/reuse, and resource scaling – and, importantly,
handles a time-varying service requests load;

• we prove that RESharehas low, namely, quadratic, com-
putational complexity and is an asymptotic 2-competitive
algorithm under a non-decreasing load;

• finally, using real-world load traces, we show that the cost
of deploying and running services under REShare is much
lower than under state-of-the-art solutions. Also, REShare
can swiftly adapt to time-varying conditions, attaining
excellent performance as the system load evolves.

The rest of the paper is organized as follows. Sec. II intro-
duces the system model, while Sec. III outlines our approach
and main results. Sec. IV presents a heuristic strategy, which
is our cornerstone for building the REShare algorithm, and
analyzes its competitive ratio. REShare, along with its compet-
itive analysis, is introduced in Sec. V, while its performance
is assessed in Sec. VI. After discussing the related work in
Sec. VII, we conclude the paper in Sec. VIII.

II. SYSTEM MODEL

Our system model seeks to concisely represent the main fea-
tures of next-generation network architectures, namely, their
layered structure [10] and heterogeneity. Indeed, as reported
in [11]–[13] for datacenters and in [14] for 5G networks,
many relevant types of networks are organized in layers, with
nodes at the same layer having similar features in terms of
latency and cost; however, the features of different layers can
be vastly different. In other words, any differences between
nodes of the same layer are negligible when compared to
those between nodes of different layers. By capturing such
aspects, our model serves as the first step towards meeting the
challenge they represent. Furthermore, we consider the NFV
Orchestrator (NFVO), specified within the well-known NFV

MANO (Management and Orchestration) architecture [15],
as the decision-making entity. In both ETSI standards [15]
and real-world 5G deployments [14], the NFVO has access
to plentiful information concerning such aspects as: (i) the
target KPIs of each service, e.g., its target end-to-end delay;
(ii) the time for which each service instance shall be active;
(iii) the VNFs composing the service; (iv) their computational
requirements, which in turn determine the processing delay.

More specifically, the processing delay associated with
a service is determined by (i) the available computational
capabilities; (ii) the service computational complexity; and (iii)
the service demand. The computational capabilities available
to each service is one of our decision variables, as set forth
next. As for the computational complexity of a given service, it
is routinely obtained by profiling the service as it runs, hence,
it can be considered a known quantity. Finally, the service
demand can be either known a priori (e.g., in smart-factory
applications) or reliably predicted [16], [17], as better detailed
in Sec. VII.

We leverage these notions throughout our system model and
algorithms, as set forth next. The most relevant notation we
use is summarized in Tab. I.

Services. Let S be the set of services that verticals may
request and V the set of all possible VNFs they may use.
Requests for the deployment of service instances arrive se-
quentially at the system, and each new request r for an instance
of service s requires a set1 of connected VNFs Vsr ⊆ V . Such
VNFs may either be freshly deployed or reuse existing VNF
instances provided that isolation requirements are met.

Verticals and network operators commit to service level
agreements (SLAs), detailing the cost and the quantity of the
resources each vertical can use. Thus, the requests received at
the NFVO do not exceed the resource budget for which the
vertical is paying; i.e., there are always enough resources to
deploy a service meeting the target KPIs. Thus, our problem
is not whether or not to admit a service request, but how to
embed it in the most efficient way.

Network system. Most real-world networks connecting
datacenters exhibit a layered topology [11], [12], e.g., trees, fat
trees, as well as SlimFly and DragonFly [13] (an example of
such a layered topology appears in Fig. 1). Let G = 〈I, E〉 be a
graph modelling such a layered topology, with vertices, i ∈ I,
representing datacenters (also referred to as nodes), and edges,
e ∈ E , representing communication links between datacenters.
Each node can host a large [18] number of virtual machines
(VMs). Each VM implements one VNF instance [14], and the
same VNF instance can serve traffic belonging to one or more
services.

Layers are numbered as follows: leaf nodes are at layer 0,
and a generic node is at layer ` > 0 if its distance in links
from the closest leaf is `. VMs are characterized by their
computational capabilities, i.e., resources at their disposal.
Intuitively, the more capable a VM is, the quicker it will be
able to perform a given task. Specifically, a VM b running
in some generic datacenter in node i has maximum speed

1We denote the set of VNFs of a service instance request (and the target
latency introduced next) by Vsr (Dsr), even if it depends only on s.

2

Fig. 1. Example of a layered topology, featuring three layers.

(i.e., computing capability) µ̄ and can host a single VNF v.
We denote with µb ≤ µ̄ the amount of computing resources
VM b is using, and with θv the computing complexity of
VNF v. Intuitively, computational complexity expresses how
difficult it is to run a certain VNF. If we fix the amount of
computational capabilities, then the processing time required
by a given task is proportional to its computational complexity.
More formally, computational complexity is defined as the
number of computing units2 required by VNF v to handle a
unit of traffic: the higher θv , the more complex the associated
VNF, and the more computational resources will be required
to run it.

For ease of presentation, we treat the computing capability µ
as a scalar quantity, i.e., a number; therefore, µ is able to
represent one type of system resources, e.g., CPU. Additional
types of resources, like memory or storage, could be accounted
for by converting both µ and the service requirements to
multi-dimensional variables, i.e., vectors. Our approach would
work unmodified; however, so doing would entail significant
additional notation complexity.

A request r is associated with a tuple
〈Vsr , ar, τr, Ds

r , λr, lr〉, where lr specifies the leaf node
at which the request arrives, ar and τr are, respectively, its
arrival time and duration, λr is the traffic load, and Ds

r is
the latency requirement. Having a finite lifetime for requests
allows us to model time-varying network load. Specifically,
as demonstrated in Sec. VI, fluctuations in the network load
can be reproduced by adding, removing, or replacing service
requests. Notice that the duration (i.e., lifetime) of a service
is a distinct quantity from the time it takes to process an
individual packet (or query) belonging to the service, and
the quantities often differ by orders of magnitude. As an
example, a smart factory service like the one discussed in
Sec. VI-A may be active for as long as a certain batch has
to be produced, i.e., its service duration can be of minutes
or days; in the other hand, individual messages pertaining to
robot actions are processed in milliseconds.

For each VNF v ∈ Vsr , we define (r, v) as the job of running
VNF v for request r; each job (r, v) has to be assigned to
a VM b hosting v, running on some node. Clearly, the jobs
associated with a request arrive all upon the request’s arrival
(i.e., at time ar), and depart after the request’s duration τr
has elapsed (i.e., at time ar + τr), when all jobs (r, v) are
removed and the resources they consumed are freed. Finally,
Λ(b) denotes the overall traffic load of the jobs assigned to
VM b.

2For simplicity, θv ≤ 1 is normalized to the maximum VNF complexity.

Latency. The total latency incurred by request r is given by
the sum of the traffic forwarding latency and the processing
latency. To determine the former, we consider that routes
between any two nodes in the topology have been pre-
computed. We denote with d` the traffic forwarding latency
from a leaf node to a node at layer `; owing to the layered
structure of the network topology (e.g., edge, aggregation,
and cloud layers), we have d`+1 > d`, reflecting the fact
that farther-away layers take longer to reach than close-by
ones. We further consider the forwarding latency incurred by
request r, where each job (r, v) is deployed at some level `vr ,
as the maximum forwarding latency over all levels hosting
jobs of r. The maximum forwarding latency captures the
latency incurred by reaching the highest level, which hosts jobs
corresponding to the request. Such a latency is the dominating
component of the overall forwarding latency incurred by the
job; indeed, as better detailed in Sec. IV, the large number of
VMs available in each datacenter makes placing all VNFs of
a service in the same node (albeit on different VMs) the most
convenient option, hence, inter-VNF forwarding times are not
significant.

As for the processing latency, we model each VM as an
M/M/1 queue. Queuing models are commonly used in the lit-
erature to represent VMs in edge and cloud scenarios [1], [19]–
[22], with Markovian service [1], [20], [22] and arrival [1],
[19], [20], [22] times being considered in most cases; the
validity of such modeling assumption has also been confirmed
through simulation-based validation [21]. Using a queueing
model allows us to model how VNFs may be assigned different
quantities of resources, e.g., CPU, and how such an amount
impacts their processing time. This is in contrast with existing
works, e.g., [3], [4], [6], [7], where VNF requirements are
constant over time and no resource allocation decision is
possible.

As per [23], the processing latency incurred on VM b run-
ning VNF v at speed µb is 1

µb−θvΛ(b) . While VMs get assigned
virtual cores in practice, it is fair to assume that µb’s take on
real values: indeed, given that each node corresponds to a
datacenter, it contains a very large number of physical cores,
and each physical core can accommodate a high number (e.g.,
up to 32) of virtual cores. Importantly, a queuing model allows
us to capture the flexible relation between the computational
resources assigned to a VNF and the resulting processing
times, i.e., VNFs process requests quicker if they have more
resources. For stability, we must have Λ(b) < µb/θv .

A deployment is said to be feasible for request r if the
sum of the traffic forwarding latency and processing latency
over all v ∈ Vsr , with the latter computed considering the
maximum VM capability µ̄ for all VNFs, does not exceed
target delay Ds

r . Also, for every r, let `∗(r) be the highest layer
for which running all v ∈ Vsr on VMs in a node at that layer is
a feasible deployment. Next, we define the fair per-job delay
allocation over the jobs (r, v) as the per-job processing latency
budget, which will serve as a guide for placing request’s jobs,
allocating computing resources to them, and performing VMs
sharing across distinct jobs.

The intuition behind the fair delay allocation is to give
more resources to more complex VNFs, i.e., those with larger

3

computational requirements θv . Such an allocation is fair,
in that no VNF contributes in a disproportionate manner to
the total processing time. Specifically, since a deployment
of request r is feasible if the total processing latency of its
jobs is at most Ds

r − d`∗(r), then we distribute this latency
budget over the distinct jobs (r, v) according to their relative
processing requirements. Namely, for each (r, v), the fair per-
job delay allocation is: Dv

r =
Mr,v∑

u∈Vs
r
Mr,u

(Ds
r−d`∗(r)), where

Mr,v = 1
µ̄−θvλr

is the latency incurred by running v using the
maximum VM capability µ̄, and Mr,v∑

u∈Vs
r
Mr,u

accounts for the

relative time complexity of v ∈ Vsr . It follows that a job (r, v)
corresponding to a VNF v with a larger value of θv will be
assigned a larger value of Dv

r .
Consider now request r such that job (r, v) is deployed on

a node at layer `vr ≤ `∗(r), while satisfying the fair per-job
delay allocation. The overall processing latency of the request
is at most:∑

v∈Vs
r

Dv
r =

∑
v∈Vs

r

Mr,v∑
u∈Vs

r
Mr,u

(Ds
r − d`∗(r)) (1)

= Ds
r − d`∗(r). (2)

By the definition of `∗(r) and the fact that forwarding latency
is monotone with the node’s level, we have that the overall
latency of deploying request r is at most Ds

r , and thus feasible.
In the following, we will consider feasible service deployments
that satisfy such fair per-job delay allocation, and we will
compare our solution to an optimal solution that must also
satisfy such fair per-job delay bounds.

Cost. Running a VM b at a node of layer `(b) implies a fixed
cost, κ`(b)f . The fixed cost reflects the fact that unused VMs still
entail additional work for the hypervisor and keep resources
allocated, both of which consume power [24], [25], hence,
money. Furthermore, any VM b running on a node at layer `(b)
at speed µb incurs cost κ`(b)p µb, which is proportional to the
computing resources consumed by b. Our model accounts for
the fact that running VMs at a higher layer (closer to the cloud)
is cheaper [26] than running VMs at lower layers (closer to the
edge), i.e., κ`+1

f < κ`f and κ`+1
p < κ`p. Cost parameters can

also account for differently-owned and/or federated resources,
e.g., in different administrative domains.

Denoting by σ the sequence of the requests handled by
the system till the current time, we define φ(A, σ) as the
overall instantaneous cost of the deployment decisions made
by an algorithm A, i.e., the sum of fixed and proportional
costs of all VMs currently used. φ(A), instead, refers to the
instantaneous cost of algorithm A at the end of the whole
request arrival/departure process.

A. Problem formulation

The main decisions we have to make are (i) whether
VM b should be used for job (r, v), expressed through binary
variables y(r, b, v) ∈ {0, 1}, and (ii) how much computational
resources to assign to each VM, expressed through the real
variable µb. Importantly, y-variables also express whether or
not a certain VM b is active; specifically, b is active – hence,
the corresponding fixed cost is incurred – if and only if it

is used by at least one job, i.e.,
∑

(r,v) y(r, b, v) ≥ 1. Also
notice that, in our system model, VMs do not migrate, hence,
the values of the y-variables do not change during the lifetime
of a job.

Our goal is to minimize the total cost, i.e.,

min
y,µb

∑
b

(
κ
`(b)
f max

(r,v)
y(r, b, v) + κ`(b)p µb

)
. (3)

The two terms in (3) correspond to the fixed and proportional
cost, respectively. The constraints we have to satisfy are that all
target delays are met: for each job (r, v), if b is the VM serving
it, i.e., y(r, b, v) = 1, then we wish to impose 1

µb−θvΛ(b) ≤ D
v
r .

This is captured by requiring

Dv
r · y(r, b, v) (µb − θvΛ(b)) ≥ y(r, b, v) ∀(r, v), (4)

where Λ(b) =
∑
r′ y(r′, b, v)λr′ . We further impose that∑
b

y(r, b, v) ≥ 1, ∀(r, v), (5)∑
v

max
r
y(r, b, v) ≤ 1, ∀b, (6)

µb ≤ µ̄, ∀b, (7)

where Eq. (5) ensures that every job is actually deployed,
Eq. (6) mandates that each VM runs a single VNF, and Eq. (7)
ensures that the capacity constraint of each VM is met. Since
the problem is combinatorial in nature and non-linear, and the
formulation is non-convex, we adopt a heuristic approach in
designing an efficient and effective algorithm for solving the
problem.

III. APPROACH AND MAIN RESULTS

We now describe the approach we use in designing our algo-
rithm, REShare, which performs feasible VNF placement with
time-varying service demand. REShare aims at minimizing the
overall cost, and it is shown to be asymptotically 2-competitive
when requests duration, τr, is unlimited.

REShare tackles the sources of inefficiency described in
Sec. I, as follows:
• to reduce the number of requests served before their

deadline (and the resulting waste or resources), REShare
seeks to minimize the dissimilarity between jobs that are
co-located in the same VM;

• to reduce the bin-packing suboptimality, REShare lever-
ages efficient, state-of-the-art bin-packing algorithms.

Our algorithm carefully manages these challenges according
to the overall system load. Intuitively, we pack together
diverse services at times of low system load to avoid creating
many underutilized VMs. For high system loads, instead, we
want to utilize individual VMs better and allow for minimal
dissimilarity.

Our solution is based on a carefully designed algorithm,
constant-REShare(c-REShare), with parameter ε, described in
Sec. IV. The value of ε governs the amount of dissimilarity al-
lowed; smaller ε values imply less dissimilarity. c-REShare(ε)
places all jobs corresponding to a request in a single node at
the highest level for which the placement is feasible (even if

4

Large 𝜀 Small 𝜀

Lo
w

 lo
ad

Hi
gh

 lo
ad

𝑉𝑀! 𝑉𝑀"

𝜆!

𝜇!

𝜇" = 0

�̅�

1/𝐷1

𝜆"
𝜆!

1/𝐷! 1/𝐷"𝜇! 𝜇"

�̅�

𝑉𝑀! 𝑉𝑀"

𝜆"

𝜆!′

1/𝐷!
𝜇! 𝜇"𝜆!

1/𝐷!

𝑉𝑀! 𝑉𝑀"

�̅�

𝜆"′𝜆" 𝜆!

1/𝐷! 1/𝐷"
𝜇! 𝜇"𝜆!′

𝑉𝑀! 𝑉𝑀"

�̅�

𝜆"

𝜆"′

Fig. 2. Example of the c-REShare approach: consider two types of services
(1 and 2), each composed of the same, single VNF. The target latency is D1

and D2 (resp.), with D1<D2. As detailed in Sec. IV, the capacity required at
each VM is given by (i) the total load it must serve (green and blue blocks),
plus (ii) the inverse of the shortest delay it must guarantee (orange and yellow
boxes). Under low load (one request per service), a large ε (top left) entails
that the two requests can share the same VM and, considering the M/M/1
modeling, consume µ1 = λ1 + λ2 + 1/min(D1, D2). Instead, a small
ε (top right) requires two VMs and a larger total capacity. For high load
(two requests per service), a large ε (bottom left) means that services can
share the same VMs, but require a high capacity as the most stringent target
latency must be met by both VMs. A small ε (bottom right) yields a cheaper
deployment instead.

it requires starting a new VM for every job). c-REShare(ε) is
shown to be asymptotically (2 + ε)-competitive under a non-
decreasing load.

REShare uses c-REShare(ε) with dynamically varying val-
ues of ε, depending on the overall system load. When the
system load is low, bin-packing suboptimality is the dominant
cost factor, and REShare uses a larger value for ε. When
system load increases, bin-packing suboptimality is naturally
reduced since any solution must use many VMs for supporting
the load. In this case, REShare favors reducing dissimilarity
by using a smaller value for ε. Fig. 2 provides an example of
these aspects. One of the main novel elements of our approach
is such an ability to switch between different decision-making
strategies (expressed through different values of ε) as the
network load varies. Indeed, recent works [3], [4] leverage a
forecast of future requests for the next few hours; [6] accounts
for the network load evolution but always follows the same
strategy, i.e., the same trade-off between resource consumption
and overhead. Finally, [7] does not adapt its decision strategy
to the load and deploys multiple replicas of each VNF chain
to achieve robustness.

We decide when to transition between ε values by maintain-
ing a lower bound on the cost of an optimal solution (which is
closely correlated with the overall system load). This approach
also allows us to prove that REShare is asymptotically 2-
competitive when requests duration, τr, is unlimited.

Notice that assuming infinite request duration is only re-
quired for our analysis. In practice, REShare is inherently
designed to deal with time-varying load conditions where
requests arrive and leave the system. We show the effective-
ness of our approach through an extensive simulation study,
presented in Sec. VI, which provides further insight into the
dynamic behavior of REShare and the reasoning underlying
our algorithmic approach.

A. An AWS-based experiment

Before describing our c-REShare approach, we perform a
simple real-world experiment to demonstrate the first, and
perhaps less intuitive, of the suboptimality sources that we
discuss, namely, serving requests with different deadlines
within the same node. We consider two types of requests:

• a MAFFT protein alignment task [27] whose target delay
is 80 s;

• a WAV-to-FLAC audio conversion [28] whose target
delay is 50 s.

We further consider two types of VMs available on Amazon
AWS, namely, m1.small and m2.xlarge. For both VMs,
we select the Ubuntu operating system, and run the bench-
marks via the phoronix command. When ran alone, the
MAFFT benchmark takes 37 s on an m2.xlarge machine,
and 137 s on an m1.small one; the FLAC benchmark takes
11 s on an m2.xlarge, and 48 s on an m1.small.

A total of three requests arrive at very short interval
from each other, in the following order: first a request for
the MAFFT task (mafft_1), then one for the FLAC task
(flac_1), and finally a second MAFFT request (mafft_2).
Recall that we take an online approach, i.e., we embed all
requests as soon as they arrive.

The possible decisions are summarized in Fig. 3. Clearly,
when request mafft_1 arrives (step 1), we must create a new
VM. Since an m1.small VM would be too slow, we must
open an m2.xlarge VM, called xlarge_1 (step 2). After
job flac_1 arrives (step 3), we can make two decisions: re-
use existing VM xlarge_1, or open a new VM small_1
of type m1.small.

Re-using xlarge_1 (step 4a) would minimize both the
number of VMs and the cost so far, however, things would
be different after the arrival of the third job (step 5): using
xlarge_1 (step 6a) would result in a violation of the target
KPIs, hence, we need to open a new VM. Furthermore, such a
new VM can only be of type m2.xlarge (step 6b), resulting
in a higher cost of 1 USD/hour3.

Let us assume instead that we create a new VM for the
newly-arrived flac_1 job, on the grounds that its target
delay and complexity are vastly different from the ones of job
mafft_1; importantly, a cheaper VM of type m1.small
would suffice. Performing this counter-intuitive action allows
us to serve request flac_2 on the existing VM xlarge_1
(step 6c), resulting in a total lower cost of 0.585 USD/hour.

In summary, avoiding serving requests with overly-different
values of target delay within the same VM results in lower
global costs. As confirmed in Tab. II, it also results in requests
served closer to their deadline, hence, intuitively, in less wasted
computational capabilities.

IV. THE C-RESHARE(ε) STRATEGY

This section describes and analyzes the constant-REShare
(c-REShare) strategy, with a fixed parameter ε.

3All prices refer to the US-east availability zone.

5

1: job mafft_1
arrives

2: deploy new
VM xlarge_1

3: job flac_1
arrives

4a: re-use VM
xlarge_1

5: job mafft_2
arrives

6a: re-use VM
xlarge_1

6b: deploy new
VM xlarge_2

4b: deploy new
VM small_1

5: job mafft_2
arrives

6c: re-use VM
xlarge_1

💸 2 VMs,
1.00 $/h

❌miss
KPI target

👛 2 VMs,
0.585 $/h

Fig. 3. AWS-based experiment: summary of the possible decisions and their outcome.

TABLE II
AWS-BASED EXPERIMENT: SERVICE TIME AND COST FOR THE DIFFERENT

OPTIONS REPORTED IN FIG. 3

case service time [s] cost [USD/hour]

6a
mafft_1: 85
mafft_2: 85
flac_1: 33

0.5

6b
mafft_1: 48
mafft_2: 22
flac_1: 37

1

6c
mafft_1: 74
mafft_2: 74
flac_1: 45

0.585

A. Algorithm description

The details of c-REShare(ε) are presented in Alg. 1, which
takes ε, determining the level of VNF (hence, VM) sharing
among jobs, as an input parameter. Given a request r, first c-
REShare(ε) identifies layer `∗(r) (Line 3), which is the highest
layer where the requested service instance can be deployed
without violating the service KPI targets and keeping the fair
per-job delay allocation (see Sec. II). We remark that such a
layer is selected because VNF deployment is cheaper at higher
layers and that this layer can be found by conducting a binary
search, i.e., in time that is logarithmic in the number of layers.
Furthermore, c-REShare(ε) deploys all the service VNFs in
the same node to minimize the traffic forwarding latency and
maximize the computation latency budget. Recall that, as per
our system assumptions, it is always possible to place in
the same node all VNFs composing a service. Furthermore,
whenever doing so is possible, it is also beneficial, as it avoids
incurring inter-node forwarding latency.

The specific node i∗ at layer `∗(r) where the request traffic
should be processed is chosen as the one providing the best
load balancing (Line 4), i.e., the one that currently has the
lowest load. However, it is important to highlight that the
choice of i∗ does not affect the worst-case performance of
the algorithm and that we can use alternative criteria (e.g.,
choosing the most-recently-used or most-loaded server) with
similar guarantees.

Assigning jobs (r, v) to VMs can now be done indepen-
dently over the VNFs, as long as the fair per-job delay
allocation, Dv

r , v ∈ Vsr , is met. Placing each job in a new
or existing VM running v poses the following dilemma:
• on the one hand, we would like to share VMs as much

Algorithm 1 c-REShare(ε)
1: for any arrival/departure of request r do
2: if r is arriving then
3: `∗(r) ← max {`|fair delay allocation is met at `}

. choose highest possible layer
4: i∗ ← Load balancing(G, `∗(r)) . select node
5: for each v ∈ Vsr do
6: j∗ ←

⌊
log(1+ε)D

v
r

⌋
. determine latency

range
7: VM assignment((r, v), (i∗, v, j∗)-AP) .

assign job to a VM
8: else . r is departing
9: for each v ∈ Vsr do

10: VM deassignment((r, v)) . deallocate the job

as possible, to save on fixed costs;
• on the other, sharing the same VM among jobs with

different delay allocation results in wasted capacity (as
discussed earlier and exemplified in Fig. 2), and, thus, in
higher proportional costs.

The parameter ε describes the tradeoff underlying such de-
cisions. Specifically, let λmin = infr {λr}, where we as-
sume λmin > 0 and is known in advance; then we de-
fine a series of non-overlapping latency ranges Lj , where
Lj =

(
1

µ̄−λmin(1+ε)j ,
1

µ̄−λmin(1+ε)j+1

]
, for j ≥ 1, and

L0 =
[

1
µ̄−λmin

, 1
µ̄−λmin(1+ε)

]
. Clearly, we need to impose that

λmin(1 + ε)j+1 < µ̄, ∀j; then, the number of latency ranges,
Jε, satisfies Jε < log(1+ε)

µ̄
λmin
−1. c-REShare(ε) only shares

the same VM among jobs within the same latency range. Thus,
a larger value of ε results in wider ranges and jobs with more
diverse fair delay allocations sharing the same VM. On the
contrary, a smaller value of ε implies narrower ranges and
more similar jobs within each range.

Given i∗, the objective is to assign each VNF v ∈ Vsr
to a suitable VM in i∗, such that the fair delay allocations
are satisfied for all jobs on that VM (Line 6). In particular,
given a VNF v, we consider the VM Assignment Problem,
hereinafter referred to as (i, v, j)-AP, which assigns a job
(r, v) to a VM in node i, while ensuring that Dv

r ∈ Lj (with
j = blog(1+ε)D

v
rc). Since we only share VMs among jobs in

the same range, it is possible to consider separate assignment
problems for different values of j.

6

Algorithm 2 VM assignment((r, v), (i, v, j)-AP)

1: viable_VMs← ∅
2: for every VM b in i hosting jobs (r′, v) in Lj do
3: if 1

µ̄−θv(Λ(b)+λr) > Dv
r then . check feasibility for

the new job on b
4: continue . continue to next VM
5: for every (r′, v) ∈ b do . jobs already assigned to b
6: if 1

µ̄−θv(Λ(b)+λr) > Dv
r′ then . check feasibility

for jobs already on b
7: continue . continue to next VM
8: viable_VMs← viable_VMs ∪ {b} . reusable

VMs
9: if viable_VMs 6= ∅ then

10: b∗ ← arg maxb∈viable_VMs Λ(b) . Best-fit
11: µb∗ ← θv[Λ(b) + λ(r)] + 1

min(r′,v)∈bD
v
r′

. adjust
capability

12: else
13: b∗ ← create new VM in i
14: µb∗ ← θvλr + 1

Dv
r

. adjust capability

15: place (r, v) in b∗

Algorithm 3 VM deassignment((r, v))

1: i← node running request r
2: b← VM on node i running job (r, v)
3: remove (r, v) from b
4: µb ← θvΛ(b) + 1

min(r′,v)∈bD
v
r′

. adjust capability

The VM assignment procedure for solving (i, v, j)-AP is
presented in Alg. 2. It begins by looking for VMs whose
capacity could be expanded to accommodate the additional
load of job (r, v), while honoring its delay allocation Dv

r

(Line 3) as well as that of previously allocated jobs (Lines 5-
7). It then places such VMs in set viable_VMs (Line 8). If
the set is not empty, in Line 10 the viable VM with the least
free capacity is selected, in a Best-fit [29] fashion. If there
are no viable VMs, a new VM is instantiated in Line 13.
In either case, job (r, v) is assigned to VM b∗ (Line 15).
In Line 11 (and similarly in Line 14), the capacity of b∗ is
adjusted to guarantee that the fair delay allocations for all
jobs assigned to b∗ are met. Through simple manipulation
of the M/M/1 delay expression, this corresponds to setting
µb∗ = θv[Λ(b) + λ(r)] + 1

min(r′,v)∈bD
v
r′

. Line 8, and the fact
that the delay allocation of job (r, v) can always be satisfied
by placing it in a new VM, imply that it is always possible.

The departure of service instances is dealt with in Alg. 3,
which removes all jobs of request r from the VMs hosting
them and readjusts the VMs capability to release the resources
while meeting the constraints of all remaining jobs.

B. Competitive ratio analysis

In this section, we compare the cost of c-REShare(ε) against
that of an optimal solution, denoted by OPT, which is aware of
the future sequence of service requests that arrive at the NFVO.
We derive our worst-case performance guarantees for scenarios
where each request has infinite duration. This analysis guides

our algorithmic design and provides asymptotic performance
guarantees when system load tends to infinity. However, as
we show in later sections, our proposed solutions also provide
significantly improved performance in cases where requests
have a finite duration, and the system load increases and
decreases in a time-varying manner. We first provide below
an overview of our analysis.

High-level description of the analysis. At the heart of
our analysis lies a load argument across distinct layers, where
we compare the load handled by c-REShare(ε) at some layer
to that handled by OPT. We consider a shadow solution,
SHA(ε) (described in the sequel), which is allowed to produce
a fractional assignment, and should also satisfy relaxed delay
constraints. This solution runs most of its VMs at full capacity,
and the cost of such VMs serves as a lower bound on the cost
of OPT. We show that the cost induced by the deployment
performed by c-REShare(ε) is comparable to that of this lower
bound, and provide an additional bound on the additive cost of
all remaining VMs that may be used by OPT. In what follows,
we provide a detailed account of our analysis.

We first show that c-REShare(ε) performs feasible deploy-
ments for any service request.

Lemma 1. If c-REShare(ε) assigns r to node i∗ at layer `∗(r),
allocating VM capability µb∗ , then such a deployment of the
service instance is feasible.

Proof. Consider r being placed at node i∗, located at layer
`∗(r). By the definition of Alg. 1, `∗(r) is the highest layer
where deploying all v ∈ Vsr on new VMs in a node at layer `
is feasible. When considering Alg. 2, each job (r, v) is placed
in one of the viable VMs at i∗ where running the VM at
maximum processing capability ensures a feasible solution
(Lines 2–7). Since Alg. 2 uses the minimal capability that
ensures feasibility (Lines 11–14), the result follows.

Next, we compare the performance of c-REShare(ε) to
the optimum. To bound the competitive ratio and leverage
load rearrangement arguments in our proofs, we introduce
an alternative request (hence, job) arrival/departure process,
and an alternative placement strategy. Specifically, for any
job (r, v) associated with latency range Lj , i.e., such that
Dv
r ∈

(
1

µ̄−λmin(1+ε)j ,
1

µ̄−λmin(1+ε)j+1

]
(or, possibly, Dv

r =
1

µ̄−λmin
in the case of j = 0), we define a corresponding top

job, (r, v), as equivalent to (r, v) but associated with delay
constraint Dv

r = Dj = 1
µ̄−λmin(1+ε)j+1 ≥ Dv

r . 4 Note that all
top jobs falling in the same latency range Lj have the same
delay constraint Dj .

A shadow strategy. We now introduce the shadow frac-
tional assignment (SHA(ε)), a fractional placement strategy,
whose cost will be used to determine a lower bound on the
cost of OPT within the analysis of c-REShare(ε). Furthermore,
in Sec. V we also use SHA(ε) explicitly within our algorithm
REShare, which can handle time-varying load.

SHA(ε) uses the same ε value as c-REShare(ε), and operates
as follows: (i) it handles the top job sequence (r, v); (ii) it

4Note that the load offered by (r, v) is the same as that of (r, v), and the
difference is that the top job has a (possibly) more relaxed delay constraint.

7

never places in the same VM jobs associated with different
Lj (hence, by (i) and the definition of top jobs, with different
delay allocations); (iii) it places a job in a single node;
(iv) within the chosen node, it can place fractions of a job load
on different VMs (i.e., it works with a “fluidified” version of
the jobs); (v) it generates the optimal placement that satisfies
conditions (i)-(iv) above. In case of a request departure,
SHA(ε) removes the load associated with the corresponding
jobs and fractionally rearranges the remaining load; thus, the
cost of the resulting placement is equivalent to that of re-
running SHA(ε) on all the remaining requests.

SHA(ε) is used in two manners: (i) guiding the decisions
of our dynamic algorithm, REShare (details are provided in
Sec. V), and (ii) identifying a lower bound on the cost of OPT.
We now briefly explain how the cost of SHA(ε) can be used
to define a lower bound on the cost of OPT, where we refer to
this property as the relaxation property of SHA(ε). Note that by
using the top sequence with a fractional assignment, for each
VNF v, every latency value Dj of a top job, and every node
i, all the VMs, save at most one, used by SHA(ε) in i work at
full computing capacity µ̄ to handle jobs associated with v and
Dj . Since such full VMs handle the load placed upon them in
the most efficient manner (i.e., there are no inefficiencies due
to placing jobs with different delay constraints on the same
VM), this amount of load must also be handled by OPT. All
other properties of SHA(ε) essentially relax the constraints
imposed on OPT. It follows that the cost of running these full
VMs serves as a lower bound on the cost of OPT.

We begin our analysis by showing that c-REShare(ε) places
jobs in the highest layer possible.

Lemma 2. If c-REShare(ε) places the jobs of request r in node
i∗ at layer `∗(r), then OPT and SHA(ε) both place every job
(r, v) in some node i′ at some layer `′, with `′ ≤ `∗(r).

Proof. We start by showing that the claim holds for OPT.
Assume, by contradiction, that OPT places some job (r, v) at
node i′ at layer `′ > `. Then, the network latency of OPT is
higher than that of c-REShare(ε) (since the traffic associated
with r has to reach layer `′ > `), i.e., d`′ > d`. As for
the processing latency yielded by the OPT placement, this is
at least

∑
v∈V s

r
Mr,v . By construction, c-REShare(ε) ensures

that node i∗ is at the highest layer `∗ = `∗(r) for which∑
v∈V s

r
Mr,v ≤ Ds

r − d`∗ ; this implies that the assignment
made by OPT is not feasible, thus contradicting the initial
assumption. By item (iii) in the definition of SHA, the above
argument also holds for SHA(ε).

In the remainder of this section, we consider that requests
have an infinite duration, i.e., τr =∞, for all arriving requests
r. Under this condition, we can bound the total amount of
traffic load (over all possible service requests) that SHA(ε)
may process at a different layer than the one selected by c-
REShare(ε) for any given node used by c-REShare(ε), any
VNF, and any latency range.

Lemma 3. For every node i at layer `, every VNF v, and
latency range Lj , the overall load of VNF v, handled by c-
REShare(ε) at i and associated with Lj , that is handled by

SHA(ε) at a layer `′ 6= `, is at most n`′ ·λmin(1+ε)j+1, where
n`′ is the number of nodes at layer `′.

Proof. Assume by contradiction that there exist some VMs
running VNF v at layer `′, associated with latency range Lj ,
that, according to SHA(ε), handle a load higher than n`′ ·
λmin(1+ε)j+1, while c-REShare(ε) handles that load at node
i at layer ` 6= `′. By Lemma 2, we have that `′ < `. By the
pigeonhole principle [30], there exists at least one node at a
layer `′ < `, such that there exists a total load of at least
λmin(1 + ε)j+1 corresponding to Lj , that is handled by c-
REShare(ε) in node i at layer `, but is handled by SHA(ε) in
node i′ at layer `′. Without loss of generality, we assume that
there exists a full VM in node i′ at layer `′ that, according to
SHA, processes λmin(1 + ε)j+1 traffic with latency range Lj .
This assumption is fair since SHA(ε) applies a fractional load
assignment and places in the same VM only jobs associated
with the same latency range, while the delay constraints of all
jobs in that latency range are the same in the top sequence.

Consider now an alternative solution, SHA(ε)′, which is
identical to SHA(ε), except for having this entire VM run at
some node i′′ at layer `′ + 1. First, note that this produces a
feasible shadow fractional assignment for the workload han-
dled by SHA(ε) and does not require increasing the processing
speed of the VM at layer `′ + 1. Indeed, since c-REShare(ε)
places these jobs at layer `′ + 1 or higher, the per-job latency
constraint is satisfied for the solution of SHA(ε)′ and, by
definition of Lj , SHA(ε) already processes λmin(1 + ε)j+1

traffic at i′ using the maximum VM computing capability.
Second, the cost of SHA(ε)′ is strictly smaller than the cost
of SHA(ε) since, at layer `′ + 1, both the proportional cost
and the fixed cost are smaller than at layer `′. This contradicts
the optimality of SHA, thus completing the proof.

Next, for every VNF v, every node i, and every latency
range Lj , let Λvi,j be the total load due to all jobs (r, v) that
are handled by c-REShare(ε) in node i at layer `. We next
provide an upper bound on the maximum number of VMs
that c-REShare(ε) requires to handle such load, which is then
used to prove the competitive ratio of c-REShare(ε).

Lemma 4. Given VNF v, node i, and latency range Lj , the
number of VMs used by c-REShare(ε) to handle workload Λvi,j

is at most
2Λv

i,j

λmin(1+ε)j + 1.

Proof. First, note that the delay constraint Dv
r of every job

(r, v) contributing to Λvi,j is at least 1
µ̄−λmin(1+ε)j . It follows

that we can pack a load of at least λmin(1 + ε)j , while
satisfying the delay constraints of the jobs assigned to the VM.
We therefore view this latter quantity as the lower bound on
the size of the VMs in the (i, v, j)-AP.

The overall load on each VM b of (i, v, j)-AP, except for
maybe one, is at least λmin(1+ε)j

2 . This argument follows from
the fact that if there were two VMs with load strictly less than
λmin(1+ε)j

2 , combining their loads on a single VM would have
resulted in a VM with an overall load of at most λmin(1+ε)j .
This assignment is still feasible and incurs a lower placement
cost. Thus, running such a VM at speed µ̄ would result in
every job (r, v) assigned to the VM experiencing a latency

8

at most 1
µ̄−λmin(1+ε)j ≤ Dv

r , where the inequality follows
from the definition of Lj . This contradicts the definition of
VM assignment (Alg. 2), which assigns jobs to already open
VMs if the overall load on the VM would still result in a
feasible solution (for some speed no larger than µ̄). Hence,
the overall number of VMs used by c-REShare(ε) for handling
Λvi,j is at most

⌈ 2·Λv
i,j

λmin(1+ε)j

⌉
≤ 2·Λv

i,j

λmin(1+ε)j + 1, which proves
the thesis.

Theorem 1. c-REShare(ε) is a 2(1+ε)-asymptotic competitive
algorithm when service requests have unlimited duration.

Proof. Consider Λvi,j ; this can be seen as the sum of loads
of two types of jobs: type 1, corresponding to jobs that are
handled by SHA(ε) at some node i′ at layer `, with an overall
load Λ̃vi,j , and type 2, corresponding to jobs that are handled
by SHA(ε) at some node at a layer other than `, with an overall
load of Λ̄vi,j = Λvi,j− Λ̃vi,j . We denote the amount of resources
used by c-REShare(ε) for handling Λvi,j by c-RESharevi,j , and
that used by SHA(ε) for handling jobs contributing to Λ̃vi,j by
SHAvi,j .

First, by Lemma 4, we have that the overall number of VMs
used by c-REShare(ε) for handling load Λvi,j is at most

2Λvi,j
λmin(1 + ε)j

+ 1 =
2Λ̃vi,j

λmin(1 + ε)j
+

2Λ̄vi,j
λmin(1 + ε)j

+ 1

≤
2Λ̃vi,j

λmin(1 + ε)j
+

2nλmin(1 + ε)j+1

λmin(1 + ε)j
+ 1

=
2Λ̃vi,j

λmin(1 + ε)j
+ 2n(1 + ε) + 1 ,

where the inequality follows from Lemma 3. If we let κ` =
κ`f +κ`pµ̄ denote the cost of running a single VM at maximum
speed in node i at layer `, then

φ(c-RESharevi,j) ≤
2Λ̃vi,j

λmin(1 + ε)j
κ`+ [2n(1 + ε) + 1]κ` . (8)

We now derive a lower bound on the cost of the VMs used by
SHA(ε) for handling jobs contributing to Λ̃vi,j , which serves
as a lower bound on the number of VMs used by SHA(ε) for
handling the total load Λ̃vi,j + Λ̄vi,j .

First, note that the latency constraint of each top job
contributing to Λ̃vi,j is exactly 1

µ̄−λmin(1+ε)j+1 . Using similar
arguments as those used to prove Lemma 4, we can conclude
that the maximum load on any VM running any such job
is λmin(1 + ε)j+1, which we view as the size of the VMs
used by SHA(ε) for handling these jobs. Recall that SHA(ε)
can place jobs fractionally, and it does not place jobs with
different latency range on the same VM. It follows that all
VMs handling such jobs at layer `, except for at most one, are
completely full (recall that SHA(ε) is optimal and therefore,
without loss of generality, can be assumed to place all jobs at
a level in a single node at that level). Then, all these full VMs
have a load equal to their size. Consequently, the number of
full VMs required by SHA(ε) for handling jobs contributing

to Λ̃vi,j is at least:
⌊

Λ̃v
i,j

λmin(1+ε)j+1

⌋
≥ Λ̃v

i,j

λmin(1+ε)j+1 − 1, which
translates into

φ̃(SHAvi,j) ≥

(
Λ̃vi,j

λmin(1 + ε)j+1
− 1

)
κ`, (9)

where φ̃(SHAvi,j) is the cost associated with running only the
full VMs used by SHA(ε). Hence, we have:

φ(c-RESharevi,j) ≤ 2(1 + ε)

(
Λ̃vi,j

λmin(1 + ε)j+1
− 1

)
κ`

+[(2n+ 2)(1 + ε) + 1]κ` (10)
≤ 2(1+ε)φ̃(SHAvi,j)+[(2n+2)(1+ε)+1]κ`,

where the first inequality follows from (8), and the second
from (9). By the relaxation property of SHA(ε), the overall
cost of VMs used by SHA(ε), and working at full computation
capacity, serves as a lower bound on the cost of OPT. Summing
over all nodes i, VNFs v, and latency ranges j, we get:

φ(c-REShare(ε)) ≤ (11)

2(1+ε)φ(OPT)+((2n+2)(1+ε)+1)Jε |V |
∑
i

κ`.

Since Jε ≤ log(1+ε)
µ̄

λmin
− 1, Eq. (11) implies that

lim
φ(OPT)→∞

φ(c-REShare(ε))

φ(OPT)
≤ 2(1 + ε) ,

thus completing the proof.

V. DYNAMICALLY ADJUSTING ε: RESHARE

In this section, we present the REShare algorithm, which
dynamically adjusts ε in order to optimize the deployment of
service instances as the service request load varies arbitrarily
over time. The design of REShare draws upon the analysis
of the competitive ratio of c-REShare(ε). Our analysis in-
dicates that we get a better multiplicative competitive ratio
when decreasing ε, implying that, ideally, for infinite duration
requests, and ever increasing load, it is best to set ε as small
as possible. Our analysis also shows that the additive terms
in the competitive performance of c-REShare(ε) increase as ε
decreases. Thus, using very small values of ε may end up being
inefficient when the load is small. Consequently, REShare
starts with a large ε to minimize the constant overheads, and,
as the load increases, it reduces ε to optimize the asymptotic
competitive ratio. Finally, since REShare explicitly deals with
time-varying workloads, it increases ε when the total load
declines, as the constant terms have a larger impact on its
performance.

To do so, REShare simulates our shadow strategy SHA(ε)
alongside the actual decisions it performs and uses the cost
of SHA(ε) as an indicator of the system load, which is then
leveraged to dynamically adjust the value of ε being used by
REShare. Specifically, as the service request load increases,
c-REShare(ε) gets asymptotically closer to SHA(ε) when ε
is small, at the cost of a larger additive term due to the
VMs partitioning into latency ranges Lj (0 ≤ j ≤ Jε).
This notion yields the main design criterion for REShare: ε

9

should be gradually reduced as the load grows, and instead
increased when the load drops, as also depicted in Fig. 2.
Importantly, we show that REShare has low complexity and
it is asymptotically 2-competitive when requests have infinite
duration, i.e., τr = ∞; also, as shown in Sec. VI, it can
effectively cope with very diverse, practical scenarios.

REShare can be seen as a way to apply different versions of
c-REShare(ε), constantly adjusting the value of ε as the service
load varies over time. Specifically, REShare begins by running
c-REShare(ε) with a large initial value of ε; at the same time,
it simulates SHA(ε) and keeps track of its cost. When the load
goes beyond a threshold that, as detailed below, depends on
the ratio between c-REShare(ε)’s and SHA(ε)’s costs, we keep
track of the current load and reduce ε. This action is performed
again and again as long as the load increases, following the
arrival of new requests.

Once the load drops below the previous load mark, which
is essentially due to requests leaving the system, we increase
ε to its previous value. This approach is applied repeatedly as
long as the load decreases.

Finally, we remark that, although we consider that service
instances arrive and leave, their traffic load remains constant
during their lifetime. REShare can also cope with time-varying
values of λr. In particular, one can look at a change in the
value of λr as if the current service instance left and another,
exhibiting the new value of λr, arrived.

A. Algorithm description

To formally define REShare, we use the following notation.
Let t0 be the arrival time of the first request. We then look at
sequence σ as the concatenation of subsequences σ1, σ2, . . .,
such that σq is the sequence of requests arriving/departing in
interval Iq = [tq−1, tq), for q ≥ 1. Intervals are periods of time
during which ε remains unchanged: for every Iq , c-REShare(ε)
uses a given ε to determine the latency ranges, as described in
Alg. 1. We indicate such value by εh(q), where h(q) denotes
the index of the level of the system load at the beginning of Iq .
The algorithm keeps track of the most recent load threshold,
associated with index h(q), throughout its execution, using
parameter Th(q). Also, let us define:

Yq = φ̃(SHA(εh(q)), σq) , (12)

Z = [(2n+ 2)(1 + ε∗) + 1] log
µ̄

λmin
|V |
∑
i

κ` , (13)

where, similarly to the proof of Theorem 1, φ̃(SHA(εh(q)), σq)
is the cost associated with running only the full VMs used by
SHA(εh(q)). Here, ε∗ > 0 is an initial value that satisfies
ε∗ ≥ εh(q), ∀q. We remark that the cost in (12) refers to the
end of the interval Iq and that Z represents the second term in
Eq. (10), which is independent of both q and h(q). For every
request r arriving or departing during Iq , we let σrq denote
the subsequence of request arrivals and departures in σq up to
(and including) the arrival/departure of r. We further extend
the above notation and define Y rq = φ̃(SHA(εh(q)), σ

r
q). At

any time t, let Ỹp be the value of Yq for the last interval in

Algorithm 4 REShare
1: init q = 1; h(1) = 1; εh(1) = ε∗; Th(1) = 0
2: for each service request r arriving or departing do
3: handle r in c-REShare(εh(q))
4: update the cost r in SHA(εh(q))
5: if Y rq ≥ max {Cq, Sq} then . arrival, cost (load)

above threshold
6: εh(q)+1 ← εh(q)/2 . reduce ε
7: Th(q)+1 ← Λ . set load threshold
8: Ỹh(q) ← Y rq
9: h(q + 1)← h(q) + 1 . update load level index

10: q ← q + 1
11: else if Λ < Th(q) then . departure, load below

threshold
12: h(q + 1)← h(q)− 1 . update load level index
13: q ← q + 1

which ε = εp, over all intervals Iq ending no later than t. We
then define:

Cq =
Z

εh(q) log(1 + εh(q))
, (14)

Sq =
1

εh(q)

h(q)−1∑
p=1

(2 + 3εh(p))Ỹp . (15)

Note that during interval Iq , both Cq and Sq are fixed.
REShare is formally defined in Alg. 4. REShare takes as

input the value ε∗, which is the initial value of ε and is used
to define Z. For each q = 1, 2, . . ., the subsequence σq will be
implicitly defined during the execution of REShare, according
to the requests r handled by the algorithm between consecutive
updates to the value of ε. Index h(q), instead, keeps track of
the evolution of the system load (by updating Th(q)+1 = Λ in
line 7, with Λ being the current system-wide load), and of the
corresponding value of ε given as input to c-REShare, which
is used as a subroutine within REShare (c-REShare(εh(q))). It
follows that, by calling c-REShare with different values of the
parameter εh(q), REShare can adjust to the traffic load as this
changes over time, always using the most appropriate values
of ε.

Assume that the condition in Line 5 holds for some q and
request r arriving or departing during σq . Since the right-
hand side of the condition is fixed, this implies that Y rq has
increased due to handling r, which means that r has arrived
at the system, causing Y rq to increase beyond the value of the
right-hand side. Since Y rq ≥ Cq , along with the fact that in
Line 8 Ỹh(q) is set to be Y rq , we have:

εh(q)Ỹh(q) ≥ Z
1

log(1 + εh(q))
. (16)

Intuitively, using the insight derived from the analysis pre-
sented in Sec. IV, Eq. (16) implies that a mere εh(q) fraction of
the cost φ̃(SHA(εh(q)), σq) is already sufficiently larger than
the cost incurred by REShare for handling requests in different

10

nodes than the ones used by SHA(εh(q)), for input sequence
σq . Also, since Y rq ≥ Sq , it follows that:

εh(q)Ỹh(q) ≥
h(q)−1∑
p=1

(2 + 3εp)Ỹp. (17)

Eq. (17) means that a fraction εh(q) of Ỹh(q), i.e., a fraction
εh(q) of the cost φ̃(SHA(εh(q)), σq), is already sufficiently
larger than the cumulative cost of SHA over the previous
time intervals to warrant a change of ε. We note that these
lower bounds on the cost of SHA(εh(q)) are commensurate to
the load encountered by the system (both by SHA(εh(q)) and
REShare), during interval Iq , and they come in handy for the
analysis of REShare’s competitive ratio.

When service requests expire and make the overall system
load drop below the previous threshold (Line 11), the algo-
rithm reverts to using the previous load level index (h(q)−1),
and, consequently, its corresponding value of ε.

B. Complexity and competitive ratio analysis
We first observe that the complexity of REShare is remark-

ably low: from inspection of Algs. 1–4 and considering the
complexity of SHA(ε), the total complexity of REShare is
O(B|Vsr |) where B is the number of VMs currently used.

In the remainder of this subsection, we assume that requests
have unlimited τr, i.e., there are no departures, and we
analyze the competitive ratio of REShare in such a setting.
In particular, under this assumption, we have that h(q) = q
for all q. For simplicity, we henceforth use index h to represent
both q and h(q). Furthermore, under these settings Ỹh = Yh,
thus we simply use Yh to denote either Ỹh or Yh.

To prove REShare’s competitive ratio, we proceed as fol-
lows. First, let us recall the observations made in Sec. V-A,
i.e., whenever the condition in Line 5 of Alg. 4 holds, the
overall load handled by the system at that point is significantly
higher than the load at the beginning of the interval. In such
a case, we reduce the value of ε to be used in the subsequent
interval (Line 6). Since index h serves as a proxy to the overall
load in the system, this update rule for the value of ε implies
that limh→∞

∑h
p=1 φ(SHA(εp, σp)) =∞ iff limh→∞ εh = 0.

This is due to the fact that ever-decreasing values of ε yield
ever-narrower latency ranges, hence a higher number of used
VMs. Second, c-REShare(εh), as well as SHA(εh), handle
the requests arriving in different intervals using a new series
of latency ranges, hence they cannot reuse already deployed
VNFs. Thus, the costs associated with different intervals Ih
can be considered separately. Third, we prove the following
lemma, which is the key result to derive the asymptotic
competitive ratio of REShare.

Lemma 5. For every k = 1, 2, . . . ,

k∑
h=1

φ(REShare, σh) ≤ (2 + 4εk)

k∑
h=1

φ̃(SHA(εh), σh).

Proof. By the definitions of Yh and Z given in Eqs. (12)-(13),
Eq. (10) implies (after changing the logarithm base) that

φ(REShare, σh) ≤ (2 + 2εh)Yh + Z
1

log(1 + εh)
. (18)

By plugging Eq. (16) into Eq. (18), we obtain

φ(REShare, σh) ≤ (2 + 3εh)Yh. (19)

By summing over h in (19) and using (17), we get
k∑
h=1

φ(REShare, σh) ≤ (2 + 3εk)Yk +

k−1∑
h=1

(2 + 3εh)Yh

≤ (2 + 4εk)Yk. (20)

By the definition of Yk, the thesis follows.

The following theorem is an immediate corollary of
Lemma 5, for the case of unbounded τr.

Theorem 2. When τr is unbounded, REShare is asymptotically
2-competitive.

Proof. By the update rule of εh, in line 6 of REShare,
we have that limh→∞ εh = 0. By using Lemma 5, this
therefore implies that limh→∞

φ(REShare)∑h
p=1 φ̃(SHA(εp,σp))

≤ 2. Since∑h
p=1 φ̃(SHA(εp, σp)) is a lower bound on φ(OPT), the

theorem follows.

VI. NUMERICAL RESULTS

In this section, we describe the scenarios we use for
our performance evaluation (Sec. VI-A), the workloads we
consider (Sec. VI-B), the benchmark solutions we compare
against (Sec. VI-C), and the results we obtain (Sec. VI-D).

A. Reference scenarios

We consider two hierarchical topologies akin those origi-
nally proposed in [31] and used in many research works there-
after. The first is organized in three layers [32]: (i) edge, closest
to the users (leaf nodes) but the most expensive (normalized,
per-VM fixed cost of 7.5); (ii) aggregation, cheaper than
edge (normalized, per-VM fixed cost of 2.5) but incurring a
moderate extra traffic forwarding latency; (iii) cloud, cheapest
(normalized, per-VM fixed cost of 1) but associated with the
longest extra latency. The second is a four-layer topology,
including a fog layer that incurs a per-VM fixed cost of 10.
Cost figures are obtained from [26], presenting the technical
and economic aspects of datacenters of different sizes, which
can be placed at different network segments.

Each VM has a computing capability of µ̄ = 100 pack-
ets/ms, and a per-packet proportional cost of 1/100th its fixed
cost. This reflects findings reported in [25], i.e., that idle VMs
consume roughly half as much power as fully-utilized ones
(with the latter incurring both fixed and proportional costs).
In the three-layer scenario, the extra latency associated with
the aggregation and the cloud layer is, respectively, 15 ms and
30 ms. In the four-layer one, the fog layer has no extra latency,
while the latency of all other layers is increased by 5 ms.

B. Workloads

We consider different workloads for our performance eval-
uation from three of the main application realms of slicing-
enabled networks: connected vehicles, smart factories, and
cloud-edge computing.

11

TABLE III
SERVICES TARGET DELAY AND VNF COMPLEXITY

VNF θv VNF θv

Virtual comm. sub-slice CT – delay target 50 ms
eNB 1 Car information management

(CIM)
10

EPC PGW 1 CT server 8
EPC SGW 1 CT database 1
EPC HSS 1 EN – delay target 1 s
EPC MME 10 Video origin server 10

Video CDN 3
ICA – delay target 20 ms Smart-factory – delay target 100 ms

Car information management
(CIM)

7 Robot controller 10

Collision detector 10 Motion planning 10
Car manufacturer database 1 Configuration interface 5
Alarm generator 1 Digital twin application 10

Vehicular domain. We begin by considering the three-
layer topology and the main services of the vehicular domain,
presented in [33] and described in Tab. III:
• Intersection Collision Avoidance (ICA): vehicles pe-

riodically broadcast Cooperative Awareness Messages
(CAMs) including their position, speed, and acceleration;
a collision detector checks if any pair of vehicles are on
a collision course and, if so, it issues an alert;

• Vehicular see-through (CT): cars display on their on-
board screen the video captured by the preceding vehicle,
e.g., a large truck obstructing the view;

• Entertainment (EN): passengers consume streaming con-
tent, provided with the assistance of a content delivery
network (CDN) server.

In addition to their service-specific VMs, all services leverage
a virtual communication sub-slice, as listed at the top of
Tab. III. New service requests are generated whenever a new
instance is needed, e.g., the service has to be deployed at a
new location, or the crossing surveilled by ICA becomes more
crowded, thus triggering a service scale out.

The computational requirements of the VNFs (i.e., their
complexity) reported in Tab. III come from [33]; instead, the
load we apply is synthetically generated, in order to demon-
strate how our approach handles rapid demand fluctuations.
Specifically, the service request process is as follows:

1) for the first 15 s of the time horizon under study, a new
request arrives every second;

2) after that, and until 800 s from the beginning of the
horizon, no further requests arrive;

3) between 800 and 1,000 s from the beginning, 1,000 more
requests (5 per second) arrive;

4) those requests leave the system, at the same rate, between
1,000 and 1,200 s after the beginning of the horizon.

The first requests represent long-running services, which are
active even during periods of low traffic. The subsequent
request arrivals represent a sudden surge in vehicular activity,
to which more service requests are associated, and an equally
sudden decrease thereof.

Smart-factory domain. Digital twins are computer models
of real objects, controlling the behavior of their physical
counterparts. As detailed in [34], in smart-factory scenarios
semi-autonomous robots are controlled by entities running

within the network infrastructure. Also in this case we consider
the three-layer scenario, along with the services specified
in Tab. III. The main tasks to perform are: (i) fine-grained
control of robot actions; (ii) planning of their actions and
mobility; (iii) configuration of the robots; (iv) the digital twin
itself. Comparing the smart factory to the vehicular service
characteristics in Tab. III, one can notice how, while the end-
to-end delays required in the two scenarios are comparable,
the structure of the services is fairly different. Specifically,
the smart-factory scenario only includes one service, including
four VNFs, besides the virtual communication sub-slice. It
follows that comparing the performance of REShare across
these two use cases captures both quantitative differences and
qualitative variability.

Real-world computing load. Finally, we move to the four-
layer scenario and consider a real-world scenario where the
demand comes from the GWA Materna trace [35], [36], which
depicts the real-world evolution of the demand of a major
cloud operator in Europe.

We also consider a different service request arrival process,
where requests arrive and depart faster. Specifically:

1) for the first 15 s of the time horizon under study, a new
request arrives every second;

2) after that, and until 780 s from the beginning of the
horizon, no further requests arrive;

3) between 780 and 800 s from the beginning, 1,000 more
requests (50 per second) arrive;

4) those requests leave the system, at the same rate, between
1,180 and 1,200 s after the beginning of the horizon.

C. Benchmark strategies
We compare REShare against two benchmarks. The first one

is the shadow assignment used in Sec. IV-B. As discussed in
Sec. IV-B, the cost of full VMs used by such a strategy is a
lower bound on the optimum because it is allowed to place
different parts of the same request at different hosts, which
neither the optimum nor REShare are, of course, allowed to
do, and it also handles relaxed delay constraints. Notice how
SHA is not a concrete strategy that could be applied in a real-
world scenario, but rather it serves as a proxy of the lower
bound on the optimum cost. In other words, the closer to SHA
a strategy is, the better that strategy performs.

The second benchmark, labeled RelaxSoTA in the plots, is an
adaptation to our scenario of the highly influential works [3],
[4]; importantly, the same approach has been later followed by
further studies on edge computing [37], distributed machine
learning [38], and energy-efficient mobile gaming [39]. Such
approaches are based upon solving a convex relaxation of
the placement problem every time a new request arrives, and
making the placement decisions associated with the highest
values of the relaxed variables. Notice that, unlike REShare,
the RelaxSoTA approach may place VNFs of the same service
at different layers.

In summary, we can say that both benchmarks have an
advantage over REShare, respectively, the ability to split VNFs
and to spread a service across multiple layers. Therefore,
comparing REShare against such powerful alternatives yields
additional relevance to our results.

12

Price-of-Dissimilarity (PoD). The PoD captures the ad-
ditional computational capacity used because of the differ-
ence in delay constraints among the jobs served by the
same VM (see also Sec. III). By the definition of the
latency incurred on VM b running VNF v at speed µb,
the delay incurred by any job assigned to b is 1

µb−θvΛ(b) .
We then define the PoD of VM b running on node i

as: maxr

{
1
Dv

r
− (µb − θvΛ(b)) | (r, v) is assigned to b

}
. For

any feasible assignment, the PoD of any VM b is non-negative;
also, when all jobs assigned to b have the same delay constraint
(as in SHA), it is possible to pick µb such that the PoD is zero.

D. Results

Vehicular domain. A fundamental aspect to investigate is
the cost of REShare and its alternatives. In Fig. 4(left), we
compare REShare, c-REShare(ε) with four different values of
ε (identified by different markers), and the relaxation-based,
state-of-the-art approach. For better readability, all values are
normalized to the cost of SHA, which is why some cumulative
costs in Fig. 4(right) appear to decrease. The gray, dotted line
shows the number of requests in the system.

It can be immediately seen that REShare is substantially
cheaper than the state-of-the-art benchmark we compare
against and performs close to SHA, whose cost, we recall, is
very close the optimum. Furthermore, REShare is cheaper than
c-REShare(ε) for all ε values; this confirms the effectiveness
of the strategy implemented in Alg. 4, whereby the value of ε
is adjusted according to time-varying load conditions.

Fig. 4(right) presents the evolution of instantaneous (i.e., per
time unit) costs during and around the load peak. Note that
low values of ε are associated with a lower cost in high-traffic
periods, while larger ε values yield lower costs in low-traffic
periods, as highlighted in Fig. 2. This observation is consistent
with how ε values determine how much PoD we tolerate on
each open VM. When only a few requests are present, it is
cheaper to tolerate a high PoD (large ε) since, otherwise,
we would open an excessive number of (near empty) VMs.
However, when the number of requests is high, the larger
ε implies that we utilize the open VMs inefficiently. As for
REShare, its cost is always close, albeit not equal, to the one
of the cheapest instance of c-REShare(ε) due to the switching
behavior of Alg. 4. Transitions between different ε values are
marked in Fig. 4(right) by upwards- and downwards-pointing
triangles.

We now characterize how ε affects the system’s performance
and cost. Fig. 5(left) shows how much of the services delay
budget (Ds

r) is consumed by traffic forwarding (yellow areas)
and processing (green areas). The traffic forwarding overheads

TABLE IV
COST SAVINGS BROUGHT BY RESHARE W.R.T. THE STATE-OF-THE-ART

(RELAXSOTA)

Scenario Savings [%]
Vehicular/uniform 15
Smart factory 24
Materna (real-world) 26

are determined entirely by level choice to accommodate the
job, which is the same for all ε values. However, larger values
of ε result in shorter processing times. Shorter processing
times, i.e., providing services earlier than their constraint,
correspond to more computing resources unnecessarily pro-
visioned and thus higher-than-needed costs.

This is confirmed by Fig. 5(center) and Fig. 5(right), high-
lighting how the VMs capacity is used. Green areas therein
correspond to the load VMs have to serve, which cannot be
reduced. The sum of orange and red areas correspond to the
margin µb − θvΛ(b) of the VMs (see Sec. IV-A); such a
quantity must be larger than 1

Dv
r

for all requests served by
each VM. In particular, the orange areas correspond to the
margin that VMs would have if all requests they serve had the
same latency constraints, while the red ones correspond to the
PoD. Finally, gray areas correspond to the difference µ̄ − µb
between the maximum and actually allocated VM capacities.

We can see that larger ε values are always associated with
a higher PoD. If the load is low (as in Fig. 5(center)), larger
ε values, implying more VM sharing and a higher PoD, may
be an acceptable alternative to provisioning more VMs. This
observation explains the behavior we observed in Fig. 4, where
larger values of ε result in lower cost in spite of a higher PoD.
For high load (Fig. 5(right)), limiting the PoD is instrumental
in reducing the quantity of consumed resources. Specifically,
from Fig. 5(right), we can see that the PoD is over 5% for
RelaxSoTA, while it drops below 1% for REShare.

Smart-factory domain. Fig. 6 and Fig. 7 present the
performance of REShare and its alternatives for the smart-
factory application. Fig. 6 confirms that REShare yields the
lowest cumulative cost (left plot), despite not necessarily being
the cheapest solution at every point in time (right plot). It is
also interesting to notice how the faster pace at which the
load evolves also implies that c-REShare with low values of ε
cannot catch up with REShare, and yield a substantially higher
cumulative cost (first plot). REShare, on the other hand, can
quickly go through all ε values and reach the optimal one,
as shown by the green and red triangles at the bottom of the
second plot of Fig. 6.

Fig. 7 shows how, despite the different services, smaller
values of ε are consistently associated with a smaller PoD,
though not necessarily with the lowest cost. By quickly
reaching the right value of ε, REShare keeps the PoD below
1%, compared to 13% of RelaxSoTA.

Materna workload. The results for the real-world scenario
based on the Materna trace are summarized in Fig. 8 and
Fig. 9. We can observe a behavior that is effectively equivalent
to Fig. 6 and Fig. 7, which further confirms how REShare
works well with different loads and network topologies. As
we can see from Fig. 9(right), the PoD for REShare is
below 1%, compared to 21% of the state-of-the-art solutions.
Throughout all scenarios, using REShare in lieu of state-
of-the-art approaches consistently yields very significant cost
savings, as summarized in Tab. IV. Interestingly, savings are
higher in more complex scenarios, e.g., the real-world one.

13

500 750 10001000 2000 3000 4000 50001500
Time [s]

1.4

1.6

1.8

2.0

2.2

2.4

2.6

N
or

m
. (

to
 S

H
A)

 c
um

ul
at

iv
e

co
st c-RS(0.5)

c-RS(1.0)
c-RS(2.0)

c-RS(4.0)
REShare
RelaxSoTA

10

100

1000

N
o.

 r
eq

ue
st

s

800 900 1000 1100 1200
Time [s]

1.4

1.6

1.8

2.0

2.2

2.4

2.6

N
or

m
. (

to
 S

H
A)

 in
st

an
t.

 c
os

t

c-RS(0.5)
c-RS(1.0)
c-RS(2.0)

c-RS(4.0)
REShare
RelaxSoTA

10

100

1000

N
um

be
r

of
 r

eq
ue

st
s

Fig. 4. Three-layer scenario, vehicular application. REShare and benchmark strategies: cumulative cost (left) and details of instantaneous cost during the load
peak (right). In both plots, the dotted line corresponds to the load. In the right plot, upwards and downwards triangles at the bottom correspond to increasing
and decreasing ε in REShare. Brown boxes denote the time period during which short-lived requests arrive and leave.

c-RS(0.5) c-RS(1.0) c-RS(2.0) c-RS(4.0)
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 t
im

e

forwarding (edge-aggr)
forwarding (aggr-cloud)

processing
earlier than deadline

e a
SHA

c e a
c-RS(0.5)

c e a
c-RS(1.0)

c e a
c-RS(2.0)

c e a
c-RS(4.0)

c e a
 RelaxSoTA

c
0

50

100

150

200

250

300

350

400

U
se

d
co

m
pu

tin
g

re
so

ur
ce

s
[u

ni
ts

]

load margin PoD free

e a
SHA

c e a
c-RS(0.5)

c e a
c-RS(1.0)

c e a
c-RS(2.0)

c e a
c-RS(4.0)

c e a
 RelaxSoTA

c
0

2500

5000

7500

10000

12500

15000

17500

U
se

d
co

m
pu

tin
g

re
so

ur
ce

s
[u

ni
ts

]

load margin PoD free

Fig. 5. Three-layer scenario, vehicular application. c-REShare(ε), with different values of ε (labeled by c-RS(ε) for short): actual service latency normalized
to the target value (left); usage of computing resources for when traffic is low, namely, after the first 15 (long-running) requests arrive (center), and at peak
load (right).

500 750 10001000 2000 3000 4000 50001500
Time [s]

1.50

1.75

2.00

2.25

2.50

2.75

N
or

m
. (

to
 S

H
A)

 c
um

ul
at

iv
e

co
st c-RS(0.5)

c-RS(1.0)
c-RS(2.0)

c-RS(4.0)
REShare
RelaxSoTA

10

100

1000

N
o.

 r
eq

ue
st

s

700 800 900 1000 1100 1200 1300
Time [s]

1.25

1.50

1.75

2.00

2.25

2.50

2.75

N
or

m
. (

to
 S

H
A)

 in
st

an
t.

 c
os

t

c-RS(0.5)
c-RS(1.0)
c-RS(2.0)

c-RS(4.0)
REShare
RelaxSoTA

10

100

1000

N
um

be
r

of
 r

eq
ue

st
s

Fig. 6. Three-layer scenario, smart-factory application. REShare and benchmark strategies: cumulative cost (left) and details of instantaneous cost during
the load peak (right). In both plots, the dotted line corresponds to the load. In the right plot, upwards and downwards triangles at the bottom correspond to
increasing and decreasing ε in REShare. Brown boxes denote the time period during which short-lived requests arrive and leave.

c-RS(0.5) c-RS(1.0) c-RS(2.0) c-RS(4.0)
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 t
im

e

forwarding (edge-aggr)
forwarding (aggr-cloud)

processing
earlier than deadline

e a
SHA

c e a
c-RS(0.5)

c e a
c-RS(1.0)

c e a
c-RS(2.0)

c e a
c-RS(4.0)

c e a
 RelaxSoTA

c
0

50

100

150

200

250

300

350

400

U
se

d
co

m
pu

tin
g

re
so

ur
ce

s
[u

ni
ts

]

load margin PoD free

e a
SHA

c e a
c-RS(0.5)

c e a
c-RS(1.0)

c e a
c-RS(2.0)

c e a
c-RS(4.0)

c e a
 RelaxSoTA

c
0

2500

5000

7500

10000

12500

15000

17500

U
se

d
co

m
pu

tin
g

re
so

ur
ce

s
[u

ni
ts

]

load margin PoD free

Fig. 7. Three-layer scenario, smart-factory application. c-REShare(ε), with different values of ε (labeled by c-RS(ε) for short): actual service latency normalized
to the target value (left); usage of computing resources for the first 15 requests (center) and all requests (right).

14

500 750 10001000 2000 3000 4000 50001500
Time [s]

1.50

1.75

2.00

2.25

2.50

2.75
N

or
m

. (
to

 S
H

A)
 c

um
ul

at
iv

e
co

st c-RS(0.5)
c-RS(1.0)

c-RS(2.0)
c-RS(4.0)

REShare
RelaxSoTA

10

100

1000

N
o.

 r
eq

ue
st

s

600 700 800 900 1000 1100 1200 1300 1400
Time [s]

1.00

1.25

1.50

1.75

2.00

2.25

2.50

N
or

m
. (

to
 S

H
A)

 in
st

an
t.

 c
os

t

c-RS(0.5)
c-RS(1.0)
c-RS(2.0)

c-RS(4.0)
REShare
RelaxSoTA

10

100

1000

N
um

be
r

of
 r

eq
ue

st
s

Fig. 8. Four-layer scenario, real-world workload based upon the Materna trace [35], [36]. REShare and benchmark strategies: cumulative cost (left) and
details of instantaneous cost during the load peak (right). In both plots, the dotted line corresponds to the load. In the right plot, upwards and downwards
triangles at the bottom correspond to increasing and decreasing ε in REShare.

c-RS(0.5) c-RS(1.0) c-RS(2.0) c-RS(4.0)
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 t
im

e

forwarding (fog-edge)
forwarding (edge-aggr)
forwarding (aggr-cloud)

processing
earlier than deadline

f e a
SHA

c f e a
c-RS(0.5)

c f e a
c-RS(1.0)

c f e a
c-RS(2.0)

c f e a
c-RS(4.0)

c f e a
 RelaxSoTA

c
0

50

100

150

200

250

300

350

400
U

se
d

co
m

pu
tin

g
re

so
ur

ce
s

[u
ni

ts
]

load margin PoD free

f e a
SHA

c f e a
c-RS(0.5)

c f e a
c-RS(1.0)

c f e a
c-RS(2.0)

c f e a
c-RS(4.0)

c f e a
 RelaxSoTA

c
0

2000

4000

6000

8000

10000

12000

U
se

d
co

m
pu

tin
g

re
so

ur
ce

s
[u

ni
ts

]

load margin PoD free

Fig. 9. Four-layer scenario, real-world workload based on the Materna trace [35], [36]. c-REShare(ε) performance for different values of ε (labeled by c-RS(ε)
for short): actual service latency normalized to the target value (left); usage of computing resources for the first 15 requests (center), and all requests (right).

TABLE V
COMPARISON OF COMPETITIVE APPROACHES TO VNF PLACEMENT

Description Model/approach Latency Dynamic Guarantees Refs
REShare bin-packing, M/M/1 yes yes constant asymptotic com-

petitive ratio: 2
our work

Capacitated NFV Location
Algorithm

Generalized Assignment Problem (GAP) no no bi-criteria: cost is at most
8 times the optimum, and
constraints are violated by
a factor of at most 8

[40]

SPR3 multi-dimensional optimization; randomized approach yes no competitive ratio (with high
probability) of 4 + 3 log S

Rn
,

where S and Rn are
instance-dependent factors;
constraints are satisfied in
expectation

[4]

JASPER multi-dimensional optimization; randomized approach yes no competitive ratio (with high
probability) of 3 + 2 log S

ξ†
,

where S and ξ† are
instance-dependent factors;
constraints are violated,
with high probability, by at
most a factor 4 + δ, with
δ ≥ 0 being a scenario-
dependent quantity

[41]

GFT MILP optimization yes no asymptotic competitive
ratio: 2+(1−o(1)) logm,
where m is instance-
dependent

[42]

QNSD multi-commodity-chain flow (MCCF) yes no none for the full (integer)
problem; O(ε) competitive
ratio for the fractional (re-
laxed) one

[9]

GSP-GRS MILP optimization yes no 2 in special cases, none in
general scenarios

[8]

GSP-SS multi-scale scheduling yes yes none [43]
Online Throughput Maxi-
mization Algorithm

MILP optimization yes yes O(logn), where n is
instance-dependent

[44]

15

VII. RELATED WORK

The pioneering work on VNF placement [40] casts the prob-
lem into a generalized assignment problem (GAP), and pro-
poses a bi-criteria approximation thereto. Recent works [1]–
[3], [5], [9], [45] widen the focus of the orchestration prob-
lem to include traffic routing as well as VNF placement.
These studies present non-linear (and non-convex) problem
formulations and, thus, resort to heuristics to solve the re-
sulting problem. Other popular methodologies include graph
theory [41], [46] and set-covering [42]. Several works also
account for VNFs performing, the fact that VNFs can perform
multiple tasks, e.g., caching [47], [48]. [8] follows a similar
approach and jointly solves the problems of VNF placement
and scheduling, i.e., which physical resources to use and when.
In the same setting, [43] makes placement and scheduling
decisions accounting for multiple resources, e.g., memory and
storage, so as to reflect the requirements of the existing VNFs.
Other works focus on specific services, e.g., [44] considers
multicast streaming in MEC scenarios, and its peculiar re-
quirements in terms of network latency and VNF capacity.

Most schemes work offline, i.e., all the service instances
are known in advance. Among the few online approaches
that deal with requests arriving at different times, [49], [50]
incrementally update the current configuration, minimizing the
changes to accommodate the new requests. In a similar setting,
[3], [4] process service requests via a randomized approach.
More recently, [51] performed placement offline and routing
online.

While many works account for the fact that individual hosts
(e.g., VMs) may have different capabilities and features, few
consider layered topologies. Among those, [45], [52] focus on
the choice between edge and cloud resources, and [53] studies
the same problem with reference to caching, while [54] aims
at jointly placing the VNFs and the data they need. Finally,
several works characterize or predict service requests’ arrival,
thereby simplifying network management. Approaches include
exploiting the traffic variability to reduce the amount of
needed resources [55], using reinforcement learning to predict
traffic [56], and estimating the resources needed by each
request before admitting it [57]. Although REShare does not
require any knowledge about the future evolution of the time
demand, such information can be exploited, when available,
to further improve its performance.

It is important to stress that, unlike REShare and c-REShare,
existing works [3], [4], [6], [7] assume that VNF requirements
are constant over time, and either are or are not satisfied by
VMs. In Tab. V, we provide a summary of the comparison
between previous work studying competitive approaches to
VM placement, and our proposed solution. Importantly, ours is
the only work featuring both a constant competitive ratio and
the ability to deal with dynamic scenario, i.e., time-varying
service demand.

A research problem closely related, albeit orthogonal, to
REShare is represented by predicting the future demand for
content and services. Examples include [16], where the authors
envision using a deep neural network (DNN) to forecast the
future demand, and make network orchestration decisions

based upon such a forecast. In a similar spirit, [17] explores
novel DNN architectures to better predict the load of cloud
applications. It is important to stress that, whenever available,
such predictions can seamlessly be integrated within REShare
and further boost its performance.

VIII. CONCLUSIONS AND FUTURE WORK

We addressed the problem of creating and scaling network
slices while trying to reuse existing (sub-)slices across dif-
ferent services. We considered the availability of resources at
different locations, including edge, aggregation, and cloud, and
a time-varying system workload with service requests, arrivals,
and departures. To effectively create and scale sub-slices, we
proposed a low-complexity algorithm, which we proved to
be asymptotic 2-competitive in the case of a non-decreasing
load. Furthermore, numerical results obtained considering real-
world services showed that our solution outperforms alter-
native approaches, for time-varying workloads, reducing the
service cost by over 25%.

Future work will focus on extending our system model, most
notably, by considering: (i) workload prediction as an approach
to resource allocation for time-varying workloads, and (ii) VM
migration, i.e., the possibility that VNFs move across different
nodes during the service lifetime, and the consequent need to
balance the activation of fewer VMs against migration cost.
Furthermore, we will seek to implement REShare and assess
its performance in real-world scenarios, first in small-scale
testbeds and then through larger, cloud-based experiments.
By so doing, we will be able to better prove the practical
effectiveness of our solution.

REFERENCES

[1] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “VNF place-
ment and resource allocation for the support of vertical services in 5G
networks,” IEEE/ACM Trans. on Networking, vol. 27, no. 1, pp. 433–
446, 2019.

[2] J. Martı́n-Pérez, F. Malandrino, C. F. Chiasserini, M. Groshev, and C. J.
Bernardos, “KPI guarantees in network slicing,” IEEE/ACM Trans. on
Networking, pp. 1–14, 2021.

[3] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM, 2019, pp. 10–18.

[4] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Service placement and request routing in mec networks with storage,
computation, and communication constraints,” IEEE/ACM Trans. on
Networking, 2020.

[5] F. Malandrino, C. F. Chiasserini, G. Einziger, and G. Scalosub, “Reduc-
ing service deployment cost through VNF sharing,” IEEE/ACM Trans. on
Networking, vol. 27, no. 6, pp. 2363–2376, 2019.

[6] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service
function chain deployment and readjustment,” IEEE Trans. on Networks
and Service Management, vol. 14, no. 3, pp. 543–553, 2017.

[7] G. Moualla, T. Turletti, and D. Saucez, “Online robust placement of
service chains for large data center topologies,” IEEE Access, vol. 7,
pp. 60 150–60 162, 2019.

[8] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard
to share: Joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in IEEE ICDCS, 2018.

[9] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch, “Approx-
imation algorithms for the NFV service distribution problem,” in IEEE
INFOCOM, 2017.

[10] T. Lehman, X. Yang, N. Ghani, F. Gu, C. Guok, I. Monga, and
B. Tierney, “Multilayer networks: an architecture framework,” IEEE
Comm. Mag., vol. 49, no. 5, pp. 122–130, 2011.

16

[11] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G net-
work edge cloud architecture and orchestration,” IEEE Comm. Surveys
Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[12] “Building Telco Edge Infrastructure: MEC, Private LTE & vRAN,”
https://telco.vmware.com/content/dam/digitalmarketing/vmware/en/
pdf/microsites/telco/vmware-building-telco-edge-infrastructure.pdf,
accessed Nov. 2021.

[13] M. A. Mollah, P. Faizian, M. S. Rahman, X. Yuan, S. Pakin, and
M. Lang, “A comparative study of topology design approaches for HPC
interconnects,” in IEEE/ACM CCGRID, 2018, pp. 392–401.

[14] 5GROWTH Consortium, “Final design and evaluation of the innovations
of the 5g end-to-end service platform,” 5GROWTH deliverable 2.3, 2022,
https://5growth.eu.

[15] ETSI, “Open Source MANO (OSM),” accessed July 2020.
[16] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,

“Deepcog: Cognitive network management in sliced 5g networks with
deep learning,” in IEEE INFOCOM, 2019.

[17] M. Xu, C. Song, H. Wu, S. S. Gill, K. Ye, and C. Xu, “esDNN:
Deep neural network based multivariate workload prediction in cloud
computing environments,” ACM Transactions on Internet Technology,
2022.

[18] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: a survey on architectures, infrastructure, and algorithms,”
ACM Computing Surveys (CSUR), vol. 52, no. 5, pp. 1–37, 2019.

[19] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM Trans. on Networking,
vol. 16, no. 2, pp. 396–409, 2008.

[20] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning modeling
for virtualized multi-tier applications in cloud data center,” in IEEE
CLOUD, 2010, pp. 370–377.

[21] J. Prados, P. Ameigeiras, J. J. Ramos-Munoz, J. Navarro-Ortiz,
P. Andres-Maldonado, and J. M. Lopez-Soler, “Performance modeling of
softwarized network services based on queuing theory with experimental
validation,” IEEE Trans. on Mobile Computing, vol. 20, no. 4, pp. 1558–
1573, 2021.

[22] J. Prados-Garzon, J. J. Ramos-Munoz, P. Ameigeiras, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Modeling and dimensioning of
a virtualized mme for 5g mobile networks,” IEEE Trans. on Vehicular
Technology, vol. 66, no. 5, pp. 4383–4395, 2017.

[23] L. Kleinrock, Theory, Volume 1, Queueing Systems. USA: Wiley-
Interscience, 1975.

[24] N. Kumar, G. S. Aujla, S. Garg, K. Kaur, R. Ranjan, and S. K. Garg,
“Renewable energy-based multi-indexed job classification and container
management scheme for sustainability of cloud data centers,” IEEE
Trans. on Industrial Informatics, vol. 15, no. 5, pp. 2947–2957, 2019.

[25] R. Morabito, “Power consumption of virtualization technologies: an
empirical investigation,” in IEEE/ACM UCC, 2015, pp. 522–527.

[26] 5G-TRANSFORMER Consortium, “Final system design and techno-
economic analysis,” 5G-TRANSFORMER deliverable 1.4, 2019, http:
//5g-transformer.eu.

[27] “Timed MAFFT Alignment,” OpenBenchmarking, 2020, https://
openbenchmarking.org/test/pts/mafft.

[28] “FLAC Audio Encoding,” OpenBenchmarking, 2019, https:
//openbenchmarking.org/test/pts/mafft.

[29] L. Epstein and A. Levin, “A robust APTAS for the classical bin packing
problem,” Math. Program., vol. 119, no. 1, pp. 33–49, 2009.

[30] W. A. Trybulec, “Pigeon hole principle,” Journal of Formalized Mathe-
matics, vol. 2, 1990.

[31] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM, 2016, pp. 1–9.

[32] J. Martı́n-Pérez, L. Cominardi, C. J. Bernardos, A. de la Oliva, and
A. Azcorra, “Modeling mobile edge computing deployments for low
latency multimedia services,” IEEE Trans. on Broadcasting, vol. 65,
no. 2, pp. 464–474, 2019.

[33] C. Casetti, C. F. Chiasserini, N. Molner, J. Martı́n-Pérez, T. Deiß, C.-T.
Phan, F. Messaoudi, G. Landi, and J. B. Baranzano, “Arbitration among
vertical services,” in IEEE PIMRC, 2018, pp. 153–157.

[34] L. Girletti, M. Groshev, C. Guimarães, C. J. Bernardos, and A. de la
Oliva, “An intelligent edge-based digital twin for robotics,” in IEEE
Globecom Workshops, 2020, pp. 1–6.

[35] A. Kohne, M. Spohr, L. Nagel, and O. Spinczyk, “FederatedCloudSim:
a SLA-aware federated cloud simulation framework,” in ACM Workshop
on CrossCloud Systems, 2014, pp. 1–5.

[36] A. Kohne, D. Pasternak, L. Nagel, and O. Spinczyk, “Evaluation of SLA-
based decision strategies for VM scheduling in cloud data centers,” in
ACM Workshop on CrossCloud Infrastructures & Platforms, 2016.

[37] S. Jošilo and G. Dán, “Joint wireless and edge computing resource man-
agement with dynamic network slice selection,” IEEE/ACM Transactions
on Networking, 2022.

[38] T. Q. Dinh, D. N. Nguyen, D. T. Hoang, T. V. Pham, and E. Dutkiewicz,
“In-network computation for large-scale federated learning over wireless
edge networks,” IEEE Transactions on Mobile Computing, 2022.

[39] F. Spinelli, V. Mancuso et al., “A migration path toward green edge
gaming,” in IEEE WoWMoM, 2022.

[40] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE INFOCOM, 2015, pp.
1346–1354.

[41] S. Dräxler, H. Karl, and Z. Á. Mann, “JASPER: Joint optimization
of scaling, placement, and routing of virtual network services,” IEEE
Trans. on Networks and Service Management, vol. 15, no. 3, pp. 946–
960, 2018.

[42] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algo-
rithms for joint placement and allocation of virtual network functions,”
in IEEE INFOCOM 2017, 2017, pp. 1–9.

[43] V. Farhadi, F. Mehmeti, T. He, T. F. La Porta, H. Khamfroush,
S. Wang, K. S. Chan, and K. Poularakis, “Service placement and request
scheduling for data-intensive applications in edge clouds,” IEEE/ACM
Transactions on Networking, 2021.

[44] Y. Ma, W. Liang, J. Wu, and Z. Xu, “Throughput maximization of nfv-
enabled multicasting in mobile edge cloud networks,” IEEE Transactions
on Parallel and Distributed Systems, 2019.

[45] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint Service Placement and Request Routing in Multi-cell Mobile
Edge Computing Networks,” in IEEE INFOCOM, 2019.

[46] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware
placement of interdependent NFV middleboxes,” in IEEE INFOCOM,
2017, pp. 1–9.

[47] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM,
2018, pp. 207–215.

[48] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, “Edge-
CoCaCo: toward joint optimization of computation, caching, and com-
munication on edge cloud,” IEEE Wireless Comm., vol. 25, no. 3, pp.
21–27, 2018.

[49] T. Lukovszki, M. Rost, and S. Schmid, “It’s a match!: Near-optimal and
incremental middlebox deployment,” ACM SIGCOMM Comp. Comm.
Rev., vol. 46, no. 1, pp. 30–36, 2016.

[50] ——, “Approximate and incremental network function placement,”
Elsevier Journal of Parallel and Distributed Computing, 2018.

[51] M. Blöcher, R. Khalili, L. Wang, and P. Eugster, “Letting off STEAM:
Distributed runtime traffic scheduling for service function chaining,” in
IEEE INFOCOM, 2020.

[52] Y. Guo, A. L. Stolyar, and A. Walid, “Shadow-routing based dynamic
algorithms for virtual machine placement in a network cloud,” IEEE
Trans. on Cloud Computing, vol. 6, no. 1, pp. 209–220, 2018.

[53] I. Cohen, G. Einziger, R. Friedman, and G. Scalosub, “Access strategies
for network caching,” in IEEE INFOCOM, 2019, pp. 28–36.

[54] K. Kamran, E. Yeh, and Q. Ma, “DECO: Joint computation, caching
and forwarding in data-centric computing networks,” in ACM Mobihoc,
July 2019, p. 111–120.

[55] M. Bouet and V. Conan, “Mobile edge computing resources optimiza-
tion: A geo-clustering approach,” IEEE Trans. on Networks and Service
Management, vol. 15, no. 2, pp. 787–796, 2018.

[56] V. Sciancalepore, F. Z. Yousaf, and X. Costa-Perez, “z-TORCH: An
automated NFV orchestration and monitoring solution,” IEEE Trans. on
Networks and Service Management, vol. 15, no. 4, pp. 1292–1306, 2018.

[57] B. Han, V. Sciancalepore, D. Feng, X. Costa-Perez, and H. D. Schotten,
“A utility-driven multi-queue admission control solution for network
slicing,” in IEEE INFOCOM, 2019, pp. 55–63.

17

