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A Biomimetic Multichannel Synergistic Calibration
for Event-Driven Functional Electrical Stimulation

Nicolò Landra, Andrea Prestia, Andrea Mongardi, Fabio Rossi, Danilo Demarchi, Paolo Motto Ros
Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, Italy, Email: nicolo.landra@polito.it

Abstract—In this paper, we present the Profile Extraction (PE)
algorithm, which allows the computation of a multi-channel
profile highly correlated with voluntary muscle activity. This
event-based profile can be used as biomimetic control during
the calibration phase of a Functional Electrical Stimulation
(FES) system. The adoption of the PE technique represents the
preliminary step to extend the applicability of our event-driven
paradigm to control the coordinated multi-joint movements.
Through an experimental campaign, we tested the improvements
made by the use of PE in the FES calibration, assessing the
reproducibility between the voluntary and stimulated movements.
Results show a 2 % increase of the median correlation value for
a single-channel exercise and a 3.6 % increase for a dual-channel
one. A statistical decrease of normalized Root Mean Square Error
has been obtained for the dual-channel exercise (p < 0.05).

Index Terms—Event-driven Signal Processing, Functional Elec-
trical Stimulation, Rehabilitation Engineering, Synergistic Mus-
cular Activity

I. INTRODUCTION

Functional Electrical Stimulation (FES) is a technique that
exploits low-energy electrical pulses for generating coordi-
nated body movements [1]. It can be used in patients af-
fected by neuromuscular disorders as a permanent neuro-
prosthesis [2], [3] or as a short-term therapy to restore lost
functions [4], [5]. In recent years, the applicability of FES
has been extended from limited single-channel tasks to broad
daily life applications (e.g., reaching and gait) [6]–[8], which
involve the synergistic activation of multiple muscle groups.
In this scenario, the adoption of a multi-channel FES strategy
is fundamental. As several works have demonstrated [8]–[11],
the FES therapeutic performance can be significantly enhanced
by controlling the stimulation through biomimetic strategies,
making the therapy compatible with the sensorimotor system.
In this scope, the surface ElectroMyoGraphy (sEMG) is widely
used as a biomimetic FES control method [12]–[15], leverag-
ing time-domain parameters extracted from the sEMG signal.
However, this operation requires signal digitization and em-
bedded feature processing, impacting on power consumption
and transmission performance. In order to lighten these tasks,
we proposed the Average Threshold Crossing (ATC) param-
eter, computed by processing the raw sEMG signal directly
in hardware, as a part of the analog front-end, over fixed-
length (i.e., 130 ms) observation windows [16]. Due to the high
correlation between ATC and the exerted muscle force [17],
it results suitable for driving the FES [18], [19]. Besides
the custom-designed embedded acquisition devices [16] and
the electrical stimulator [26], our ATC-FES system includes a

control platform, implemented on a computer [20], [21], for
computing the FES profiles.

Since the early experiments conducted on single-channels
tasks [19]–[21], our main goal has been to extend the appli-
cability of the ATC paradigm to the control of multi-channel
FES. To this end, one of the main issue that we faced was
the calibration of the ATC-FES system. Generally, in FES
systems the proper customization of the electrical stimulation
is a crucial step, because it can reduce the fatigue and optimize
the force output [22]. A common methodology to calibrate
FES consists in tuning the stimulation intensity according to
the individual response of each involved muscle [6]–[8], [14],
[23], modulating either the pulse width or the amplitude and
maintaining fixed the pulse frequency: the current intensity is
increased until it elicits muscle contraction without causing
pain in the patient. This process can be easily conducted in
single-channel application, but it may be under-performing
in multi-channels cases, since it does not consider the inter-
muscles synergies. In our system, the ATC-FES relationship,
implemented on the control platform, is linearly mapped by
a Look-Up Table (LUT) [20], [21], which is returned as
a result of two independent calibration sub-routines: 1) the
maximum ATC is computed as the median value among the
peaks produced by voluntary movement repetitions; 2) the
maximum current intensity is found stimulating the patient
with a repetitive pyramidal-shaped pattern (PYR), progres-
sively increasing its maximum. The PYR ramps from zero to
the peak amplitude with 2 mA steps and decline symmetrically,
providing a gradual stimulation delivery. Despite the overall
simplicity of this calibration approach, which can be easily
implemented in single-channel tasks, it may not scale well
in a multi-channel scenario. In fact, the overall difficulty in
reproducing multi-joint functional movements with a non-
specific stimulation pattern implies the FES calibration to
be executed channel-by-channel. Therefore, we investigated
the possibility of using a biomimetic stimulation to enable
the multichannel calibration and improve the FES parameters
selection, since, at the best of our knowledge, no previous
works explored this perspective.

In this context, we propose the novel Profile Extraction
(PE) algorithm, which redefines the maximum ATC calibration
protocol to extract a biomimetic profile highly correlated with
the driving muscles activity. The algorithm is general enough
so that the extracted pattern could be broadly used to deliver
a remote biomimetic stimulation to the patient avoiding the
simultaneous intervention of a controller subject. However,
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Fig. 1. The PE algorithm is organized in a pipeline, which starts from ATC raw data and returns a median ATC profile, highly correlated with the original
sequence. For the sake of clarity, the figure shows the PE performed on a single-channel ATC sequence, but the pipeline is actually designed to work on
multiple channels simultaneously.

specifically, in this work we focused on the implementation of
the PE algorithm in the calibration routines. An experimental
campaign was conducted in this regard, comparing the novel
calibration with the former one based on the PYR profile, and
evaluating for both methods the impact of selected parame-
ters on therapist-patient movements repeatability during the
FES sessions performed in single-channel and multi-channel
scenarios.

II. PROFILE EXTRACTION ALGORITHM

The PE algorithm is structured as a processing pipeline im-
plemented into the ATC maximum calibration phase (Fig. 1):
while the therapist performs repetitions of a functional task,
raw ATC values received from the acquisition channels un-
dergo a smoothing stage (Section II-A), reducing the influence
of background noise. Then, the smoothed data sequences
associated with actual muscle contractions are segmented in
real-time (Section II-B), producing a set of two-dimensional
arrays (movement matrices), in which any row corresponds to
an acquisition channel. Once the user stops the acquisition,
a selection step (Section II-C) is performed to preserve only
those movements that show higher mutual similarity. In the
fourth step, the remaining data segments are processed to
extract the final profile (Section II-D). The PE algorithm has
been developed using the Python programming language to be
easily integrated into the existing control platform software of
the ATC-FES system [21].

A. Smoothing

Despite the intrinsic robustness of the ATC technique to sev-
eral alterations [24], the raw ATC data have to be regularized
to smooth ATC sequences and reduce the number of spurious
TC events, which could affect the signal baseline depending
on the environmental conditions. In each channel, incoming
ATC data undergo median filtering, where the number of
data involved in the smoothing operation is defined by the
window width parameter (in this work set to 3 after preliminar
analyses).

B. Movements Segmentation

The movements segmentation process detects ongoing mus-
cle contractions by checking iteratively if channels exhibit
either an individual or a group activity (Fig. 2):

• A channel (ch) exhibits an individual activity when the
sequence of the last N ATC data contains all non-zero

elements and at least a peak value higher than 2 events.
The parameter N represents the minimum length of an
active sequence in terms of ATC samples and must be
set according to the typical movement duration. We set N
equal to 3, sensing voluntary muscle activations that last
at least 390 ms.

• The group activity is defined when the number of
channels synergistically activated over the total number
overcomes a predefined parameter called Group Factor
Threshold (GFT). The GFT value ranges from 0 to 1
and quantifies the inter-channel dependence.

The latter condition defines the onset of a functional move-
ment. The adoption of a non-zero GFT parameter helps to
prevent failures due to the presence of unstable channels. On
the other hand, the individual activity is sufficient to define the
movement onset (GFT = 0) when investigated channels do not
exhibit a synergistic relationship. During the movement execu-
tion, incoming ATC values from all channels are appended to
movement matrix rows. The end of the movement sequence is
defined when the group activity condition is no more satisfied
for 10 consecutive iterations. The number of columns of the
resulting matrix corresponds to the length of the movement
(L).
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Fig. 2. Example of movement segmentation performed on n acquisition
channels. Row sequences marked in green represent channels activations,
while the red box segments the multi-channel sequence which satisfies the
GFT condition (GFT= 2/n).

C. Irregular Movements Rejection

The Irregular Movement Rejection (IMR) step compares
all the possible combinations of movement segments and
rejects those that exhibit the lower mutual similarity. This
process assumes that the execution of repetitive tasks produces
reproducible activation patterns [25].

The overall similarity between two different movement ma-
trices, X and Y , is expressed by the Similarity Index (SIXY ).



This scalar parameter, ranging from 0 to 1, is computed as the
maximum of the product between the Channels Correlation
matrix CCXY and the weight vector WXY , as reported in (1):

SIXY = max
τ

CCT
XY WXY (1)

CCXY [ch, τ ] =

∑
m Xch[m+ τ ]Ych[m]

max(|Xch|22, |Ych|22)
(2)

WXY [ch] =

∑
k X[ch, k] +

∑
m Y [ch,m]∑

ch(
∑

k X[ch, k] +
∑

m Y [ch,m]))
(3)

The rows of the CCXY matrix, defined in (2), contain the
Normalized Channel-wise Cross-correlation (NCC) between
X and Y , which provides the measure of channel-by-channel
similarity as a function of the relative lag (τ ). We defined
the NCC with an unusual normalization factor to strengthen
its sensitivity to differences in pattern and intensity, returning
the maximum value (NCC = 1) only if the two movements
are identical. The WXY vector, defined in (3), quantifies the
contribution of each channel to the whole movement with
values from 0 to 1.

vs 1 2 3 4 5 6

1 1.00 0.92 0.58 0.85 0.91 0.50

2 0.92 1.00 0.57 0.91 0.94 0.48

3 0.58 0.57 1.00 0.62 0.54 0.84

4 0.85 0.91 0.62 1.00 0.90 0.52

5 0.91 0.94 0.54 0.90 1.00 0.46

6 0.50 0.48 0.84 0.52 0.46 1.00

Similarity matrix

# Low Similarity Indices

# 2 2 4 2 2 4

Irregular movements: 3-6

SI < 0.7

≥ 2.5

Fig. 3. Example of IMR process: six movements are compared, producing
a 6×6 SM . SI values lower than SImin = 0.7 are marked in red,
representing the low similarities. A movement compared with the other five
is classified as irregular if it exhibits a number of low similarities higher than
N◦ Movements−1

2
= 2.5. In the Example, the algorithm has rejected two

irregular movements indexed by numbers 3 and 6.

The Similarity Matrix (SM ) is then built by computing
SI for all the movement combinations. In this symmetrical
matrix (Fig. 3), rows and columns are associated with different
movements, and each pair of coordinates points to the SI of a
specific movements combination. The τ values that maximize
each SI are stored into an analogous anti-symmetrical matrix,
called Displacement Matrix (DM ). The SM is then used
for detecting irregular movements: each SI is compared with
a fixed threshold value SImin in order to determine if the
movements to which it refers are similar (SI ≥ SImin)
or different (SI < SImin). The process selectivity can be

adjusted by tuning SImin. After preliminary experiments, we
set it equal to 0.7, providing good similarity discrimination in
single-channel and multi-channel applications.

A movement is considered irregular when exhibits a
low similarity with at least the half of the others
(N

◦ Movements−1
2 ). This operation is repeated until only reg-

ular movements remain in the collection, correcting iteratively
both the SM and DM .

D. Movements Alignment and Profile Extraction

All the movements are aligned before extracting the final
profile, stacking their matrices into a three-dimensional array.
The movement with the highest CI values is selected as
the reference. Other matrices are shifted along rows, using
τ values contained into the column of DM indexed by the
reference movement, and equalizing their dimensions through
zero-padding. The resulting array is used to extract the final
multi-channel profile, performing the median operation across
the aligned matrices (Fig. 4).
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Fig. 4. Example of movements alignment: movement matrices are aligned,
maximizing the mutual cross-correlation. Columns marked in gray are added
to equalize matrices dimension. Sequences highlighted in green represents
channels’ activity.

III. EXPERIMENTAL TESTS

The impact of the biomimetic PE profile on the selection of
the FES current intensity was evaluated through the compari-
son with the previously adopted calibration methodology, i.e.,
PYR profile. The protocol, approved by the Bioethics Commit-
tee of Università degli Studi di Torino with the experimental
code 445154, was based on a previous work [21]. Two target
exercises, with a different number of channels, were studied:

• The Elbow Flexion (EF) was selected as single-channel
(SCH) movement for validating the use of PE in a
simple tasks, where the PYR approach was previously
adopted [19]–[21]. It starts with the subjects seated with
the forearm in a supine position and the elbow leaning
on a table; the stimulation of the biceps brachii induces



the flexion of the elbow joint, maintaining the humeral
segment in position.

• A dual-channel (DCH) task was selected for testing the
effectiveness of PE on an simple multi-channel applica-
tion. It starts with the therapist seated in front of a table
on which there is a bottle (720 g), placed in line with
the sternum and at the 95% of the maximum reachable
distance of the therapist’s arm; then, s/he brings the bottle
to the mouth, mimicking the drinking action; the exercise
ends with the therapist returning to the initial rest position
after the bottle release. For the sake of simplicity, this
functional task can be considered the composition of two
simpler movements: the Humerothoracic Elevation (HE)
and the Elbow Flexion (EF), controlled by the anterior
deltoid and biceps brachii, respectively. In contrast to the
SCH task, the EF angle is susceptible to the dynamics of
both the forearm and humerus segment. Therefore, the
selection of the proper stimulation current is particularly
crucial for achieving the right movement execution.

Following the same approach reported in [21], the pro-
tocol was organized in experimental trials conducted on 8
healthy subjects (4 males and 4 females, aged between 24
and 27), which provided their informed consent. In each trial,
a therapist-patient couple undergoes the calibration routines
followed by 3 online training sessions, during which the
therapist repeats the target exercise 10 times with 10 s of inter-
repetition pause, driving the electrical stimulation to the patient
in real-time. Each couple performed an experimental trial for
each calibration method and functional exercise, for a total
of 4 trials. The trials related to the same calibration strategy
and different exercises were separated by 15 min of inter-trials
pause. Instead, the trials related to different calibrations were
performed in different days. We employed the HASOMED®

RehaTrode [26] (5 cm×9 cm) as stimulation electrodes, placed
in standardised positions reported in [27], [28], taking care to
perform a proper skin preparation and apply a conductive gel
on electrode surface. During the training sessions, body move-
ment trajectories of the therapist and patient were captured
using the Vicon motion tracking system configured with 12
cameras. Then, we computed two parameters for their compar-
ison: the maximum value of the normalized cross-correlation
(ρmax) and the onset Delay (D) for each movement execution
[21]. Additionally, the normalized Root Mean Square Error
(nRMSE) was computed to quantify the difference between
therapist-patient trajectories. In the DCH exercise, a single
D per movement was extracted, joining the information of
the two joints. For each subject, the outcomes of movement
replicates were summarized in average results.

Experimental results (ρmax and nRMSE) for the PE and
PYR calibration are shown in Fig. 5:

• Considering the SCH task, the PE case produced a 2 %
increase in median ρmax (Fig. 5-(a): ρmaxPE = 0.98;
ρmaxPYR = 0.96), a decrease in median nRMSE (Fig. 5-
(d): nRMSEPE = 0.23; nRMSEPYR = 0.26), and a
decrease in median D (DPE = 0.5 s; DPYR = 0.65 s).
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Fig. 5. Box plots representing the average ρmax and nRMSE between
therapist and patient trajectories divided among joint and exercise types:
(a) EF-ρmax-SCH; (b) EF-ρmax-DCH; (c) HE-ρmax-DCH; (d) EF-nRMSE-
SCH; (e) EF- nRMSE-DCH; (f) HE-nRMSE-DCH.

• Regarding the DCH composite task, the PE calibration
produced a 3.6 % increase in median ρmax (Fig. 5-(b):
ρmaxPE = 0.86; ρmaxPYR = 0.83), and a decrease in me-
dian nRMSE (Fig. 5-(e): nRMSEPE = 0.30; nRMSEPYR =
0.38) for the EF trajectory. Similar median performances
came up from the comparison of the HE trajectory
(Fig. 5-(c): ρmaxPE,PYR ≃ 0.95; (f): nRMSEPE,PYR ≃ 0.30)
and median D values (DPE,PYR ≃ 0.49 s).

The two-sided Wilcoxon signed rank test was performed
to investigate significant effects of the calibration type on
the average comparison results. Considering the preliminary
nature of these experiments and the limited number of partic-
ipants, while we did not expect any statistically significant
difference in simpler movements, a statistically significant
difference between calibrations (p < 0.05) emerged from the
more complex multi-channel composite DCH task, where the
use of PE strategy reduced the nRMSE between EF trajectories
of therapist and patient (p = 0.039).

IV. CONCLUSION

This work proposes an algorithm for extracting an event-
driven activation profile highly correlated with the driving
muscle activity, with the aim of enabling a fully-remote
delivery of the biomimetic stimulation and scaling the calibra-
tion routines to multi-channel applications. The novel calibra-
tion technique was tested through an experimental protocol,
comparing the resulting stimulation performance, in terms
of movement repeatability, with the former calibration. The
results have shown that the introduction of the PE method-
ology produced an increase of similarity between therapist-
patient trajectories, especially for the elbow joint. These tests
represented the preliminary attempts to calibrate and stimulate
a coordinated multi-channel movement using our event-driven
ATC-FES system. Starting from these promising results, the
PE algorithm opens new perspectives to scale up the system to
control more complex functional tasks, increasing the number
of operating channels.
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[6] A. Cuesta-Gómez, F. Molina-Rueda, M. Carratala-Tejada, E. Imatz-
Ojanguren, D. Torricelli, and J. C. Miangolarra-Page, “The use of func-
tional electrical stimulation on the upper limb and interscapular muscles
of patients with stroke for the improvement of reaching movements: A
feasibility study,” Frontiers in neurology, vol. 8, p. 186, 2017.

[7] P. Müller, A. J. Del Ama, J. C. Moreno, and T. Schauer, “Adaptive mul-
tichannel FES neuroprosthesis with learning control and automatic gait
assessment,” Journal of neuroengineering and rehabilitation, vol. 17,
no. 1, pp. 1–20, 2020.

[8] S. Ferrante, N. Chia Bejarano, E. Ambrosini, A. Nardone, A. M.
Turcato, M. Monticone, G. Ferrigno, and A. Pedrocchi, “A personalized
multi-channel FES controller based on muscle synergies to support gait
rehabilitation after stroke,” Frontiers in neuroscience, vol. 10, p. 425,
2016.

[9] A. H. Do, P. T. Wang, C. E. King, A. Abiri, and Z. Nenadic, “Brain-
computer interface controlled functional electrical stimulation system
for ankle movement,” Journal of neuroengineering and rehabilitation,
vol. 8, no. 1, pp. 1–14, 2011.

[10] N. Lan, C. M. Niu, M. Hao, C.-H. Chou, and C. Dai, “Achieving
neural compatibility with human sensorimotor control in prosthetic
and therapeutic devices,” IEEE Transactions on Medical Robotics and
Bionics, vol. 1, no. 3, pp. 122–134, 2019.

[11] X. Zhao, Z. Wang, R. Xu, and D. Ming, “A real-time sEMG-based
control strategy and system for contralaterally controlled functional elec-
trical stimulation,” in 2021 IEEE International Conference on Robotics
and Biomimetics (ROBIO), 2021, pp. 785–789.

[12] Z. Lou, P. Yao, and D. Zhang, “Wireless master-slave FES rehabilitation
system using sEMG control,” in International Conference on Intelligent
Robotics and Applications. Springer, 2012, pp. 1–10.

[13] Y. Zhou, Y. Fang, K. Gui, K. Li, D. Zhang, and H. Liu, “sEMG bias-
driven functional electrical stimulation system for upper-limb stroke
rehabilitation,” IEEE Sensors Journal, vol. 18, no. 16, pp. 6812–6821,
2018.

[14] C. M. Niu, Y. Bao, C. Zhuang, S. Li, T. Wang, L. Cui, Q. Xie, and
N. Lan, “Synergy-based FES for post-stroke rehabilitation of upper-
limb motor functions,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 27, no. 2, pp. 256–264, 2019.

[15] B. A. Osuagwu, E. Whicher, and R. Shirley, “Active proportional
electromyogram controlled functional electrical stimulation system,”
Scientific reports, vol. 10, no. 1, pp. 1–15, 2020.

[16] F. Rossi, A. Mongardi, P. Motto Ros, M. Ruo Roch, M. Martina, and
D. Demarchi, “Tutorial: A versatile bio-inspired system for processing
and transmission of muscular information,” IEEE Sensors Journal,
vol. 21, no. 20, pp. 22 285–22 303, 2021.

[17] S. Sapienza, M. Crepaldi, P. Motto Ros, A. Bonanno, and D. Demarchi,
“On integration and validation of a very low complexity ATC UWB sys-
tem for muscle force transmission,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 10, no. 2, pp. 497–506, 2016.

[18] F. Rossi, P. Motto Ros, S. Sapienza, P. Bonato, E. Bizzi, and D. De-
marchi, “Wireless low energy system architecture for event-driven
surface electromyography,” in International Conference on Applications

in Electronics Pervading Industry, Environment and Society. Springer,
2018, pp. 179–185.

[19] F. Rossi, P. Motto Ros, S. Cecchini, A. Crema, S. Micera, and D. De-
marchi, “An event-driven closed-loop system for real-time FES control,”
in 2019 26th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). IEEE, 2019, pp. 867–870.

[20] F. Rossi, P. Motto Ros, R. M. Rosales, and D. Demarchi, “Embedded
bio-mimetic system for functional electrical stimulation controlled by
event-driven sEMG,” Sensors, vol. 20, no. 5, p. 1535, 2020.

[21] A. Prestia, F. Rossi, A. Mongardi, P. Motto Ros, M. Ruo Roch, M. Mar-
tina, and D. Demarchi, “Motion analysis for experimental evaluation of
an event-driven FES system,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 16, no. 1, pp. 3–14, 2022.

[22] B. M. Doucet, A. Lam, and L. Griffin, “Neuromuscular electrical
stimulation for skeletal muscle function,” The Yale journal of biology
and medicine, vol. 85, no. 2, p. 201, 2012.

[23] E. M. Camilo, J. A. M. Gutiérrez, O. P. Ramı́rez, J. G. Martı́nez, A. V.
Hernández, and L. L. Salas, “A functional electrical stimulation con-
troller for contralateral hand movements based on EMG signals,” in 2020
17th International Conference on Electrical Engineering, Computing
Science and Automatic Control (CCE), 2020, pp. 1–6.

[24] P. Motto Ros, M. Paleari, N. Celadon, A. Sanginario, A. Bonanno,
M. Crepaldi, P. Ariano, and D. Demarchi, “A wireless address-event
representation system for ATC-based multi-channel force wireless trans-
mission,” in 5th IEEE International Workshop on Advances in Sensors
and Interfaces IWASI. IEEE, 2013, pp. 51–56.

[25] B. Larsson, C. Karlberg, J. Elert, and B. Gerdle, “Reproducibility of
surface EMG during dynamic shoulder forward flexions: a study of
clinically healthy subjects,” Clinical Physiology, vol. 19, no. 5, pp. 433–
439, 1999.

[26] HASOMED GmbH, Operation Manual RehaStim2, RehaMove2 - User
Guide, September 2012.

[27] FES electrode placements: Upper body. Accessed: August 30,
2022. [Online]. Available: https://www.ualberta.ca/steadward-centre/
media-library/altastim/fes electrode placement upper body-2018.pdf

[28] HASOMED GmbH, RehaMove, Functional electrical stimulation - FES
applications, June 2015.


