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Abstract
For the solution of 2D exterior Dirichlet Poisson problems, we propose the coupling of a
Curved Virtual Element Method (CVEM) with a Boundary Element Method (BEM), by
using decoupled approximation orders. We provide optimal convergence error estimates, in
the energy and in the weaker L2-norm, in which the CVEM and BEM contributions to the
error are separated. This allows for taking advantage of the high order flexibility of the CVEM
to retrieve an accurate discrete solution by using a low order BEM. The numerical results
confirm the a priori estimates and show the effectiveness of the proposed approach.
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1 Introduction

In this paper we deal with the following 2D problem{
− �ue(x) = f (x) x ∈ �e,

ue(x) = 0 x ∈ �0,
(1)

where �e := R2 \ �0 is an unbounded domain, exterior to an open bounded one �0, with
Lipschitz boundary �0. It is known (see [1] and the references therein) that Problem (1)
admits a unique solution in the space

W 1(�e) := {
v : ωv ∈ L2(�e),∇v ∈ [L2(�e)]2

}
with ω(x) :=

(√
1 + ‖x‖2

(
1 + log

(√
1 + ‖x‖2

)))−1
, satisfying the asymptotic condi-

tions

ue(x) = α + O

(
1

‖x‖
)

and ∇ue(x) = O

(
1

‖x‖2
)

for ‖x‖ → ∞. (2)

The constant α represents the asymptotic behaviour of ue at infinity and, here, its value is
not fixed in advance.

The above problem is of interest in many engineering and physical applications, for
example when studying electric and thermal plane fields on infinite domains produced by
point sources, or when solving problems of fluid flows around obstacles. Many and various
numerical methods have been proposed and analysed for its solution, among which we
mention the traditional Boundary Element Method (BEM). This latter is the most natural
way to deal with unbounded domains (for a reference, see [2] and the bibliography therein
contained). Another common approach is the coupling of a classical variational or finite
difference method with a transparent (absorbing or non-reflecting) condition defined on an
artificial boundary �, properly chosen to delimit a finite computational domain. Among the
most commonly used Non-Reflecting Boundary Conditions (NRBCs), those of integral type
are exact (i.e. not approximated) and allow for treating artificial boundaries of arbitrary, even
non-convex, shapes.

The aim of this paper is to propose such a coupling bymeans of the interior Curved Virtual
Element Method (CVEM) and the one-equation BEM. Standard VEMs have been applied
to a wide variety of interior problems (see the pioneering [3] for the Poisson problem and
[4–7] for more recent applications), but only few papers deal with exterior problems (see [8–
11] for elliptic equations). Among the CVEM approaches till now investigated, we mention
those proposed in [12] and [13]. Although the latter deals with local polynomial preserving
VEM spaces, we focus on the former since it is well-suited for problems characterized by
computational domains with prescribed curved boundaries, like ours.

The choice of using VEM, or the more general CVEM, is mainly motivated by the fol-
lowing reasons: it allows us to consider meshes whose elements can be of general shape,
and to define local discrete spaces in such a way that the elementary stiffness matrix can
be computed using only the degrees of freedom, without the need of explicitly knowing
the expression of the non-polynomial functions (whence the “virtual” word comes). Hence,
arbitrarily high order VEM can be easily applied by maintaining the simplicity of the imple-
mentation. Moreover, the nature of the VEM allows for decoupling the approximation orders
and the mesh grids associated with the domain and boundary methods, without the need of
using special auxiliary variables (like mortar ones) for the coupling. Indeed, by exploiting
the peculiar construction of the VEM, it is possible to add hanging nodes on the edges of the
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elements that belong to the artificial boundary, without significantly modifying the structure
of the interior mesh.

It is worth pointing out that the definition of the discrete VEM spaces has the same implicit
nature of that used by the Boundary Element-Based Finite Element Methods (BEM-based
FEMs) (see, for example, [14]) and by the Trefftz-type Finite Element Methods (Trefftz-
FEMs) (see, for example, [15] and the more recent [16] where curved elements have been
considered). The main difference between BEM-based FEMs or Trefftz-FEMs and VEMs
consists in the construction of thematrices involved in the final linear system. Indeed, contrary
toVEMs, the computation of thematrix entries by the abovementionedmethods is performed
by point-wise evaluations of the basis functions and some of their derivatives in the interior of
the mesh elements. Such basis functions are defined implicitly in terms of Poisson problems,
with explicitly given polynomial data, and their values at the required points are computed
first by solving the associated local Boundary Integral Equations (BIEs), and then by using
the corresponding boundary integral representations. Moreover, we recall that, in the FEM
context, various strategies have been proposed to deal with curved edges (see [17] for a
survey), amongwhich wemention the isoparametric FEM, in which the elements are mapped
with high order polynomial maps that allow for a better approximation of the domain of
interest. The advantage ofVEMswith respect to isoparametric FEMs is that no approximation
of the domain (even by polynomial functions) is introduced and no ad hoc positioning of
the isoparametric nodes is needed. Furthermore, to the best of our knowledge, besides the
curved versions of VEMs, in literature there are few methods which are able to make use of
polytopal meshes with curvilinear edges, e.g. [18–20]. However, as far as the internal degrees
of freedom are concerned, on triangles or quadrilaterals, VEMs are more expensive than the
traditional FEMs.

For what concerns the one-equation BEM, we recall that it has been proposed in the well
known Johnson & Nédélec Coupling (JNC) (see [1, 21]) and it is based on a single BIE
that involves the integral operators associated with the fundamental solution (and its normal
derivative) of the Laplace equation.

In the recent work [8], in which a similar problem has been studied, the authors consider
the Costabel & Han Coupling (CHC) (see [22, 23]) combined with an interior VEM. This
approach yields to a symmetric and non-positive definite scheme but, involving a BIE of
hypersingular type, turns out to be quite onerous from the computational point of view. Even
if the CHC has been applied in several contexts, the JNC turns out to be very appealing from
the engineering point of view, this latter being cheaper and easier to implement. We remark
in addition that, unlikely in [8], here we deal with the asymptotic condition (2) that entails

∫
�

λe(y)d�y = 0, (3)

where λe(y) := ∂ue
∂n (y) denotes the normal derivative of ue along the artificial boundary �.

As a consequence, suitable spaces satisfying identity (3) have to be considered.
For the discretization of our coupled problem we consider a full Galerkin approach based

on a CVEM in the interior of the computational domain and on a BEM associated with basis
functions chosen in such a way that (3) is satisfied. We study the proposed approach from
the theoretical point of view in a quite general framework, and we provide optimal error
estimates in the energy and in the weaker L2-norm. In particular, since we consider here
curved domains, the use of curvilinear elements instead of polygonal ones, allows us to reach
the optimal convergence rate for degrees of accuracy higher than 2, avoiding the sub-optimal
rate caused by the approximation of the domain.

123



96 Page 4 of 25 Journal of Scientific Computing (2022) 92 :96

By a careful study, we show that the source of the approximation error of the discrete
solution, both in the energy and in the L2-norm, can be split into two contributions: a boundary
(BEM) and an interior (CVEM) one. In particular, we show that the boundary contribution
behaves like hk∂

∂ (h∂ denoting the maximum edge length of the artificial boundary and k∂

representing the BEM polynomial degree of accuracy), and the interior one like hk◦◦ (h◦ being
the maximum of the element diameters and k◦ the CVEM order degree). Hence, for h∂ � h◦
and by fixing k∂ , it results that the bulk error dominates the boundary one up to a certain
CVEM order, an aspect that allows us to reach a high accuracy of the global scheme with a
low BEM order.

The paper is organized as follows: in the next section we present the model problem for
the Poisson equation and its reformulation in a bounded region, obtained by introducing the
artificial boundary and its associated one equation Boundary Integral NRBC (BI-NRBC).
In Sect. 3 we introduce the variational formulation of the problem restricted to the finite
computational domain. In Sect. 4 we apply the Galerkin method and we prove error estimates
in the energy and in the L2-norm in an abstract framework, provided that suitable hypotheses
are assumed. Then we show that these latter are satisfied by the CVEM-BEM approximation
spaces introduced in Sect. 5. Finally, in the last section we detail the choice of the particular
basis functions used for the approximation of the normal derivative unknown, and we present
some numerical test which confirm the theoretical results.

2 TheModel Problem

Let�e := R2 \�0 be an unbounded domain, exterior to an open bounded domain�0 ⊂ R2,
and denote by �0 := ∂�e its Lipschitz boundary having positive Haussdorf measure (see
Fig. 1 (a)). We consider the exterior Dirichlet Poisson problem (1) in the unknown solution
ue, where f ∈ L2(�e) represents a source term having a compact support in �e.

To determine the solution ue of Problem (1) by means of an interior domain method, we
surround the physical obstacle �0 by an artificial boundary �; this allows for decomposing
�e into a finite computational domain �, bounded internally by �0 and externally by �, and
an infinite residual one, denoted by �∞ (see Fig. 1 (b)). For the theoretical analysis of the
numerical approach we propose, we need to assume that �0 consists of a finite number of
curves of class Cm+1, with m ≥ 0, and that � is a contour of class C∞.
Denoting by u and u∞ the restrictions of the solution ue to � and �∞ respectively, and by n
and n∞ the unit normal vectors on � pointing outside � and �∞ (consequently n∞ = −n),
we consider the following compatibility and equilibrium conditions on �:

u(x) = u∞(x),
∂u

∂n
(x) = −∂u∞

∂n∞
(x), x ∈ �. (4)

In the above relations and in the sequelwe omit, for simplicity, the use of the trace operators
to indicate the restriction of H1 functions to the boundary � from the exterior or interior.

Assuming, for simplicity, that � is chosen such that supp( f ) is a bounded subset of �,
the following Kirchhoff’s formula

u∞(x) =
∫

�

G(x, y)
∂u∞
∂n∞

(y) d�y −
∫

�

∂G

∂n∞,y
(x, y)u∞(y) d�y + α, x ∈ �∞ \ �, (5)

allows us to represent the solution u∞ in �∞. In (5), G and ∂G/∂n∞,y denote, respectively,
the fundamental solution of the 2D Laplace equation and its normal derivative with respect
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(a) (b)

Fig. 1 Model problem setting

to the unit vector n∞,y having initial point in y ∈ �. Their expression is given by

G(x, y) = − 1

2π
log r and

∂G

∂n∞,y
(x, y) = 1

2π

r · n∞,y

r2
,

where r = ‖r‖ = ‖x − y‖. It is known that the trace of (5) on � reads

1

2
u∞(x) − V

∂u∞
∂n∞

(x) − Ku∞(x) − α = 0, x ∈ �, (6)

where V : H−1/2(�) → H 1/2(�) and K : H 1/2(�) → H 1/2(�) represent, respectively, the
continuous (see [24]) single- and double-layer integral operators, defined by

Vψ(x) :=
∫

�

G(x, y)ψ(y) d�y, x ∈ �

and

Kϕ(x) := −
∫

�

∂G

∂n∞,y
(x, y)ϕ(y) d�y, x ∈ �.

To determine the solution of Problem (1) in the finite computational domain �, we impose

(6) as BI-NRBC on �. In particular, introducing the additional unknown λ(y) := ∂u

∂n
(y) and

taking into account (4), the new problem defined in � takes the form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− �u(x) = f (x) x ∈ �,

u(x) = 0 x ∈ �0,

1

2
u(x) + Vλ(x) − Ku(x) − α = 0 x ∈ �.

(7a)

(7b)

(7c)

We point out that the asymptotic conditions (2) coupled with (7c) imply that 〈λ, 1〉� = 0,
where 〈·, ·〉� denotes the duality pairing between H−1/2(�) and H 1/2(�). This justifies the
introduction of the space
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H−1/2
0 (�) :=

{
λ ∈ H−1/2(�) : 〈λ, 1〉� = 0

}
in which we will look for the unknown λ.

3 The Variational Formulation

Let us introduce the bilinear form a : H1(�) × H1(�) → R

a(u, v) :=
∫
�

∇u(x) · ∇v(x) dx.

The variational formulation of Problem (7) consists in finding u ∈ H1
0,�0

(�) := {u ∈
H1(�) : u = 0 on �0} and λ ∈ H−1/2

0 (�) such that⎧⎪⎨
⎪⎩

a(u, v) − 〈λ, v〉� = ( f , v)L2(�) ∀ v ∈ H1
0,�0

(�),

〈μ,

(
1

2
I − K

)
u〉� + 〈μ,Vλ〉� = 0 ∀ μ ∈ H−1/2

0 (�),

(8a)

(8b)

where I stands for the identity operator and (·, ·)L2(�) denotes the L2(�)-inner product. It is

worth noting that, since we test Equation (7c) with μ ∈ H−1/2
0 (�), satisfying by definition

〈μ, 1〉� = 0, the unknown constant α does not appear in the variational formulation (8).
Nevertheless, the asymptotic behaviour α is intrinsic to the interior domain problem, and it
can be recovered by the numerical schemewhen choosing� sufficiently far from the obstacle
(see Example 2).

To reformulate the above problem in operator form, following [1], we introduce theHilbert
space V := H1

0,�0
(�) × H−1/2

0 (�), equipped with the norm∥∥û
∥∥2

V := ‖u‖2H1(�)
+ ‖λ‖2

H−1/2(�)
, for û = (u, λ).

Then, we define the bilinear form A : V × V → R

A(û, v̂) := a(u, v) − 〈λ, v〉� + 〈μ, u〉� + 2〈μ,Vλ〉� − 2〈μ,Ku〉�,

for û = (u, λ) and v̂ = (v, μ), and the linear continuous operator L f : V → R

L f (v̂) := ( f , v)L2(�).

Hence, we rewrite Problem (8) as follows: find û ∈ V such that

A(û, v̂) = L f (v̂) ∀ v̂ ∈ V , (9)

whose well-posedness has been proved in [1] (see Lemma 2).
Finally, for the forthcoming analysis, it is convenient to rewriteA = B+Kwhere the bilinear
forms B,K : V × V → R are defined as follows:

B(û, v̂) := a(u, v) − 〈λ, v〉� + 〈μ, u〉� + 2〈μ,Vλ〉�, K(û, v̂) := −2〈μ,Ku〉�. (10)

In the next sections, for the solution of Problem (9), we will describe a numerical approach
consisting of a CVEM-BEM coupling. This method and the corresponding theoretical analy-
sis is based on that proposed for the Helmholtz problem in [11], to which we refer whenever
the theoretical results therein proved hold in our context as well. It is worth noting that
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the theoretical analysis for the exterior Poisson problem cannot be obtained as a particular
sub-case of the Helmholtz one given in [11], by simply choosing the wave number equal
to zero. Indeed, the NRBC associated with the Laplace equation is different from that of
the Helmholtz one, both for what concerns the kernel functions appearing in the boundary
integral operators and the choice of the discrete function spaces for the approximation of the
unknown λ. In fact, in this case, since we do not know a priori the asymptotic value α in (7c),
the choice of the space H−1/2

0 (�) becomes mandatory and, as a consequence, a proper dis-
crete subspace of it is needed. Moreover, another important novelty of the theoretical study,
with respect to that of [11], consists in the use of decoupled degrees of approximation for the
interior CVEM and the BEM. This allows in particular the application of the CVEM with
order higher than that of the BEM, a key aspect for the global scheme, the BEM requiring
high efforts to efficiently compute the associated system matrices.

4 The Numerical Method

To describe the numerical approachwe propose to solve (9), we start by introducing a suitable
decomposition of the domain �, which consists of generic elements and is not limited to the
more commonly used triangles or quadrilaterals.

Let us denote by E a generic “polygon” having at most one curved edge and by hE its
diameter; similarly, we denote by e a generic “edge”, eventually curved, and by he its length.
We introduce a sequence {Th◦ }h◦ of unstructured meshes Th◦ = {E}, which cover the domain
�, where h◦ := maxE∈Th◦ hE . We denote by T �

h∂
the decomposition of the artificial boundary

� which, according to the regularity assumption required for �, consists of curvilinear parts.
The subscript h∂ denotes the mesh size defined by h∂ = maxe∈T �

h∂

he.

We suppose there exists a constant � > 0 such that for each h◦ and for each element
E ∈ Th◦ , E is star-shaped with respect to a ball of radius greater than �hE and the length of
any (eventually curved) edge of E is greater than �hE .

For any k ∈ N, let Pk(E) be the space of polynomials of degree k defined on E , and


∇,E
k : H1(E) → Pk(E) be the local polynomial H1-projection, defined such that for

v ∈ H1(E):

⎧⎪⎨
⎪⎩
∫

E
∇

∇,E
k v · ∇q dE =

∫
E

∇v · ∇q dE ∀ q ∈ Pk(E),∫
∂ E


∇,E
k v ds =

∫
∂ E

v ds.

The local projector∇,E
k canbenaturally extended to the global one∇

k : H1(�) → Pk(Th◦)
as follows: (

∇
k v
)

|E
:= 

∇,E
k v|E ∀ v ∈ H1(�),

Pk(Th◦) being the space of piecewise polynomials with respect to the decomposition Th◦ of
�. Moreover, let 

0,E
k : L2(E) → Pk(E) be the local polynomial L2-projection operator,

defined such that for v ∈ L2(E)

∫
E


0,E
k v q dE =

∫
E

v q dE ∀ q ∈ Pk(E).
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By introducing the local bilinear form aE : H1(E) × H1(E) → R given by

aE(u, v) :=
∫
E

∇u(x) · ∇v(x) dx, (11)

we can write a(u, v) = ∑
E∈Th◦

aE(u, v).

Finally, we introduce the product space H1(Th◦) := ∏
E∈Th◦ H1(E) and define the asso-

ciated broken H1-norm:

‖v‖2H1(Th◦ )
:=

∑
E∈Th◦

‖v‖2H1(E)
.

To apply the Galerkin method to Problem (9), we introduce the discrete spaces Qk◦
h◦ ⊂

H1
0,�0

(�) and Xk∂

h∂
⊂ H−1/2

0 (�) associated with the meshes Th◦ and T �
h∂
, respectively, and

the product space V k
h := Qk◦

h◦ × Xk∂

h∂
. Then, the Galerkin method consists in finding ûh ∈ V k

h
such that

Ah(ûh, v̂h) := Bh(ûh, v̂h) + K(ûh, v̂h) = L f ,h(v̂h) ∀ v̂h ∈ V k
h , (12)

where Ah,Bh : V k
h × V k

h → R and L f ,h : V k
h → R are suitable approximations of A,B

and L f , respectively.
Proceeding analogously as in [11], we introduce sufficient conditions on the discrete

spaces, on the bilinear form Bh and on the linear operator L f ,h to guarantee existence and
uniqueness of the solution ûh ∈ V k

h and to prove convergence error estimates.
In particular we assume: for any s ≥ 1

(H1.a) approximation in Qk◦
h◦ : for all v ∈ Hs+1(�)

inf
vh◦∈Qk◦

h◦

∥∥v − vh◦
∥∥

H1(�)
� hmin(s,k◦)◦ ‖v‖Hs+1(�) ;

(H1.b) approximation in Xk∂

h∂
: for all μ ∈ Hs−1/2(�) ∩ H−1/2

0 (�)

inf
μh∂

∈X
k∂
h∂

∥∥μ − μh∂

∥∥
H−1/2(�)

� hmin(s,k∂ )
∂ ‖μ‖Hs−1/2(�)

.

In the above assumptions the notation Q1 � Q2 (as well as Q1 � Q2 in what follows)
means that the quantity Q1 is bounded from above (resp. from below) by c Q2, where c is
a positive constant that, unless explicitly stated, does not depend on any relevant parameter
involved in the definition of Q1 and Q2.

According to the definition of the ‖ · ‖V norm, (H1.a) and (H1.b) ensure the following
approximation property for the product space V k

h :

for s ≥ 1, given v̂ = (v, μ) ∈ Hs+1(�) × (Hs−1/2(�) ∩ H−1/2
0 (�)), there exists v̂ I

h =
(v I

h◦ , μ
I
h∂

) ∈ V k
h such that∥∥∥v̂ − v̂ I

h

∥∥∥
V

� hmin(s,k◦)◦ ‖v‖Hs+1(�) + hmin(s,k∂ )
∂ ‖μ‖Hs−1/2(�)

. (13)

Recalling that the evaluation of the bilinear form B on elements of V k
h is well defined

provided that a(·, ·) is split into the sum of the local contributions aE(·, ·), and assuming that
the approximated bilinear form Bh is well defined on the space H1(Th◦), we further assume:
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(H2.a) k◦-consistency: for all q̂ ∈ Pk◦(Th◦) × Xk∂

h∂
and v̂h ∈ V k

h

Bh(q̂, v̂h) = B(q̂, v̂h), Bh(v̂h, q̂) = B(v̂h, q̂);
(H2.b) continuity: for all v̂h, ŵh ∈ V k

h∣∣Bh(v̂h, ŵh)
∣∣ � ∥∥v̂h∥∥V

∥∥ŵh
∥∥

V ;
(H2.c) ellipticity: for all ŵh ∈ V k

h

Bh(ŵh, ŵh) � ∥∥ŵh
∥∥2

V .

In the following theorem we show the validity of the inf-sup condition for the discrete
bilinear form Ah.

Theorem 4.1 Assuming (H1.a), (H1.b) and (H2.a)–(H2.c), for h◦ and h∂ small enough, it
holds that

sup
v̂h∈V k

h ,v̂h �=0

Ah(ŵh, v̂h)∥∥v̂h∥∥V

� ∥∥ŵh
∥∥

V ∀ ŵh ∈ V k
h .

Proof Following the proof of Lemma 4 in [1], it is possible to assert that, for any ŵh ∈ V k
h ,

there exists v̂h ∈ V k
h such that ∥∥v̂h∥∥V � ∥∥ŵh

∥∥
V (14)

and
A(ŵh, v̂h) � (1 − h◦ − h∂ )

∥∥ŵh
∥∥2

V . (15)

By exploiting the decoupled assumptions (H1.a) and (H1.b) in Lemma 4.5 of [11], we obtain
that for v̂h = (vh◦ , μh∂

) ∈ V k
h ⊂ V there exists a unique v̂∗

h = (v∗
h◦ , μ

∗
h∂

) ∈ V k
h such that

Bh(ŵh, v̂
∗
h) = B(ŵh, v̂h) ∀ ŵh ∈ V k

h (16)

and ∥∥μ∗
h∂

− μh∂

∥∥
H−3/2(�)

� (h◦ + h∂ )
∥∥v̂h∥∥V . (17)

Recalling (10) and (12), and using (16), we get:

Ah(ŵh, v̂
∗
h) = Bh(ŵh, v̂

∗
h) + K(ŵh, v̂

∗
h) = B(ŵh, v̂h) + K(ŵh, v̂

∗
h)

= A(ŵh, v̂h) + K(ŵh, v̂
∗
h) − K(ŵh, v̂h)

= A(ŵh, v̂h) − 2〈μ∗
h∂

− μh∂
,Kwh〉�.

By applying the Hölder’s inequality and using (17) we have∣∣∣〈μ∗
h∂

− μh∂
,Kwh◦ 〉H−3/2(�)×H3/2(�)

∣∣∣
� ∥∥μ∗

h∂
− μh∂

∥∥
H−3/2(�)

∥∥Kwh◦
∥∥

H3/2(�)

� (h◦ + h∂ )
∥∥v̂h∥∥V

∥∥Kwh◦
∥∥

H3/2(�)
. (18)

Then, using the continuity of K : H 1/2(�) → H 3/2(�) (see [1], formula (2.11)) and the trace
theorem, we obtain∥∥Kwh◦

∥∥
H3/2(�)

� ∥∥wh◦
∥∥

H1/2(�)
� ∥∥wh◦

∥∥
H1(�)

≤ ∥∥ŵh
∥∥

V ,

which, together with (18), implies∣∣∣〈μ∗
h∂

− μh∂
,Kwh◦ 〉H−3/2(�)×H3/2(�)

∣∣∣ � (h◦ + h∂ )
∥∥v̂h∥∥V

∥∥ŵh
∥∥

V . (19)
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Finally, combining (15), (19) and (14), we get

Ah(ŵh, v̂
∗
h) � (1 − h◦ − h∂ )

∥∥ŵh
∥∥2

V − (h◦ + h∂ )
∥∥ŵh

∥∥
V

∥∥v̂h∥∥V

� (1 − h◦ − h∂ )
∥∥ŵh

∥∥2
V ,

whence, for h◦ and h∂ small enough, the claim follows. ��
Theorem 4.1 allows us to prove the following convergence error estimate in the V -norm for
Problem (12).

Theorem 4.2 Assume there exist k◦, k∂ such that for all s ≥ 1, (H1.a),(H1.b), and (H2.a)–
(H2.c) hold. Furthermore, assume that, for all s ≥ 1, there exists σs : L2(�) → R+ such
that

(H3.a) for all v̂h ∈ V k
h∣∣L f (v̂h) − L f ,h(v̂h)

∣∣ � (
hmin(s,k◦)◦ + hmin(s,k∂ )

∂

) ∥∥v̂h∥∥V σs( f ).

Then, for h◦ and h∂ small enough, Problem (12) admits a unique solution ûh ∈ V k
h and

if û = (u, λ), solution of Problem (9), satisfies û ∈ Hs+1(�) × Hs−1/2(�), the following
estimate holds∥∥û − ûh

∥∥
V � (

hmin(s,k◦)◦ + hmin(s,k∂ )
∂

) (‖u‖Hs+1(�) + σs( f )
)
.

Since the proof of Theorem 4.2 can be obtained by proceeding analogously as in Theorem
4.8 of [11], for brevity we omit it here.

In what follows we provide the error estimate in the weaker W -norm, where W :=
L2(�) × H−3/2(�). To this aim, we start by assuming the following property:

(H3.b) consistency: for all q̂ ∈ P1(Th◦) × Xk∂

h∂

L f ,h(q̂) = L f (q̂).

Such assumption, together with some of those previously introduced, allows us to prove
the following approximation error estimate for the operator L f .

Lemma 4.3 Let v̂ = (v, μ) ∈ H2(�) × H−1/2(�), and let v I
h◦ be the best approximation of

v in Qk◦
h◦ . Under assumptions (H1.a), (H3.a) and (H3.b), for s ≥ 1, it holds:∣∣∣L f ((v

I
h◦ , μ)) − L f ,h((v

I
h◦ , μ))

∣∣∣ � h◦
(

hmin(s,k◦)◦ + hmin(s,k∂ )
∂

)
‖v‖H2(�) σs( f ).

Proof Using (H3.b) and (H3.a), we can write

|L f ((v
I
h◦ , μ)) − L f ,h((v

I
h◦ , μ))|

= |L f ((v
I
h◦ , μ)) − L f ,h((v

I
h◦ , μ)) − L f ((

∇
1 v, μ)) + L f ,h((

∇
1 v, μ))|

= |L f ((v
I
h◦ − ∇

1 v, 0)) − L f ,h((v
I
h◦ − ∇

1 v, 0))|
� (

hmin(s,k◦)◦ + hmin(s,k∂ )
∂

)
‖v I

h◦ − ∇
1 v‖H1(Th◦ ) σs( f ).

From (H1.a) and by using standard polynomial approximation estimates (see, for example,
Lemma 4.3.8 in [25]), we get

‖∇
1 v − v I

h◦‖H1(Th◦ ) ≤ ‖∇
1 v − v‖H1(Th◦ ) + ‖v − v I

h◦‖H1(�) � h◦ ‖v‖H2(�) , (20)

which, combined with the previous estimate, leads to the claim. ��
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To prove the error estimate in the weaker W -norm, we introduce the dual space W ′ :=
L2(�)× H 3/2(�) and denote by [·, ·] : W × W ′ → R the associated duality pairing. Further,
we define the adjoint operator A∗ : V → V

′
as(

A∗v̂
)
(û) := A(û, v̂),

which, by Lemma 3 in [1], is an isomorphism, whose inverse A∗−1 : H1(�) × H 3/2(�) →
H2(�) × H 1/2(�) is continuous.

Theorem 4.4 Assume that there exist k◦ and k∂ and σs : L2(�) → R+ such that, for all
s ≥ 1, (H1.a),(H1.b), (H2.a)–(H2.c), (H3.a) and (H3.b) hold. Then, for h◦ and h∂ small
enough, if ûh ∈ V k

h is the solution of Problem (12) and û, solution of Problem (9), satisfies
û ∈ Hs+1(�) × Hs−1/2(�), for s ≥ 1, the following estimate∥∥û − ûh

∥∥
W � (h◦ + h∂ )

(
hmin(s,k◦)◦ + hmin(s,k∂ )

∂

) (‖u‖Hs+1(�) + σs( f )
)

holds.

Proof Let ŵ ∈ W ′ and v̂ := A∗−1ŵ the unique element that, according to the above men-
tioned property of A∗−1, satisfies v̂ ∈ H2(�) × H 1/2(�) ⊂ V ,

A(ẑ, v̂) = A(A∗−1ŵ, ẑ) = [ẑ, ŵ] ∀ẑ ∈ V (21)

and
∥∥v̂∥∥H2(�)×H1/2(�)

� ∥∥ŵ∥∥W ′ .
Now, choosing ẑ = û − ûh in (21), where û and ûh are the solutions of (9) and (12)

respectively, and denoting by v̂ I
h = (v I

h◦ , μ
I
h∂

) ∈ V k
h the interpolant of v̂, we obtain

| [û − ûh, ŵ] | = ∣∣A(û − ûh, v̂)
∣∣

=
∣∣∣A(û − ûh, v̂) + Ah(ûh, v̂

I
h) − Ah(ûh, v̂

I
h) + A(û − ûh, v̂

I
h) − A(û − ûh, v̂

I
h)

∣∣∣
≤
∣∣∣A(û − ûh, v̂ − v̂ I

h)

∣∣∣+ ∣∣∣L f (v̂
I
h) − L f ,h(v̂

I
h)

∣∣∣+ ∣∣∣Ah(ûh, v̂
I
h) − A(ûh, v̂

I
h)

∣∣∣
� ∥∥û − ûh

∥∥
V

∥∥∥v̂ − v̂ I
h

∥∥∥
V

+ h◦
(

hmin(s,k◦)◦ + hmin(s,k∂ )
∂

)
‖v‖H2(�) σs( f )

+
∣∣∣Bh(ûh, v̂

I
h) − B(ûh, v̂

I
h)

∣∣∣ =: I + I I + I I I , (22)

the last inequality following from the continuity ofA and Lemma 4.3. By applying Theorem
4.2 and the interpolation property (13), we estimate

I � (h◦ + h∂ )
(

hmin(s,k◦)◦ + hmin(s,k∂ )
∂

) (‖u‖Hs+1(�) + σs( f )
) ‖v̂‖H2(�)×H1/2(�)

� (h◦ + h∂ )
(

hmin(s,k◦)◦ + hmin(s,k∂ )
∂

) (‖u‖Hs+1(�) + σs( f )
) ‖ŵ‖W ′ , (23)

and, since ‖v‖H2(�) ≤ ‖v̂‖H2(�)×H1/2(�)
we have

I I � h◦
(

hmin(s,k◦)◦ + hmin(s,k∂ )
∂

)
‖ŵ‖W ′σs( f ). (24)

Toestimate I I I in (22),we addand subtract the termsBh((
∇
k◦u, λ), v̂ I

h) andB((∇
k◦u, λ), v̂ I

h)

which, for (H2.a), are equal. Hence we get

I I I = |Bh((uh◦ − ∇
k◦u, 0), v̂ I

h) − B((uh◦ − ∇
k◦u, 0), v̂ I

h)|.
Similarly, adding and subtracting the two equal terms (see (H3.b))
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Bh((uh◦ − ∇
k◦u, 0), (∇

k◦v, μI
h∂

)) and B((uh◦ − ∇
k◦u, 0), (∇

k◦v, μI
h∂

)), we obtain

I I I ≤ |Bh((uh◦ − ∇
k◦u, 0), (v I

h◦ − ∇
1 v, 0))|

+ |B((uh◦ − ∇
k◦u, 0), (v I

h◦ − ∇
1 v, 0))|.

Using the continuity of Bh (see (H2.b)) and of B, we have

I I I � ∥∥∥uh◦ − ∇
k◦u
∥∥∥

H1(Th)

∥∥∥v I
h◦ − ∇

1 v

∥∥∥
H1(Th)

.

The first factor of the above inequality is estimated, by using Theorem 4.2 and standard
polynomial approximations, as follows

‖uh◦ − ∇
k◦u‖H1(Th) ≤ ‖uh◦ − u‖H1(�) +

∥∥∥u − ∇
k◦u
∥∥∥

H1(Th)

� (
hmin(s,k◦)◦ + hmin(s,k∂ )

∂

)
(‖u‖Hs+1(�) + σs( f )).

Then, using (20), we obtain

I I I � h◦
(

hmin(s,k◦)◦ + hmin(s,k∂ )
∂

) (‖u‖Hs+1(�) + σs( f )
) ‖v‖H2(�)

� h◦
(

hmin(s,k◦)◦ + hmin(s,k∂ )
∂

) (‖u‖Hs+1(�) + σs( f )
) ‖ŵ‖W ′ . (25)

Finally, the assertion easily follows combining (22) with (23), (24) and (25). ��

5 The CVEM-BEMMethod

In this section we describe the discrete CVEM-BEM coupling procedure for the solution of
Problem (9). In particular, we show that all the assumptions, introduced in Sect. 4 and used
to prove Theorems 4.2 and 4.4, are satisfied. Referring to the notation introduced in Sect. 4,
and denoting P−1(E) = {0}, we consider for each E ∈ Th◦ the following local virtual space
Qk◦

h◦(E) defined by

Qk◦
h◦(E) := {vh◦ ∈ H1(E) : �vh◦ ∈ Pk◦−2(E),

vh◦ |e1 ∈ P̃k◦(e1), vh◦ |ei
∈ Pk◦(ei ), i = 2, . . . , nE

}
,

where e1, . . . , enE denote the edges of the boundary of E , whose first element e1 is
assumed to be curved and parametrized by a local map γE : IE → e1, and P̃k◦(e1) :={

q̃ = q ◦ γ −1
E : q ∈ Pk◦(IE )

}
.

We omit here, for brevity, the complete description of such space and we refer to [3, 12]
for a deeper presentation. Further, since we will use some of the theoretical results proved in
[11], we also refer to this latter, in particular for what concerns the notation.

On the basis of the definition of the local virtual space Qk◦
h◦(E), we construct the global

virtual space

Qk◦
h◦ := {vh◦ ∈ H1

0,�0
: vh◦|E ∈ Qk◦

h◦(E), E ∈ Th◦ }.
The validity of Assumption (H1.a) is based on the proof of Lemma 5.2 in [11], in which the
results hold both for the space Qk◦

h◦ and for a suitable enhanced space associated with it. For
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each E ∈ Th◦ , in the spirit of the virtual element method, we define the approximation aE
h◦

of the bilinear form aE (see definition (11)), as follows:

aE
h◦(uh◦ , vh◦) := aE

(


∇,E
k◦ uh◦ ,

∇,E
k◦ vh◦

)
+ sE

((
I − 

∇,E
k◦

)
uh◦ ,

(
I − 

∇,E
k◦

)
vh◦
)

,

where s E is the standard “dofi-dofi” stabilization term (see Eq. (3.22) of [26]).
The global approximate bilinear form ah◦ : Qk◦

h◦ × Qk◦
h◦ → R is then defined by summing up

the local contributions
ah◦(uh◦ , vh◦) :=

∑
E∈Th

aE
h◦(uh◦ , vh◦).

The boundary element space Xk∂

h∂
, associated with the artificial boundary �, is defined as

follows:
Xk∂

h∂
:=
{
λ ∈ L2(�) : λ

e
∈ P̃k∂−1(e), e ∈ T �

h∂

}
∩ H−1/2

0 (�),

and we refer to [27] for the validity of the associated Assumption (H1.b). We then define the
approximate bilinear form Bh : V k

h × V k
h → R as:

Bh(ûh, v̂h) := ah◦(uh◦ , vh◦) − 〈λh∂
, vh◦ 〉� + 〈μh∂

, uh◦ 〉� + 2〈μh∂
,Vλh∂

〉�
for ûh = (uh◦ , λh∂

), v̂h = (vh◦ , μh∂
) ∈ V k

h .
For these choices, from [11] (see Section 5.2), Assumptions (H2.a)-(H2.c) are satisfied.

By approximating the linear operator L f in a standard VEM way, in particular as in [28]
(see Eq. (3.18)), and assuming f ∈ Hs−1(�), from Lemma 3.4 in [28], Assumption (H3.a)
follows with σs( f ) = | f |Hs−1(�). Finally, Assumption (H3.b) is trivially satisfied.

6 Algebraic Details and Computational Issues

In this section we briefly describe the construction of the final linear system associated with
the CVEM-BEM scheme, and we give some implementation details concerning the BEM
matrices.

We start by re-ordering and splitting the complete index set S of the basis functions{
� j
}

j∈S of Qk◦
h◦ as S = S I ∪ S� , where S I and S� denote the sets of indices related to the

internal degrees of freedom and to those lying on �, respectively. Moreover, we denote by{
ϕ j
}

j∈G the basis functions of Xk∂

h∂
, G being the corresponding index set. In order to write

the linear system associated with the discrete problem (12), we expand the unknown function
ûh = (uh◦ , λh∂

) ∈ Qk◦
h◦ × Xk∂

h∂
as

uh◦(x) :=
∑
j∈S

u j
h◦� j (x) with u j

h◦ = dof j (uh◦),

λh∂
(x) :=

∑
j∈G

λ
j
h∂

ϕ j (x) with λ
j
h∂

= dof j (λh∂
).

(26)

Hence, using the basis functions of Qk◦
h◦ to test the discrete counterpart of equation (8a), we

get for i ∈ S∑
j∈S

u j
h◦
∑

E∈Th◦

aE
h◦(� j ,�i ) −

∑
j∈G

λ
j
h∂

〈ϕ j ,�i 〉� = L f ,h((�i , 0)). (27)
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To write the matrix form of the above linear system, we introduce the stiffness matrix A and
the matrix Q whose entries are respectively defined by

Ai j :=
∑

E∈Th◦

aE
h◦(� j ,�i ), i, j ∈ S, Qi j := 〈ϕ j ,�i 〉�, i ∈ S�, j ∈ G

and the column vectors u =
[
u j

h◦

]
j∈S , λ =

[
λ

j
h∂

]
j∈G and f = [

L f ,h((�i , 0))
]

i∈S . In
accordance with the splitting of the set of the degrees of freedom, we consider the block
partitioned representation of the above matrices and vectors (with obvious meaning of the
notation), and we rewrite equations (27) as follows:⎡

⎣A
I I

A
I�

A
� I

A
��

⎤
⎦
⎡
⎣uI

u�

⎤
⎦−

⎡
⎣ 0

Qλ

⎤
⎦ =

⎡
⎣ f I

f�

⎤
⎦ . (28)

For what concerns the discretization of the BI-NRBC, by inserting (26) in (8b) and testing
with the functions ϕi , i ∈ G, we obtain

∑
j∈S�

u j
h◦

⎡
⎣1

2

∫
�

� j (x)ϕi (x)d�x −
∫
�

⎛
⎝∫

�

∂G

∂ny
(x, y)� j (y) d�y

⎞
⎠ϕi (x)d�x

⎤
⎦

+
∑
j∈G

λ
j
h∂

∫
�

⎛
⎝∫

�

G(x, y)ϕ j (y) d�y

⎞
⎠ϕi (x)d�x = 0,

(29)

that in matrix form reads (
1

2
Q

T − K

)
u� + Vλ = 0, (30)

where

Vi j :=
∫
�

⎛
⎝∫

�

G(x, y)ϕ j (y)d�y

⎞
⎠ϕi (x)d�x,

Ki j :=
∫
�

⎛
⎝∫

�

∂G

∂ny
(x, y)� j (y)d�y

⎞
⎠ϕi (x)d�x.

By combining (28) with (30), we obtain the final linear system⎡
⎢⎢⎢⎢⎣
A

I I
A

I�
O

A
� I

A
�� −Q

O
1
2Q

T − K V

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
uI

u�

λ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
f I

f�

0

⎤
⎥⎥⎥⎥⎦ . (31)

It is worth to point out that, since in the theoretical analysis we have assumed that the bound-
ary integral operators are not approximated, it is crucial to compute the integrals defining
the BEM entries of V and K with a high accuracy. Hence, to retrieve their approximation
without affecting the overall accuracy of the coupled CVEM-BEM scheme, suitable efficient
quadrature formulas must be considered. In [10] we have proposed and successfully applied
a smoothing technique to weaken the log-singularity of the single layer operator V and to
compute the corresponding entries with high accuracy by using the Gauss-Legendre product
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Fig. 2 Basis of X̂2
h∂

and X2
h∂

in [0, 2π)

quadrature rule with few nodes. Such a strategy has been tuned for the standard nodal linear
and quadratic basis functions and could, in principle, be adopted also in this context for
the basis functions satisfying property (3). However, since the strategy associated with the
standard Lagrangian basis is a well-established task, we take advantage of it by applying a
computational trick. To describe this latter, we introduce the space

X̂ k∂

h∂
:= {λ ∈ L2(�) : λ|e ∈ P̃k∂−1(e), e ∈ T �

h∂
} ⊂ H−1/2(�),

whose Lagrangian basis functions are denoted by ϕ̂ j .
Further, we denote by V̂, K̂ and Q̂ the matrices associated with the choice of the space

X̂ k∂

h∂
, which differ from V,K and Q by the presence of the functions ϕ̂i instead of ϕi . In the

forthcoming Remark 1 we detail the quadrature adopted to efficiently compute V̂. Here we
describe how to retrieve the matricesV,K andQ from the corresponding V̂, K̂ and Q̂. To this
aim it is sufficient to define the functions ϕi as a suitable linear combination of the standard
ones ϕ̂i and, hence, to combine accordingly the rows and/or the columns of V̂, K̂ and Q̂.
Such a combination depends on the order k∂ , on the shape of the artificial boundary � and on
the associated mesh T �

h∂
. In particular, for k∂ = 2, we define ϕi := ci ϕ̂i + ϕ̂i+1, where ϕ̂i and

ϕ̂i+1 are two consecutive piece-wise linear nodal basis functions. For k∂ = 3, we distinguish
the following two cases: a) ϕ2i := c2i ϕ̂2i + ϕ̂2i+1; b) ϕ2i+1 := ϕ̂2i+1 + c2i+1ϕ̂2i+2. The
coefficients c� are chosen such that the relation

∫
�

ϕ� = 0 is satisfied and are retrieved
by applying a ν-point Gauss-Legendre quadrature formula, with ν chosen such that the
integral over � of the associated ϕ̂ functions is accurately computed. It is worth noting that
dim(Xk∂

h∂
) = dim(X̂ k∂

h∂
) − 1.

In Figs. 2 and 3, we show the basis functions of the spaces X̂ k∂

h∂
and Xk∂

h∂
, with k∂ = 2, 3

respectively, associated with the uniformly partitioned parametrization interval [0, 2π) of
the particular choice of a circle. For this choice, it is immediate to get ci = −1 for k∂ = 2,
and c2i = c2i+1 = −2 for k∂ = 3.

Remark 1 We recall that the numerical integration difficulties in the computation of the V̂

entries spring from the log-singularity ofG(r) near the origin, the latter being the kernel of the
single layer operator V. To compute the corresponding integrals with high accuracy by few
nodes, we have used the very simple and efficient polynomial smoothing technique proposed
in [29], referred as the q-smoothing technique. It is worth noting that such technique is
applied only when the distance r approaches zero. This case corresponds to the matrix entries
belonging to the main diagonal and to the co-diagonals for which the supports of the basis
functions overlap or are contiguous. After having introduced the q-smoothing transformation,
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Fig. 3 Basis of X̂3
h∂

and X3
h∂

in [0, 2π)

with q = 3, we have applied the n-point Gauss-Legendre quadrature rule with n = 9 for the
outer integrals, and n = 8 for the inner ones (see [30] andRemark 3 in [10] for further details).
For the computation of all the other integrals, we have applied a 9×8-point Gauss-Legendre
product quadrature rule. Incidentally, we point out that the integrals involving the kernel
function appearing in the double layer operator K, do not require a particular quadrature
strategy, since its singularity 1/r is factored out by the same behaviour of the Jacobian near
the origin. Hence, for the computation of the entries of the matrix K̂, we have directly applied
a 9 × 8-point Gauss-Legendre product quadrature rule.

The quadrature strategy described above guarantees the computation of all the mentioned
integrals with a full precision accuracy (16-digit double precision arithmetic) for both k∂ = 2
and k∂ = 3.

7 Numerical Results

In this section, we present some numerical test to validate the theoretical results and to show
the effectiveness of the proposed method.

For the generation of the partitioning Th◦ of the computational domain �, we have used,
in the first two examples, the GMSH software to construct unstructured conforming meshes
consisting of quadrilaterals (see [31]), while in the last two ones the Voronoi mesher Poly-
Mesher (see [32]). If a polygon E has a (straight) edge bordering with the interior boundary
or with the artificial one, we transform it into a curved boundary edge by means of a suit-
able parametrization. We remark that, even if in principle it is possible to fully decouple the
interior and boundary meshes, we consider here for simplicity the boundary mesh inherited
by the interior one, for which it turns out h∂ ≤ h◦. Furthermore, we point out that in all
the numerical test we have considered k∂ = 2, 3; larger values than those considered would
require a tailored quadrature technique for the accurate computation of the BEM matrices
that we have not performed yet. Since this usually is considered the bottleneck of the BEM,
the use of decoupled approximation orders allows us to exploit the flexibility of the CVEM
to retrieve high accuracy by increasing only the approximation order k◦. In Example 1 we
will investigate this aspect.

Example 1 Let us consider the unbounded region �e, external to the unit disk �0 = {x =
(x1, x2)� ∈ R2 : x21 + x22 ≤ 1}. We consider Problem (1) with f = 0 and g(x) = x1 + 2
prescribed on the boundary �0 = ∂�0. In this case, the exact solution u(x) is known and its
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Table 1 Example 1. Number of the degrees of freedom associated with the CVEM space

lev. 0 lev. 1 lev. 2 lev. 3 lev. 4 lev. 5

k◦ = 2 368 1, 376 5, 312 20, 864 82, 688 329, 216

k◦ = 3 792 3, 024 11, 808 46, 656 185, 472 739, 584

Fig. 4 Example 1. Meshes of � for lev. 0 (left plot) and lev. 2 (right plot)

expression is given by

u(x) = x1
x21 + x22

+ 2, x ∈ �e.

We choose as artificial boundary � the circle of radius 2, so that the finite computational
domain � is the annulus bounded internally by �0 and externally by �.

To develop a convergence analysis, we start by considering a coarse mesh, associated
with the level of refinement zero (lev. 0), and all the successive refinements are obtained by
halving each side of its elements. In Table 1, we report the total number of the degrees of
freedom associated with the CVEM space, corresponding to each decomposition level of
the computational domain, and the approximation orders k◦ = k∂ = 2, 3 (see Fig. 4 for the
meshes corresponding to level 0 (left plot) and level 2 (right plot)).

To test our numerical approach and to validate the theoretical analysis, the order k◦ of the
approximation spaces is chosen equal to 2 (quadratic) and 3 (cubic), and k∂ = k◦. Moreover,
recalling that the approximate solution uh◦ is not known inside the polygons, as suggested
in [12] we compute the H1-seminorm and L2-norm relative errors, and the corresponding
EOC, by means of the following formulas:

• H1-seminorm ε
∇,k◦
lev :=

√√√√√
∑

E∈Th◦

∣∣∣u−
∇,E
k◦ uh◦

∣∣∣2
H1(E)

|u|2
H1(�)

;

• L2-norm ε
0,k◦
lev :=

√√√√√
∑

E∈Th◦

∥∥∥u−
0,E
k◦ uh◦

∥∥∥2
L2(E)

‖u‖2
L2(�)

;

• EOC := log2

(
ε
∗,k◦
lev+1

ε
∗,k◦
lev

)
, ∗ ∈ {∇, 0}.
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Table 2 Example 1. Relative errors and EOC

lev. h◦ L2-norm H1-seminorm

ε
0,2
lev EOC ε

0,3
lev EOC ε

∇,2
lev EOC ε

∇,3
lev EOC

0 8.02e − 01 4.26e − 04 6.74e − 05 4.96e − 04 1.05e − 04

2.9 3.9 1.9 2.8

1 4.28e − 01 5.56e − 05 4.58e − 06 1.36e − 04 1.51e − 05

3.0 4.0 2.0 3.0

2 2.22e − 01 7.05e − 06 2.92e − 07 3.46e − 05 1.95e − 06

3.0 4.0 2.0 3.0

3 1.13e − 01 8.82e − 07 1.84e − 08 8.68e − 06 2.45e − 07

3.0 4.0 2.0 3.0

4 5.68e − 02 1.10e − 07 1.14e − 09 2.17e − 06 3.07e − 08

3.0 4.0 2.0 3.0

5 2.85e − 02 1.38e − 08 7.35e − 11 1.35e − 07 3.93e − 09

Fig. 5 Example 1. Behaviour of the H1-seminorm relative error for k∂ = 2 (left plot) and k∂ = 3 (right plot)
by varying k◦ and for lev. 0, 1, 2

In the above formulas the superscript k◦ = 2, 3 refers to the approximation order of u,
and the subscript lev refers to the refinement level. For what concerns the evaluation of these
errors, to compute the associated integrals over polygonswe have used the n-point quadrature
formulas proposed in [33] and [34], which are exact for polynomials of degree at most 2n.
For curved polygons, we have applied the generalization of these formulas suggested in [12]
(see Section 4.3). In both cases, we have chosen n = 8.
In Table 2 we report ε

∇,k◦
lev and ε

0,k◦
lev and the corresponding EOC by varying the refinement

level from 0 to 5. As we can see the H1-seminorm error and the L2-norm error estimates con-
firm the expected convergence order of the method. For this example, we further investigate
the possibility of choosing different approximation orders. In particular, since the meshes we
have considered to generate Table 2 have the property h◦ = 2h∂ , we analyse the convergence
of the scheme by fixing k∂ and varying k◦. In Figs. 5 and 6 we report the behaviour of the
H1-seminorm and L2-norm relative error, respectively. For each of them we fix in the left
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Fig. 6 Example 1. Behaviour of the L2-norm relative error for k∂ = 2 (left plot) and k∂ = 3 (right plot) by
varying k◦ and for lev. 0, 1, 2

plots k∂ = 2 and in the right ones k∂ = 3 and we report the errors associated with the refine-
ment levels 0,1,2 by varying k◦. As we can see the CVEM convergence order dominates on
the BEM one for each k◦ ≤ 4, while for larger values the BEM error is no longer negligible.
Further, we observe that for k∂ = 3 and k◦ = 5 the CVEM H1-convergence order is pre-
served, contrarily to that of the L2 one. It is worth to point out that, for fixed values of h◦ and
h∂ and for fixed k∂ , the maximum value of k◦ such that the CVEM error is larger than that of
the BEM is related to the dependence of the implicit constants of the error estimates on k◦
and k∂ . We are aware of a study on such dependency for some interior VEM problems (see
for example [35, 36] and [37]), and this task, by no means trivial, is worth to be investigated.
Finally, as we can see from Table 1, while the increasing behaviour of k◦ for a fixed mesh
is approximately linear, that of lev. for a fixed k◦ is quadratic. Therefore, it is worth noting
that it is more efficient, in terms of computational cost and memory saving, to use high order
CVEM rather than to refine themesh, the latter choice being also computationally demanding
for what concerns the efficient computation of the BEM matrices.

Example 2 We consider the example proposed in [27] (and in [38]), for which �0 is the
boundary of the unit disk, centered at the origin of the cartesian axis, f = 0 and the datum
g on �0 is defined as

g(x) =
{

x41 x1 ≥ 0,

0 x1 < 0.

Solving the Dirichlet Laplace problem in polar coordinates, and expanding the solution in
terms of the eigenvectors of the associated Sturm Liouville system, the solution in polar
coordinates reads

u(ρ, θ) = 3

16
+ ρ−2

4
cos(2θ) + ρ−4

16
cos(4θ) + 48

π

∞∑
n=1
n odd

(−1)(n−1)/2ρ−n

n5 − 20n3 + 64n
cos (nθ),

from which we deduce that the asymptotic behaviour is given by the constant α = 3/16 =
0.1875.We choose as artificial boundary the ellipse of semi-axes 50 and 15, so that the values
of the numerical solution at the points (−50, 0) and (50, 0) can be considered good approxi-
mations of α. In Fig. 7 we compare the behaviour of the exact and numerical solutions in the
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Fig. 7 Example 2. Exact and numerical solutions in [−50,−1] (left plot) and [1, 50] (right plot) by varying
k◦ and k∂

intervals [−50,−1] (left plot) and [1, 50] (right plot) for a fixed mesh of the computational
domain and for different choices of the approximation orders. Besides noting a very good
agreement of the approximate solutions, we have that the corresponding absolute errors at
(−50, 0) and (50, 0) are approximately equal to 4.0e − 04 for k◦ = 1 and k∂ = 2, 5.0e − 05
for k◦ = k∂ = 2 and 1.0e − 08 for k◦ = k∂ = 3.

Example 3 In this example we consider an obstacle �0 whose contour �0 is only Lipschitz
regular. In particular, �0 = �1

0 ∪ �2
0, where �1

0 and �2
0 are the disks of radius 1.5 centred

in (−1, 0) and (1, 0), respectively. We choose f = 0 and the Dirichlet datum

g(x) :=

⎧⎪⎨
⎪⎩

−2x1 + 21/2
[(
7x21 + 2x1 + 1

4

)1/2 + 2x21 − 2x1 − 1
2

]1/2
x1 ≥ 0,

−2x1 − 21/2
[(
7x21 − 2x1 + 1

4

)1/2 + 2x21 + 2x1 − 1
2

]1/2
x1 < 0,

for which the exact solution is given by (see [27])

u(x) = −2x1 + 21/2sgn(x1)

⎡
⎣
((

x21 − x22 + 3

4

)2

+ 4x21 x22

)1/2

+ x21 − x22 + 3

4

⎤
⎦

1/2

(see Fig. 10, right plot). The artificial boundary� is the circle of radius 2.5. In Fig. 8 we show
two meshes obtained by PolyMesher for the geometry �, corresponding to the refinements
with 500 and 1500 elements, respectively. We point out that the meshes consist of elements
with straight or curved edges, whose number varies from 4 to 8. The occurrences of the
number of elements with respect to the number of edges are reported in Table 3, for the
refinements consisting of a total number of 500, 1000, 1500, 2500 elements. By applying
the CVEM-BEM coupling with the decoupled parameters k∂ = 2 and k◦ = 1, 2, 3 and using
Voronoi meshes with 1000 and 1500 elements, we obtain the absolute errors reported in Fig.
9. As expected, the error is larger close to the cusps of the domain and decreases with the
optimal rate as shown in Fig. 10.

Example 4 To complete the numerical examples, we apply our method to Problem (1) with
a non null source f . The boundary �0 is the ellipse with semi-axes 1.5 and 1, on which
the Dirichlet condition g = 0 is prescribed, while � is a circle of radius 20. We choose the
(computationally) compactly supported f such that the exact solution is (see Example 5 in
[38])
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Fig. 8 Example 3. Voronoi meshes with 500 and 1500 elements

Table 3 Example 3. Number of
the elements and the
corresponding number of edges
for some Voronoi meshes

Nr. of edges Nr. of elements

4 3 8 9 2

5 183 279 364 509

6 277 648 1035 1837

7 33 62 89 141

8 4 3 3 1

Total 500 1000 1500 2500

Fig. 9 Example 3. Absolute errors for refinements with 1000 (top row) and 1500 (bottom row) elements and
for k∂ = 2 and k◦ = 1, 2, 3 (from left to right)

u(x) = x21 + 1.25x22 − 1.25

(x21 + x22 + 1)2
e−0.1(x21+x22 ).

In Fig. 11, we show the behaviour of the approximate solution (left plot) and a zoom in a
region surrounding the obstacle, where the corresponding absolute error is larger (right plot).
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Fig. 10 Example 3. L2-norm convergence rate for k∂ = 2, k◦ = 1, 2, 3 and the Voronoi meshes with 500,
1000, 1500, 2500 elements (left plot) and the exact solution (right plot)

Fig. 11 Example 4. Behaviour of the approximate solution (left plot) and a zoom of the corresponding absolute
error in [−5, 5] × [−5, 5] (right plot) for a refinement with 10000 elements, for k∂ = 2 and k◦ = 3

We point out that this last aspect is in agreement with the analogous presented in [38], where a
mortar approach has been employed with non matching meshes on the BEM-FEM interface.
Here, we use decoupled orders k∂ = 2 and k◦ = 3 on a Voronoi mesh with 10000 elements.

8 Conclusions

We have proposed and analysed the coupling of a CVEM with the one-equation BEM to
solve 2D exterior Poisson problems. The peculiarity of the scheme consists in the use of
decoupled approximation orders for the interior CVEM and for the BI-NRBC. This strategy
has allowed us to exploit the well-known flexibility of the CVEM to retrieve an accurate
solution by a low order approximation for the BEM. Since high order BEMs require non-
trivial computational efforts to efficiently evaluate thematrix entries of the associated integral
operators, the advantage of using a low order BEM turns out to be a key aspect to achieve a
good accuracy and convergence rate weighted against computational costs.

The good performances obtained by applying the proposed scheme to elliptic problems,
encourage us to consider it within other contexts, such as time dependent exterior problems
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for which both the pure BEM and its coupling with standard interior domain methods could
become prohibitive.
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