
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Magnetohydrodynamics Simulation of the Nonlinear Behavior of Single Rising Bubbles in Liquid Metals in the Presence
of a Horizontal Magnetic Field / Corrado, Marino; Sato, Yohei. - In: FLUIDS. - ISSN 2311-5521. - ELETTRONICO. -
7:11(2022), pp. 1-29. [10.3390/fluids7110349]

Original

Magnetohydrodynamics Simulation of the Nonlinear Behavior of Single Rising Bubbles in Liquid Metals
in the Presence of a Horizontal Magnetic Field

Publisher:

Published
DOI:10.3390/fluids7110349

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973133 since: 2022-11-16T21:03:16Z

MDPI



Citation: Corrado, M.; Sato, Y.

Magnetohydrodynamics Simulation

of the Nonlinear Behavior of Single

Rising Bubbles in Liquid Metals in

the Presence of a Horizontal

Magnetic Field. Fluids 2022, 7, 349.

https://doi.org/10.3390/

fluids7110349

Academic Editor: Mehrdad

Massoudi

Received: 7 September 2022

Accepted: 4 November 2022

Published: 10 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Magnetohydrodynamics Simulation of the Nonlinear Behavior
of Single Rising Bubbles in Liquid Metals in the Presence of
a Horizontal Magnetic Field
Marino Corrado 1,2 and Yohei Sato 2,*

1 Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
2 Division Scientific Computing, Theory and Data, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
* Correspondence: yohei.sato@psi.ch; Tel.: +41-56-310-26-66

Abstract: Rising bubbles in liquid metals in the presence of magnetic fields is an important phe-
nomenon in many engineering processes. The nonlinear behavior of the terminal rise velocities of the
bubbles as a function of increasing field strength has been observed experimentally, but it remains
poorly understood. We offer an explanation of the phenomenon through numerical calculations.
A single rising bubble in stagnant liquid metal in the presence of an applied horizontal magnetic
field is simulated. The observed nonlinear behavior is successfully reproduced; the terminal velocity
increases with the increase in the magnetic field strength in the lower magnetic field regions but
decreases in higher regions. It is shown that, in the lower region, the increase in the average bubble
rise velocity results from the suppression of the fluctuations in the bubble trajectory in the vertical
plane perpendicular to the magnetic field, as a consequence of the Lorentz force resulting from the
component of induced electric current due to the magnetic field, which (approximately) acts in the
opposite direction to that of the flow velocity. For higher magnetic field strengths, the Lorentz force
induces a broadened wake in the vertical plane parallel to the applied magnetic field, resulting in a
decrease in the rise velocity.

Keywords: CFD; MHD; rising bubble; Lorentz force

1. Introduction

Recently, the study of bubbly flows in liquid metal in the presence of an external
magnetic field has been receiving increasing attention, since the concept has the potential
to be used in different engineering processes, such as liquid-metal stirring, purification
and casting, by controlling the bubble motion, and hence the mixing capability, using
an applied magnetic field. Apart from the metallurgical engineering applications, such
a flow situation could also be a feature of nuclear fusion reactors, in which bubbles are
injected into the liquid-metal coolant to enhance the efficiency of the heat transfer processes.
Due to the opaqueness of the liquid metal, it is impossible to observe the bubbles directly
using optical measurement techniques, and thus, indirect non-optical measures, such
as local conductivity probes [1–4], Ultrasound Doppler Velocimetry (UDV) [5–8], X-ray
radiography [9–11] and neutron radiography [4,12–15], have been employed to “observe”
bubble dynamics in the presence of a magnetic field in many related experiments. In
parallel to the measurements, numerical Magneto-Hydro-Dynamics (MHD) simulations
have been widely employed to better understand bubble dynamics [16–19], since with this
approach, the distribution of all the variables related to the flow and electric field can, in
principle, be obtained.

In the early stages of making quantitative measurements, Mori, et al. [1] performed a
series of experiments involving single nitrogen bubbles rising in quiescent liquid mercury
under the influence of a horizontal, uniform and static magnetic field (HMF). The rise
velocities and the aspect ratios of the bubbles were measured using the electrical triple
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probe method, by which the velocity was calculated from the difference between the bubble
release time from the (bottom) injection nozzle and the bubble arrival time at the probe
positioned higher in the tank. Thus, the acceleration of the bubble was not explicitly
considered, which may have resulted in a lower estimate of the bubble velocity than the
actual value. The direct influence of the contact between the probe and the rising bubble
is also unclear, and unfortunately, the uncertainty (variance) in the measurement was not
reported in the paper. However, it was observed that the rise velocity exhibited nonlinear
behavior in the cases of smaller bubbles (Eo < 2), with the rise velocity increasing with
increases in the magnetic field strength (in the range of 0 < B < 1 T) but then decreasing
with further increases in the magnetic field, in the range of B > 1.5 T. Here, the definition of
the Eötvös number Eo is defined in the Nomenclature section. Such nonlinear behavior was
not observed for larger bubbles (Eo > 4), with the rise velocities in these cases decreasing
monotonically with increases in the magnetic field. In the current paper, we focus on this
nonlinearity and propose an explanation of it.

Experiments involving single bubbles rising in a liquid metal in a vertical (i.e., the
same direction as the gravity), uniform and static magnetic field (VMF) were performed by
Zhang, et al. [5] at the Helmholtz-Zentrum Dresden-Rossendorf Laboratory. Bubble and
liquid velocities were measured using UDV [20], a technique which enables the bubble rise
velocity to be measured at arbitrary elevations. The results showed that the rise velocity
of small bubbles (Eo ≤ 2.5) decreases with increases in the applied magnetic field for
B ≤ 0.3 T, whereas the opposite is true in the case of larger bubbles (Eo ≥ 3.4). A single
rising bubble of Eo = 5 in a liquid metal under a VMF was numerically studied by Shibasaki,
et al. [16] using an MHD simulation, and the results captured the nonlinear behavior of
the terminal rise velocity. Schwarz and Fröhlich [21] also performed MHD simulations
for single rising bubbles in a liquid metal under a VMF, for which two assumptions were
introduced; namely, a no-slip condition was imposed at the bubble surface, and the bubble
shape was assumed to be axisymmetric. The feasibility of these assumptions remains an
open question, but the results indeed show an increase in the rise velocity with increases in
the magnetic field for larger bubbles. Zhang and Ni [22] at the University of the Chinese
Academy of Sciences also performed MHD simulations subject to a VMF. Their results
showed that larger bubbles (Eo ≥ 2.2) attain maximum terminal velocity with increases in
the magnetic field.

Further MHD simulations for single rising bubbles under HMF conditions were per-
formed by Jin, et al. [17]. The simulations were related to argon bubbles (1 < Eo < 6) rising
in GaInSn for 0 ≤ B < 0.5 T. In the same year, Zhang, et al. [18] also published simulations
of single rising bubbles in an HMF, with the ranges in this case being 2.2 ≤ Eo ≤ 4.9 and
0 ≤ N ≤ 24, where N is the Stuart number. In both works [17,18], the terminal rise velocity
was predicted to monotonically decrease with increases in the magnetic field, i.e., the
nonlinear behavior measured by Mori, et al. [1] for a VMF was not observed in the case of
an HMF.

Measurements of the rise velocities of single argon bubbles in GaInSn under an HMF
were also performed by Wang, et al. [7] using the UDV technique. The experiments covered
the ranges of 1 < Eo < 4 and 0 ≤ B < 2 T. They also observed the nonlinear behavior of
the terminal rise velocity, which was previously measured by Mori, et al. [1] for nitrogen
bubbles in mercury. In the same year as the publication of Wang, et al. [7], Strumpf [8]
reported results from a similar experiment, namely argon bubbles in GaInSn under an HMF
using UDV for 1 < Eo < 5 and 0 ≤ B < 1 T. Strumpf changed the intensity of the magnetic
field gradually and thereby observed the influence of the magnetic field intensity on the
terminal rise velocity. The results showed that the maximum terminal rise velocity appears
at N/Cd ≈ 1, where N is the Stuart number and Cd is the drag coefficient of the bubble,
although no physical explanation was given for the phenomenon.

Very recently, Zhang, et al. [19] presented MHD simulations for both HMF and VMF
orientations to better understand the influence of the applied magnetic field on the trajecto-
ries of the rising bubbles. The results showed that the spiral motion of a bubble observed
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for a zero magnetic field changed to a purely zig-zag motion under the influence of an
HMF. To understand the mechanism, they analyzed the evolution of the wake vortices and
the forces to which they were subjected. According to their simulation results, oscillations
in the bubble trajectory are suppressed in the direction of the applied magnetic field vector.

A comprehensive list of the experiments and simulations carried out for HMF and
VMF configurations in the paper of Strumpf [8] is given in Table 1, and these experiments
and simulations are not repeated in this article. To the authors’ knowledge, there appear to
be no MHD simulations that have reproduced the nonlinear behavior of the rise velocity of
a bubble under an applied HMF. Consequently, in this paper, we attempt to explain the
mechanism based on our own MHD simulation results. The simulation cases that were
undertaken correspond directly to the experiments of Wang, et al. [7]. To this purpose,
the PSI-BOIL code [23,24], which was originally developed in the context of multiphase
CFD simulations, was extended to include MHD effects and was applied to a single bubble
rising in a conducting fluid under HMF conditions.

Table 1. Grid parameters for the grid dependency study of the flow in the square duct.

Grid Index Nx Ny Nz
dx (×10−2 a) dy (×10−2 a) dz (×10−2 a)

Equal Spacing Min Max Min Max

1.00 16 256 128 1.56 0.39 0.98 0.78 1.96
1.33 12 192 96 2.08 0.52 1.31 1.04 2.62
2.00 8 128 64 3.13 0.78 1.96 1.56 3.92
2.67 6 96 48 4.17 1.04 2.61 2.08 5.23
4.00 4 64 32 6.25 1.56 3.92 3.13 7.85

The outline of the paper is as follows: In Section 2, the general numerical method
implemented in PSI-BOIL is outlined. The verification and validation of our MHD model
are demonstrated in Section 3 and refer specifically to (i) single-phase liquid-metal flow in
a channel and (ii) rising bubble simulations based on the experiments of Wang, et al. [7]. In
Section 4, the MHD simulation results obtained are analyzed, and the mechanism for the
nonlinear behavior of the terminal rise velocity as a function of the intensity of the applied
HMF is discussed. Finally, conclusions are drawn in Section 5.

2. Numerical Method
2.1. Governing Equations

The Navier–Stokes equations for incompressible flow are defined as:

∇·u = 0, (1)

∂(ρu)
∂t

+∇·(ρuu) = −∇p +∇·
{

µ
(
∇u + (∇u)T

)}
+ ρg + Fγ + FL, (2)

where ρ is the density, u is the velocity vector, t is the time, p is the pressure, µ is the
dynamic viscosity, g is the gravitational acceleration vector and Fγ and FL are the surface
tension force and the Lorentz force, respectively. In the code PSI-BOIL, the Navier–Stokes
equations are discretized using a semi-implicit projection method in time [25]. The diffusion
term is discretized according to the Crank–Nicolson scheme in time and the advection
terms according to the Adams–Bashforth scheme. For the spatial discretization, a Cartesian
finite-volume method is used in the familiar staggered variable arrangement [26], with the
pressure defined at the cell center and the velocity vectors defined at the centers of the cell
faces. A second-order-accurate central-difference scheme is used for the diffusion term,
and a second-order scheme with a flux limiter [27] is used for the advection term.

The surface tension force is modeled according to the Continuum Surface Force (CSF)
model proposed by Brackbill, et al. [28]:

Fγ = γκ∇α, (3)
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where γ is the surface tension coefficient; κ is the curvature, which is evaluated here by use
of the height function using the 3 × 3 × 7 stencil proposed by López, et al. [29]; and α is the
volume fraction of the liquid phase. The Lorentz force is defined as:

FL = j× B, (4)

where j is the electrical current density, and B is the magnetic flux density. In the present
study, B is assumed to be static and equal to the applied external magnetic flux density.
This is acceptable, since the induced magnetic field caused by the fluid motion is much
smaller than the applied magnetic field for the applications in mind [30]. The electrical
current density j is defined by Ohm’s law [31]:

j = σ(−∇φ + u× B), (5)

where σ is the electrical conductivity, and φ is the electric potential. The second term on the
right hand side, u× B, derives from the Lorentz transform [31] of Ohm’s law to a moving
frame of reference. The electric potential φ is calculated as follows [32]. First, the electrical
current conservation law can be applied for highly conductive media:

∇·j = ∇·[σ(−∇φ + u× B)] = 0, (6)

A Poisson equation for the electric potential may then be derived by rearranging
Equation (6) as follows:

∇·(σ∇φ) = ∇·(σ(u× B)). (7)

Concerning the fluid flow, the Piecewise Linear Interface Capturing Volume Of Fluid
(PLIC-VOF) method [33] is employed to track the volume fraction of the liquid phase, α.
The governing transport equation for α is:

∂α

∂t
+∇·(αu) = 0. (8)

The bounded conservative flux-splitting approach [34] is employed for the calculation
of the advection term in order to avoid overshooting and undershooting the volume
fraction, i.e., to strictly maintain the condition of 0 ≤ α ≤ 1. The specific implementation of
the VOF method in the PSI-BOIL code is reported by Bureš, et al. [23].

In the staggered-variable arrangement, the volume fraction and the electric potential
are both defined at cell centers, and the electrical current density vectors are defined at
the centers of the surrounding cell faces. This is consistent with the scalar and vector
representations in the method. The average density, viscosity and electrical conductivity
in any control volume, which, in our case, is a cell of the underlying grid, are defined,
respectively, based on the volume fraction α as follows:

ρ = α ρl + (1− α)ρg, µ = α µl + (1− α)µg and σ = α σl + (1− α)σg, (9)

where the subscripts l and g refer to the liquid and gas phases, respectively.

2.2. Solution Algorithm and Limitation of Time Increment

The algorithm for solving the equations is as follows.

Step 1. Calculate the electric potential φ, Equation (7).
Step 2. Calculate the electrical current density j, Equation (5).
Step 3. Calculate the Lorentz force FL, Equation (4).
Step 4. Calculate the surface tension force Fγ, Equation (3).
Step 5. Update the velocities and the pressure by means of the projection method,

Equations (1) and (2).
Step 6. Update the volume fraction α, Equation (8).
Step 7. Advance the time step, and go back to Step 1.
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The solution of the Poisson equation for the electric potential (Step 2) is obtained
using the bi-conjugate gradient stabilized (BiCGSTAB) method [35], whereas the Poisson
equation for the pressure (Step 5) is solved using the conjugate gradient (CG) method [36].
BiCGSTAB is required because the electrical conductivities for the liquid metal and the gas
differ by more than twenty orders of magnitude. The algebraic multigrid method [37] is
applied to the Poisson equations for the electric potential and the pressure to accelerate
their convergence.

The time increment ∆t, which is limited both by the CFL condition and the stability
condition for the surface tension, is given by:

∆t = min

cCFL
∆x
|u|max

,

(
ρg∆x3

2πγ

) 1
2
, (10)

where cCFL is a dimensionless constant representing a safety factor, and ∆x(= ∆y = ∆z)
is the grid spacing. In this paper, we chose cCFL = 0.25. The entire procedure is an MHD
extension of the algorithm implemented in PSI-BOIL to calculate the fluid flow field [23].

2.3. Assumptions

For clarity, the assumptions used in the numerical methods employed are summarized
here. The working fluid is modeled as incompressible, and the presence of any surfactant
is neglected based on the assumption that the working fluid is not contaminated and that
the surface tension coefficient is therefore constant. The magnetic field B is assumed to be
uniform and static everywhere at the value of the applied external field. This assumption
is valid, since the magnetic Reynolds number Rm << 1, meaning that internal distortions in
the magnetic field strength are negligible. The electrical current conservation law, ∇·j = 0,
is also adopted, since liquid metals are generally very good electrically conductive media.

3. Verification and Validation

The numerical method described in the previous sections was implemented into the
PSI-BOIL code [23,24], which was originally developed for two-phase flow simulations,
including phase change phenomena. In this section, two cases of verification and validation
are presented: the first refers to single-phase flow, and the second refers to two-phase flow,
both of which are subject to an externally applied magnetic field.

3.1. Single-Phase Liquid-Metal Flow in a Square Channel

Single-phase liquid-metal flow in a square channel under the influence of a static
magnetic field was computed. The results were compared with the analytical solution
proposed by Shercliff [38], and the experimental data were measured by Hartmann and
Lazarus [39]. In the experiment, a rectangular channel was filled with mercury, and the
flow was driven by an applied pressure drop. A uniform and static magnetic field was
applied in a direction lateral to the axial direction of the channel, as seen in Figure 1a. The
mass flow rate was measured for different intensities in the magnetic field. We focus here
on the experiment K 33, which Shercliff himself used as a validation case, with a square
channel with electrically insulating walls and with dimensions of the sectional area being
1.14 × 1.16 mm2 and the length being 140 mm. The Hartmann number, which represents
the ratio of the magnetic force to the viscous force, for this problem is defined as follows:

Hachannel = aB0

√
σl
µl

, (11)

where a is the half-width of the channel, and B0 is the intensity of the imposed magnetic field.
In the K 33 experiment, measurements were undertaken over the range of 0 ≤ Hachannel ≤ 18.
Note that we performed simulations over the wider range of 0 ≤ Hachannel ≤ 50 in order to
compare them with not only the experiment but also with the analytical solution [38].
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Figure 1. Computational domain and boundary conditions for single-phase liquid-metal flow in a
square channel (a), and the computational grid for Grid index = 2.00 in the Y–Z plane (b).

The size of the computational domain, the boundary conditions, and the orientation
of the coordinate system are all illustrated in Figure 1a: the channel width and height
were set to 2a, and the axial domain length was set to 0.25 a. No-slip velocity boundary
conditions were applied at the walls surrounding the channel, and these were modeled
as electrically insulating materials. Periodic velocity boundary conditions were employed
at the boundaries in the x-direction, where a prescribed pressure drop was imposed. A
uniform and static magnetic field of intensity B0 was applied in the lateral direction,
which is also indicated in Figure 1. The number of cells was chosen as 8 × 128 × 64 in
the x-, y- and z-directions, respectively. The cell size in the x-direction was constant at
3.13×10−2 a, whereas stretched cell sizes were used in the y- and z-directions, as depicted
in Figure 1b, in order to explicitly resolve the wall boundary layers. The cell sizes dy and
dz, in the other directions, were in the ranges of 7.81 × 10−3 a ≤ dy ≤ 1.96 × 10−3 a and
1.56 × 10−2 a ≤ dz ≤ 3.94 × 10−2 a, respectively.

3.1.1. Grid Dependency Study

A grid dependency study was carried out based on the grid convergence index
method [40] to serve as a verification test of the model’s implementation. Five cases
with different cell sizes were computed for Hachannel = 50. The cell size in the x-direction
remained constant, whereas stretched cells were employed in the y- and z-directions within
the ranges stated in the previous paragraph. The grid parameters are listed in Table 1,
where Grid index represents the notional non-dimensional grid size; Nx, Ny and Nz are the
number of cells in the x-, y- and z-directions, respectively; and dx, dy and dz are the cell
sizes in each direction in units of a. For illustrative purposes, the grid corresponding to
Grid index = 2.00 is shown in Figure 1b.

The computations were continued until steady-state conditions were attained. The
computed mean velocity v0 for each case is shown in Figure 2 as a function of the Grid index.
The vertical axis is ka2/ν0, where k

(
= dp

dx

)
is the pressure drop applied to the channel. The

analytical solution [38] is also depicted in Figure 2 in comparison with the computed result.
The exponent of the fitted curve, which indicates the accuracy of the numerical scheme in
space, is 1.9. Since all the governing equations are discretized using second-order schemes
in space, the 1.9th-order dependency is reasonable.
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Figure 2. Grid dependency study for Hachannel = 50, indicating the 1.9th-order accuracy in spatial
discretization.

3.1.2. Comparisons against Analytical Solutions and Experiments

Eight simulation cases for different Hachannel were simulated, namely Hachannel = 0, 5,
10, 15, 20, 30, 40 and 50. The computational grid with Grid index = 1.00 was used for all
the simulations, since, according to Figure 3, this is clearly in accord with the asymptotic
limit. Once the solution converged, all the variables (except the pressure) were constant
in the x-direction. Thus, we only present the distribution of the variables in a single

x-constant plane, all of which were non-dimensionalized as follows: x′ = x
a , u′ = u

√
ρ
ak ,

F′ = F
a3k , φ′ = φ

√
ρ

B0
√

a3k
and j′ = j

√
ρ

σB0
√

ak
, where the variable with the superscript ′ indicates

a non-dimensional value.

Figure 3. Distribution of the non-dimensional axial velocity u′ in a constant x′ plane for
Hachannel = 0 (a) and Hachannel = 50 (b).

The distribution of the axial velocity for Hachannel = 0 and 50, representing the extreme
cases, are compared in Figure 3. The lengths and velocities are non-dimensionalized

according to the base parameters, i.e., y′ = y
a , z′ = z

a , u′ = u
√

ρ
ak . The result for Hachannel = 0

is a typical profile for laminar flow in a square channel, whereas a steep velocity gradient is
observed near the walls at y-min and y-max for Hachannel = 50. The velocity components
in the y and z directions are exactly zero in both cases. Figure 4 shows the normalized
distributions of (a) the Lorentz force, (b) the electric potential and (c) the magnitude of the
electric current density and current path. For clarity, the electric current paths are depicted
only in the left half of the domain. The Lorentz force, which acts in the x-direction, is
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strongest near the y-min and y-max walls, induced by the high value of the electric current
density there.

Figure 4. Normalized distributions of (a) the Lorentz force in the x-direction FLX
′, (b) the electric

potential φ′ and (c) the magnitude of the electric current density
∣∣∣j’
∣∣∣, and the electric current vector j’

(lines drawn only in the left half of the domain for clarity).

In Figure 5, the computed mean velocity v0 is compared with the analytical solu-
tion [38] as well as with the experimental measurements [39] for different Hartmann
numbers. Our simulation results are in very good agreement with both the analytical
solution and the measurements.

Figure 5. Comparisons of the inverse of the non-dimensionalized mean velocity ka2/v0 between the
analytical solution [38], the experiment [39] and our CFD simulations obtained using PSI-BOIL.

3.2. Rising Single Bubble in Liquid Metal

A series of simulations of a single bubble rising in liquid metal was performed for
the verification and validation tests of our MHD model introduced into PSI-BOIL. The
conditions of the simulation were taken from the experiments performed by Wang, et al. [7].
In these experiments, single argon bubbles were injected through a nozzle into a rectangular
tank filled with the liquid metal GaInSn. The tank was constructed of acrylic glass with
dimensions 60 × 60 × 200 mm3 in both lateral directions and height, respectively. The tank
was subject to a homogeneous, static and transverse magnetic field, and the rise velocity of
the bubbles was measured using a UDV technique [20]. Due to the opacity of the liquid
metal, the bubble shape and bubble rise path could not be measured directly, though the
bubble volume was estimated based on the volume flow rate of the argon ejected from the



Fluids 2022, 7, 349 9 of 29

nozzle and the number of bubbles counted during the measurement period. The bubble
diameter ranged from 3.1 mm to 5.6 mm, which corresponds to an Eötvös number of
Eo = 1.12 to 3.67. The maximum applied magnetic field strength was 2 T. The material
properties for argon and GaInSn were taken from the paper of Wang, et al. [7] and are listed
in Table 2.

Table 2. Physical properties of materials for validation test.

Material Density
(kg/m3)

Viscosity
(Pa.s)

Electrical
Conductivity (1/Ωm)

Surface Tension
Coefficient (N/m)

Ar 1.654 1.176 × 10−5 1.000 × 10−15
0.553GaInSn 6.362 × 103 2.200 × 10−3 3.270 × 106

Figure 6 shows the orientation of the coordinate system, the boundaries of the compu-
tational domain, the initial bubble size and the direction of the applied magnetic field. Both
the x- and y-axes are horizontal, and the z-axis points upward with the origin at the center
of the bottom plane. A uniform and static magnetic field, B0, was applied in the positive
x-direction. The domain width was 6d × 6d, where d is the diameter of the initial spherical
bubble. The height of the domain, LZ, was set in such a way that a pseudo-steady-state
could be obtained for the bubble rise velocity in all cases. In practical terms, this translated
as LZ = 24d for the simulation cases with B0 > 0 and LZ = 48d or 96d for the cases in which
B0 = 0. The domain width 6d × 6d is the same as the simulation setup of Jin et al. [17]. In
this paper, we simulated the bubbles in the range of 1.12 ≤ Eo ≤ 3.67, and the domain
width 6d × 6d corresponds to 19 × 19 mm2 for Eo = 1.12 and 34 × 34 mm2 for Eo = 3.67,
which is smaller than the experimental setup of 60 × 60 mm2 [7] but which has a similar
order of dimension. The walls surrounding the computational domain were assumed to
be non-slip for the velocity field (u = 0, ∂p/∂nw = 0, where nw is the wall normal vector),
and they were also assumed to be electrically insulating (j·nw = 0). A spherical bubble was
initially placed with its center at the coordinate (0, 0, 2d) above the center of the bottom
face in the stagnant liquid GaInSn. The computational grid consisted of uniform cubes,
and a fixed grid was used, i.e., neither a moving grid nor a grid refinement technique was
employed.

Figure 6. Computational domain size, the direction of the applied magnetic field and the orientation
of the coordinate system for the rising bubble simulation. The domain is surrounded by no-slip walls.

3.2.1. Grid Dependency Study

First, a grid dependency study was performed for the selected flow cases, as listed
in Table 3. Case G-B0 refers to a zero magnetic field, whereas G-B2 is the case for which
B0 = 1.97 T, which is the maximum intensity of the magnetic field featured in the experiment
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of Wang, et al. [7]. The bubble diameter, based on the bubble volume, was 5.6 mm for
both cases. The Morton number, Mo, and the Hartmann number, Ha, used in the table are
defined as follows:

Mo =
gµ4

l
(
ρl − ρg

)
ρl

2γ3 , Ha = dB
√

σl
µl

, (12)

Table 3. Simulation cases for the grid dependency study.

Case B0 (T) d (mm) Eo Mo Ha LZ

G-B0 0 5.6 3.67 2.38 × 10−13 0 48d
G-B2 1.97 5.6 3.67 2.38 × 10−13 425 24d

An extended computational domain with LZ = 48d was needed for the simulation
case G-B0 in order to assure pseudo-steady-state conditions at the end of the transient.
Moreover, LZ = 24d proved to be high enough for G-B2, since steady-state conditions were
observed to be achieved over a short distance due to the slower rising bubble, the details of
which are presented later. Five different grid spacings were adopted for this study, as listed
in Table 4. In each case, the computational grid consisted of uniform cubes of side ∆x.

Table 4. Grid parameters for the grid dependency study of the rising bubble simulation.

Grid Index d/∆x

1.00 21.3
1.33 16.0
1.60 13.3
2.00 10.7
2.67 8.0

The computed bubble rise velocity as a function of time for the case GB-0 is shown in
Figure 7a. The rise velocity at time step n was calculated according to
(Ztn+1 − Ztn−1)/

(
tn+1 − tn−1), where Zt is the z-coordinate of the bubble centroid at time t,

defined as:

Zt =

ncells
∑

i=1
αiVizi

ncells
∑

i=1
αiVi

, (13)

Figure 7. Grid dependency study for Case G-B0: evolution of the rise velocity (a), and the grid
dependency of the terminal velocity (b).
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Here, Vi and zi are the volume and z-coordinate of the computational cell center
indexed i, respectively, and ncells is the total number of cells. The rise velocities did not
attain steady-state conditions for all the grids adopted, since the bubble shape evolved with
time, and the trajectories were not strictly vertical, as shown in Figure 8. The time-averaged
rise velocity was calculated as follows:

uT =
Zt2 − Zt1

t2 − t1
, (14)

where Zt1 and Zt2 are the z-coordinates of the bubble centroid at times t1 and t2, respectively.
For the case of GB-0, t1 and t2 were set to 0.6 s and 0.8 s, respectively, and the grid
dependency of the time-averaged velocity is displayed in Figure 7b. The terminal velocity
for the coarsest grid was considered to be out of the asymptotic region, and the second-
order fitted curve was drawn neglecting this “rogue” result. Note that all the data points
are not exactly on the fitted curve because the simulations presented here were unsteady,
which made the estimation of the discretization error more challenging than those of the
steady flow simulations due to time discretization errors, as mentioned in the review paper
of Eça, et al. [41]. The asymptotic behavior indicates that the order of accuracy in space is
indeed close to being second-order, on the basis of the fitted curve.

Figure 8. Evolution of bubble shape (drawn horizontally for convenience) for G-B0 with
Grid index = 1.00. The bubble shapes are drawn at time intervals of 0.05 s.

The time–history of the rise velocity for case G-B2 is shown in Figure 9a. As can be
noted, the rise velocities attained steady-state values after t = 0.8 s, except for the case of the
coarsest grid, which, again, was considered to be out of the asymptotic region, which was
the same for simulation G-B0 with this same Grid index. The terminal rise velocity, which is
calculated here from Equation (14) for t1 = 0.8 s and t2 = 1.0 s, is drawn in Figure 9b. In this
figure, near-second-order behavior is indicated from the fitted curve, with the value from
the coarsest grid case again being neglected due to it being out of the asymptotic region.
The bubble shapes for different grids are compared in Figure 10. In general, the shapes
resemble each other, especially for the finest grids, with Grid index = 1.00 and 1.33. Based
on these results, a grid spacing of ∆x = d/16 (Grid index = 1.33) was adopted for all the
simulations described hereafter in order to obtain trustworthy results and to economize
CPU time.
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Figure 9. Grid dependency study for Case G-B2: (a) time evolution of bubble rise velocity, (b) terminal
rise velocity as a function of Grid index. The terminal rise velocity converges at 2nd-order accuracy.

Figure 10. Grid dependence of the bubble shape in the three coordinate planes at t = 1 s for case G-B2.

3.2.2. Comparison with the Measurements

In order to validate the installed MHD model in PSI-BOIL, 20 simulation cases were
undertaken. These include five cases involving different initial bubble diameters and six
cases of different magnetic field intensities, as listed in Table 5. Note that the computational
domain height LZ (see Figure 6) depends on the specific simulation case. The grid spacing
was set at ∆x = d/16 for all the cases on the basis of the grid dependency study described
above.

Table 5. List of validation cases: Mo = 2.38 × 10−13 for all cases.

d (mm) Eo Magnetic Field B0 and Domain Height LZ: (B0(T), LZ (d))

3.10 1.12 (0, 96), (0.14, 48), (0.28, 48), (0.56, 24), (1.12, 24), (1.97, 24)
3.40 1.35 (0, 96)
4.57 2.44 (0, 48), (0.14, 48), (0.28, 48), (0.56, 24), (1.12, 24), (1.97, 24)
5.15 3.10 (0, 48)
5.60 3.67 (0, 48), (0.14, 48), (0.28, 24), (0.56, 24), (1.12, 24), (1.97, 24)
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The computed terminal rise velocities for the cases with B0 = 0 are compared with the
measurements of Wang, et al. [7] and the Tomiyama correlation [42] in Figure 11. The bubble
diameters were all in the inviscid flow regime according to the Tomiyama correlation, for
which the terminal velocity uT is given by:

uT =

√
2γ

ρld
+

(
ρl − ρg

)
gd

2ρl
. (15)

Figure 11. Comparisons of terminal rise velocity for B0 = 0 between the Tomiyama correlations [42],
the measurements of Wang, et al. [7] and the simulated values obtained in this study.

The correlation was originally proposed by Marrucci, et al. [43] and, in a slightly
different form, in the model of Mendelson [44]. However, these are not theoretically
derived from the Navier–Stokes or Euler equations, and their validity is still open to
question, according to Tomiyama, et al. [42]. Our computed terminal velocities in Figure 11
are higher than those obtained from the Tomiyama correlation in all the cases considered,
but the trend is the same, i.e., a decrease in the terminal velocity with an increase in bubble
diameter. In contrast, the measured velocities of Wang, et al. [7] are consistently lower than
those derived from the Tomiyama correlation in all cases, and even the trend is opposite, i.e.,
the measured data show a slight increase in the terminal velocity with an increase in bubble
diameter, whereas the Tomiyama correlation predicts a slight decrease. The different trends
may indicate that the liquid metal in the experiment might have been contaminated even
though special attention was paid in regard to this issue [7], although such a conclusion
must be regarded as speculative at this stage. In other words, the measured data display a
similar trend to that predicted from the Tomiyama correlation for a fully contaminated fluid
rather than the trend for a pure fluid. Haas, et al. [45] also speculated that the liquid metal
used in the experiment of Wang, et al. [7] was contaminated in their review paper [45] on
the subject. Wang, et al. [7] discussed in their paper that the lower rise velocity measured in
their experiment compared with that of the Tomiyama correlation was caused by the lower
surface tension coefficient under the experimental conditions compared with that measured
under static conditions. However, we consider that Wang et al.’s hypothesis cannot explain
the opposite trend of the velocity, since the lower surface tension coefficient only shifts the
Tomiyama correlation lower but does not change the trend. Thus, we consider that the
liquid metal used in Wang et al.’s experiment was indeed contaminated.

The mechanism for the decrease in rise velocity due to contamination is considered to
be caused by the Marangoni effect, as proposed by Frumkin and Levich [46], i.e., impurities
accumulate at the bubble interface, and they are transported from the bubble front/top to
the rear/bottom along the interface due to the main flow. As a result, the surface tension
coefficient on the front side becomes stronger than that on the rear side because impurities
decrease the surface tension coefficient in general. Since a liquid with a high surface tension
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coefficient pulls the surrounding liquid more strongly than one with a low surface tension,
a force pointing from the rear to the front along the interface of the bubble appears. The
force points in the opposite direction of the main flow, which results in an increase in the
drag of the rising bubble.

Comparisons of measured and simulated terminal velocities for different magnetic
field strengths and initial bubble diameters are given in Figure 12. For d = 3.10 mm
(Figure 12a), large discrepancies can be seen between the measurements and calculations for
cases with lower B0 values, and we have already alluded to the discussion accompanying
Figure 11 for B0 = 0. The influence of the magnetic field on the terminal velocity for
d = 3.10 mm shows a similar tendency, i.e., the velocity increases or does not change with
an increase in B0 in the lower magnetic intensity range (B0 ≤ 0.14 T), but it decreases with
increasing B0 in the upper range (B0 > 0.28 T). The measurement and simulation agree well
in the range of 1.12 T ≤ B0 ≤ 1.97 T. This is also true for the cases in which d = 4.57 mm
and 5.60 mm. Better agreement for higher values of B0 may imply that the rise velocity is
influenced more by the Lorentz force than by any fluid contamination.

Figure 12. Comparison of terminal rise velocities as functions of B0 for d = 3.10 mm (a), 4.57 mm (b)
and 5.60 mm (c).

The result of the simulation trend with a lower magnetic field intensity (B0 ≤ 0.28 T)
in Figure 12 is different from that of the measurement. The nonlinear behavior of the rise
velocity is a consequence of two factors: (i) a decrease in drag due to the Lorentz force
pointing in the opposite direction to the flow field in the Y–Z plane, which prevents vortex
shedding, and (ii) an increase in drag due to the Lorentz force pointing upward in the
X–Z plane, which induces a larger wake. These two factors, which are later explained in
Section 4.4.1 using Figures 21 and 22, almost balance each other for the lower magnetic
intensity, and the discrepancy between the measurement and the simulation is magnified
since these forces are small. Nonetheless, the feature of a flat velocity profile in the region
of lower magnetic field intensity (B0 ≤ 0.28 T) is reproduced by the simulation.

Since the experiment of Wang, et al. [7] was selected for the simulation cases in this
study, the range of Eo was limited to 1 < Eo < 4, and the influence of HMF on a rising
bubble for Eo < 1 or Eo > 4 was not evaluated. According to the measurement of Mori [1], a
bubble with higher Eo (=10) showed a monotonic decrease in rise velocity with an increase
in HMF, which is the same tendency as our simulation result for Eo = 3.67, as depicted
in Figure 12c. Moreover, both the measurement and simulation of a rising bubble with
Eo << 1 are considered to be not straightforward because of its small size, which can be a
future research topic.

4. Results and Discussion

In this section, we analyze the simulation results for Eo = 2.44, which is considered to
be a typical case, and we discuss: (i) the influence of the magnetic field on the flow and
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(ii) the nonlinear behavior of the rise velocity as a function of the magnetic field strength.
The simulation conditions were the same as those for the validation case, as seen in the
third row of Table 5.

4.1. Steady or Unsteady Bubble Rise Velocity and Bubble Shape

The computed rise velocities for Eo = 2.44 are shown in Figure 13a as functions of time.
A constant rise velocity was attained for the cases in which B0 ≥ 0.56 T, and a periodic
condition prevailed for B0 = 0.28 T. In the cases of B0 = 0 and B0 = 0.14 T, the rise velocity
displayed periodic behavior in the (approximate) range of 0.1 s ≤ t ≤ 0.4 s, but it changed
to a higher frequency fluctuation mode at later times. The time-averaged velocity is shown
in Figure 13b, which was calculated from Equation (14) with (t1, t2) = (0.5 s, 0.7 s) for cases
in which B0 ≤ 0.28 T and (0.35 s, 0.45 s) for cases in which B0 ≥ 0.56 T. As argued in
Section 3, the discrepancy between the measurement and the calculation is considered to
be caused by the contamination/oxidation of the liquid metal in the experiment. Figure 13c
shows the bubble Reynolds number as a function of N/Cd. The peak Reynolds number
appeared at N/Cd = 0.2 in the simulation and at N/Cd = 0.7 in the experiment of Wang,
et al. [7]. In the experiments of Strumpf [8], the peak Reynolds number was observed
to be around 1.0, but the tank used in the experiment was narrow, with dimensions of
144 × 12 × 200 mm3 (L, W, H). This might have had an influence on the terminal rise
velocity due to the proximity of the bubble to the side walls and the influence of the
boundary layers at such a low Reynolds number.

Figure 13. Computed rise velocities for different magnetic field strengths for Eo = 2.44: (a) the time
history of the rise velocity, (b) the time-averaged rise velocity as a function of the magnetic field
intensity and (c) the bubble Reynolds number as a function of N/Cd.

The computed bubble shapes are shown in Figure 14. Those for B0 = 0 T, 0.14 T and
0.28 T change with time, and the shape displayed in the figure is a representative snapshot
at t = 0.6 s. The bubble shapes for B0 ≥ 0.56 T are all steady in time; thus, the influence
of the magnetic field on the bubble shape can be evaluated from these snapshots. In the
X–Y plane (top view), the bubble for B0 = 0.28 T is slightly elongated in the y-direction, as
recognized by the comparison with the circle drawn with a dashed red line. The shapes for
B0 = 0.28 T in the X–Z and Y–Z planes display an opposite characteristic; the bottom half is
rounder than the top half in the X–Z plane, but this feature is reversed in the Y–Z plane. As
the magnetic field increases from 0.28 T to 1.97 T, the bubble approaches a more spherical
shape.
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Figure 14. Calculated bubble shapes for different applied magnetic fields for Eo = 2.44. The snapshots
were taken at t = 0.6 s for B0 = 0 T, 0.14 T and 0.28 T, and at t = 0.4 s for B0 = 0.56 T, 1.12 T and 1.97 T.
The bubble shapes for B0 ≥ 0.56 T are all steady in time, and the bubble approaches a more spherical
shape as the magnetic field increases from 0.28 T to 1.97 T.

The evolving unsteady bubble shapes for B0 = 0 T, 0.14 T and 0.28 T are shown in
Figure 15. Those for B0 = 0 are asymmetric, and the trajectory is not strictly vertical. In
contrast, those for B0 = 0.14 T and 0.28 T change but remain laterally symmetric in the X–Z
and Y–Z planes, and the trajectory is vertical. The symmetric shape is considered to be
a result of the applied magnetic field, and further details are discussed in the following
sections.

Figure 15. Instantaneous bubble shapes for (a) B0 = 0 T, (b) B0 = 0.14 T and (c) B0 = 0.28 T at time
intervals of 0.05 s. The trajectory for B0 = 0 is not strictly vertical. The bubble shapes for B0 = 0.14 T
and 0.28 T change but remain laterally symmetric in the X–Z and Y–Z planes.

4.2. Wake Field

Referring again to Figure 13b, the terminal rise velocity is seen to decrease with an
increase in the magnetic field strength for B0 ≥ 0.28 T. Here, we propose an explanation for
this and discuss the mechanisms involved based on our computed results. The distributions
of the fluid velocity relative to that of the rising bubble for Eo = 2.44 are shown in Figure 16.
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The relative velocity is non-dimensional according to urel
∗ = u−uT

|uT| , where u is the velocity
vector with respect to the space-fixed coordinate system, and uT is the terminal rise velocity
vector of the bubble. The blue-colored region below the bubble in Figure 16, i.e., for which
|urel

∗| < 1, represents the wake. The wake is asymmetric and non-periodic for B0 = 0,
but it becomes progressively more symmetric and displays more periodic behavior for
B0 = 0.14 T and B0 = 0.28 T. From this observation, one can conclude that the wake field
is stabilized by the action of the Lorentz force. The velocity field for B0 ≥ 0.56 T in the
y = 0 plane (Figure 16 bottom row), i.e., parallel to the magnetic field lines, indicates that a
considerably broader region below the bubble now constitutes the wake, and this becomes
stronger with an increase in the magnetic field strength. In order to better understand the
structure of the wake, three-dimensional views of the iso-surface |urel

∗| = 0.9 are displayed
in Figure 17. The value |urel

∗| = 0.9 was selected because the iso-surface clearly visualizes
the principal feature of the wake field. A long wake field broken up into small eddies is
observed for B0 = 0. The length of the wake behind the bubble is progressively shortened
with increases in B0, up to 0.28 T, but the iso-surface for B0 = 0.28 T still features turbulence
in the wake. However, the iso-surface turns out to be smooth, i.e., featuring a wake-like
Stokes flow when B0 reaches 0.56 T. The wake for B0 = 0.56 T is not axisymmetric and
is slightly elongated in the x-direction, but this broadens considerably for the cases of
B0 ≥ 1.12 T.

Figure 16. Distribution of the non-dimensional relative velocity |urel
∗| on the x = 0 plane (top row)

and on the y = 0 plane (bottom row). The wake field is stabilized by the action of the Lorentz force
and shows different features between planes x = 0 and y = 0 for higher B0 (≥0.56 T).
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Figure 17. Three-dimensional image of the iso-surface |urel
∗| = 0.9. The wake is apparently broader

in the x-direction for higher B0 (≥1.12 T) (see Video S1).

In order to observe eddies in the wake, the iso-surface of the z-component of the
non-dimensional vorticity ω∗z = ωz

d
uT

= ±0.457 is depicted in Figure 18. The vortices,
which are shed from the bubble, persist a long distance into the wake for the case of B0 = 0,
but they diffuse away with increases in the magnetic field. The vortex shedding is not
observed for higher magnetic field intensities when B0 ≥ 0.56 T.

Figure 18. Iso-surfaces of non-dimensionalized vorticity ω∗z = 0.457 (yellow) and ω∗z = −0.457 (blue).
The vortices, which are shed from the bubble, persist a long distance for the case of B0 = 0, but they
diffuse away with increases in the magnetic field (see Video S2).

It should be recalled that the peak in the terminal rise velocity appears at B0 = 0.14, as
displayed in Figure 13b. Based on the results shown in Figures 16–18, the increase in the
rise velocity from B0 = 0 to 0.14 T is considered to be caused by the shortening of the wake,
i.e., the suppression of eddies in the downstream direction. The results also clarify that the
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decrease in the rise velocity for higher magnetic field intensities when B0 ≥ 0.56 is caused
by the growth of the wake. Rigorously speaking, the wake for B0 = 0.28 T is apparently
shorter than that for B0 = 0.14 T, as shown in Figure 17, but the rise velocity for B0 = 0.28
T is slightly faster than that for B0 = 0.14 T, as seen in Figure 13b. These mechanisms, i.e.,
(i) the suppression of eddies in the wake for lower magnetic field intensities and (ii) the
growth of the wake in a higher magnetic field intensity range, are investigated hereafter.
Nonetheless, what we can learn from the current results is that the strength of the wake
exhibits nonlinear behavior with increases in magnetic field intensity, and the weaker wake
seems to result in a higher rise velocity.

4.3. Trajectory of Rising Bubbles

Since the rise velocities for the cases of B0 ≤ 0.28 T are unstable, as seen in Figure 13a,
one can expect unstable trajectories to be one of the causes. In addition, the magnetic field
applied to the simulations are anisotropic, i.e., only in the x-direction, and it is interesting
to investigate the influence of the magnetic field on the bubble trajectory more closely.
The trajectories of the centroids of the bubbles are displayed in Figure 19 for different
values of B0. Note that the trajectories for cases with B0 ≥ 0.56 T are rectilinear. The x- and
y-coordinates of the centroid were calculated in the same way as for the z-coordinate, which
is defined in Equation (13). The fluctuations in the trajectories are particularly noticeable
in the region of Z/d > 20. The fluctuations observed for B0 = 0 (red lines in Figure 19) are
already seen to have been greatly suppressed for B0 = 0.14 T. Comparing the trajectories
in the X–Z and Y–Z planes, i.e., the blue lines in Figure 19a,b, one can notice that the
trajectory in the Y–Z plane is more rectilinear than that in the X–Z plane. This is because the
Lorentz force suppresses fluctuations in the x-direction more strongly than in the y-direction
because the force vector operates in a perpendicular direction to the magnetic field, which,
in this case, is the y-direction.

Figure 19. Trajectories of the rising bubbles for different magnetic field intensities in the (a) X–Z,
(b) Y–Z and (c) X–Y planes. The trajectories become straighter with increases in B0. Comparing the
blue lines in (a,b), the trajectory in the Y–Z plane is more rectilinear than that in the X–Z plane because
the Lorentz force suppresses fluctuations in the x-direction more strongly than in the y-direction.

The reason why a horizontal magnetic field makes bubble trajectory rectilinear is
investigated in the next section through the visualization of the Lorentz force.

The corresponding result for B0 = 0 can be characterized from its location in the bubble-
regime diagram, which was first proposed by Grace, et al. [47], as shown in Figure 20. The
Reynolds number, based on the computed terminal rise velocity of a bubble of diameter
d = 4.57 mm (Eo = 2.44), for B0 = 0, is Re = 4200. The computed unstable bubble shape seen
in Figure 15a is consistent with the “wobbling” regime in the Grace diagram, as depicted in
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Figure 20. Note that the bubble rise velocities in liquid metal available in the literature [8,45]
lie in the wobbling regime, as indicated by a shaded region in Figure 20.

Figure 20. Bubble characterization for B0 = 0 in the diagram of Grace, et al. [47]. The simulation result
for B0 = 0 corresponds to the wobbling regime.

4.4. Lorentz Force

In this section, we investigate the influence of the Lorentz force on the suppression of
the bubble trajectory and the wake field.

4.4.1. Lorentz Force for Lower Magnetic Field

First, we investigate the result in the case of a lower magnetic field intensity. The
distribution of the Lorentz force vectors for the case of B0 = 0.14 T is shown in Figure 21. In
the x = 0 plane, the Lorentz force vectors around the top half of the bubble are in a direction
normal to the interface, pointing from the liquid phase to the gas phase, and those around
the bottom half, although also normal to the interface, point from the gas phase to the
liquid phase. The Lorentz force distribution in the y = 0 plane shows that the forces at the
side of the bubble point upward, and this result qualitatively agrees with the simulations
of Jin, et al. [17] and Zhang, et al. [18]. The Lorentz force being directed upward, which
is colored green in Figure 21b, is the primary cause of the large wake, elongated in the
x-direction.

The distributions of the flow velocity and the Lorentz force vectors in the x = 0 plane
are compared in Figure 22. An interesting feature is that the Lorentz force vectors point
in the opposite direction to the flow velocity vectors in the liquid, which indicates that
the flow was decelerated by the action of the force, and it explains why the stability of
the bubble trajectory increases and its wake decreases as a result of the presence of the
magnetic field.
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Figure 21. Distribution of Lorentz force vectors for B0 = 0.14 T: (a) in the x = 0 plane, including the
color contour of the absolute magnitude of the force, and (b) in the y = 0 plane, with the color contour
here representing the z-component of the force. Note that the x-component of Lorentz force is zero in
the y = 0 plane.

Figure 22. Comparison of (a) flow velocity vector distribution and (b) Lorentz force distribution for
B0 = 0.14 T in the x = 0 plane. Lorentz force vectors point in the opposite direction to the flow velocity
vectors. The bold arrows represent the main feature of the flow velocity (a) or the force (b).

However, such a mechanism is not reproduced in the y = 0 plane, as shown in Figure 23.
The x-component of the Lorentz force is zero here, since:

FL = j× B =
(

jx, jy, jz
)T × (B0, 0, 0)T =

(
0, B0 jz,−B0 jy

)
, (16)

Figure 23. Comparison of (a) velocity vector distribution and (b) Lorentz force distribution for
B0 = 0.14 T in the y = 0 plane.
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This indicates that the stability of the bubble in the x-direction is not directly influenced
by the Lorentz force. Indeed, the trajectory for B0 = 0.14 T in the Y–Z plane (blue line in
Figure 19b) is more rectilinear than that in the X–Z plane (blue line in Figure 19a), which
indicates that the magnetic field primarily stabilizes the bubble motion in the y-direction
only in the case of the present orientation of the magnetic field in the x-direction.

Next, we clarify how this Lorentz force distribution was generated around the bubble.
As described in Section 2.1, the Lorentz force is defined as: FL = j× B. In the simulations
reported here, the magnetic field is set to the static value of B = (B0, 0, 0), and the Lorentz
force can therefore be simplified to:

FL =
(
0, B0 jz, −B0 jy

)
, (17)

where jy and jz are the y- and z-components of the electrical current density, respectively.
The distribution of the electrical current density vector around the bubble is visualized in
Figure 24a. The larger electric current vectors are directed from the left side of the bubble to
the right side. The electric current density j may be decomposed into that which is due to the
magnetic field, jB, and into that which derives from the electric potential, jφ, according to:

j = jB + jφ, jB = σu× B, jφ = −σ∇φ, (18)

which are visualized in Figure 24a,b. Note that jB is calculated simply from the flow velocity
field

→
u , since B is assumed to be uniform and static, and jφ is obtained in such a way that

the divergence-free condition is strictly satisfied, i.e., ∇·j = 0.

Figure 24. Distributions of the electric current vector and its components in the x = 0 plane for
B0 = 0.14 T: (a) j, (b) jB and (c) jφ together with the electric potential φ as the color contour. The
distribution of jB generally resembles that of j.
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In Figure 24, the distribution of jB generally resembles that of j in total, i.e., the
electric current is directed from the left side of the bubble to the right side. Moreover,
the distribution of jφ exhibits the opposite behavior, especially around the side of the
bubble. Note that jφ is directed toward the lower values of φ from the higher values,
since jφ = −σ∇φ, as seen in Figure 24c. Note that the x-component of jB is zero, since
jB = σu× B and B = (B0, 0, 0).

We now try to clarify the reason why the directions of the flow velocity and the Lorentz
force in the x = 0 plane are almost opposite to each other, as seen in Figure 22. The computed
electric currents exhibit the similarity between j and jB, except at the sides of the bubble.
Based on this similarity, one can approximate the total Lorentz force as follows:

j ≈ jB = σu× B = σB0(0, w, −v), (19)

where v and w are the velocity components in the y- and z-directions, respectively. Substi-
tuting Equation (19) into Equation (17), we obtain

FL ≈ σB2
0(0, −v, −w) = −σB2

0u, (20)

which indicates that the Lorentz force vector in the x = 0 plane is in the opposite direction
to the flow velocity. Consequently, the flow velocity in this plane is decelerated as a conse-
quence of the action of the Lorentz force, and the bubble motion and wake development in
this plane are suppressed, as previously noted in regard to Figure 19.

4.4.2. Lorentz Force for Higher Magnetic Field

Following the investigation of the influence of the strength of the Lorentz force for
lower magnetic field intensities (Section 4.4.1), the force for higher magnetic field intensities
is analyzed in this section. First, we focus on the Lorentz force in the y = 0 plane. The
distribution of the force for different magnetic field strengths is shown in Figure 25a–c,
where the distribution of the z-component of the force FL-Z in the y = 0 plane is depicted.
As mentioned before, the x-component of the Lorentz force is zero in this plane, and the
force in the region painted green acts toward the upper direction. As the applied magnetic
field intensity increases, the intensity of FL-Z increases, and the distribution of the force also
changes. The green region is elongated in the lateral direction in the case of a large magnetic
field intensity (Figure 25c). To evaluate the influence of the intensity quantitatively, the
maximum value of FL-Z in the y = 0 plane is as shown in Figure 25d. As can be seen, the
maximum value changes steeply in the lower magnetic field.

To investigate the interaction between the Lorentz force and the wake behind the
rising bubbles, a three-dimensional view of the z-component of the Lorentz force, together
with the iso-surface |urel

∗| = 0.9, is visualized in Figure 26. The Lorentz force, acting
upward, i.e., the green region, induces the wake, which is broadened in the x-direction.
The distribution of the Lorentz force is symmetric in the x-direction, and the bubble rise is
rectilinear. This result clearly explains that the wake for higher magnetic field intensities is
induced by the Lorentz force acting upward in the y = 0 plane (green region).

Next, we investigate the Lorentz force in the x = 0 plane. It should be recalled that
the Lorentz force points in the opposite direction for the flow velocity in a lower magnetic
field intensity, as seen in Figure 22, which decelerates the flow velocity, shortens the wake
and results in a higher bubble rise velocity as a consequence. Thus, it would be interesting
to know if this mechanism works even in a higher magnetic field. The distribution of
the Lorentz force vector and velocity vector in the x = 0 plane is illustrated in Figure 27.
In the vicinity of the bubble surface, the Lorentz force vectors and velocity vectors point
in the opposite direction, which is a similar situation to that illustrated in Figure 22.
However, in the region beneath the bubble, the velocity vectors point upward (red arrow
in Figure 27b), whereas a large intensity of the Lorentz force vectors cannot be observed in
the corresponding region in Figure 27a. Consequently, the strong wake beneath the bubble
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is not weakened by the Lorentz force, though eddies surrounding the bubble surface may
be eliminated by the Lorentz force, i.e., vortex shedding does not take place.

Figure 25. Distribution of Lorentz force in the y = 0 plane for (a) B0 = 0.14 T, (b) B0 = 0.56 T,
(c) B0 = 1.12 T and (d) the maximum value of the z-component of the Lorentz force in the y = 0 plane.
The Lorentz force vectors are not depicted in (a–c) since the x-component of the vector is zero, as
shown in Figure 23b.

Figure 26. Wake induced by the Lorentz force for B0 = 1.12 T showing the iso-surface of the magnitude
of the relative velocity |urel

∗| = 0.9, drawn only in the half domain for the sake of clarity. An upward-
directed force is identified by the color green. The Lorentz force, acting upward (the green region),
induces the wake, which is broadened in the x-direction.
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Figure 27. Distribution of (a) the Lorentz force vectors and (b) velocity vectors in the x = 0 plane for
B0 = 1.12 T. In the wake, noticeable Lorentz force was not observed, i.e., the Lorentz force does not
decelerate the flow velocity. The bold arrows (blue and red) represent the main feature of the flow
velocity, and the frame drawn with red, dashed line indicates the wake.

In order to understand the Lorentz force distribution in the higher magnetic field
region, the electric current and its components are visualized in Figure 28. In this case, j
shows a similar distribution to jB (j ≈ jB), and the Lorentz force is directed opposite to the
flow velocity, as derived in Equation (20). In general, the electric currents j and jB point
from the left side of the bubble to the right side, but the discrepancy can be found beneath
the bubble. The electric current jB, in the wake region, is directed from the left to the right
side almost homogeneously, but it is cancelled out by jφ. As a consequence, the Lorentz
force in the wake region is very small due to the minuteness of the total electric current j.

Figure 28. Distributions of the electric current vectors and its components in the x = 0 plane for
B0 = 1.12 T: (a) j, (b) jB and (c) jφ together with the electric potential φ as the color contour. The bold
blue arrows represent the main feature of the electric current in the wake field indicated by the red
frame. The distribution of jB does not resemble that of j, especially in the wake region, which is
different from the condition in lower magnetic field intensity, as shown in Figure 24.
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5. Conclusions

In this paper, we simulated a single bubble rising in a stagnant liquid metal under the
influence of a horizontal magnetic field for the purposes of understanding the mechanism
of the nonlinear behavior of the rise velocity as a function of the intensity of the applied
magnetic field.

First, we developed an MHD code by implementing the electric potential method
and the computation of the Lorentz force into PSI-BOIL, a CFD code originally developed
to simulate two-phase flows with phase changes. To support the model’s development,
verification and validation exercises were performed. The first refers to the flow of mercury
in a square duct driven by an applied pressure drop and in the presence of a static lateral
magnetic field for the purpose of verifying the modeling of the MHD equations in single-
phase flow. The computed flow rate, for this configuration, shows very good agreement
with the analytical solution of Shercliff and with the measurements of Hartmann and
Lazarus.

The validation case involves a single bubble rising in a liquid metal subject to an
applied horizontal magnetic field. The range of the investigated Eötvös numbers was
1.12 ≤ Eo ≤ 3.67, with the Hartmann number in the range of 0 ≤ Ha ≤ 425. The computed
terminal rise velocity under zero magnetic field conditions was seen to be slightly higher
than that derived from the well-known Tomiyama correlation. Grid dependency studies
were undertaken, and they demonstrated near-second-order accuracy in space for the
bubble rise velocity.

Based on our simulation results, we further investigated and proposed an explanation
of the observed nonlinear behavior of the terminal rise velocity of a bubble as a function of
the intensity of the applied magnetic field, specifically the mechanism for (i) the observed
increase in the terminal velocity of the bubble with increases in the magnetic field strength
in the lower magnetic intensity region (B0 ≤ 0.28 T) and (ii) the decrease in the terminal
velocity in the higher intensity region (B0 ≥ 0.28 T). In the subsequent analysis of the
computed results, the electric current j was decomposed into two components: one due
to the electric potential, jφ = −σ∇φ and the other resulting from the magnetic field
jB = σu× B. The distinction proved to be significant in understanding the behavior of the
rising bubble.

The nonlinear behavior of the rise velocity as a function of the intensity of the applied
magnetic field is the result of two factors: (a) decreases in drag due to the suppression of
vortex shedding, and (b) increases in drag due to the wake induced by the Lorentz force.
The suppression of vortex shedding (a) is caused by the Lorentz force, directed almost
in an opposite direction to the flow velocity primarily in the plane perpendicular to the
magnetic field since the force decelerates the flow velocity. The opposite directions of the
Lorentz force and the flow velocity are attributed to the similarity of the distribution of j to
that of jB, i.e., FL ≈ −σB2

0u, in the x = 0 plane. Vortex shedding disappears for magnetic
field strengths with a range of 0.28 T < B0. This mechanism FL ≈ −σB2

0u is not observed
in the wake field for higher magnetic field intensities because the distribution of j differs
from jB, and thus the wake is not suppressed by the Lorentz force. The increase in drag
due to the wake (b) is induced by the Lorentz force being directed upward on the sides of
the bubble, acting in the plane parallel to the magnetic field. This Lorentz force becomes
larger with increases in the magnetic field intensity and forms a large wake behind it, which
is broadened in the direction of the magnetic field. This results in a decrease in the rise
velocity. We anticipate that the same tendency, i.e., the increases/decreases in terminal
velocity and the straightened trajectory of the bubble, can be accurately measured in an
experiment using X-ray or neutron tomography by our colleagues at the Paul Scherrer
Institute in the near future, and in this paper, we laid the foundations of an associated
numerical simulation.
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Nomenclature

Abbreviations
CFD computational fluid dynamics
HMF horizontal magnetic field
MHD magneto-hydro-dynamics
UDV ultrasound Doppler velocimetry
VMF vertical magnetic field
VOF volume of fluid
Physical quantities
a half channel width (m)
B,B magnetic flux density and flux density vector (T)
B0 applied static magnetic flux density (T)
d bubble diameter based on bubble volume (m)
F body force (N/m3)
g gravitational acceleration vector (m/s2)
j electrical current density vector (A/m2)
k applied pressure drop for channel flow (N/m3)
LZ computational domain height (m)
t time (s)
u flow velocity vector (m/s)
uT terminal rise velocity (m/s)
u, v, w velocity components in the x-, y- and z-directions, respectively (m/s)
V volume of computational cell (m3)
α volume fraction of liquid (–)
γ coefficient of surface tension (N/m)
η magnetic diffusivity (m2/s)
µ dynamic viscosity coefficient (Pa.s)
ρ density (kg/m3)
σ electrical conductivity (1/Ωm)
φ electric potential (V)
ω vorticity (1/s)
Subscripts
g gas
L Lorentz force
l liquid
rel relative
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Superscript
n time step
Dimensionless numbers

Cd drag coefficient, Cd =
(ρl−ρg)gV

1
2 ρl u2

T
π
4 d2 =

4d(ρl−ρg)g
3ρl u2

T

Eo Eötvös number, Eo =
(ρl−ρg)gd2

γ

Ha Hartmann number for a rising bubble, Ha = dB
√

σl
µl

Hachannel Hartmann number for channel flow, Hachannel = aB
√

σl
µl

Mo Morton number, Mo =
gµ4

l (ρl−ρg)
ρl

2γ3

N Stuart number, N = B2dσl
ρl uT

Re bubble Reynolds number, Re = ρl uT d
µl

Rm magnetic Reynolds number, Rm = uT d
ηl
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