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Abstract
In this work we extend some ideas about greedy algorithms, which are well-estab-
lished tools for, e.g., kernel bases, and exponential-polynomial splines whose main 
drawback consists in possible overfitting and consequent oscillations of the approx-
imant. To partially overcome this issue, we develop some results on theoretically 
optimal interpolation points. Moreover, we introduce two algorithms which perform 
an adaptive selection of the spline interpolation points based on the minimization 
either of the sample residuals (f-greedy), or of an upper bound for the approximation 
error based on the spline Lebesgue function ( �-greedy). Both methods allow us to 
obtain an adaptive selection of the sampling points, i.e., the spline nodes. While the 
f-greedy selection is tailored to one specific target function, the �-greedy algorithm 
enables us to define target-data-independent interpolation nodes.

Keywords  Greedy methods · Lebesgue function · Exponential-polynomial splines · 
Node selection
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1  Introduction

Scattered data interpolation is one of the most investigated topics in the field of 
numerical analysis, and it is successfully used in many applications. As a conse-
quence, many methods have been developed, including interpolation with polynomi-
als of total degree (see, e.g., [1]), exponential splines [2], and kernel-based methods 
(refer, e.g., to [3, 4]), with their recent developments in the context of image pro-
cessing (e.g., [5]) and machine learning [6, 7].

More recently, the so-called Exponential-Polynomial Splines (EPS) have been 
introduced with the main purpose of studying approximations in spaces which gen-
eralize classical polynomial splines. The latter find many applications, ranging from 
geometric modelling to image analysis, passing through isogeometric analysis and 
system theory (see, for example, [8–10]). In other words they are able to deal with 
more complex tasks, in that they reproduce functions which are linear combinations 
of exponentials, and this is quite a common setting in the applications. For instance, 
several papers deal with the approximation of univariate multi-exponentially decay-
ing functions with a smoothing effect [11–13]. Such a smoothing strategy is imple-
mented by considering a regularization parameter.

To understand the EPS-based process, we study pointwise interpolation error 
bounds. We are able to obtain these bounds thanks to the definition of the cardinal 
form of the EPS interpolant that then allows us to introduce the Lebesgue function 
and constant [14, 15]. The latter are known to be stability indicators for polynomial 
bases; see, e.g., [1, 16–20]. In this paper we are interested in the design of appropri-
ate sampling strategies for EPS interpolation. Namely, assuming to be given either 
only an input space discretization, or a dataset of input points and corresponding 
function evaluations, we aim at selecting a small subset of approximation points to 
be used to construct the EPS interpolant. We first address the problem from a the-
oretical point of view, and show that the Lebesgue constant associated to equally 
spaced sampling points is uniformly bounded by a (small) constant. This fact indi-
cates that these points are quasi-optimal, given the well known relation between 
interpolation and best approximation. However, since these uniform sampling loca-
tions may not be available in practical applications, we further consider incremen-
tal methods that, given an initial set of samples, construct an EPS interpolant by 
iteratively selecting a new point at each iteration. The iterative rule is dictated by 
greedy methods (see [21]), which have been investigated, e.g., for kernel interpola-
tion (refer, e.g., to [22–27]) and lead to sparse models which turn out to be helpful in 
many applications, see, e.g., [28]. This iterative selection is a convenient proxy for 
the optimal selection of the sampling points from a fixed set, which is in turn usually 
an extremely computationally demanding procedure.

We first consider the greedy method associated to the iterative minimization of the 
Lebesgue constant. Based on this error indicator, we define an algorithm for select-
ing data-independent points for EPS. Then, we propose a second extraction strategy 
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that takes into account also the function values. This kind of approach is usually more 
expensive, but it allows to select points that are tailored to one specific target function, 
and thus are usually able to better resolve local features such as steep gradients or oscil-
lations. In both cases, we numerically explore the behavior of the node distribution for 
the spline basis, and we test our findings under different perspectives.

The paper is organized as follows. In Section 2 we briefly review the basics of greedy 
methods and EPS interpolation, and in Section 3 we recall the definition of the associ-
ated Lebesgue constant. In particular, we use it to show that equally spaced points are 
quasi-optimal since the corresponding Lebesgue constant is uniformly bounded inde-
pendently of the number of interpolation points. Motivated by the fact that this kind of 
points may not be available in practical applications, we introduce two greedy selection 
strategies in Section 4. The numerical experiments are presented and discussed in Sec-
tion 5, while Section 6 deals with an application to real data from a Nuclear Magnetic 
Resonance (NMR) experiment. Conclusions with an outline of future works are pro-
vided in Section 7.

2 � Exponential‑polynomial splines and greedy schemes

In this section we present the main features of EPS and provide some generalities on 
greedy methods.

2.1 � Exponential‑polynomial splines

The EPS are a particular spline model that has been introduced in [12], and which are a 
particular instantiation of a general technique described in [29]. This exponential natu-
ral smoothing L-spline is the solution of the minimization of a cost functional defined 
in [12], which comprises a weighted least square loss and a penalization term depend-
ing on a suitable differential operator. It can be proven that a unique solution of this 
optimization problem exists, and numerical evidence suggests that this model is well-
suited for the approximation of a certain class of functions, as outlined in the Introduc-
tion (Section 1).

In this paper we focus on the non-regularized and unweighted version of this model, 
which can be formulated explicitly via a simple interpolation problem. We refer to [12, 
29] for a definition of the most general version of the spline model, and we directly use 
this simpler approach in the following.

Namely, we consider a real valued continuous function 
f ∈ C([a, b]) ∶= C([a, b],ℝ) , [a, b] ⊂ ℝ , and an associated set of function values 
F ∶= {yi ∶= f (xi)}

n
i=1

 sampled on an input data set X ∶= {xi}
n
i=1

 , that constitutes a 
partition of [a, b], i.e., a = x1 < x2 < ⋯ < xn = b . For a given parameter � ∈ ℝ , we 
define the interpolant of f as

(1)IX,�(f )(x) =

n∑
i=1

ci�i(x),
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where {�j}
n
j=1

 is a basis of exponential B-splines, also referred to as Generalized 
B-splines (GB-splines), and the coefficients c ∶= [c1,… , cn]

⊺ ∈ ℝ
n are obtained by 

imposing the interpolation conditions IX,�(f )(xi) = f (xi) , 1 ≤ i ≤ n and C2 regularity 
at knots. These coefficients exist and are unique because the corresponding interpo-
lation matrix is invertible, as discussed below.

Since the interpolant of any continous function is now well defined, we denote 
here and in the following by IX,� ∶ C([a, b]) → C([a, b]) the linear interpolation 
operator, so that IX,�f ∶ ℝ → ℝ is the function interpolating f ∈ C([a, b]) at X.

The GS-splines are defined so that �j|[xi,xi+1] ∈ �4,� , where |A denotes the restric-
tion on a set A ⊂ ℝ and

and they have the following properties (see Fig. 1): they are bell-shaped with com-
pact support, identified by 5 nodes, with the blending segments belonging to �4,� , 
and have global C2-smoothness. The generic basis function � can then be expressed 
as

where xi , i = 1,… , n − 1 , denotes the left point of the partition element, and 
k = 1,… , 4 , denotes the index of the local basis element. Indeed, each function � 
in the form (2) has 4(n − 1) degrees of freedom, given by the coefficients {bi,k} with 
1 ≤ i ≤ n − 1 , 1 ≤ k ≤ 4 . Then, to define such a basis of dimension n, the nodes vec-
tor has to be augmented with two extra nodes before x1 and two others after xn , i.e., 
an augmented node set as x−1 ≤ x0 ≤ x1 = a < … < xn = b ≤ xn+1 ≤ xn+2 has to be 
considered. Such extra nodes affect the construction of the so-called boundary basis 
functions: �1,�2 and �n−1,�n.

The global space of the exponential-polynomial splines EX,�(�4,�) is then defined 
by gluing local patches defined over each interval such that EX,𝛼(�4,𝛼) ⊂ C2([a, b]) , 
and any element in this space can be expressed using coefficients bi,k as in (2). In 
particular, this implies via (1) that IX,� ∈ C2([a, b]).

�4,� ∶= span{e�x, xe�x, e−�x, xe−�x},

(2)�(x)|[xi,xi+1] =
4∑

k=1

bi,k�k(x), �k ∈ �4,� ,

Fig. 1   An example of a GB-spline with segments in the spaces �4,�  
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Remark 1  We remark that in [12] the authors assume that 𝛼 > 0 (instead of � ∈ ℝ ) 
in order to enforce a certain exponential behavior outside of the interpolation inter-
val. Moreover, in the same paper it is additionally assumed that the boundary pieces 
in (2) are contained in a different space �2,−� ∶= span{e−�x, x e−�x}.

Following [12], we furthermore use a Bernstein-like basis to represent each seg-
ment of the GB-splines {�j}

n
j=1

 (see [12, Appendix] for an explicit construction), 
which are defined as

where Bk , k = 1,… , 4, are Bernstein-like functions, 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n . The 
existence and uniqueness of such a functional space is proved in [12, Theorem 2.1]. 
The advantage of the GB-spline basis is that the computations can be performed 
locally in the support of each �j , where supp (𝜑j) ⊂ [xj−2, xj+2], 1 ≤ j ≤ n . In par-
ticular, the global interpolation matrix Φ with entries given by Φij ∶= �j(xi) is tridi-
agonal, non-singular, and the vector of the coefficients c ∶= [c1,… , cn]

⊺ ∈ ℝ
n in (1) 

is the solution of

where y ∶= [�1,… , �n]
⊺ ∈ ℝ

n . Observe that we have IX,�(f ) = f  for all f ∈ EX,� , 
i.e., every function in EX,� is uniquely determined by its values on X. We summarize 
in Algorithm 1 the steps for computing the EPS interpolant.

2.2 � Greedy schemes

We briefly recall the main ideas behind greedy techniques.
Given X and F, the main goal of a greedy algorithm consists in selecting a suit-

able subset X̃ ⊂ X so that the �reedy interpolant is constructed on a smaller number 
of data, hence producing an approximation of the interpolation operator IX , mean-
ing that IX̃f  is close to IXf  in some suitable norm. Such iterative algorithms belong 
essentially to two classes:

•	 Target-data-dependent greedy schemes: the set X̃ is constructed taking into 
account the function values F.

(3)�j(x)|[xi,xi+1] =
4∑

k=1

�i,j,kBk(x − xj),

(4)Φc = y,

Algorithm 1   Pseudo-code for EPS
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•	 Target-data-independent greedy methods: the set X̃ is built independently of the 
function values F. Observe that in this case it is reasonable to expect that IX̃𝑔 is 
close to IX� also for a larger class of functions � ≠ f .

The general iterative rules for these two algorithms are summarized in Table 1, where 
� denotes a pointwise error indicator independent of the function values. We remark 
that the same notation will be used from the next section also to denote the Lebesgue 
function, but this should create no confusion since it is the actual error indicator that we 
will use in practice. Both methods will be investigated in Section 4 for the special case 
of EPS.

Remark 2  We would like to point out that the notation and terminology used in this 
section is taken from the literature on greedy kernel methods (see, e.g., [27]), where 
a similar distinction has been introduced for the target-data-independent P-greedy 
algorithm, and the target-data-dependent f-, f/P-, and f ⋅ P-greedy algorithms.

We will use the same language in the rest of this paper to describe and classify 
greedy algorithms.

3 � Quasi‑optimal point locations

Interpolatory approximation schemes can be analyzed in terms of their relation to best 
approximation. To this end, we review the construction of a cardinal basis and the asso-
ciated definition of the Lebesgue constant, and use it to prove the quasi-optimality of 
equally spaced points in this case.

3.1 � Lagrange functions and Lebesgue constant

In this section, for simplicity of notation, we sometimes omit the dependency on � 
when no confusion arises.

Given {�j}
n
j=1

 as in (2), since the associated matrix Φ is invertible we may write 
dj� ∶= (Φ−1)j� . In this way we have that the functions

satisfy the cardinal conditions

��(x) ∶=

n∑
j=1

dj��j(x), 1 ≤ � ≤ n,

Table 1   Point selection rules for 
the target-data-dependent and 
independent greedy strategies

Greedy method Selection rule

Target-data-dependent x∗ = argmaxx∈X⧵X̃|f (x) − IX,𝛼(f )(x)|
Target-data-independent  x∗ = argmaxx∈X⧵X̃𝜆(x)
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i.e., they are a global Lagrange (or cardinal) basis. To see this, just observe that for 
1 ≤ i,� ≤ n , it holds true that

Using the cardinal basis, the interpolant (1) may be written as

Some examples of cardinal bases for the EPS are plotted in Fig. 2. In this illustrative 
example, the cardinal functions are computed for n = 8 equispaced, Halton and Che-
byshev data locations, and are evaluated on 400 equispaced points.

Once the cardinal basis is computed, the Lebesgue function is defined in the 
usual way as

and its maximum value is called the Lebesgue constant, defined by

Both � and Λ depend on the location of the interpolation points and on their num-
ber n, but not on the function values and, as it is well known, they are stability 
indicators.

(5)��(xi) = �i� , 1 ≤ i,� ≤ n,

�𝓁(xi) =

n∑
j=1

�j(xi)dj𝓁 =

n∑
j=1

Φij(Φ
−1)j𝓁 =

(
Φ ⋅Φ−1

)
i𝓁
= �i𝓁 , 1 ≤ i,𝓁 ≤ n.

(6)IX,�(f )(x) =

n∑
j=1

f (xj)�j(x), x ∈ [a, b].

�(x) ∶= �X,�(x) =

n∑
j=1

|�j(x)|, x ∈ [a, b],

Λ ∶= ΛX,� = sup
a≤x≤b

�X,�(x).
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Fig. 2   From left to right: cardinal functions computed on n = 8 equispaced, Halton and Chebyshev 
points, respectively
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3.1.1 � Lebesgue function and error estimation

The Lebesgue constant allows to simply relate the best approximation and interpola-
tion error. For completeness we review the details of this fact in the following result, 
which is a simple instance of the classical Lebesgue Lemma (see, e.g., [30, 31]).

Theorem  1  (Approximation error) Let f ∈ C([a, b]) and let f⋆
X,𝛼

∈ EX,𝛼 be its best 
approximation in EX,� with respect to the norm ‖ ⋅ ‖∞ . Then it holds that

Proof  Since IX,�(�) = � for all � ∈ EX,� , and in particular for 𝑔 = f⋆
X,𝛼

 , and using the 
arguments provided by, e.g., [30], we have that

To bound the second term we use (6) and thus:

Then, the thesis follows from (8).

Remark 3 (Related results)  Observe that the error bound in (7) is analogous but not 
equivalent to similar statements in other methods (e.g., polynomial or kernel-based 
interpolation). Indeed, the splitting of the error on the right hand side is only par-
tially separating the f-dependent and the f-independent terms, since the best approxi-
mant f⋆

X,a
 is depending on the interpolation points. In other words, one may try to 

minimize the first term to find �ood , i.e., sub-optimal, interpolation points, but this 
may spoil the second term.

As an illustrative example in Fig. 3, in the same setting as in Fig.  2 we plot 
the Lebesgue functions corresponding to n = 8 equispaced, Halton and Cheby-
shev points, and evaluated on a grid of 400 points. Observe that in this case the 
Chebyshev points seem to not provide the smallest Lebesgue constant, in contrast 
with interpolation with global polynomials. We further explore this fact in the 
following section.

(7)
|||
(
f − IX,𝛼(f )

)
(x)

||| ≤
(
1 + 𝜆X,𝛼(x)

)‖‖‖f − f⋆
X,𝛼

‖‖‖∞, x ∈ [a, b].

(8)

||f (x) − IX,𝛼(f )(x)
|| = |||f (x) − f⋆

X,𝛼
(x) + f⋆

X,𝛼
(x) − IX,𝛼(f )(x)

|||
≤
‖‖‖f − f⋆

X,𝛼

‖‖‖∞ +
||||IX,𝛼

(
f⋆
X,𝛼

− f
)
(x)

||||.

||||IX,𝛼
(
f⋆
X,𝛼

− f
)
(x)

|||| =
||||||

n∑
j=1

(
f⋆
X,𝛼

− f
)
(xj)𝜓j(x)

||||||
≤ max

1≤j≤n

||||
(
f⋆
X,𝛼

− f
)
(xj)

||||
n∑
j=1

|𝜓j(x)|

≤
‖‖‖f

⋆

X,𝛼
− f

‖‖‖∞𝜆(x).
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3.2 � Equally spaced points

In the case of equally spaced points, a more explicit characterization of the expo-
nential-spline basis is known. We use it to derive precise bounds on the Lebesgue 
constant.

To this end we set

and we have from [32] that the generating exponential B-spline B(�) ∶ ℝ → ℝ , 
defined on the integer points ℤ , can be computed as

with

It is easily verified that B(�) is symmetric around the point 2, where it has a global 
maximum, and that B(�) ∈ C2(ℝ) . In particular it holds that B(�)(0) = B(�)(4) = 0 . 
This base spline can be applied to the regular grid hℤ with h > 0 simply by scaling 
the input, i.e., defining B(�,h)(t) ∶= B(�)(t∕h).

One may now consider an interval [a, b] ⊂ ℝ , a number n ∈ ℕ , a grid size 
h ∶= (b − a)∕(n − 1) , and define a set of n equally spaced interpolation points 
xj ∈ [a, b] , 1 ≤ j ≤ n . Without loss of generality (i.e., up to a translation), we 
assume in this section that a = 0 , so that xj = (j − 1) ⋅ h ∈ [a, b] , 1 ≤ j ≤ n . It has 

p
�
(t) ∶= exp(�t) + exp(−�t), m

�
(t) ∶= exp(�t) − exp(−�t),

B(𝛼)(t) =

{
f (k)
𝛼
(t), k − 1 < t ≤ k, 1 ≤ k ≤ 4,

0, t ∉ (0, 4),

f (1)
�

(t) ∶=
1

4�2

(
tp

�
(t) −

1

�
m

�
(t)
)
,

f (2)
�

(t) ∶=
1

4�2

(
−2(t − 1)p

�
(t − 2) − (t − 2)p

�
(t) +

2

�
m

�
(t − 2) +

1

�
m

�
(t)
)
,

f (3)
�

(t) ∶=
1

4�2

(
(t − 2)p

�
(t − 4) + 2(t − 3)p

�
(t − 2) −

1

�
m

�
(t − 4) −

2

�
m

�
(t − 2)

)
,

f (4)
�

(t) ∶=
1

4�2

(
−(t − 4)p

�
(t − 4) +

1

�
m

�
(t − 4)

)
.
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Fig. 3   From left to right: Lebesgue functions computed on n = 8 equispaced, Halton and Chebyshev 
points, respectively
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been proven in [32] that for all � ∈ ℝ a basis for the space EX,�(�4,�) is given by 
the exponential B-splines Bj , 1 ≤ j ≤ n defined by

i.e., each Bj is given by the translation of B(�,h) so that it has a maximum in xj , and by 
a scaling by h2 . It follows that

where we used the fact that B(�,h)(h) = B(�,h)(3h) since B(�,h) is symmetric around 2h.
We assume that the extended points are also equally spaced, i.e., x−1 ∶= a − 2h , 

x0 ∶= a − h , xn+1 ∶= b + h , xn+2 ∶= b + 2h . Using (9), it follows that the interpo-
lation matrix Φh ∶= (Bj(xi))

n
i,j=1

∈ ℝ
n×n with respect to this basis is indeed a tridi-

agonal symmetric Toeplitz matrix, i.e.,

where we set Φ ∶= Toep (b1, b0, b1) , i.e., the h-independent symmetric Toeplitz 
matrix that appears in the last equation.

In the following we will derive some bounds involving various combinations 
of the values b0 and b1 , for which we will need the following lemma.

Lemma 1  For all � ∈ ℝ we have

Moreover

and

with 1 ≤ �(�) ≤ 3 , lim
�→±∞

�(�) = 1 , lim
�→0

�(�) = 3.

(9)Bj(x) ∶=
1

h2
B(�,h)(x − xj + 2h) =

1

h2
B(�,h)(x − (j − 1)h + 2h),

(10)

Bj(xi) =
1

h2
B(�,h)((i − 1)h − (j − 1)h + 2h) =

1

h2
B(�,h)(h(i − j + 2))

=
1

h2

⎧
⎪⎨⎪⎩

b−1 ∶= B(�,h)(h), i − j + 2 = 1

b0 ∶= B(�,h)(2h), i − j + 2 = 2

b1 ∶= B(�,h)(3h), i − j + 2 = 3

0, otherwise

=
1

h2

⎧
⎪⎨⎪⎩

b1, i = j − 1

b0, i = j

b1, i = j + 1

0, otherwise,

Φh =
1

h2

⎡⎢⎢⎢⎣

b0 b1 … 0

b1 b0 … 0

⋮ ⋱ ⋱ b1
0 … b1 b0

⎤⎥⎥⎥⎦
=∶

1

h2
Φ,

(11)b0 =
1

�2

(
−1 +

1

2�
sinh(2�)

)
, b1 =

1

2�2

(
cosh(�) −

1

�
sinh(�)

)
.

(12)b0 − 2b1 =
2

�3
cosh

(
�

2

)2

(sinh(�) − �) ≥
1

3

(
1 +

1

20
�
2
)
,

(13)�(�) ∶=
b0 + 2b1

b0 − 2b1
= tanh

(
�

2

)2 sinh(�) + �

sinh(�) − �
,
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Proof  See Appendix A.

We can thus use the known expression for the eigenvalues of an n × n tridiago-
nal Toeplitz matrix (see [33]), obtaining

and thus

We have in particular that �1(Φh) ≥ �2(Φh) ≥ … ≥ �n(Φh) , since cos (�x) is 
decreasing for x ∶= k∕(n + 1) ∈ (0, 1).

Moreover the bound (12) together with (14) implies that

and in particular this implies that Φh is positive definite for all � ∈ ℝ , since is sym-
metric by definition. It is thus also a normal matrix, and in particular the singular 
values �k(Φh) of Φh coincide with its eigenvalues.

We combine these facts with the bounds of Lemma 1 to obtain the following 
estimates regarding the matrix Φh and its inverse.

Proposition 1  For all � ∈ ℝ , if the interpolation points are equally spaced it holds

In particular for all h > 0 we have that lim
�→±∞ cond 2(Φh) = 1 and 

cond 2(Φh) = 3 −
2

5
�
2 +O(�4) for � → 0.

Proof  Even if it would be sufficient to use that fact that ‖‖‖Φ−1
h

‖‖‖2 ≤
‖‖‖Φ−1

h

‖‖‖∞ , we sim-
ply use (15) to obtain

For the condition number instead it holds that

�k(Φ) = b0 + 2b1 cos
(
�

k

n + 1

)
, 1 ≤ k ≤ n,

(14)�k(Φh) =
1

h2

(
b0 + 2b1 cos

(
�

k

n + 1

))
, 1 ≤ k ≤ n.

(15)𝜆k(Φh) ≥ 𝜆N(Φh) ≥
1

h2
(b0 − 2b1) ≥

1

3h2

(
1 +

𝛼
2

20

)
> 0,

‖‖‖Φ
−1
h

‖‖‖2 ≤
h2

b0 − 2b1
≤

3h2

1 + �2∕20
,

‖‖‖Φ
−1
h

‖‖‖∞ ≤
h2

b0 − 2b1
≤

3h2

1 + �2∕20
,

cond 2(Φh) ≤
b0 + 2b1

b0 − 2b1
≤ tanh

(
�

2

)2 sinh(�) + �

sinh(�) − �
≤ 3.

‖‖‖Φ
−1
h

‖‖‖2 = �1(Φ
−1
h
) =

1

�n(Φh)
≤

h2

b0 − 2b1
≤

3h2

1 + �2∕20
.
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and we may use Lemma 1 to bound the last term.
For the ∞-norm we have

where we used the fact that Φ is invertible and thus we can change variable from 
v ≠ 0 to w ∶= Φ−1v ≠ 0 . Moreover, up to rescaling the numerator and denominator 
by the same term we may assume ‖w‖∞ = 1 , i.e.,

Now, setting w ∶= [w1,… ,wn]
T ∈ ℝ

n , by definition of Φ we have

and thus

Since in the last term the objective function and the constraints are all linear, the 
minimum is necessarily reached when the constraints are met with equality, i.e., 
wi ∈ {−1, 1} . Moreover, all the terms in the minimum are minimized by the same 
value independently of i. We thus have

Checking all the possible values by enumeration, and remembering that 
b0 − 2b1 > 0 , we have that the argument of the first minimum can take the values 
b0 − b1 or b0 + b1 , while the second the values b0, b0 + 2b1, b0 − 2b1 . This last value 
is the smallest one, and thus

which gives the desired bound.

cond 2(Φ) =
�1(Φ)

�n(Φ)
=

�1(Φ)

�n(Φ)
=

b0 + 2b1 cos (�∕(n + 1))

b0 + 2b1 cos (�n∕(n + 1))
≤

b0 + 2b1

b0 − 2b1
,

���Φ
−1���∞ = max

0≠v∈ℝn

��Φ−1v��∞
‖v‖∞ = max

0≠w∈ℝn

‖w‖∞
‖Φw‖∞ =

�
min

0≠w∈ℝn

‖Φw‖∞
‖w‖∞

�−1

,

min
0≠w∈ℝn

‖Φw‖∞
‖w‖∞ = min‖w‖∞≤1

‖Φw‖∞.

Φw =

⎡
⎢⎢⎢⎢⎣

b0w1 + b1w2

b1w1 + b0w2 + b1w3

⋮

b1wn−2 + b0wn−1 + b1wn

b1wn−1 + b0wn

⎤
⎥⎥⎥⎥⎦
,

min‖w‖∞≤1
‖Φw‖∞ = min

−1≤wi≤1

�
b0w1 + b1w1, b1wn−1 + b0wn, min

2≤i≤n−1

��b1(wi−1 + wi+1) + b0wi
��
�
.

min‖w‖∞≤1
‖Φw‖∞ = min

�
min

w1,w2∈{−1,1}
�b0w1 + b1w2�, min

w1,w2,w3∈{−1,1}

��b1(w1 + w3) + b0w2
��
�
.

‖‖‖Φ
−1‖‖‖∞ ≤

1

b0 − 2b1
,
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Observe that the bound on the condition number guarantees that computing 
the interpolant with equally spaced points is a stable numerical operation, and 
this stability does not deteriorate as the number of points increases. Moreover, 
we may use the bound on the ∞-norm of the interpolation matrix to derive the 
following.

Theorem 2  The Lebes�ue  constant for equally spaced points satisfies the bound

with lim
�→±∞

ΛX,� = 1 and lim
�→0

ΛX,� = 3.

Proof  For any x ∈ [a, b] we define the set of indices 
I(x) ∶= {i ∈ {1,… , n} ∶ Bi(x) ≠ 0} . The definition of the Lebesgue function thus 
gives

To bound the last term, we assume that x ∈ [xk, xk+1] for some k ∈ {1,… , n − 1} , so 
that I(x) = {k − 1, k, k + 1, k + 2} ∩ {1,… , n} (see Fig. 4).

We set hx ∶= x − xk ∈ [0, h] , so that x − xk−1 = h + hx , x − xk+1 = −h + hx , 
x − xk+2 = −2h + hx , and thus using (8) we have

and hence

ΛX,� ≤
b0 + 2b1

b0 − 2b1
≤ tanh

(
�

2

)2 sinh(�) + �

sinh(�) − �
∈ [1, 3],

�X,�(x) = sup
0≠f∈C([a,b])

��IXf (x)��
���f�X

���∞
= max

0≠v∈ℝn

���
∑N

i=1
(Φ−1

h
v)iBi(x)

���
‖v‖∞

= max
0≠v∈ℝn

���
∑

i∈I(x)(Φ
−1
h
v)iBi(x)

���
‖v‖∞

≤ max
0≠v∈ℝn

���Φ−1
h
v
���∞

‖v‖∞
�
i∈I(x)

��Bi(x)
�� = ���Φ

−1
h

���∞
�
i∈I(x)

��Bi(x)
��.

h2Bk−1(x) = B(�,h)(x − xk−1 + 2h) = B(�,h)(hx + 3h) = B(�)(hx∕h + 3)

= f (4)
�

(3 + hx∕h),

h2Bk(x) = B(�,h)(x − xk + 2h) = B(�,h)(hx + 2h) = B(�)(hx∕h + 2)

= f (3)
�

(2 + hx∕h),

h2Bk+1(x) = B(�,h)(x − xk+1 + 2h) = B(�,h)(hx + h) = B(�)(hx∕h + 1)

= f (2)
�

(1 + hx∕h),

h2Bk+2(x) = B(�,h)(x − xk+2 + 2h) = B(�,h)(hx) = B(�)(hx∕h)

= f (1)
�

(hx∕h),
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where the inequality is an equality when I(x) contain the four elements 
{k − 1,… , k + 2} , and a strict inequality when some of these indices are outside the 
set {1,… ,N} . Direct computation gives furthermore

The function F
�
∶ [0, 1] → ℝ is continuously differentiable, with

and thus F′
�
 vanishes in t = 1∕2 , with F�

𝛼
(t) < 0 for t ∈ [0, 1∕2] and F�

𝛼
(t) > 0 for 

t ∈ [1∕2, 1] . Moreover

∑
i∈I(x)

||Bi(x)
|| ≤ 1

h2

4∑
i=1

f (i)
�
((i − 1) + hx∕h),

F
�
(t) ∶=

4∑
i=1

f (i)
�
((i − 1) + t)

=
2

�3
sinh

(
�

2

)2

((1 − t)� cosh(t�) + t� cosh(� − t�) + sinh(t�) + sinh(�(1 − t))).

F�
�
(t) =

2

�
sinh

(
�

2

)2

((1 − t) sinh(t�) + t sinh(�(1 − t)),

Fig. 4   Example of positions of the basis elements Bj . The figure shows as black dots a set of n = 15 
equally spaced points in [0, 4], and in blue an arbitrary point x ∈ [0, 4] . For this setting and � = 2 , the 
four panels show the basis elements Bj which are non-zero in x 
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and it follows that F
�
(t) ≤ F

�
(0) = F

�
(1) for all t ∈ [0, 1] , and thus

Using now the bound on the ∞-norm of Φ−1
h

 , it follows that

and the result follows by applying Lemma 1.

This theorem, in conjunction with Theorem  1, proves that interpolation on 
equally spaced points is quasi-optimal. Indeed, for all f ∈ C([a, b]) we have in 
this case

which indeed proves that interpolation with equally spaced points provides the same 
asymptotic error of best approximation, even if with a different constant, which is 
however rather small. In addition, this constant converges for � → ±∞ to the opti-
mal value that can be attained with the estimate of Theorem 1, i.e., 1 + ΛX,� = 2 , as 
proven again by Theorem 2.

It should be furthermore noted that the estimate of Theorem 2 seems to be not 
sharp for small � , since numerical evidence suggests that ΛX,� ≈ 1.6 as � → 0 . To 
give a glance at this fact, we show in Fig. 5 the behavior of the computed Leb-
esgue constant and of the upper bound of Theorem 2 for n = 100 equally spaced 

F
�
(0) = F

�
(1) =

2

�3
sinh

(
�

2

)2

(sinh(�) + �) = b0 + 2b1

∑
i∈I(x)

||Bi(x)
|| ≤ 1

h2
F
�
(hx∕h) ≤

1

h2
F
�
(0) =

1

h2
(b0 + 2b1).

�X,�(x) ≤
‖‖‖Φ

−1
h

‖‖‖∞
∑
i∈I(x)

||Bi(x)
|| ≤ h2

b0 − 2b1

b0 + 2b1

h2
,

|||
(
f − IX,𝛼(f )

)
(x)

||| ≤ 4
‖‖‖f − f⋆

X,𝛼

‖‖‖∞, x ∈ [a, b],

Fig. 5   Example of the behavior 
of the Lebesgue constant as a 
function of � . The figure shows 
for n = 100 and � ∈ [0, 10] the 
value of the Lebesgue constant 
(blue solid line) and the bound 
of Theorem 2 (orange dashed 
line)
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points in [0, 2], and � ∈ [0, 10] . Observe that, due to the symmetry of the basis 
functions, the same values are observed for negative �.

Despite these desirable quasi-optimality properties, equally spaced interpolation 
points may not be available in practice, either because of some obstructions to the 
sampling of certain values, or because the data points are provided as a given, pre-
recorded dataset. In these cases, it is thus of interest to have methods that are able to 
select a small susbset of the data so that the resulting interpolant is fast and stable, 
while providing a sufficient accuracy. To address this aspect, we investigate in the 
next section greedy point selection strategies.

4 � Greedy schemes for EPS

In this section we first recall a simple target-data-dependent greedy scheme, that is 
known as f-greedy in literature (see [34]), and that can be easily used with any inter-
polation basis. On the other hand, target-data-independent greedy schemes need to 
be tailored for the considered basis, and we will discuss their implementation for 
EPS.

4.1 � Target‑data‑dependent greedy selection

As already mentioned, f-greedy schemes are quite straightforward to extend to any 
kind of basis. Precisely, we consider an initial (training) set of sorted points X̃ ⊂ X , 
with a, b ∈ X̃ and we also keep the augmented nodes fixed. Then, given F and a 
fixed tolerance � , the target-data-dependent greedy scheme for exponential-polyno-
mial splines is summarized in Algorithm 2.

The result of the f-greedy scheme is thus a set of data locations X̃ and the corre-
sponding interpolant IX̃,𝛼(f ) . Let ñ be the cardinality of X̃ . Since we usually have that 
ñ ≪ n , the greedy interpolant IX̃,𝛼(f ) can be understood as a sparse approximation of 
IX,�(f ).

This scheme is very easy to implement, and additionally the interpolation points 
are selected adaptively in order to be suited for the particular target function f, and 
they are thus expected to provide an accurate approximation.

Algorithm 2   Pseudo-code for the f-greedy algorithm
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Moreover, the algorithm can be used to approximate vector-valued functions 
(i.e., with values in ℝp for some p ∈ ℕ , see [25]), or equivalently to simultaneously 
approximate p ∈ ℕ different scalar-valued functions. In this case, the cost of the 
search for the next point to be selected scales linearly with p.

Despite the effectiveness of this method, there are cases where a set of target data 
values may be missing, or may be expensive to collect, such as in Uncertainty Quan-
tification (see, e.g., [35]). In this case, it is of interest to develop target-data-inde-
pendent greedy schemes, to which we drive our attention in the next section.

4.2 � Target‑data‑independent greedy selection

Given the error bounds of Section 3, we introduce a new greedy selection scheme 
that we call �-greedy. Given X, F and � , a fixed tolerance, the �-greedy algorithm for 
exponential-polynomial splines can be summarized as in Algorithm 3.

Remark 4  (Computational aspects) Observe that the efficient execution of the �
-greedy algorithm depends on the efficient computation of � and of IX̃,𝛼(f ) . Both of 
them can be computed rather efficiently by means of the local basis. Indeed, in this 
case for all x ∈ X one needs to locate the index i such that x ∈ [xi, xi+1] , and then 
only perform local computations inside this interval.

Remark 5  In the �-greedy selection, we fix a tolerance for the Lebesgue function. 
However, we are able to prove the efficacy, i.e., the convergence of the �-greedy 
scheme, only numerically. As an illustrative example, in Fig.  6, we take n = 300 
equispaced nodes and we apply the �-greedy scheme without any stopping rule, i.e., 
we extract ñ = 300 nodes. This didactic example aims at understanding the behav-
ior of the Lebesgue constant when the number of nodes grows and how it relates 
with the conditioning of the problem. Precisely, from the first and second panel, we 
observe that the Lebesgue constant initially decreases and then it saturates coher-
ently with the condition number of the interpolation matrix. In the last panel we 
further show the sparsity (the percentage of zero elements) of the collocation matrix 
that increases as the number of nodes increases. This empirically explains the 
behavior of the condition number and of Lebesgue functions. In other words, our �
-greedy is effective until both the condition number and the Lebesgue constant do 

Algorithm 3   Pseudo-code for the �-greedy algorithm
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not saturate. Then, as an alternative stopping rule, one may look at the difference 
between the Lebesgue constant or the condition number at two consecutive itera-
tions of the �-greedy scheme. We remark that this behavior is due to the fact that the 
interpolation matrix is sparse and it has a band structure, since each basis function 
�i is supported on up to four subintervals of the partition (see (1) and the subsequent 
discussion).

Remark 6  As already outlined in Remark  2, in kernel interpolation the P-greedy 
algorithm is a well-established greedy interpolation algorithm, and it is target-data-
independent similarly to the new �-greedy method introduced in this section.

The two algorithms are similar since they rely on the greedy minimization of a 
worst-case error indicator, but they are different because of the indicator that they 
minimize. In more details, in kernel-based interpolation one may carry out an error 
analysis for the interpolation of functions f ∈ H , where (H, ⟨⋅, ⋅⟩) is a certain Hil-
bert space associated with the kernel (the native space of the kernel or the repro-
ducing kernel Hilbert space). Formulating the problem in a single real variable, as 
the case considered in the paper, we can prove that there is a continuous function 
PX ∶ [a, b] → ℝ , named power function, such that for all f ∈ H the kernel interpo-
lant IXf  provides an error bounded as follows:

The structure of this equation recalls (7), where the term 1 + �(x) plays the role of 
PX(x) . A similar error bound could possibly be investigated in the case of EPS, pro-
vided we can define a RKHS structure on EX,� . However, in our context the �-greedy 
algorithm and the bound (7) used to derive it, have the advantage to be applicable to 
general continuous functions.

(16)
|||
(
f − IX(f )

)
(x)

||| ≤ PX(x)
‖‖f − IXf

‖‖H , ∀x ∈ [a, b].
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Fig. 6   Illustrative example of the �-greedy extraction of 300 nodes. At each step of the algorithm we 
compute the condition of the collocation matrix (left), the Lebesgue constant (middle) and the sparsity of 
the collocation matrix (right). Plots are in logarithmic scale and the horizontal axes denote the iteration 
number
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5 � Numerical experiments

In the following experiments, we test both the target-data-dependent and inde-
pendent schemes with different node distributions. Precisely, we consider equis-
paced, Halton and Chebyshev points. Moreover, for all data sets, without loss 
of generality, we take as initial set for the greedy strategy the first and last two 
nodes. Tests have been carried out on a Intel(R) Core(TM) i7 CPU 4712MQ 2.13 
GHz processor.

5.1 � Testing the f‑greedy

Throughout this subsection, we consider the following test function

and we further fix � = 2.
As far as the f-greedy method which makes use of exponential-polynomial 

splines is concerned, we fix the tolerance � = 10−3 . In Fig. 7, we plot the results 
obtained by selecting the points from 300 equispaced, Halton and Chebyshev 
points. The number of extracted greedy points are respectively ñ = 36 , 36 and 30 
that, as expected, cluster where the test function f1 has steep gradients. To stress the 
importance of using the f-greedy strategy when approximating functions character-
ized by steep gradients or singularities, we report in Table 2 the maximum absolute 
error obtained by taking ñ (non-greedy) equispaced, Halton and Chebyshev points.

5.2 � Testing the �‑greedy

One interesting feature of the �-greedy scheme is that it is able to construct node 
sets without specifying interpolation values, and could thus be expected to be 
good for any possible target function. If the initial search set is large enough, and 
since the Lebesgue function is optimized iteratively, it is reasonable to expect 
that the final set of points may be close to the optimal distribution that one would 
obtain by a global minimization of the Lebesgue function. This claim should of 
course be proven, but since these globally optimal points are not known in the 
case of the exponential splines considered in this work, it is of interest to study 
the geometrical distribution of these �-greedy points to have at least a first insight.

To this end, we take an initial set of 300 equispaced points and we apply the 
�-greedy scheme with � = 2 . The result is depicted in Fig. 8. It is interesting to 
notice that for the exponential-polynomial splines, the greedy points tend to clus-
ter close to the boundary, showing some similarities with Chebyshev nodes.

As second experiment, in Fig.  9, we plot the results of the �-greedy scheme 
starting with 300 equispaced, Halton and Chebyshev points. In this case, we fix 
the tolerance as � = 3 . The algorithm selects ñ = 18 , 19 and 36 equispaced, Hal-
ton and Chebyshev points, respectively. In all cases they cluster on the boundary. 
We point out that, consistently with what observed in Fig. 6, for small tolerances 

f1(x) = atan(55x), x ∈ [−1, 1],
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� the algorithm may not terminate. To get a feedback on the accuracy, with the 
selected points, we reconstruct the function f2(x) = x2 . The associated absolute 
error is depicted in the second column of Fig.  9. Furthermore, in the last col-
umn of Fig.  9, we report the Lebesgue constant at each iteration of the greedy 
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Fig. 7   Results for the f-greedy algorithm. First column: the extracted greedy points (black dots), the true 
function f1 (blue dotted line) and the reconstructed function taking the greedy points (magenta solid 
line). Second column: the absolute error evaluated on 400 equispaced points. Third column: the maxi-
mum of the residuals at each iteration of the greedy scheme. The experiment is carried out for equis-
paced, Halton and Chebyshev nodes, first, second and third row, respectively

Table 2   The three columns contain respectively the maximum absolute errors for f1 obtained via ñ = 36 , 
36 and 30 greedy and non-greedy equispaced, Halton and Chebyshev points

Greedy 6.68e − 04 1.08e − 03 1.31e − 03

Non-Greedy 1.11e − 01 3.33e − 01 2.13e − 01

Fig. 8   Node distributions obtained via the target-data-independent greedy approach for EPS



1 3

Stable interpolation with exponential‑polynomial splines… Page 21 of 27     69 

scheme. To better analyze its asymptotic behavior, we extended the experi-
ment to � = 2 (i.e., selecting more points) and we obtained terminating values 
ΛX = 1.94 (for search over equally spaced points), ΛX = 1.97 (Halton points), 
ΛX = 1.98 (Chebyshev points). These values are very close to the numerical 
observed value for equally spaced interpolation points, and smaller than the cor-
responding upper bound proven in Section 3. Moreover, in all cases the values are 
bounded as a function of the number of points. This observation suggests that the 
points selected by the �-greedy algorithm, although not being uniform, are still 
quasi-optimal.

Finally, to underline the importance of the �-greedy strategy, we show in 
Table  3 the maximum absolute error obtained by taking ñ (non-greedy) equis-
paced, Halton points and Chebyshev points. We observe that, even if the function 
is smooth, a greedy selection of the points allows us to achieve a good accuracy 
with a relatively low number of data.
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Fig. 9   Results for the �-greedy algorithm. First column: the extracted greedy points (black dots), the 
true function f2 (blue dotted line) and the reconstructed function taking the greedy points (magenta solid 
line). Second column: the absolute error evaluated on 400 equispaced points. Third column: the Leb-
esgue constant at each iteration of the greedy scheme. The experiment is carried out for equispaced, Hal-
ton and Chebyshev nodes, first, second and third row, respectively
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5.3 � f‑greedy VS �‑greedy

In this subsection we focus on comparing the two proposed greedy schemes. In 
doing so, we take a function with singularities and one belonging to the Runge 
family, precisely:

and

In the following, particular attention is devoted to empirically observe how the non-
physical oscillations known as Runge and Gibbs phenomena are mitigated via the 
greedy selection and how the absolute error depends on the parameter � . In Figs. 10 

f3(x) =

{
sin x, if x ≤ 0.6,

x log x if x > 0.6,

f4(x) =
1

1 + 6x2
, x ∈ [−1, 1].

Table 3   The three columns contain respectively the maximum absolute errors for f2 obtained via 
ñ = 18, 19 and 36 greedy and non-greedy equispaced, Halton and Chebyshev points

Greedy 1.03e − 03 1.90e − 03 3.46e − 04

Non-Greedy 1.21e − 01 1.35e − 01 7.70e − 04
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Fig. 10   Results obtained via the f-greedy (first row) and �-greedy (second row) algorithms for f3 . First 
column: the ñ = 26 (first row) and 20 (second row) extracted f and �-greedy points (black dots), the true 
function f3 (blue dotted line) and the reconstructed function taking the greedy points (magenta solid 
line). Second column: the absolute error evaluated on 400 equispaced points. Third column: the maxi-
mum absolute error by varying � for the f and �-greedy strategies
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and 11 (first and second columns), we display the results obtained by taking the 
parameter � = 2 for both the f-greedy ( � = 1e − 02 for f3 and 5e − 04 for f4 ) and 
�-greedy ( � = 3.5 for f3 and 4 for f4 ) approaches. In the last columns of Figs. 10 
and 11 we show how the maximum absolute error varies according to � . Precisely, 
the maximum absolute error associated with 30 equispaced values of � ∈ (0, 2] are 
reported. In all cases, we take an initial set of 300 equispaced data. We observe that 
for f4 both the � and f-greedy schemes return suitable approximants. On the oppo-
site, as expected, only the f-greedy algorithm is able to capture the singularity of 
the function f3 . As far as the selection of � is concerned, we note that the greedy 
algorithms are not so sensitive with respect to its selection (except the case of the 
�-greedy algorithm for f3 , which however provides quite poor approximations). 
Indeed, a greedy algorithm optimally selects the nodes for the given basis (defined 
by � ) and hence it naturally adapts to such parameter. For further details on safe 
ways to select � , we refer the reader to [32].

6 � �‑greedy for nuclear magnetic resonance

The aim of this section is to investigate potential applications of our analysis. The 
dataset used in this experiment comes from a concrete problem where the effects of 
the NMR on the changes in water molecule mobility during the mixing phase of the 
bread making process are studied (for further details see, e.g., [36, 37]). The data 
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Fig. 11   Results obtained via the f-greedy (first row) and �-greedy (second row) algorithms for f4 . First 
column: the ñ = 23 (first row) and 19 (second row) extracted f and �-greedy points (black dots), the true 
function f4 (blue dotted line) and the reconstructed function taking the greedy points (magenta solid 
line). Second column: the absolute error evaluated on 400 equispaced points. Third column: the maxi-
mum absolute error by varying � for the f and �-greedy strategies
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rapidly decay and the signal consists of n = 200 values of three different acquisi-
tions of transverse relaxation times for water protons in flour doughs, at mixing time 
of 3 minutes long. The tree sets of data are plotted in Fig. 12 (first panel). Being real 
and noisy data, we introduce a regression Tikhonov parameter � = 1e − 06 ; refer 
to [3, §15, p. 276]. In the same setting of the previous experiments ( � = 2 ), we run 
both the f and �-greedy algorithms (we fix � as 1e − 02 and 3.5, respectively). For a 
visual feedback on the results, refer to Fig. 12 (second and third panel). The function 
to reconstruct is smooth and hence the results of the two algorithms are similar.

7 � Conclusions and work in progress

We have investigated the use of greedy strategies for Exponential-Polynomial Spline 
(EPS) interpolation. To this end we have studied the cardinal form of the EPS inter-
polant and then we have provided error bounds based on the Lebesgue function. The 
results show that the target-data-independent greedy points for EPS tend to cluster 
at the boundary of the approximation interval, despite the fact that Chebyshev points 
are not necessarily optimal in this case.

Work in progress consists in investigating the proposed tool in applications, as in the 
context of Laplace transform inversion based on smoothing splines [13], as well as for 
interpolation/extrapolation algorithms for the inversion of the Fourier transform [38].

Moreover, an interesting extension would be the maximization of the determinant 
of the interpolation matrix, instead of the Lebesgue function, to selected target-data-
independent interpolation points.

Appendix. Proof of Lemma 1

Proof  We use the values
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Fig. 12   First panel: the NMR data at three acquisition times. Second panel: the result of the f-greedy 
algorithm for the first acquisition time. Third panel: the result of the �-greedy scheme for the three acqui-
sition times. Plots are in logarithmic scale
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which give

It follows that

Now using the fact that cosh(x) ≥ 1 for all x ∈ ℝ , and the Taylor expansion 
sinh(�) =

∑∞

n=0

�
2n+1

(2n+1)!
 , we have

where we used the fact that only even powers occur in the sum.
Moreover,

and in particular �(−�) = �(�) since tanh(�∕2)2 is even and sinh is odd. To study the 
behavior of �(�) we can thus restrict to non-negative values of � . It clearly holds that 
�(�) ≥ 1 by definition. Moreover lim

�→∞ tanh(�) = 1 , and lim
�→∞

sinh(�)+�

sinh(�)−�
= 1 since 

sinh has a super-linear growth, and thus lim
�→∞ �(�) = 1 . The Taylor expansion of 

�(�) around zero gives �(�) = 3 −
2

5
�
5 +O(�4) for small � , which in turn gives the 

desired asymptotic in zero.
Finally, we have

The denominator of ��(�) is non-negative. Moreover

m
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�
(0) ∶= 2,

m
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(1) ∶= exp(�) − exp(−�), p
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(1) ∶= exp(�) + exp(−�),
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b0 = B(�)(2) = f (2)
�

(2) =
1

4�2

(
−2p

�
(0) +

2

�
m

�
(0) +

1

�
m

�
(2)

)

=
1

4�2

(
−4 +

1

�
(exp(2�) − exp(−2�))

)
=
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and thus ��(�) has the same sign of − tanh(�∕2) , i.e., ��(�) ≤ 0 if � ≥ 0 . Since 
lim

�→∞ �(�) = 1 , and lim
�→0 �(�) = 3 , we have 1 ≤ �(�) ≤ 3.
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