
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fault tolerant nanoarray circuits: Automatic design and verification / Ranone, P.; Turvani, G.; Riente, F.; Graziano, M.;
Roch, M. R.; Zamboni, M.. - ELETTRONICO. - (2014), pp. 1-6. (Intervento presentato al convegno VLSI Test
Symposium tenutosi a Napa (CA) nel 13-17 April 2014) [10.1109/VTS.2014.6818761].

Original

Fault tolerant nanoarray circuits: Automatic design and verification

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/VTS.2014.6818761

Terms of use:

Publisher copyright

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2973101 since: 2022-11-15T21:59:45Z

IEEE

Fault Tolerant Nanoarray Circuits:

Automatic Design and Verification

P. Ranone, G. Turvani, F. Riente, M. Graziano, M. Ruo Roch, M. Zamboni

Abstract—We automatically maximize fault-tolerance in
nanoarrays based on silicon nanowires and Gate-All-Around
transistors optimizing their topology vs. several distributions of
faults inherited by technology. We added a MonteCarlo engine
in our nanoarchitecture design tool ToPoliNano and verified the
effectiveness of the fault-tolerance algorithm over several circuits
and faults distributions. 1

Keywords—Nanoarrays, Fault-tolerance optimization, Monte-
Carlo, emerging technology, CAD for nanoelectronics.

I. Introduction

Nanoarray circuits represent the beyond-CMOS technology
nearer to scaled CMOS [1] [2] [3]. Proposed circuits topologies
have in common the elementary device, i.e. the Gate-All-
Around (GAA) transistor based on silicon nanowires (SiNW),
and the regular organization, namely PLA-like in most of the
cases (a brief overview is in section II). Both characteristics are
predictive of high compactness, good trade-off between power
and frequency, and remarkable predisposition for massive
parallel computation [4]. Nevertheless defects will be for long
time one of the main concerns from the technology side [3]
[5]. Though experimental demonstrations have been already
presented [6] [2], processes are still not mature. The extremely
scaled feature sizes used, combined with the expected density,
give a perspective where high fault rates will be for long
time the default scenario (see section III). Coping with high
defective rates from the design and architectural point of view
is unavoidable to mask the most critical aspects limiting the
integration of nanoarrays with scaled CMOS in order to exploit
as much as possible their remarkable potentials.
Previous works (see section II) approached the problem by
inspecting the possible fault tolerant techniques of nano-PLA
[7], by using a redundant covering approach at software level
[8], or by developing a high level simulator [5] for identifying
the best fault masking for nanoarray circuits. None of the above
comprises the main features that are emerging as mandatory
by literature and technology: A) a fault-tolerant algorithm that
acts at the single nanoarray design level optimizing the wire
and transistor detailed topology not necessarily relying on
redundancy; B) a detailed simulator able to consider transistor
by transistor what happens in presence of faults before and
after optimization; C) the ability to take into account faults
distributions with detailed geographical localization precisely
related to data from the technology.

Our contribution (see Fig. 1) goes toward this direction
with a fresh approach (see section IV) with respect to the
state of the art. 1) We implemented an automatic algorithm

1Authors are with the Electronics and Telecommunication Department,
Politecnico di Torino, Corso Duca degli Abruzzi 24, Italy.
C.author: Mariagrazia Graziano, E-mail: mariagrazia.graziano@polito.it, Tel:
+390110905172, Fax: +390110904117

Figure 1: Contribution: For nanoarrays A) based on B) SiNWs
and GAA devices, we consider faults C) on NWs and devices
and D) a localization aware distribution of defects. A fault
tolerance algorithm E) based on faults statistics optimizes
topology F). An accurate engine considers devices, wire
topology and defects and executes MonteCarlo simulation
exploiting multithreading and G) evaluates yield and error rate.

(section V) to maximize fault-tolerance in nanoarray logic
components based, at the moment and as case study, on
NAND-NAND PLA-like dynamic nanoarrays inspired to [5]
and evolved to [9] [4]. The method 1.1) considers the detailed
topology of both SiNW and GAA transistors for a given
function, 1.2) relates it to the faults distributions inherited
by technological processes counting both faults probability
and faults topological distribution, and 1.3) optimizes the
nanoarray organization accordingly; this is obtained through
an ad-hoc developed algorithm, FaTToR, based on the min-
max optimization of a penalty matrix P created on the basis of
a combination of logic function and faults distribution. 2) We
enriched our tool for nanoarchitecture design, ToPoliNano [9]
[10] [4], with a MonteCarlo engine (section IV and VI) for the
analysis of faulty arrays able to: 2.1) design the circuit using
as components the nanoarrays (either-tolerant or not), 2.2)
execute detailed switch level simulations of exaustive input
patterns, 2.3) introduce faults distibutions taking into account
not only faults probabilities but also faults localization, 2.4)
run MonteCarlo style simulations considing faults exploiting
parallel execution (multithreading C++ efficient implementa-
tion) and 2.5) collect the final output error rates (OER) and
Yelds (Y). 3) We tested (results in section VI) the effective-
ness of the fault-tolerance method 3.1) executing exhaustive
MonteCarlo simulations over several circuits, 3.2) considering
different probability and topological distributions of faults, 3.3)
analyzing the effectiveness of circuit reorganization.
We believe this work is a fundamental contribution to the
capabilities now available to cope with the high defective rates
of nanoarrays and with the necessity to deal with the design
and verification of defective emerging circuits conceived for
massive parallel computation.

II. Background

Nanoarray based circuits are characterized by a 2-D grid
of semiconductor NWs, where active devices (GAAs) are
realized at certain crosspoints. This circuit organization is
derived from [5]. However, the structure we use is evolved
from the original [4], as we added buffers in order to route
signals for connecting the crossbar to other crossbars and to
the I/O (e.g we designed it using input, output and connection
buffer). This solution saves area without losing the benefit of
the high regularity of this technology. Thus, bigger systems
can be obtained cascading many tiles (elementary crossbars)
connected together by connection buffers. According to [5], the
dynamic two-level nanocircuit behavior is sequenced by four
control signals: hpre, heva, vpre, veva. Microwires placed on
the periphery are used to supply power to the circuit. Fig. 2
shows an implementation of the AND function with a two-
level dynamic NAND-NAND logic style, where input signals
are routed toward the tile by an input buffer. The two logic
planes will be herein referred to as NAND1 and NAND2.

Unconventional manufacturing process based on self-
assembly are not mature and produce an extremely high
number of defects with respect to standard CMOS process. On
the other hand, top-down lithography can reduce this number,
but the limitation is inherent to lithography resolution and
to the higher cost of the fabrication process. Nonetheless,
extrapolation data to 9-nm node in [2] show a doubling of
the performance and x67 area saving with respect the CMOS
implementation of a given function. Furthermore, several tech-
niques have been developed to integrate III-IV materials on
silicon [6]. Due to the current fabrication limit, defects are
difficult to be detected in the circuit. Two typical kinds of
faults in nanoarray devices are depicted in Fig. 2 insets: stuck-
on transistor on the top and a broken horizontal nanowire on
the bottom (in section III a formal classification is given).
Even if the fabrication process is currently unreliable due to
technological limits, researchers are looking for architectural
and system level techniques to reach an acceptable yield and
output error rate. One of the outcomes of this approach is
assessing the limits to which technology should set toward
to assure circuits with overall satisfying reliability and thus
competitive if compared to CMOS standard structures.

The AND depicted in 2 has a structure very similar to a
PLA, not AND-OR but NAND-NAND based. This similarity
suggests that fault models developed for CMOS PLAs, such
as fault masking schemes, can be adapted also to nanodevices
[7]. In literature, previous works on fault tolerance exploit the
unequal fault probabilities of faulty ”0”s and ”1”s to increase
yield, using biased techniques combined with some levels of
structural redundancy or based on majority voting [5] [8].
However, these approaches increase the yield but suffer of an
important limitation: they take into account the intrinsic logic
behavior of the NAND-NAND architecture without consider-
ing the internal organization of the circuit (i.e. NWs and GAAs
topology). Another problem is that the redundant technique
increases a lot the total sizes of the circuit. Moreover, a part
from [8], such techniques are based on the assumption that
defects are present mostly in correspondence of the transistors.
Since microwires manufacturing process can be considered
reliable as based on standard technology, the kind of faults
that can appear inside the nanoarray can be of four types:
stuck-on, stuck-off, broken nanowire, bad ohmic contact. In

Figure 2: AND function implemented with 2-level NAND-
NAND logic style. Insets show examples of stuck-on transis-
tors (top) and broken nanowire (bottom).

this paper we are considering only faults related to the two
NAND planes, NAND1 and NAND2, so we exclude possible
faults on control and power lines. The details about these kind
of faults and about the way we include them in our method
are described in the section III.

Our approach is based on an algorithm, FaTToR, that takes
into account the transistor disposition inside the two logic
planes, in order to increase yield without increasing the circuit
area. It is strictly related to the fault distribution throughout the
circuit. Both these features are absent in almost all previous
approaches. In [8] a partial knowledge of the circuit internal
organization is provided, while faults are not associated to the
circuit structure nor specific statistical faults distributions are
considered out of a uniform random statistic.
Another important contribution of our method is the analysis
of the effectiveness of FaTToR results through accurate
switch level simulations that allow to consider the impact
of defects positioned in specific points of the array, both on
GAAs and on NWs, in presence of a given statistics and fault
probability. No tools are available to simulate nanoarray based
technologies with the required level of detail. We then enriched
our automatic CAD tool ToPoliNano [9], that now allows us to
perform MonteCarlo simulations on different kind of emerging
technologies, and in this particular case on nanoarray based
circuit (see section IV).

III. Faults classification

In this section we present the four main categories of faults
that can be treated in our tool. A detailed analysis can be
found in [1] [5]. The first two concern transistor (TR) defects:
a stuck-on TR is considered as always on, independently from
the logic level of the input, leading to a persistent short-circuit
between drain and source. On the contrary, stuck-open TRs
are always off, so there is no connection between drain and

B)a a b b

z1
1 2

z2
3

z3
4 5

f f

A)

Figure 3: A) Broken NW faults on an AND gate
B) Defective sub-tiles remapping

source. These defects can be treated with techniques such as
hardware redundancy or reconfiguration. Furthermore, NWs
can be broken and when this happens logic values cannot
be propagated through the circuit. The fourth fault worth
mentioning is the bad ohmic contact, i.e. a bad connection
between microwire and NW. The consequence is a wrong
polarization of the circuit.
The stuck-on TRs are the most prevalent kind of defect [5]
due to the manufacturing process. Nevertheless, broken NW
faults are equivalently important. It is reasonable to assume
that there is a direct relationship between NW length and the
probability of having a break. Since these kind of defects
cause an interruption in signal propagation, it is important
to analyze how the position of the faults impacts the correct
behavior of the circuit. It could happen, for example, that for
a given state the output is not affected by a break. Fig. 3.A
shows the circuit of an AND gate in which five types of
faults are highlighted. Herein we consider these different cases
independently, assuming thus that at a given time only one
single fault can occur. Fault ‘1’: if we have a logic 0 nothing
happens, because there is no signal to be propagated and
no activation has to be done in correspondence of the TR.
Otherwise, in case of a logic 1, the broken NW leads to
an error. Fault ‘2’: It is never possible to totally charge the
cube z1. Then, nothing happens when z1 has to be discharged,
otherwise an error occurs. Fault ‘3’: as long as the cube z2 is
to be kept to logic 1 nothing happens, because the line, on the
right part of the circuit will be always charged. Otherwise, the
loss of any kind of possible connection to ground prevents the
line to be totally discharged. Faults ‘4’: this kind of fault
does not cause any error at all and it is totally harmless.
Faults ‘5’: if the output f has to be equal to 1, the circuit
works as expected. Otherwise, there is no way for the cubes
to create a connection to ground, and so the logic 0 will be
never produced.
Fig. 4 shows a AND gate circuit where different faults distri-
butions are applied on both NWs and TRs. Considering the
technology process it is in fact very likely that there is a non
uniform distribution of faults, especially in the case of NWs.
Here we considered three kind of distributions: I) Gaussian
type 1 (herein identified as G1): 1 + e−x2

− e−y2

II) Gaussian

type 2 (herein identified as G2): 1−e−x2

+e−y2

III) Corner linear
distribution which can have four inclinations: north-east (NE),
south-east (SE), south-west (SW), north-west (NW). We finally
consider also a standard uniform random distribution (herein
identified as R) the only one normally adopted in previous
works. Each of these distributions can be applied to NWs
and devices, both horizontally and vertically. In our software
circuits are described using different tiles, each of them is

Figure 4: AND circuit with faults distribution examples. A)
G1G2: G2 distribution on hor. NWs and G1 distribution on
vert. NWs. B) SWSW: corner linear distribution with south-
west inclination both on vert. and hor. NWs. C) G2G1 on dev.:
G2 distribution on hor. GAAs and G1 distribution on vert.
GAA. D) SWSW: corner linear distribution with south-west
inclination on vert. and hor. devices.

represented by a matrix in which each node corresponds to
a particular sub-tile like NW, microwire, TR and so on. In this
way it is possible to easily substitute a defective element with
its corresponding model according to Fig. 3.B.

IV. Fault tolerant nanoarrays design and test: the method

Our tool involves the interaction between two different
software engines. The first one, the Component Generator
(CG) is tasked with creating the basic circuit components that,
when added to the library of ToPoliNano, can be instantiated
in the VHDL description of complex circuits. The second
software is the CAD ToPoliNano which, starting from the
VHDL description of the circuit and the basic blocks produced
by the CG, generates the circuit layout and performs the logic
simulation. As ToPoliNano itself has been described in [4] [9]
not further details on the standard version are given herein.
Since defects may have different impacts on circuit behavior
depending on their position within the circuit, our approach
consists in finding a circuit disposition with the objective of
maximizing the cases in which these faults, caused by breaking
NWs or defective transistors, become as harmless as possible.
In this first phase we act on the matrix representative of
the simulation circuit, exchanging, according to appropriate
rules, the order of the rows and columns. The algorithm we
developed, FaTToR (Fault Tolerance Topology Reorganization
algorithm), explained in section V, heuristically elaborates an
alternative device disposition, improving Yield (Y) or output
Error Rate (OER) with no cost in terms of circuit area,
performance and power. The resulting optimized circuit is
elaborated by the CG in order to create the optimized library
component for ToPoliNano. With this second tool we perform
the accurate logical simulation of the circuit at switch level
(i.e. considering the signal propagation throughout the NAND1
and NAND2 planes according to inputs and control signals
configuration). For this work we enriched the tool with an
embedded MonteCarlo approach: we iterate the simulation
n times applying different fault distributions with different
probabilities. The system behavior is in Fig. 5. Finally, results
are processed to calculate OER and Y and the effectiveness

VHDL

Compiling

Layout

MontCarlo

Multithreading

Simulation

ToPoliNano

Component

Generator

Component

VHDL

Description
Input

Signals

Base Circuit

Fault tolerant

circuit

Results

Fault

distributions

Figure 5: ToPoliNano and FaTToR flow chart

of the algorithm is tested by comparing Y and OER for the
FaTToR optimized circuits w.r.t. the non optimized ones.

V. A fault tolerance topology-based optimizer: FaTToR

The permutation rules which FaTToR relies on are: r1)
permuting two rows is allowed without any restriction; r2)
permuting two columns is allowed provided that they belong to
the same plane. Generally a matrix A ∈ Rm,n can be permuted
by means of permutation matrices, i.e., a class of square
matrices q × q that we define ∈ Pq, whose entries are 0 or
1, and the sum of each row and each column is equal to 1. An
example of with a matrix ∈ P3 is provided below:

0 1 0

0 0 1

1 0 0

1 2 3 4

5 6 7 8

9 10 11 12

=

5 6 7 8

9 10 11 12

1 2 3 4

Defining X the rows permutation matrix, Y (W) the columns
permutation matrix for the NAND1 (NAND2) plane, the
penalty matrix P ∈ Rr,c of the circuit is in Eq. (1):

P(X,Y,W) =
[

P1 (X,Y)
∣

∣

∣

∣

P2 (X,W)
]

(1)

where P1 (P2) refers to the penalty matrix of each TR at i j, on
the NAND1 (NAND2) plane (i.e. a penalty located where no
TRs are present is set to zero). FaTToR minimizes penalties
globally (min-avg mode), locally (min-max mode) or both, by
means of an user-defined weight γ. The objective function of
FaTToR, with optimal value p∗, aims to reduce the penalty by
finding the best permutation matrices X, Y and W:

pavg (X,Y,W) =
1

#dev.

∑

i, j

pi, j (X,Y,W)

pmax (X,Y,W) = max
i, j

(

pi, j (X,Y,W)

)

p∗ = min
X,Y,W

(

pavg (X,Y,W) (1 − γ) + pmax (X,Y,W) γ

)

(2)

The way in which penalties are defined (see the following
description) makes the model NP-hard (either non linear and
non continuous). Then the optimization process in FaTToR
is heuristic and based on a relaxed versions of P(X,Y,W).
Instead of solving the non-linear model, it iteratively executes
a sequence of two MILP (Mixed Integer Linear Programming)

problems, each one performing rows and columns optimiza-
tion. For this reason, in the first step X is variable whereas Y
and W are constant, and vice-versa in the second step.

Penalties structures: OPTOER and OPTY optimizations.
FaTToR allows fault tolerance improvement by optimizing
output error rate (herein named OPTOER version) or yield
(named OPTY version). The algorithm differs only for the
penalties definition. Since OPTY is a special (and simpler)
case of OPTOER, in the following we illustrate the penalties
matrices for OPTOER, focusing on the OPTY only at the end.
In general, the matrices P1 and P2, which are function of the
permutation matrices, contain: I) The topological description of
the circuit that needs to be permuted, represented by means of
circuit matrices; II) The matrices including fault distributions
(not to be permuted), represented by the local fault probability
related to a given kind of fault for each sub-tile.

In a NAND-NAND architecture we can conceive the circuit
as a set of NAND gates (a row in the NAND1 plane, or to
a column in the NAND2 plane). On each NAND, an input is
observable from the output only if the other inputs belonging to
the same NAND gate are set to 1. We use here circuit matrices,
a set of matrices representing the probability a given TR placed
in i j has to be observable by the output (and NAND1 outputs
are NAND2 inputs). Then we define two couples of matrices

M
logic state

plane
corresponding to the probability of having a device

in mplanei j observable with a given logic state (H,L) on its
input. In case we do not have any TR at a certain position,
such probability is set to 0. For the example in Fig. 3.A with
equiprobable inputs the representation is:

ML
1 =MH

1 =

0.25 0 0.25 0

0 0.5 0 0

0 0 0 0.5

ML
2 =

0.25 0

0 0.25

0 0.25

MH
2 =

0.75 0

0 0.25

0 0.25

Besides the circuit matrices, we define the following matrices
each representing a given fault type: H (V) and Ron (Roff). They
represent, respectively, the probability of having a horizontal
(vertical) broken NW and a stuck-on (stuck-open) device at
position i j. Since penalties refer to TRs, H and V are redefined
in order to make fault probabilities relative to TRs positions.
So, with this transformation we refer to the probability of
having a fault with respect to a TR at i j, instead of dealing with
local probabilities of broken NWs. Such transformation can be
done due to uncorrelated local probabilities. For the horizontal

NWs we define Dh
1

and DhLeft
2

(D
hRight

2
), that are, respectively,

the probability of having a broken element along all the path
at row i in the NAND1 plane, and the probability of having a
broken element in the NAND2 plane from the left (right) edge
to the position i j. Dv

1
, represents the probability of having a

vertical broken NW in the NAND1 plane from the input to the
location i j, and Dv

2
, which represents the probability of having

a vertical NW broken along all the path at column j in the
NAND2 plane.

Starting from these matrices, defect rates K
logic state

plane
are

computed. They represent the cases in which an error is
propagated towards the output for a given logic state in a
given plane (where ◦ is the Hadamard product), and where
Rok

plane
= 1 − Ron

plane
− Roff

plane
represents the probability of having

TRs with no faults.

A)

i7 i6 i5 i4 i3 i2 i1 i0 i7 i6 i5 i4 i3 i2 i1

o2 o1 o0 v

B)

i 0 i 1 i 1 i 2 i 2 i 3 i 3 i 4 i 4 i 5 i 6 i 5 i 6 i 7 i 7

v o2 o1 o0

C)

i 1 i 0 i 1 i 3 i 2 i 2 i 3 i 4 i 4 i 5 i 5 i 6 i 6 i 7 i 7

o1 o2 v o0

Figure 6: 8-bit priority encoder: A) standard version B) opti-
mized with OPT-OER C) optimized with OPT-Y algorithm

KL
1 = Ron

1 ◦

(

1 − Dh
1

)

KH
1 = Ron

1 ◦ Dh
1 + Roff

1 + Rok
1 ◦

(

Dv
1 ∪ Dh

1

)

KL
2 =
(

Ron
2 + Rok

2 ◦ DhLeft
2 ◦

(

1 − D
hRight

2

))

◦
(

1 − Dv
2

)

KH
2 = Ron

2 ◦ Dv
2 + Roff

2 + Rok
2 ◦

(

Dv
2 ∪ D

hRight

2

)

(3)

By looking at the matrices K they are in general computed
considering three cases, i.e., when the TR at i j is stuck-on,
stuck-open or working, and for each of these cases we analyze
the probability of having error propagation. Also, since we
do not know if a TR is placed at a given position i j or not
(because it depends on the optimization result), matrices K are
calculated by assuming that in every entry i j a TR is placed.
For instance, in NAND1 the probability of having an error
with a logic zero in correspondence of a possible presence
of a TR in i j is given by the probability of having either
an error-free horizontal line 1 − Dh

1
and the TR in stuck-on.

The complete representation of penalty matrices, including the
circuit matrices M and the defect rates K, is in the following:

PL
1 =
(

XML
1 Y
)

◦ KL
1 PH

1 =
(

XMH
1 Y
)

◦ KH
1

PL
2 =
(

XML
2 W
)

◦ KL
2 PH

2 =
(

XMH
2 W
)

◦ KH
2

(4)

where P1 = PL
1
+ PH

1
, P2 = PL

2
+ PH

2
.

For what concerns OPTY, the algorithm does not need to
consider observability, and so it does not make any distinction
among the TRs fault masking capability. The reason behind
this is that targeting Y implies that every input combination
is correctly propagated, independently from the probability of
TRs to be maskable for a certain set of input patterns. For
this reason, the circuit matrices are intentionally rounded up
to 1 for each entry greater than 0. Another difference w.r.t.
OPTOER is that, in absence of redundancy, there is no sense to
consider fault distribution on horizontal NWs (in both planes)

O0

V

O2

O1

O0

V

O2

O1A)

B)

Figure 7: Output waveforms under faults injection of a 8-bit
priority encoder with: A) no optimizations B) optimazions

and on vertical NWs in the NAND2 plane, because they are
in any case always filled by TRs, which all contribute to the
yield achievement. So, in order for the algorithm to ignore the
relevance of such fault distributions, the matrices Dh

1
, DhLeft

2
,

D
hRight

2
and Dv

2
are dropped to 0.

VI. Results

As described in the previous paragraph, the algorithm,
according to a given fault distribution modifies the columns
and rows disposition in order to place TR in a low failure
rate area. For example we applied FaTToR on a 8-bit priority
encoder circuit, (Fig. 6.A) using a corner linear distribution to
the base circuit. The TR disposition optimized for minimizing
OER (OPTOER) is shown in Fig. 6.B, where the faults distri-
bution is in evidence with thicker lines where the probability
of faults is bigger. Fig. 6.C, shows the case optimized for Yield
(OPTY). The algorithm clearly moves away the devices from
the more defective corner (south-west in this example) in order
to assure to have the maximum number of circuits completely
working. In case of OPTOER the optimization mimimizes the
probability to have an error at the output, even in case of
defects that have some effects on the circuit behavior in some
cases.

Exploiting ToPoliNano, we perform the MonteCarlo mul-
tithreading simulation in both optimized and non-optimized
circuits injecting faults according to different distributions.
Fig. 7.A shows a portion of the resulting simulation waveforms
obtained with the non optimized case where some errors due to
faults are highlighted; in Fig. 7.B the simulation of optimized
version is error free. In this case the output error rate dropped
from 3.49 % to 1.84 %.

We report here results obtained for a 4-bit and for a 8-
bit priority encoder (PE). Fig. 8 shows results as percentage
difference between the circuit optimized by FaTToR w.r.t. the
standard non optimized version. Pictures A and B refer to the
4-bit circuit, while the 8-bit one are in pictures C and D. A
and C show the improvement in terms of Y while B and D
the OER change. We tested the method by injecting faults
according to different distribution on NWs and devices (in the
x-axis). Among all the set we tested, for sake of brevity, we
show here a selection to show the importance of this variable in

nwG2G1 nwSWSW devG2G1 devSWSW

−10

−5

0

5
A) 4-bit PE, ∆-Y

Y
ie

ld
im

p
.

%
OPTOER OPTY

nwG2G1 nwSWSW devSWSW

−20

0

20
C) 8-bit PE, ∆-Y

Y
ie

ld
im

p
.

%

OPTOER OPTY

nwG2G1 nwSWSW devG2G1 devSWSW

0

20

40
B) 4-bit PE, ∆-OER

O
E

R
im

p
.

(a
v
g
.)

%

nwG2G1 nwSWSW devSWSW

0

20

40

60 D) 8-bit PE, ∆-OER

O
E

R
im

p
.

(a
v
g
.)

%

Figure 8: Percentage improvement of the circuit optimized by FaTToR w.r.t. the non optimized one with different fault
distributions. For each case both the effects of OPTOER and OPTY algorithms are reported. A) Y for 4-bit priority encoder circuit
(PE). B) OER for 4-bit PE. C) Y for 8-bit PE. D) OER for 8-bit PE. Distributions: nw=faults on NWs; dev=faults on devices;
G2G1=G2 distribution on H NWs(dev) and G1 distribution on V NWs(dev); SWSW=south west corner linear distribution.

the final outcome. The maximum injected fault probability in
these selected cases is 2%. We used for these results γ = 0.8.
Each case is tested both for OPTOER (OER minimization)
and OPTY (Yield maximization) algorithms. As expected the
OPTY algorithm (patterned histograms) gives a gain in terms
of Y, more evident for the 8-bit circuit (because bigger and
with more degrees of freedom at the optimization phase) and
more clear in the corner case faults distribution. This suggests
that in presence of NWs or devices faults more concentrated
in one corner (due to NWs manipulation for example) the
process could be directed toward privileging the SWSW corner
as more defective. If OPTOER is the optimization type chosen,
then Y is penalized, while the improvement in terms of OER
rises to very high percentages, especially in the case of faults
on devices. If on the one hand, one could summarize that
optimizing for Yield gives always a good result both in terms
of Y and in terms of OER, still, depending on how the
circuit is used and which other techniques can be exploited
to reduce the impact of defects (e.g. redundancy), optimizing
for OER could give very interesting outcomes. Finally, for
Random distributions on both NWs and devices (reported as in
previous works is the only distribution considered), we obtain
a Y improvement of 15.6% with OPTY and of 3.5% with
OPTOER; the OER improvement is 13.3% and 21.11% in the
two cases, respectively.

VII. Conclusion

Our first contribution, the fault tolerance optimization al-
gorithm for nanoarray based circuits, shows excellent results
both in terms of Yield and Output Error Rate. Our second
contribution, the tool for nanoarray circuits design and accurate
simulation enriched with a multithreading MonteCarlo fault
injection engine, allows to test both optimized and non opti-
mized circuits against faults obtained from technological pro-
cesses and assuming any desired distribution with topological
information. We are not aware of previus contributions able to

include both in the optimization engine and in the MonteCarlo
based simulator 1) precise localization awareness of faults with
any kind of distribution, 2) double yield and output error rate
fault tolerance objectives, 3) detailed simulation at switch level,
4) multithreading simulation engine potentially ready for huge
circuits analysis.

References

[1] A. DeHon. Array-based architecture for fet-based, nanoscale electron-
ics. Nanotechnology, IEEE Transactions on, 2(1):23–32, 2003.

[2] P. E. Gaillardon, M. Haykel Ben-Jamaa, F. Clermidy1, and I. OConnor.
Evaluation of a crossbar multiplexer in a lithography-based nanowire
technology. Circuits and Systems (ISCAS), IEEE International Sympo-

sium, pages 2930–2933, 2011.

[3] S. Frache, D. Chiabrando, M. Graziano, E. Enrico, L. Boarino, and
M. Zamboni. Silicon nanoarray circuits design, modeling, simulation
and fabrication. In Nanotechnology (IEEE-NANO), 2012 12th IEEE

Conference on, pages 1–5, 2012.

[4] S. Frache, D. Chiabrando, M. Graziano, M.Vacca, L.Boarino, and
M. Zamboni. Enabling design and simulation of massive parallel
nanoarchitectures. J. of Par. and Distr. Computing, In press, 2013.

[5] Md Muwyid U. Khan, P. Narayanan, P. Joshi, P. Panchapakeshan, and
C. A. Moritz. Fasttrack: Toward nanoscale fault masking with high
performance. Proc. of the IEEE, 11(4), 2012.

[6] P. Das Kanungo, H. Schmid, M. T Björk, L. M Gignac, C. Breslin,
J. Bruley, C. D Bessire, and H. Riel. Selective area growth of iiiv
nanowires and their heterostructures on silicon in a nanotube template:
towards monolithic integration of nano-devices. Nanotechnology, 2013.

[7] W. Rao, A. Orailoglu, and R. Karri. Fault tolerant approaches to
nanoelectronic programmable logic arrays. Dependable Systems and

Networks, pages 216–224, 2007.

[8] F. Angiolini, M. Haykel Ben Jamaa, D. Atienza, L. Benini, and G. De
Micheli. Improving the fault tolerance of nanometric pla designs. pages
570–575, 2007.

[9] S. Frache, D. Chiabrando, M. Graziano, F. Riente, G. Turvani,
and M. Zamboni. Topolinano: Nanoarchitectures design made real.
IEEE/ACM Int. Symp. on Nanoscale Arch., pages 160–167, 2012.

[10] S. Frache, M. Graziano, and M. Zamboni. A flexible simulation
methodology and tool for nanoarray-based architectures. International

Conference on Computer Design, pages 60–67, 2010.

