A \bigcirc \square

Parametric design and ecological awareness The making of a tool for planning decisions

Sara Giaveno Doctoral Dissertation Doctoral Program in Architettura. Storia e Progetto Politecnico di Torino 2022

Doctoral Dissertation Doctoral Program in Architettura. Storia e Progetto (34th Cycle)

Parametric design and ecological awareness.

The making of a tool for planning decisions.

Sara Giaveno

Supervisor

Prof.ssa Anna Osello Co-supervisor Prof. Marco Trisciuoglio

Doctoral Examination Committee:

Prof. Kjartan Gudmundsson, KTH Stockholm Prof. Carlo Bianchini, La Sapienza Prof. Chiara Vernizzi, Università di Parma Prof. Riccardo Florio, Università degli studi di Napoli Federico II Prof. Matteo Del Giudice, Politecnico di Torino

> Politecnico di Torino April, 2022

Abstract

In our era, a new ecological awareness has been developing with the search for an environmental and planetary balance by dragging architectural design and urban planning into the debate (Gregory, 2013). The ecological issue gradually became, in the last decades, a design matter. Ecology, in the fold of architecture, wants to take a step beyond consolidated sustainable practices and promote a new balanced alliance between nature and humans, new ways of inhabiting the earth, and a new dialectic between natural and artificial (Causarano, 2017). In these terms, architecture is invested with the role of expressing a new philosophical and aesthetic vision by embodying ecological awareness and innovation in the fold of the information revolution (Wines, 2000).

The study grounds its roots in the context described and adopts a researchbased approach to address the *purpose of enquiring about the intersection between ecological awareness and information revolution related technologies in contributing to the foundation of a new philosophical vision of architecture and in triggering innovation and transformation in consolidated design practice.* How does it is possible to reach the purpose? The study tries to contribute to the debate on the theoretical and practical sides.

The purpose is addressed by different reading and enquiry plans developed in the dissertation in the following three parts: *Theoretical background and implications, The laboratory experience, Observatory on the experiment.*

The first part contextualizes the work's theoretical background and the starting research implications. It clarifies the background in its concepts, contributions, and terminology. It illustrates the theoretical recognition of ecology and digital technologies intersection supported by the elaboration of critical thought. It describes the wave of environmental, social and technological implications and the Academy-Industry collaboration model's influence on research development. The last part of the section is dedicated to introducing the research proposal definition.

The second part is the operative plan developed in the fold of a laboratory experience. It is dedicated to illustrating and discussing the original contribution of the thesis consisting of a digital tool planning decisions at a micro-scale to

create dynamic Embodied Carbon and Embodied Energy scenarios. In that context, the research employs the previous premises as a background and moves toward the practical exploration of digital dynamic methodologies. The procedure of creation and validation consists of building the perimeter of a real and working playground (made of roles, responsibilities, constraints, objectives and implications). Later, assemble the digital tool (by setting architectural and environmental impact variables) and putting it into play on a real action context to observe its performative power. The section documents the process and unfolds the digital tool's model/data responsiveness, its potential in hybrid configurations and decision-making scenarios creation.

The third part is dedicated to tracing the critical discussion and observations of the process and results in their theoretical and practical challenges. Its task consists in outlining a knowledge account founded on the observative and practical involvement in the research process. In particular, it builds a theoretical reflection by employing the laboratory experience process as a means of interpretation. It unpacks the research path stages and highlights its performative characteristics to trace the innovations that parametric practice can trigger in the design discipline. Besides, the observatory illustrates the performative characteristics of the tool in itself and comparison with traditional methods, its transformative power in the design process and its influence on the designer's role and the creative process. It links back to the outcomes with the initial research questions and interests and outlines the potential of the research's theoretical and practical output in contributing to ecological debate in the fold of the information revolution.

Table of contents

PART 0 Introduction

Introduction to the research activity	7
0.1 Premise and motivations	7
0.2 Research statements and questions	11
0.3 Methodological notes	12
0.3.1 The role that I embodied	13
0.3.2 The purposes	15
0.3.3 The object and the original contribution	16
0.3.4. The investigation methodology	19
0.3.5 Chapters development and use of the sources	20
0.3.6 Graphical abstract	21
0.4 Structure of the thesis	22
0.5 Conceptual background	24

Chapter 2. Interpreting implications as a design matter	73
2.1 The research implications: matters and tools	
2.1.1 A wave of environmental and social issues	75
2.1.2 Parametric design and its power in prototyping: the case of BIM.	91
2.1.3 The "machine": Academy-Industry collaboration model	104
2.2 Introducing the operative proposal	110

PART II The laboratory experience

Chapter 3. Building the playground	115
3.1 Setting the experiment boundaries	116
3.1.1 The multi-site fieldwork	117
3.1.2 The actor's map: roles and responsibilities	118
3.1.3 Defining gap and target	120
3.1.4 The actor's workflow	126
3.2 Making the toolkit	128
3.2.1 Software and model uses	128
3.2.2 Selecting the case study: an architectural prototype	130

Chapter 4. Devising the tool for planning decisions	133
4.1 The assembly work	134
4.1.1 Materials and methods	134
4.1.2 The methodological proposal	139
4.1.3 Programming the script	142
4.1.4 Validation phase: shaping the final requirements	153
4.1.5 The decision-making scenarios: form and materials	159
4.1.6 Simulation options	162
4.2 The tool in action	169
4.2.1 Testing the prototype/ simulation type b	169

PART III Observatory on the experiment	
Chapter 5. Investigate through observation	175
5.1 Interpreting the process	177
5.1.1 Mapping the process: actors/actions	178
5.1.2 A revolution in communication	181
5.1.3 Multidisciplinary collaboration and the designer's role	
5.2 Reading the transformative tool power	189
5.2.1 Achievements from the collaboration procedures	189
5.2.2 Innovation in the flow of the activities	192

Chapter 6. Concluding remarks	
6.1 Recognise the limits of an all-compassing model	196
6.2 Expanding the scale: from the building to the city	198

References and thematic bibliography201	1
---	---

Parametric design and ecological awareness. The making of a tool for planning decisions.

Complete bibliography	216
I.List of tables	
II.List of figures	
III.List of abbreviations	
Appendix A: BIM and LCA benchmark	
Appendix B: mapping process	
Appendix C: interpreting the process	