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Combinatorial Analysis of Factorial Designs
with Ordered Factors

Analisi Combinatoria di Piani Fattoriali con Fattori
Ordinali

Roberto Fontana and Fabio Rapallo

Abstract In recent literature a new combinatorial algorithm for the selection of
robust fractional factorial designs has been introduced. In this work we analyze the
application of this algorithm in the case of ordered factors.

Abstract E stato sviluppato recentemente un nuovo algoritmo combinatorio per la
selezione di piani fattoriali frazionari robusti. In questo lavoro analizziamo la sua
applicazione nel caso di fattori ordinali.

Key words: Algebraic statistics, Design of experiments, Optimality, Robust frac-
tions

1 D-optimality, robustness, and combinatorial objects

The choice of a design from a set of candidate runs is one of the most relevant prob-
lems in Design of Experiments. When working in the framework of factorial de-
signs, the candidate set is usally the full-factorial design containing all the possible
level combinations of the factors. There are several criteria for choosing a design.
Here we restrict our attention to model based techniques. Thus the linear model on
the candidate set & is written in the form

y=XgpB+e, (1
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where X4 is the full-design model matrix with dimensions K x p, B is the p-
dimensional vector of the parameters, € is the error, and E(y) = X4 f3.

The classical theory leading to the class of alphabetical optimality criteria (D-
optimality, A-optimality, etc.) is based on the maximization of some quantities com-
puted using the model matrix X & of the selected fraction .# C Z. In their basic
form, the selection algorithms work with a pre-defined and fixed dimension n = #.7
of the fraction. As general reference for optimal designs, refer to [6].

When the design may be incomplete, e.g. for time limitations, there are methods
to choose the order of the runs in order to achieve first the most informative runs,
so that a possibly incomplete design is as much effective as possible for parameter
estimation. Fractional Factorial Designs with removed runs are studied in, e.g., [1],
[7]. In such a case the set Z is usually a candidate set different from the full-factorial
design.

Both optimality with a fixed run size and with possibly incomplete designs has
been recently analyzed under a geometric and combinatorial point of view using a
special representation of the basis of the kernel ker(X?,) of the model matrix for
the candidate set, namely the circuit basis. In particular, the property that naturally
reflects the geometry of the design points is the robustness, first introduced in [4].

Definition 1. The robustness of a fraction .# with design matrix X4 is defined as
B #{ saturated 351,} B #{ saturated 3“,,}
#{Fp} ()

where .%,, denotes a fraction with p runs and #{-} denotes the cardinality of the set
{-}. Z is a saturated fraction if #.% = p and the parameters 3 are estimable.

r(Xz)

On the other hand, the circuit basis of the matrix Ay = X ’9 is defined as follows.

Definition 2. 1. A vector u = (u(1),...,u(K)) in ker(Ag) is a circuit if it has rel-
atively prime entries and minimal support. The support of a vector is the set of
indices for which the entries are non-zero.

2. The (finite) set of all the circuits is the circuit basis of ker(A4), and it is denoted
by (f(A _@)

For a concise reference on the circuits, their combinatorial properties, and their
applications to optimization problems, the reader can refer to [8]. The circuit basis
of an integer matrix Ay can be computed through several packages for symbolic
computation. The computations presented in the present paper are carried out with
4t i2, see [9].

In [2] and [3] it is shown that robust fractions correspond to the fractions which
minimize the intersections between the fraction and the support of the circuits. For
space limits, we do not introduce here the full details of the theory, but we summa-
rize the algorithm for finding nested robust fractions using the circuit basis.

1. Start with an arbitrary fraction .% of a specified size n;
2. Repeat:
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a. Consider the circuits of ¥’ (X4 ) which are contained in .#;

b. For each run R in .%, compute the number of circuits in which R is contained.
This is the loss function associated to R;

c. Remove from the fraction the run with the highest loss function. In case of
ties, randomize.

2 Circuits in case of ordered factors

In the previous section we have not mentioned the problem of the choice of the
coding of the factor levels. Indeed, the combinatorial analysis introduced above is
usually applied in the framework of qualitative nominal factors. In such a case, the
linear model in Eq. (1) can be written in the standard ANOVA form. For instance:

E(Y;j) =u+oa;+B;+ (af)ij (2)

with the constraints ;0 = 0, ¥; B = 0, ¥;(aB)i; = 0L (B );; = 0.

Using the model written in the form of Eq. (2) with qualitative factors, there is
a large class of codings which are equivalent in terms of the kernel of the matrix
Ay = X[,. Among these parametrizations, one can use a polynomial model in the
form E(Y) = Y ocr ca X%, where cq are real coefficients, X* are monomials, and L
is a suitable list of exponents. The proof of the equivalence is based on the Identity
Theorem for Polynomials, see [5] for a detailed analysis and examples.

To encode ordered factors we use here two codings:

1. For a linear ordered factor (e.g., the discretization of a quantitative factor) with s
levels, we use the set {0,...,s — 1} for a linear effect, and its powers for higher-
order effects;

2. For a cyclic factor with s levels, we use the coding based on the roots of the unity:

2mik
{wk: 75’ :k:O,...7s—1} (3

With this choice, the monomials X, X2, X3, ... encode the cyclical nature of the
factor. For computational reasons, the roots of the unity in Eq. (3) can be replaced
with suitable Fourier-type functions, such as linear combinations of sin and cos
functions.

Notice that there is a major difference between nominal and ordered factors.
While for nominal factors all parametrizations are equivalent, when ordered factors
are considered one can add to the model only a linear effect, or the linear effect plus
some powers. This implies that when using the algorithm described in the previous
section with ordered factors, special attention must be given on the circuit basis,
taking the correct effects in the model matrix. In the next section we illustrate two
examples involving ordered factors.
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3 Examples

The first example considers two 2-level factors (X, X») and one 5-level factor (X3)
with two different models. The first model is linear in X}, X5, and X3 and contains a
constant term: E(Y(xl,ng@))) = Bo + Bix1 + Baxz + Bsxs. The number of degrees of
freedom of this model is p = 1+ 3 = 4. For this model, the circuit basis is formed
by 44 circuits with cardinality of the supports ranging from 2 to 5. The robustness of
a D-optimal design with n = 10 runs is analyzed. The 10-run D-optimal design has
been obtained using the full factorial design 2 = {0,1}? x {0,...,4} as candidate
set. The exact distributions of the values of the robustness of the fractions which
are obtained removing k = 1,...,n — p = 6 points are computed and compared with
the values of the robustness corresponding to the fractions found by the algorithm.
Table 1 compares the values of the robustness of the fractions found by the algorithm
(r«) with the 75th, 90th and 95th percentile of the distributions of the robustness
(p75, P90, P95 respectively) for different number of points (k) removed by the initial
design. The value corresponding to the robustness of the initial design (rp) is given
at k = 0. It is worth noting that for each number k of points removed the algorithm
provides values of robustness equal to the 95th percentile.

P75 Py P95 I
ro=0.457

0.476 0.476 0.476 0.476
0.529 0.529 0.529 0.529
0.629 0.629 0.629 0.629
0.6 0.6 0.867 0.867
0.8 1 1 1

1 1 1 1

AN N B W= O X

Table 1: Example 1, E(Y(y, x, x;))) = Bo + Bix1 + Baxz2 + Bsx3

Unlike the first model, the second one contains also the powers of X3 of or-
der 2,3,4: E(Y(y, x,.x;)) = Bo + Bix1 + Baxz + Y#_; Bsxs. The number of degrees of
freedom of this model is p = 1 +2+4 = 7. From the combinatorial point of view
this model is simpler than the linear one: there are only 4 circuits in the circuit ba-
sis. Also in this case the robustness of a D-optimal design with n = 10 runs and
obtained using the full factorial & as candidate set is analyzed. The exact distribu-
tions of the values of the robustness of the fractions which are obtained removing
k=1,...,n— p =3 points are computed and compared with the values of the ro-
bustness corresponding to the fractions found by the algorithm. In this case we do
not display all the results, but the performance of the algorithm is similar to the
previous example.

The second example is taken from [11] and is based on [10]. An animal scientist
wants to compare wildlife densities in four different habitats over a year. However,
due to the cost of experimentation, only n = 16 observations can be made (in the
original example the requested size was n = 12, but n = 16 allows us to describe the
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method better than n = 12). The following model is postulated for the density ¥;(r)
in habitat j during the month m:

. m 3 . m
E(Y;(t)) :#j+7’m+k§,106k008 (kT) +k§,ll3ksm (kT) 4)

The model includes the habitat as a classification variable (i, j = 1,...,4), the ef-
fect of time with an overall linear drift term ym, m =1,...,12 (m = 1 corresponds to
January, ..., m = 12 corresponds to December), and cyclic behavior in the form of a
Fourier series. There is no intercept term in the model and the number of parameters
isp=4+1+4+3=12.

The Optex procedure [11] is used to generate a D-optimal design .% with n =16
runs using the full factorial arrangement of four habitats by 12 months (48 runs) as
candidate set. The model matrix X4 corresponding to the 16-run D-optimal design
that has been generated by the Optex procedure is reported in Table 2. The month
m e {1,...,12} is expressed as a number ¢ € [—1,+1] using the linear transforma-
tiontr =—1+4(2/11)(m—1).

M1 Mo H3 4 Yy oo o BB B
0 0 0 1-0.636-0.707 0 0.707 -1 0.707 -1 0.707
0 0 0 1-0.091 0 -1 01 -10 1
000 10273 11 11 00 0
00 0 10636 0 -1 0 1 1o -1
0 0 1 0-0818 0 -1 0 1 1o -1
0 0 1 0-0273-0.707 0 0.707 -1 -0.707 1 -0.707
0 0 1 00091 0707 0-0.707 -1-0.707 -1 -0.707
0 0 1 0 0818-0707 0 0.707 -1 0.707 -1 0.707
010 00455 -1 1 -1 1 00 0
0 1 0 0-0273-0.707 0 0.707 -1 -0.707 1 -0.707
010 00273 11 11 00 0
0 1 0 00455 0707 0-0.707 -1 0.707 1 0.707
1000 -1 0707 0-0.707 -1 0.707 1 0.707
1 0 0 0-0.091 0 -1 01 -10 1
1 0 0 00091 0707 0-0.707 -1-0.707 -1 -0.707
1000 1 -1 1 11 00 0

Table 2: Model matrix X4 corresponding to the 16-run D-Optimal design

The circuits of a matrix A can be computed for an integer matrix A. Then we
have to build an approximate version Xz of Xz. Let us denote with x; ; and j;
the elements of the matrices X# and X & respectively, i=1,...,16, j=1,...,12.
We do not modify the coding of the habitats, %;; = x;;,j = 1,...,4, we code the
month using again the integer m as above (£;; = m) and we round the remaining
values defining %;; = 10r(x;;) where r(x) returns the rounding of x to one decimal
place. For example for the first row of X we have X4 = 1, ;5 = 3 and %1 = —7
which correspond to the parameters L4, ¥, and o respectively. However the circuits
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encodes the complexity of the model: there are 26 circuits in the circuit basis but the
supports now range from 8 to 10 points.

From Table 3 it is worth noting that for each number & of points removed the

algorithm provides values of robustness equal to the 95th percentile.

k| pis poo  pos T
0 ro=0.527

1]0.527 0.527 0.527 0.527
2[0.571 0.571 0.571 0.571
3[0.615 0.769 0.769 0.769
4 1 1 1 1

Table 3: Example 2, E(Y;(t)) = p; + ym+ L{_; ocos(kZ) + Y3 _; Brsin(k %)
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